《经济应用数学》试卷
经济应用数学基础(一)微积分_试题及答案
;
; ; ;
3 2 6、函数 f ( x ) = x − x + 1 的极大点是
′ 7、设 f ( x ) = x ( x − 1)( x − 2)……(x − 2006) ,则 f (1) =
x 8、曲线 y = xe 的拐点是
; ; ;
9、
∫
2
0
x − 1dx
=
� � � � � � � � � � a = i + 3 j − 2 k , b = i − j + λ k 10、设 ,且 a ⊥ b ,则 λ =
;
⎧ 2x f ( x) = ⎨ ⎩a + x 2、设函数
x<0 x ≥ 0 在点 x = 0 连续,则 a =
; ;
4 3、曲线 y = x − 5 在(-1,-4)处的切线方程是
f ( x )dx = x 4、已知 ∫
1 x lim(1 − ) 2 x = 5、 x →∞
3
+C
,则 f ( x ) =
(A)极限不存在 (B)极限存在但不连续 (C)连续但不可导 (D)可导
9.设函数 f ( x ) 在 ( −∞, ∞) 上连续,且 f (0) = 0 , f ′(0) 存在,则函数 (A)在 x = 0 处左极限不存在 (B)有跳跃间断点 x = 0 (C)在 x = 0 处右极限不存在 (D)有可去间断点 x = 0
ln cos x dx 2 ∫ 3. cos x
4.
∫
x 2 dx
1 − x2
三、求解下列各题(每题 7 分,共 28 分) ⎧ e −2 x , x≤o ⎪ 2 f ( x) = ⎨ x 1 , x >0 ⎪ 2 ∫ f (t )dt ⎩1 + x
[精品]《经济数学》应用题及参考答案.doc
《经济数学》应用题1.已知生产某种产品的成本函数为C(q) = 80 4- 则当产量g = 50时,该产品的平均成本为2.已知某商品的需求函数为6/= I80-4p,其中p为该商品的价格,则该商品的收入凿数W =3.设生产某种产品x个单位时的成本函数为:C(x) = 100 + 0.25x2 +6% (万元),求:(1)当兀=10时的总成木、平均成木和边际成本;(2)当产量x为多少时,平均成木故小?4.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q = 1000 — 10p (q为需求量,p为价格).试求:(1)成本函数,收入函数;(2)产最为多少吨时利润最大?5.设某工厂生产某产品的固定成本为5OOOO元,每生产一个单位产品,成本增加1()()元.乂已知需求函数9 = 2000 —4”,其中/?为价格,g为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.6.某厂生产某种产品q件吋的总成木函数为C⑷= 20+4g+0.01『(元),单位销售价格为p=\4 O.Olq (元/件),问产量为多少时可使利润达到最大?最大利润是多少.7.某厂每天生产某种产品q件的成木函数为C(q) = 0.5/+36g +9800 (元).为使平均成木最低,每天产最应为多少?此时,每件产品平均成本为多少?8.已知某厂生产g件产品的成本为C(q) = 250 + 20q +务(万元).问:要使平均成本最少,应生产多少件产品?9.投产某产品的固定成木为36(万元),且边际成木为C\x) =2x + 40(万元/百台).试求产量由4百台增至6百台吋总成本的增量,及产量为多少吋,可使平均成木达到最低.10.a已知某产品的边际成木C'(x)=2 (元/件),固定成木为0,边际收益⑴=12-0.02「问产量为多少时利润最人?在最人利润产量的基础上再生产50件,利润将会发生什么变化?11. b生产某产品的边际成本为C Z(x)=8x(万元/百台),边际收入为/?\x)=100-2x (万元/TF台),Jt 中x为产量,问产量为多少时,利润最大?从利润最大时的产戢再生产2百台,利润冇什么变化?12.己知某产品的边际成本为C\x) = 4x - 3 (万元/百台),X 为产量(百台),固定成木为18(万元), 求最低平均成本.13. C 设生产某产品的总成木函数为C(x) = 3 + x(万元),其中X 为产量,单位:百吨.销售X 百吨 时的边际收入为/?z (x) = 15-2x (万元/TT 吨),求:(1) 利润最大时的产呈:;(2) 在利润最人时的产量的基砒匕再生产1百吨,利润会发生什么变化?参考答案1. 3.62. 45q-0.25q23. 解(1)因为总成本、平均成本和边际成本分别为:C(x) = 100 + 0.25/ + 6xC(x) = —+ 0.25x + 6,X 所以,C(10) = 100 + 0.25x102 + 6x10 = 185C(10) = ^ 10C'(10) = 0・5xl0 + 6 = ll(2)令 C (x)=—丄线 + 0.25 = 0 ,得兀=20 < x = -20 舍去)%因为x = 20是其在定义域内唯一驻点,且该问题确实存在最小值,所以当X = 20吋,平均成木最小. 4.解 (1)成本函数C ⑷二60 q+2000.q - 1000-10/?,即 p = 100- — ^,收入函数 R(q) = px 9=(100—齐)g = 100g —荊.因为利润函数 L(q) = R(g)- C ⑷ =1 OOq-(60 q +2000)1 2= 40?