不等关系与基本不等式同步练习题

不等关系与基本不等式同步练习题
不等关系与基本不等式同步练习题

不等关系与基本不等式同步练习题(一)

(时间:120分钟 满分:150分)

A.基础卷

一、选择题(5×8=40分) 1.函数)2(2

1

>-+

=x x x y 的最小值为( ) A. 2 B . 3 C . 4 D .23 2.不等式0)31(>-x x 的解集是( )

A .)31,(-∞

B . )31,0()0,( -∞

C . ),31(+∞

D .)3

1,0( 3.已知,R b a ∈、且0>ab ,则下列不等式不正确的是( )

A .b a b a ->+

B .b a b a +<+

C .b a ab +≤2

D . 2≥+b

a

a b 4.已知无穷数列{}n a 是各项均为正数的等差数列,则有( ) A.

8

6

64a a a a ≤

B. 8664a a a a < C.8664a a a a > D.8664a a a a ≥ 5.已知01,0<<-

,,ab ab a 的大小关系是( )

A.2

ab ab a >> B.a ab ab >>2

C.2

ab a ab >> D.a ab ab >>2

6.已知,1117,32-≤<-<≤-y x 则1

2

-y x 的取值范围是( )

A.??? ??--

92,43 B.??? ??-0,43 C.??? ??-0,21 D.???

??-0,43 7.若

,11

<++b

a a

b 则b a 与中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知,,d

c b a >>则( ) A.

d b c a ->- B.

c

b

d a > C.a d b c ->- D.bd ac >

二、填空题(5×4=20分)

9.若d c b a 、、、均为实数,使不等式

bc ad d

c

b a <>>和0都成立的一组值),,,(d

c b a 是 .(只要写出适合条件的一组值即可)

10.若不等式t x x >++-35恒成立,则实数t 的取值范围是 . 11.当0>x 时,2

4

x x y +

=的最小值为 . 12.不等式721≤-

1

1

+x 与x -1的大小. 14.设21 ,72<<<<-b a ,求b

a

b a b a , ,-+的范围. 15.设1)(2

+-=x x x f ,实数a 满足1<-a x .

求证:)1(2)()(+<-a a f x f

B.提高卷

一、选择题(5×4=20分)

1.若不等式R x a x x ∈>--+在21上有解,则实数a 的取值范围是( ) A.()3,3- B.()3,∞- C.(]3,-∞- D.()3,-∞- 2.若0<

b a 11> B.2

2b a > C.b a > D. a

b a 11>- 3.设b a 、为正实数,且b a ≠,*

∈N n ,则11

++--+n n n

n

b a

b a ab 的值的符号( )

A.恒为正 B.与b a 、大小有关 C.恒为负 D.与n 是奇数或偶数有关

4.三棱锥的三条侧棱两两互相垂直,其中一条侧棱长为1,另两条侧棱长的和为4,则此三棱锥体积的最大值为( ) A.

32 B. 31 C. 21 D. 6

1

二、填空题(5×2=10分)

5.若,0,0,0>>>c b a 且1=++c b a ,则

c

b a -+

-+-11

1111的最小值是 . 6.不等式1325<+--x x 的解集是 . 三、解答题(14+16=30分)

7.设bx ax x f +=2

)(,且4)1(2 ,2)1(1≤≤≤-≤f f ,求)2(-f 的取值范围.

8.某单位建造一间地面面积为122

m 的背面靠墙的矩形小房,房屋正面的造价为每平方米1200元,房屋侧面的造价为每平方米800元,屋顶的造价为5800元.如果墙高为3米,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?

同步练习题答案详解

A.基础卷

一、选择题:

1.C

2.B

3.B

4.A

5.D

6.B

7.A

8.C 答案提示:

1.因为02>-x ,所以42222

1

221=+≥+-+-=-+=x x x x y , 当且仅当3=x 时,等号成立. 2.不等式0)31(>-x x 等价于??

?>>-00)31(x x x 或???<<-00

)31(x x x ,

解得不等式的解集为 )3

1,0()0,( -∞.

3.由于0>ab ,对于A, b a b a b a ->+=+,则A 正确;对于B, b a b a +=+,则B 不正确.