旷 一2000 w 10 1 1 . ,Z/(g)=(40q_j^q~—2000)=40- 0.2g令厶'(q)二0,即40- ().2$二(),得g 二20(),它是厶(q)在共定义域内的唯一驻点.所以,<7= 200是利润函数厶(g)的最大值点,即当产戢为200吨时利润最大.5.解 C(p) = 50000+100q = 50000+100(2000-4/?)=250000-400/?R(p) =pq = p(2000_4p)= 2000p-4p 2利润函数厶(p) = R(p) - C(p) =2400p-4p 2 -250000,且令 L Z (/?)=24(X)-8/? = 0得0二3()(),该问题确实存在最人值.所以,当价格为p =30()元时,利润最大.C'(x) = 0.5x + 6+ 0.25x10 + 6 = 18.5, 因为 所以最大利润厶(300) = 2400x300 —4x300,—250000 =11000 (元).6.解 由已知7? = % = q(14-0.01g) = 14g-0.01g ,利润函数厶=R — C = 14q —O.Olg ,—20 — 4(/ —0.0 It/2 = 10^ — 20 — 0.02(/2 则 Z/ = 10-0.04q,令 r = 10-0.04(? = 0 ,解出唯一驻点 q = 250. 因为利润函数存在着最人值,所以当产量为250件时可使利润达到最人, 且最大利润为L(250) = 10x250- 20-0.02x2502 =2500 — 20 — 1250 = 1230 (元) 7.解因为 C(g) = -=0.5q + 36 4- ^22.( q > 0) q q R/、 c“ 980() z c 980()c (q) = (0.5q + 36 + -------- 尸0.5——— q q~— 「 9800令 C (q)二o,即().5 — — 二o,得s 二 140, q 2= -140 (舍去).q 4二140是C(q)在其定义域内的唯一驻点,且该问题确实存在最小值.所以切二140是平均成本函数C(q)的最小值点,即为使平均成本最低,每天产量应为140件.此时的 平均成木为0(140)二 0.5x140 + 36 + ^^ 二 176 (元/件) 1408.解(1)因为 C(q)二•二兰卩+20 + 卫_q q10 --- ?气()I令 C'(q)=0,即一 土学 + 丄=0,得 q =50, q. -50 (舍去), q~ 10q 、=50是C(q)在其定义域内的唯一驻点. 所以,如=50是0(g)的最小值点,即要使平均成本最少,应生产50件产品.9 6(2x + 40)dr = (x z +40%) =100(万元)4 XC(x) = 1 —— = 0,解得x = 6. x zx 二&是惟一的驻点,而该问题确实存在使平均成木达到最小的值.所以产量为6百台时可使平均成本达 到最小. 10.解因为边际利润厶'(兀)二 R\x) 一 C\x) =12-0.02r-2 = lO-O.OZv令 L\x) = 0,得 x = 500x = 500是惟一驻点,而该问题确实存在最大值.所以,当产量为500件时,利润最大. 当产量由500件增加至550件时,利润改变量为『550 o 1550C 《q)二(罟+ 20 +詁二- 250 1—~ + —q 2 10 9.解 当产量由4百台增至6百台时,总成木的增量为C(x)J o CWr + c o 兀2+40 兀+ 36AL = (10 - 0.02x)ck = (lOx- 0.0lx2=500- 525 = -25 (元〉即利润将减少25元.11.解C (x) = (x) - C z (x) = (100 - 2x) - 8x =100 - lO.r令C (x)=0,得x= 10 (百台)又x= 10是厶(兀)的唯一驻点,该问题确实存在最大值,故x= 10是厶Cr)的最大值点,即当产量为10(百台) 时,利润最大.「12 . r 12 、12又L = J o £z(x)ck = J)(100 — 1 Ox)dx = (100x-5x2)=-20即从利润故大时的产量再生产2而台,利润将减少20万元.12.解:因为总成木函数为C(x) = J (4% - 3)dx = 2x2 - 3兀 + c当x = 0 时,C(0) = 18,得 c = 18即c(x)= 2x2— 3x 4-18(2( X) 1 Q又平均成木函数为A(x)=亠丄=2兀一 3 +——X X]8令A\x) = 2 ------- = 0,解得兀=3(百台)该题确实存在使平均成木最低的产量.所以当x = 3时,平均成木最低.最底平均成木为1 Q4(3) = 2x3-3 --------- = 9 (万元/TT台)13.解:(1)因为边际成木为C'(x) = l,边际利润厶Z(x) = R\x) - C\x) = 14-2A- 令厶'(x) =0,得兀=7由该题实际意义可知,x=l为利润函数厶(对的极人值点,也是最大值点.因此,当产量为7百吨时利润最大.⑵ 当产量由7百吨增加至8白吨时,利润改变量为8 ? 8(14 一2x)dx = (14兀一兀)=112 - 64 - 98 + 49 = - 1△厶二(万元)7 7即利润将减少1力元。
经济应用数学试题及答案