4.因为数列{}n a 是各项均为正数的等差数列,所以 842

842

6)2

(

a a a a a ≥+=(当且仅当公差为0时取等号),所以

8

6

64a a a a ≤

. 5.因为a ab b b >>?

2

0101且0>ab ,所以a ab ab >>2

6.因为12118 ,902

-≤-<-<≤y x , 12

1)1(1181

,18)1(12≤--<<--≤y y , ,43)1(02<--≤y x 所以01

432

≤-<-y x .

7.两边平方,整理得,0)1)(1(2

2

<--b a 所以b a 与中必有一个大于1,一个小于1.

8.因为b a >所以a b ->-.又因为d c >,所以a d b c ->-. 二、填空题:

9. )2,3,1,2(-- 10. )8,(-∞ 11. 3 12. {}

1593<≤-≤

9. 只需保证d c b a ,,,的值满足b a ,同号,d c ,同号且满足其他条件即可.

10.由绝对值的几何意义可知35++-=x x y 的最小值为8,所以实数t 的取值范围是

)8,(-∞.

11.342234224322

2=???≥++=+=x x x x x x x x y ,

当且仅当

24

2x

x =即2=x 时取“=”号,所以,当2=x 时,3min =y . 12.由已知有721≤-

13.解:因为x

x x x +=--+1)1(112

,所以, 当0=x 时,012=+x x ,所以x x -=+11

1

; 当01<+x 即1-

012<+x x ,所以x x -<+111

; 当01>+x 即1->x 时,

012>+x x ,所以x x ->+11

1

. 14.解:由同向不等式相加得:91<+<-b a .

因为21 <

由21 <

11

21<

, 当;7b

0 , 70<≤<≤a

a 时

当02<<-a 时,20<-

a

, 所以02<<-b

a

. 综上,72<<-b

a

. 15.证明:因为

1)(2+-=x x x f

所以

1)()(22-+-=+--=-a x a x a a x x a f x f

1-+

1212)(-+-≤-+-=a a x a a x )1(2121+=++

B. 提高卷

一、选择题:

1.B

2.D

3.C

4.A 答案提示:

1. 由绝对值的几何意义可知R x ∈时,21)(--+=x x x f 的取值范围为[]3,3-,故a 要小于)(x f 的最大值3.

2. 因为0<ab ,由倒数法则有b

a 1

1>,A正确;因为0<和2

2

b a >均成立.对于D,因为

)(11b a a b a b a -=--,又0<

(<-b a a b

,即

a

b a 1

1<-,所以D不成立. 3.11

++--+n n n

n

b a b a ab =))(()()(n n n n b a b a a b a b a b ---=-+-.

因为b a 、为正实数,且b a ≠,所以由乘方原理知n

n

b a b a --与同号,

所以11

++--+n n n

n

b a b a ab 的值的符号恒为负.

4.设其中一条侧棱长为x ,则另一条侧棱长为x -4,

,3

2)24(611)4(21312=-+≤?-???=x x x x V 当且仅当2=x 时, V 有最大值32.

二、填空题: 5.

2

9

6. ????

??>-<317x x x 或

答案提示:

5. 因为,0,0,0>>>c b a 且1=++c b a , 所以

c b a -+

-+-11

11112

9)111(3

131111113333=-+-+-≥-?-?-?≥c b a c b a , 当且仅当,111c b a -=-=-即3

1

===c b a 时,上式取“=”号. 6. 原不等式等价于下列不等式组

①??

?<+-->1

)32()5(5

x x x 或

②?????<+---≤≤-1)32()5(523

x x x 或

③?????<++---<1

)32()5(23x x x 分别解①,②,③,再求并集得不等式的解集为?

??

???>-<317x x x 或

三、解答题:

7.解:设)1()1()2(nf mf f +-=-,则 )()(24b a n b a m b a ++-=-,

即b n m a n m b a )()(24--+=-,于是,得?

??=-=+24n m n m ,解得???==13

n m ,

所以)1()1(3)2(f f f +-=-.

因为4)1(2 ,2)1(1≤≤≤-≤f f ,所以10)1()1(35≤+-≤f f , 故10)2(5≤-≤f .

8.解:设房屋正面长为xm ,则房屋侧面的长为m x

12

;设房屋的总造价为y 元,根据题意得

5800280012312003+???