经济应用数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:C2. 在线性规划问题中,目标函数的最优值可能在:A. 可行域的顶点B. 可行域的边界C. 可行域的内部D. 所有上述情况答案:D3. 假设某公司生产两种产品,产品1的利润为每单位10元,产品2的利润为每单位20元。
如果公司每天只能生产100单位的产品,且生产产品1需要2小时,产品2需要1小时,而公司每天有200小时的生产时间。
该公司应该如何分配生产时间以最大化利润?A. 只生产产品1B. 只生产产品2C. 生产50单位产品1和50单位产品2D. 生产100单位产品2答案:D4. 以下哪个选项不是边际成本的概念?A. 增加一单位产量的成本B. 总成本对产量的导数C. 固定成本D. 总成本的增加量除以产量的增加量答案:C5. 假设某公司的成本函数为C(x) = 3x^2 + 2x + 5,其中x是生产量。
该公司要生产多少单位的产品才能使平均成本最小?A. x = 0B. x = 1C. x = 2D. x = 3答案:B6. 在完全竞争市场中,长期均衡时,市场价格等于:A. 边际成本B. 平均成本C. 总成本D. 固定成本答案:B7. 以下哪个选项是关于消费者剩余的描述?A. 消费者支付的价格与他们愿意支付的价格之间的差额B. 消费者实际支付的价格C. 消费者购买的商品数量D. 消费者购买商品的总成本答案:A8. 如果一个市场的需求曲线是线性的,斜率为-2,那么需求的价格弹性是多少?A. 0.5B. -1C. -2D. 2答案:C9. 以下哪个选项不是经济利润的特点?A. 包括正常利润B. 考虑了机会成本C. 等于会计利润D. 可能为负值答案:C10. 在多阶段生产过程中,以下哪个选项不是生产者面临的决策类型?A. 投入品的选择B. 生产技术的选择C. 产品价格的确定D. 产出水平的确定答案:C二、简答题(每题10分,共20分)1. 解释什么是边际效用递减原理,并给出一个生活中的实例。
经济应用数学(下)试卷A答案
A 、16;B 、10;C 、8;D 、.44、设321,,X X X 是取自某总体的容量为3的样本,则总体均值μ的有偏估计是( B )A 、3211613121ˆX X X ++=μ,B 、,2123111ˆ234X X X μ=++ C 、3213326161ˆX X X ++=μ, D 、4123111ˆ333X X X μ=++ 5、设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y ( D )A 、()222,b a b a N +-σμ; B 、()222,b a b a N -+σμ;C 、()22,σμa b a N +; D 、()22,σμa b a N -.二、填空题(每小题3分,共15分)1、一个袋子中装有5个大小相同的球,其中3个黑球,2个白球,从中任取2球,则刚好取得一个白球一个黑球的概率为_____35__________.2.设X ~)9,1(N ,则(10)P X -<=_______0.5______。
3.设X 与Y 相互独立,且X ~(2)P ,Y ~)15,3(U ,则(4)D X Y -= 444、设总体服从),(2σμN ,当2σ未知时,检验假设00:μμ=H ,10:H μμ≠可使用检验统计量x ______________________5、设总体X ~(2,9)N ,321,,X X X 是取自某总体的容量为3的样本,X 为样本均值,则()E X =___2____ _三、计算题( 8 分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,试求: (1)目标被击中的概率;(2)恰有一人击中目标的概率.解:记=1A“甲击中目标”, =2A “乙击中目标”, =B“目标没有被击中” =C “恰有一人击中目标”(1)1212()()()()0.40.50.2P B P A A P A P A =⋂==⨯= 【4分】 (2)1212()()0.60.50.40.50.5P C P A A A A =⋃=⨯+⨯= 【8分】 四、计算题( 10分)设有两个口袋,甲袋装有n 个白球、m 个黑球;乙袋装有N 个白球、M 个黑球,今由甲袋中任取一球放入乙袋,再从乙袋中任取一球,试求:从乙袋中取得白球的概率。
浙江省2013年1月经济应用数学试题
绝密 ★ 考试结束前浙江省2013年1月高等教育自学考试经济应用数学试题课程代码:06956请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.在实数范围内,下列函数中为有界函数的是A. 1+e xB. ln xC. tan xD. 1+cos x 2.若x →0时,与e 2x -1等价的无穷小为A. xB. 2xC. 3xD. x 2 3.下列积分中,积分值为零的是A.11xdx -⎰ B. 121sin xdx -⎰ C.11sin x xdx -⎰ D. 1221sin x xdx -⎰ 4.下列级数收敛的是 A.11n n e ∞=∑B. n n ∞=C. 11ln(1)n n ∞=+∑D. 21ln n n ∞=∑5.微分方程(1+x 2)dy +(1+y 2)dx =0的通解是A. arctan x +arctan y =cB. tan x +tan y =cC. ln x +ln y =cD. c tan x +c tan y =c非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共10小题,每小题2分,共20分)6. y =f (x )的定义域为[0,1],则f 的定义域为______。