+?=x x y 5800576003600++=x

x 580016236005800)16(3600+??≥++

=x

x x x 元)(34600580028800=+= 当且仅当x

x 16

=

,即4=x 时,等号成立. 因此,当房屋正面的长为4m 时,房屋的总造价最低,最低总造价是34600元.

备选题:

1.不等式)(R b a b a b a ∈+<+、中等号成立的充要条件是( ) A .b a 、中至少有一个为0 B .0≥ab

C.0≤ab D.b a 、中仅有一个为0 2.下列命题中,使命题M 是命题N 成立的充要条件的一组命题是( ) A .M:??

?>>2121x x N:???>>+232121x x x x B.M:???>>2121x x N:???>-->+0

)2)(1(3

2121x x x x

C.M:,,d c b a >> N:bd ac > D.M:b a b a +=-,N:0=ab

3.在区间??

????2,21上,函数),()(2

R c b c bx x x f ∈++=与x x x x g 1)(2++=在同一点取得相

同的最小值,那么)(x f 在区间??

????2,21上的最大值为( )

A.

413 B.4 C.8 D. 4

5

4.当点),(y x 在直线023=-+y x 上移动时,1273++y

x

的最小值是( )

A.5

B.1+22

C.6

D.7 5.设0,0>>b a ,且不等式

011≥+++b

a k

b a 恒成立,则实数k 的最小值等于( ) A. 0 B. 4 C. 4- D. 2-

6.已知0>>b a ,则)

(16

2b a b a -+

的最小值是 .

7.一批救灾物资随17列火车以每小时V 千米的速度匀速直达400千米外的灾区为了安全起见,两辆火车的间距不得小于2

)20

(

V 千米,问这批物资全部运达灾区最少需 小时. 8.已知函数)1,0(,1)2(log ≠>+-=a a x y a 的图象恒过定点A,若点A 在直线

1-=+ny mx 上,其中0>mn ,则

n

m 1

3+的最大值为 . 9.规定记号“?”表示一种运算,即b a b a ab b a ,(--=?为正实数),若正数y x ,满足

3=?y x ,则xy 的取值范围是 .

备选题答案:

1.B 2.B 3.B 4.D 5.C 6.16 7.8 8.16- 9.9≥xy 答案提示:

1.0222222≥?=?++=++?+=+ab ab ab b ab a b ab a b a b a .

2.由于?

???>->-???

?>>020

1212121x x x x ??

?>-->+0

)2)(1(3

2121x x x x ,所以B正确. 3.??

?

???∈++=++=

2,21 ,111)(2x x x x x x x g ,当1=x 时, )(x g 取最小值3, 所以,3)1()(2

+-=x x f 故当2=x 时, )(x f 的最大值为4.

4. 因为023=-+y x ,所以71321332127333=+=+?≥+++y x y x y x , 当且仅当13==y x 时,等号成立.

5.由011≥+++b

a k

b a 得ab b a k 2)(+-

≥,而42)(2≥++=+b a a b ab b a ,所以

4)(2-≤+-ab

b a ,因此只需4-≥k ,即实数k 的最小值等于4-.

6.因为)(2)(b a b b a b -≥-+,所以224

1)(41)(a b a b b a b =-+≤-. 所以1664

4116)(1622222≥+=+≥-+

a a a a

b a b a .

7.因为,8400

16400240016400)20(164002

=?≥+=?+=

V V V V V V

t 当且仅当400

16400V

V =

即100=V 时等号成立. 8.函数图象恒过定点)1,3(,所以013=++n m . 因为0>mn ,所以0,0<

166103310)3)(13(13-=--≤---=--+=+m

n n m n m n m n m , 所以n

m 1

3+最大值为16-.

9. 由题意,得3=--y x xy ,所以323+≥++=xy y x xy ,即

,032≥--xy xy 则1,3-≤≥xy xy (舍),所以9≥xy .