7. 0x →=______。
8. 若()1f '=1,则()()211lim 1x f x f x →--=______。
经济应用数学一下考试试题库
《经济应用数学(一)》(下) 考试试题库适用专业: 怀德学院会计、营销、国贸、财务管理、人力、物流专业一、定积分及应用选择题(18题)1. 设)(x f 可导,下列式子正确的是( )A.()()tad f x dx f x dt =⎰ B. ()()xa d f x dx f x dx=⎰ C.)()(x f dx x f dx d ba=⎰ D. )()(x f dx x f ba='⎰2.1(2)f x dx '=⎰( ).A.2[(2)(0)]f f -B. 2[(1)(0)]f f -C.1[(2)(0)]2f f - D. 1[(1)(0)]2f f - 3. 下列定积分的值为负的是( ).A.20sin xdx π⎰B.2cos xdx π-⎰C.233x dx --⎰D.225x dx --⎰4. 设()f x 在[,]a b 上连续.⎰=>=aI a xx f x I 023)0(d )(,则 ( )⎰⎰⎰⎰aa a ax x xf D x x xf C xx xf B xx xf A 0d )(21.d )(21.d )(.d )(.225. 设等于)(则极限连续⎰-→x a ax x x f ax xx f d lim,)(( ) A. af (a ) B. 0C.1D. 不存在 6. 设⎰---aax x f a a x f 等于)(分上的连续函数,则定积为d ],[)(( )⎰⎰⎰---aaa aaxx f D xx f C x f B A d .d .2.0.0)()()(7.设()f x 在区间[,]a b 上连续,则下列各式中不成立的是( ).A.()()bbaaf x dx f t dt =⎰⎰ B.()()baabf x dx f x dx =-⎰⎰C. ()0aaf x dx =⎰D. 若()0b af x dx =⎰,则()0f x =8.=-+⎰-dx x f x f x a a)]()([( ).A. ⎰a dx x f 0)(4B. ⎰-+adx x f x f x 0)]()([2C. 0D.以上都不正确.9.设()43422222sin cos ,sin cos 1x M xdx N x x dx x ππππ--==++⎰⎰, 23422(sin cos )P x x x dx ππ-=-⎰,则有( )A.N <P <M;B.M <P <N;C.N <M <P ;D.P <M <N .10.下列积分可直接使用牛顿--莱布尼兹公式的有 ( ).A.35201x dx x +⎰;B.1-⎰;C.43022(5)x dx x -⎰; D.11ln eedx x x⎰. 11.下列广义积分收敛的是( ). A.x e dx +∞⎰B.1ln edx x x +∞⎰C.1+∞⎰D.1+∞⎰12.下列广义积分发散的是( ).A.211dx x+∞⎰ B. 0xe dx +∞⎰ C. 211ln dx x x+∞⎰ D. 0x e dx -+∞⎰ 13.下列积分不是广义积分的有( )A. 101dx x⎰ B. 121dx x ⎰C.1⎰D. 10sin xdx x⎰14.下列积分计算过程正确的有( )A. 440201[tan ]1cos dx x xππ==⎰; B. 1112111[]2dx x x --=-=-⎰; C.110[arcsin ]2x π==⎰; D. 因为1x 是奇函数,所以1110dx x -=⎰. 15.由曲线x y cos =和直线0=x ,π=x ,0=y 所围成的图形面积为( )A.cos xdx π⎰;B.0|cos |xdx π⎰;C.cos x dx π⎰;D.2cos xdx π⎰+2cos xdx ππ⎰.16.曲线ln y x =与直线ln ,ln ,0y a y b a b ==<<及y 轴所围成的面积值为( )A.ln ln byae dy ⎰;B.by a e dy ⎰;C.ln ln ln baxdx ⎰; D.ln baxdx ⎰.17.*在区间[,]a b 上0>(),f x 0<'(),f x 0>"(),f x 1=⎰()baS f x dx , 2=-()()S f b b a ,32+=-()()()f a f b S b a , 则由它们的几何意义可得( )A. 123S S S <<B. 213S S S <<C. 321S S S <<D. 231S S S <<18.曲线()y f x =、()y g x =(()()0)f x g x >>及直线,x a x b ==所围成图形绕x 轴旋转而成的旋转体的体积为( )A.120[()()]f x g x dx π-⎰;B.1220[()()]f x g x dx π-⎰;C.1201[()()]2f x g x dx π-⎰;D.1221[()()]2f x g x dx π-⎰. 填空题(17题) 1.比较积分值的大小:10x e dx ⎰___ ____1(1)x dx +⎰2. 