不等关系与基本不等式同步练习题

不等关系与基本不等式同步练习题(一) (时间:120分钟 满分:150分) A.基础卷 一、选择题(5×8=40分) 1.函数)2(2 1 >-+ =x x x y 的最小值为( ) A. 2 B . 3 C . 4 D .23 2.不等式0)31(>-x x 的解集是( ) A .)31,(-∞ B . )31,0()0,( -∞ C . ),31(+∞ D .)3 1,0( 3.已知,R b a ∈、且0>ab ,则下列不等式不正确的是( ) A .b a b a ->+ B .b a b a +<+ C .b a ab +≤2 D . 2≥+b a a b 4.已知无穷数列{}n a 是各项均为正数的等差数列,则有( ) A. 8 6 64a a a a ≤ B. 8664a a a a < C.8664a a a a > D.8664a a a a ≥ 5.已知01,0<<-> B.a ab ab >>2 C.2 ab a ab >> D.a ab ab >>2 6.已知,1117,32-≤<-<≤-y x 则1 2 -y x 的取值范围是( ) A.??? ??-- 92,43 B.??? ??-0,43 C.??? ??-0,21 D.??? ??-0,43 7.若 ,11 <++b a a b 则b a 与中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知,,d c b a >>则( ) A. d b c a ->- B. c b d a > C.a d b c ->- D.bd ac >

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

高中数学必修五-不等关系与不等式-教案

第三章不等式 必修5 3.1 不等关系与不等式 一、教学目标 1.通过具体问题情境,让学生感受到现实生活中存在着大量的不等关系; 2.通过了解一些不等式(组)产生的实际背景的前提下,学习不等式的相关内容; 3.理解比较两个实数(代数式)大小的数学思维过程. 二、教学重点: 用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 三、教学难点: 使用不等式(组)正确表示出不等关系. 四、教学过程: (一)导入课题 现实世界和生活中,既有相等关系,又存在着大量的不等关系我们知道,两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边,等等.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于等来描述某种客观事物在数量上存在的不等关系. 在数学中,我们用不等式来表示这样的不等关系.

提问: 1.“数量”与“数量”之间存在哪几种关系?(大于、等于、小于). 2.现实生活中,人们是如何描述“不等关系”的呢?(用不等式描述) 引入知识点: 1.不等式的定义:用不等号<、>、≤、≥、≠表示不等关系的式子叫不等式. 2.不等式a b ≥的含义. 不等式a b ≥应读作“a 大于或者等于b ”,其含义是指“或者a >b ,或者a =b ”,等价于“a 不小于b ,即若a >b 或a =b 之中有一个正确,则a b ≥正确. 3.实数比较大小的依据与方法. (1)如果a b -是正数,那么a b >;如果a b -等于零,那么a b =;如果a b -是负数,那么a b <.反之也成立,就是(a b ->0?a >b ;a b -=0?a =b ;a b -<0?a

不等关系与不等式经典教案

不等关系与不等式 【学习目标】 1.了解不等式(组)的实际背景. 2.掌握比较两个实数大小的方法. 3.掌握不等式的八条性质. 【学法指导】 1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言” 转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可. 2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论. 3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形. 一、知识温故 a-b>0?; a-b=0?; a-b<0?. 3.常用的不等式的基本性质 (1)a>b?b a(对称性); (2)a>b,b>c?a c(传递性); (3)a>b?a+c b+c(可加性); (4)a>b,c>0?ac bc;a>b,c<0?ac bc; (5)a>b,c>d?a+c b+d; (6)a>b>0,c>d>0?ac bd; (7)a>b>0,n∈N,n≥2?a n b n; (8)a>b>0,n∈N,n≥2?n b. 二、经典范例 问题探究一实数比较大小 问题1(实数比较大小的依据) 在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左 边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:

如果a-b是正数,那么; 如果a-b是负数,那么; 如果a-b等于零,那么. 以上结论反过来也成立,即a-b>0?a>b;a-b<0?a<b;a-b=0?a=b. 问题2(作差法比较实数的大小) 向一杯a克糖水中加入m克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论. 问题探究二不等式的基本性质 问题3在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质. 请同学们借助前面的性质证明性质6: 如果a>b>0,c>d>0,那么ac>bd.

基本不等式练习题

不等式练习题 一、 基本题型 1、若0x >,求31y x x =--的最大值。 2、若22l g l g 2o x o y +=,求14x y +的最大值。 3、若lg 2lg 42x y +=,且0,0x y >>,求lg lg x y +的最大值。 4、若0,0a b >>,且142a b +=,求ab 的最小值。 5、若1x >,求11 y x x =+-的最小值。 6、若302 x <<,求()32y x x =-的最大值。 7、若52x <,求1225 y x x =+-的最大值。 8、求2 y = 9、求4sin sin y x x =+在()0,x π∈上的最小值。 10、若0,0x y >>,且3xy x y =++,求xy 的范围。 11、求()2801 x y x x +=≥+的最值。 12、0,0x y >>,且21x y +=,求41x y +的最小值。 13、0t >,求241t t y t -+=的最小值。 二、选择题 1、,a b R ∈且0ab >,则下列不等式不正确的是( ) .||A a b a b +>- .||||||B a b a b +<+ .||C a b ≤+ .2b a D a b +≥ 2、(),0,,1,22a b a b a b M ∈+∞+==+,则M 的整数部分是( ) .1A .2B .3C .4D 3、(),0,x y ∈+∞且()19a x y x y ??++≥ ???恒成立,则正实数a 的最小值为()

.2A .4B .6C .8D 4、 0,0a b >>则11a b ++() .2A B .4C .5D 5、 ,,1,1x y R a b ∈>>,若3,x y a b a b ==+=11x y +的最大值为() .2A 3.2B .1C 1.2D 6、 ()()1210f x x x x =+-<,则()f x 有() .A 最大值 .B 最小值 .C 增函数 .D 减函数 7、函数()21log 511y x x x ??=++> ?-??的最小值为() .3A - .3B .4C .4D - 8、 0,0a b >>3a 与3b 的等比中项,则11a b +的最小值为() .8A .4B .1C 1.4D 9、0,0,2a b a b ≥≥+=则() 1.2A a b ≤ 1.2B ab ≥ 2 2.2C a b +≥ 22.3D a b +≤ 10、若0,0x y >>且23x y +=则24x y +的最小值为() .A B C .4D 11、下列结论正确的是() 1 .01,l g 2 lg A x x x x >≠+≥当且 .2B x >≥ 1.22C x x ≥当时,+x 的最小值为 1.02,D x x x <<-无最大值

不等关系与不等式(解析版)

§7.1不等关系与不等式 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个实数a ,b 之间,有且只有a >b ,a =b ,a 1,则a >b .( × ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)a >b >0,c >d >0?a d >b c .( √ ) (5)若ab >0,则a >b ?1a <1 b .( √ ) 题组二 教材改编 2.若01且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a =-2????a -122+12<12. 即a <2ab <1 2 , 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=1 2 ,

即a 2+b 2>1 2 , a 2+ b 2-b =(1-b )2+b 2-b =(2b -1)(b -1), 又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2b >0,c 0 B.a c -b d <0 C.a d >b c D.a d ac , 又∵cd >0,∴bd cd >ac cd ,即b c >a d . 5.若-π2<α<β<π 2,则α-β的取值范围是__________. 答案 (-π,0) 解析 由-π2<α<π2,-π2<-β<π 2,α<β, 得-π<α-β<0.

不等关系与不等式-教学设计

不等关系与不等式(第一课时) 一、教学任务分析 1、感受不等关系的普遍存在 通过一系列的具体情境,使学生感受到在现实世界和日常生活中存在着大量的不等关系。 2、利用不等式(组)表示实际问题中的不等关系 通过具体问题情境,让学生学习如何利用不等式(组)研究及表示不等关系,进一步理解不等式(组)刻画不等关系的意义和价值。 3、初步掌握运用作差比较法比较实数和代数式的大小。 二、教学重点和难点 重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)刻画不等关系的意义和价值。 难点:用不等式(组)正确表示出不等关系。 三、教学基本流程