比较积分值的大小:10x e dx ⎰____ ___21x e dx ⎰3.02sin limxt x e tdt x→=⎰______________.4.522cosxdx ππ-=⎰___________.5.设0(1)(2)xy t t dt =--⎰,则(0)y '= .6.已知函数20sin xy t dt =⎰,则2y '= .7.若2kx e dx +∞-=⎰,则k = .8. 20x d dx⎰=9. 22x d t dt dx =10 325425sin 81x x dx x x -=++⎰ . 11.42sin 1cos x xdx xππ-=+⎰ . 12.312111x x dx x -++=+⎰ .13.12=⎰.14. 如果()f x 在[],a b 上的最大值与最小值分别为M 与m ,则()abf x dx ⎰有如下估计式:________________________________. 15.由曲线xy 1=与直线x y =及2=x 所围成的图形的面积是 16. 椭圆t b y t a x sin ,cos ==,π20≤≤t 所围图形的面积是17.曲线(),(),(()()0)y f x y g x f x g x ==>>与x 轴及两直线)(,b a b x a x <==围成平面图形绕x 轴旋转产生的旋转体的体积为18. 曲线2y x =、1x =和x 轴所围成的图形绕y 轴旋转产生的旋转体的体积为 计算题(基本题38题)1. 设函数()y y x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求dydx. 2. 设函数()y y x =由方程2200cos 0y x t e dt t dt +=⎰⎰所确定,求dy dx.3.计算 322cos()x x d t dt dxπ⎰;4.计算 203ln(1)limxx t dt x→+⎰;5.求2limxx x →⎰.6* .计算 2220020()limxt xx t e dt te dt→⎰⎰.7. 计算 312x dx --⎰. 8. ⎰-511du u u ; 9.⎰-2ln 01dx e x ;10.⎰-1024dx x ;11.ax ⎰;12.21e ⎰13.22ππ-⎰;14.⎰+10222)1(dx x x ;15⎰-+10232)1(dx x ; 16.计算.sin sin 053⎰-πdx x x17.⎰230arccos xdx ;18.⎰20sin πxdx x ; 19*.⎰>-+aa dx xa x 022)0(.120.1arctan x xdx ⎰;21.⎰-+222sin )(ππxdx x x22.21⎰;23.41⎰;24.1ln e ex dx ⎰;25. 32224x xdx x -++⎰. 26. 0x xe dx +∞-⎰;27. 232cos sin x xdx π⎰28.20sin cos x x dx π-⎰29.12ln(1)(2)x dx x ++⎰30.520cos sin 2d πθθθ⎰31.221t te dt -⋅⎰32.211ln ln ex xdx x++⎰ 33.1201ln 1x x dx x +⎛⎫ ⎪-⎝⎭⎰34.1ln(1)e x x dx -+⎰35 判定dx x x⎰∞+∞-+21的敛散性. 36.求21()-⎰f x dx ,其中22000,(),x e x f x x -⎧≥=⎨<⎩.37.设2301()12x x f x x ⎧≤≤⎪=⎨<≤⎪⎩,,求20()f x dx ⎰.38.计算21()f x dx -⎰,其中0()00x e x f x x -⎧≥=⎨<⎩,,.综合题与应用题(27题)39.求由抛物线x y =,直线y =-x 及y =1围成的平面图形的面积.40. 求椭圆12222=+by a x 所围图形的面积.41.计算曲线x e y =,x e y -=与直线1=x 所围成的图形的面积。
川农《经济应用数学(专科)》20年6月作业考核【标准答案】
B.<img src="/NEWEXAMSYSTEM/UploadFiles/PiLiangDaoRuShiTi/3372/391006/17101716181441_images\17101716181441_img15.png" width="51" height="30" alt="" />
B.1/2
C.1
D.0
答案:A
5.设y=F(x)是可微函数,则dF(sinx)=(? ).
A.<img src="/NEWEXAMSYSTEM/UploadFiles/PiLiangDaoRuShiTi/3372/391006/17101716181441_images\17101716181441_img69.png" width="79" height="27" alt="" />
D.<img src="/NEWEXAMSYSTEM/UploadFiles/PiLiangDaoRuShiTi/3372/391006/17101716181441_images\17101716181441_img66.png" width="125" height="28" alt="" />
《 经济数学》应用题及参考答案