四、教学情景设计

1、引入:章头图及古诗《题西林壁》引入,介绍不等量关系也是自然界中存在的基本数量关系,它们在现实世界和日常生活中大量存在,在数学研究和数学应用中也起着重要的作用,也正是实际问题的需要我们要研究不等量关系。介绍本章将要研究表示不等量关系的不等式的基本知识。 设计意图:使学生体会不等关系的普遍存在,了解学习不等式的意义。 2、创设情境,让学生感受生活中的不等关系。 师:多媒体出示情景:(1)交通标志(限速、限高、限宽);(2)商家打折海报(一折起、低至几折);(3)产品含量指标。问:表示什么含义?怎么表示其中的不等关系? 生:分析各种不等关系,口答并尝试用不等式(组)表示。 师:引导学生准确表述,给出不等式定义,板书学生口答的各问题中不等式(组)。 设计意图:进一步让学生感受生活中的不等关系,知道用不等式(组)表示这种不等关系。 3、知识探究一:具体情境中如何用不等式研究及表示不等关系。 师:多媒体出示问题1(销售收入问题)、2(实际安排生产问题)。 学生:独立思考后,与本组同学交流讨论结果。完成后交流展示,小组代表板书结果,并说明式子的含义。 师:点评学生结果,找有不同结果的小组讲解不同方法或补充,引导学生分析比较。 设计意图:问题方式给出,强化学生的问题意识,使学生在具体问题情境中经历如何利用不等式研究及表示不等关系。小组合作探究,使学生交流对于问题的认识。展示不同结果,使学生认识思考问题严谨性和不同角度。师最后介绍两问题中反映的生产要求如何解决,是本章后续章节会解决的问题。激发学生学习欲望,体会数学知识与生活的密切相关。 4、知识探究二:比较实数和代数式大小的方法——作差法。 生:结合学案上知识探究二中所填结果,与同组学生交流结论。 师:提问引导学生表述:要比较两数或代数式大小,可以让两数或两式相减,比较结果和0的大小。若结果大于0,则前者大于后者;若……。 设计意图:让学生分析作差法具体做法,明确这种比较大小的方法如何运用。 5、课堂练习:作差法比较代数式的大小。 生:可独立完成,也可与同组同学交流,在规定时间完成。 师:巡视,指导学生疑难处,找完成好的两生板演结果,并让板演学生讲解。点评学生思路,进一步总结作差法中变形结果的形式:

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

不等关系与基本不等式同步练习题

a 6 B. C. D. 6.已知 - 2 ≤ x < 3,-17 < y ≤ -11, 则 的取值范围是( ) A. -? 3 2 ? ? 3 ? ? 1 ? ?3,- ? B. - ,0 C. - ,0 D. - ,0 ? ??A. a - c > b - d B. a 不等关系与基本不等式同步练习题(一) (时间:120 分钟 满分:150 分) A.基础卷 一、选择题(5×8=40 分) 1.函数 y = x + 1 ( x > 2) 的最小值为( x - 2 ) A. 2 B . 3 C . 4 D . 3 2 2.不等式 x (1 - 3x) > 0 的解集是( ) 1 1 1 1 A . (-∞, ) B . (-∞,0) (0, ) C . ( ,+∞) D . (0, ) 3 3 3 3 3.已知 a 、b ∈ R, 且 ab > 0 ,则下列不等式不正确的是( ) A . a + b > a - b B . a + b < a + b C . 2 ab ≤ a + b D . b a + ≥ 2 a b 4.已知无穷数列 { n }是各项均为正数的等差数列,则有( ) A. a 4 ≤ a 6 a a 5.已知 a < 0,-1 < b < 0 ,则 a, ab, ab 2 的大小关系是( ) A. a > ab > ab 2 B. ab 2 > ab > a C. ab > a > ab 2 D. ab > ab 2 > a x 2 y - 1 ? ? 4 9 ? ? 4 ? ? 2 ? ? 4 ? 7.若 ab + 1 a + b < 1, 则 a 与 b 中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知 a > b , c > d , 则( ) b > C. c - b > d - a D. ac > bd d c

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

5第五讲 不等关系与基本不等式(教师版) - 副本 - 副本

第一课时:不等式关系与不等式 知识点一 不等关系 思考 限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km /h ,用不等式如何表示? 答案 v ≤40. 梳理 试用不等式表示下列关系: (1)a 大于b a >b (2)a 小于ba b ?a -b >0;a =b ?a -b =0; a b ?b b ,b >c ?a >c (传递性); 第三节.不等关系与基本不等式 基本不等式

(3)a >b ?a +c >b +c (可加性); (4)a >b ,c >0?ac >bc ;a >b ,c <0?ac b ,c >d ?a +c >b +d ; (6)a >b >0,c >d >0?ac >bd ; (7)a >b >0?a n >b n (n ∈N +); (8)a >b >0n ∈N +). 类型一 用不等式(组)表示不等关系 例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 考点 用不等式(组)表示不等关系 题点 用不等式(组)表示不等关系 解 提价后销售的总收入为? ?? ?? 8-x -2.50.1×0.2x 万元, 那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式? ?? ?? 8-x -2.50.1×0.2x ≥20. 反思与感悟 数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时: (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系; (3)用不等式表示不等关系.思维要严密、规范. 跟踪训练1 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

不等关系与不等式 优秀教学设计

不等关系与不等式 课题:不等关系与不等式(二) 课型:新授课 1.知识与技能 (1)使学生掌握常用不等式的基本性质; (2)会将一些基本性质结合起来应用. (3)学习如何利用不等式的有关基本性质研究不等关系; 教学目标 2.过程与方法 以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等 式的有关基本性质研究不等关系; 3.情感、态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情 境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学 生学习方式,提高学习质量。 教学重点理解不等式的性质及其证明 教学难点利用不等式的基本性质证明不等式 批注教学过程: 一、复习提问 1.比较两实数大小的理论依据是什么? 2.“作差法”比较两实数的大小的一般步骤. 3.初中我们学过的不等式的基本性质是什么? 基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的 方向不变. 基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变. 基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变. 其数学含义: (1)若a>b,则a+c>b+c,a-c>b-c;

(2)若a >b ,c >0,则ac >bc , c a >c b ;(3)若a >b , c <0,则ac <bc ,c a <c b ..二、新授 常用的不等式的基本性质 (1)a b b a , (对称性) (2)c a c b b a >?>>, (传递性) (3)c b c a b a +>+?>, (可加性) (4),0a b c ac bc >>?>;,0a b c ac bc >?>>>>0,0(同向不等式的可乘性) (6)n n n n b a b a n N n b a >>?>∈>>,1,,0 (可乘方性、可开方性)例1:已知0,0,a b c >><求证:c c a b >例2:如果30<x <42,16<y <24,求x +y ,x -2y 及 y x 的取值范围.∵30<x <42,16<y <24 ∴-48<-2y <-32, ∴30+16<x +y <42+24 即46<x +y <66; ∴30-48<x -2y <42-32 即-18<x -2y <10; .8 2145,16 422430<<<?举例说明. 3.若0 b a ,则下列不等式总成立的是( C )

不等关系与不等式教学设计

《不等关系与不等式》教案 【教学目标】 1.掌握比较两个实数大小的方法——差值比较法,理解不等关系的传递性,能够运用比较实数大小的方法比较两实数的大小 2.通过对具体问题的分析,培养学生的分析归纳能力,培养学生代数变形的能力,提高学生解决实际问题的能力 3.通过问题情境,激发学生的学习动机和好奇心理,使其主动参与交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度 【重点难点】 重点:比较实数大小的方法. 难点:1.比较实数大小方法中的代数变形; 2.比较实数大小方法的实际应用 【教学方法】体验法、合作讨论法 【教学过程】 (一)创设情境 泰山旺季门票原价为180元,现推出两套优惠方案(两人以上集体购票时可选择以下任一种方案) 优惠方案A:买全票一张,则其余票可享受八折优惠; 优惠方案B:按团体购票,一概优惠30元. 为了使门票花费最少,请各位同学发动你们的智慧想一想该选择哪种方案? 教师:5-7人,由学生先对多种情况进行讨论。 合作交流:同桌讨论合作完成下列表格(作业纸)

(学生思考演算并请学生回答结果) 由此我们知道在实际的生活中经常会碰到比较大小的问题,这就是我们这节课所要学习的1.2节比较大小(板书课题同时幻灯片出示课题)继续就上述情境提问:对于人数确定的情况,两个具体的实数我们很容易比较大小,如果人数不确定呢,又该如何比较大小? 若设人数为n,记采用方案A的费用为) f,采用方案B的费用 (n 为) n g150 (= n ) f,n g,则36 =n 144 (n ) (+ 接着我们要比较就是这两个代数式子的大小,我们该怎么办呢?(学生思考) 对于这两个式子来说,它们有以下的三种大小关系: g n n >n ? n - f g n f ) ( ) > 6 ( ? ) ) (< ( n g n =n ? g - f n n f ( ( ) = ) 6 ) (= ? ( ) g n ) ( ) ? 所以当6 这样我们的问题就解决了。 归纳小结: 任意两个实数a,b都能比较大小: 如果a-b>0,则a>b;

相关文档
最新文档