《经济数学》应用题1.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为. 2.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =.3.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x 为多少时,平均成本最小?4.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?5.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.6.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少.7.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?8.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?9.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.10.a 已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?11.b 生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?12.已知某产品的边际成本为34)(-='x x C (万元/百台),x 为产量(百台),固定成本为18(万元),求最低平均成本.13.c 设生产某产品的总成本函数为x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?参考答案1. 3.62. 45q – 0.25q 23.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C 所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去) 因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.4.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点.所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.5.解 C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 6.解 由已知201.014)01.014(q q q q qp R-=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 7. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q 令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 C ()140=05140369800140.⨯++=176 (元/件) 8.解 (1) 因为 C q ()=C q q ()=2502010q q ++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.9.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元) 又x c x x C x C x ⎰+'=00d )()(=x x x 36402++ =x x 3640++ 令 0361)(2=-='xx C , 解得6=x . x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.10.解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500 x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.11. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.12.解:因为总成本函数为⎰-=x x x C d )34()(=c x x +-322当x = 0时,C (0) = 18,得 c =18 即 C (x )=18322+-x x又平均成本函数为 xx x x C x A 1832)()(+-== 令 0182)(2=-='xx A , 解得x = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台) 13.解:(1) 因为边际成本为1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.。
《经济应用数学》试题(6)
《经济应用数学》试题(6)第1页《经济应用数学》试题(6)第2页(共4页)《经济应用数学》试题(6)月一、填空(每题2分,共10分)(1) 函数210()0141x x f x e x x x -∞〈〈⎧⎪=≤〈⎨⎪-≤〈+∞⎩,则(1)f =__________________(2) 函数26()412x f x x x -=--的连续区间为 ____________(3)已知曲线()y f x =在点x 处切线的斜率为21x +,且曲线过点(1,1),则曲线的方程是 ___________________(4) 10d dx =⎰_________ (5)函数()sin 2f x x =的一个原函数是二、选择题(每题2分,共10分)(1)设()f x 的定义域为[]0,1,则(1)f x -的定义域为( )A .[]0,1B .[]1,2C .[]1,0- D .[]0,2(2)函数3121y x x =++在定义域内( )A .单调递增B .单调递减C .图形上凹D .图形上凸 (3)设22(,)f x y x y x y +-=-,则''x y f f +=( )A .22x y -B .22x y +C .x y +D .x y - (4)若()22x f x dx x e c =+⎰,则()f x =( ).A .22x xeB .222x x eC .2x xeD .22(1)x xe x +(5)()110,xdx f x y dy -=⎰⎰( )A .()dx y x f dy x⎰⎰-101, B .()dx y x f dy x⎰⎰-110, C .()dx y x f dy ⎰⎰101, D .()dx y x f dy y⎰⎰-110,三、求下列函数的极限(每题6分,共12分)(1) 131lim 21---+→x xx x(2) ()xx x 1021lim +→四、求导数或微分(每题6分,共24分)(1)x y arctan =,求'y(2)cos(3)x y e x -=-,求dy《经济应用数学》试题(6)第3页《经济应用数学》试题(6)第4页(共4页)(3)arctan x y y +=,求 'y(4)23ln(1)z x y =++,求dz五、求下列积分和解微分方程(每题6分,解微分方程8分,共26分)(1)⎰⎪⎭⎫⎝⎛-dx x x 21(2) ⎰πcos xdx x(3)⎰+dx x2361(4) x e y y 23=+'六、应用题(每题9分,共18分)1.求曲线2y x =-与22y x =-,所围成的平面图形的面积。
《经济数学》应用题及参考答案
《经济数学》应用题1.已知生产某种产品的成本函数为C(q) = 80 + 2q,则当产量q = 50时,该产品的平均成本为2.已知某商品的需求函数为q = 180 -4p,其中p为该商品的价格,则该商品的收入函数R(q)=23•设生产某种产品x个单位时的成本函数为:C(x) 100 0.25x 6x (万元),求:(1 )当x 10时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?4•某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q 1000 10 p ( q为需求量,p为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?5.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数q 2000 4p,其中p为价格,q为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.6.某厂生产某种产品q件时的总成本函数为C(q) = 20+4q+0.01q2(元),单位销售价格为p = 14-0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少7•某厂每天生产某种产品q件的成本函数为C(q) 0.5q236q 9800 (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?28 .已知某厂生产q件产品的成本为C(q) 250 20q —(万元).问:要使平均成本最少,应10生产多少件产品?9. 投产某产品的固定成本为36(万元),且边际成本为C(X)=2x + 40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低10. a已知某产品的边际成本C (x)=2 (元/件),固定成本为0,边际收益R (x)=12- 0.02x,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?11 . b生产某产品的边际成本为C (x)=8x(万元/百台),边际收入为R (x)=100-2x (万元/百台),其中x为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?12.已知某产品的边际成本为 C (x) 4x 3 (万元/百台),x 为产量(百台),固定成本为18(万元), 求最低平均成本.13. c 设生产某产品的总成本函数为 C(x) 3 X (万元),其中x 为产量,单位:百吨.销售 x 百吨时的边际收入为 R (x)15 2x (万元/百吨),求:(1)利润最大时的产量;(2)在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?参考答案1 2=40q - q -2000101 2L (q) =(40q - q -2000) =40- 0.2q10L (q) = 0,即40- 0.2q = 0,得q = 200,它是L(q)在其定义域内的唯一驻点.所以,q = 200是利润函数L (q)的最大值点,即当产量为 200吨时利润最大.解 C(p) = 50000+100q = 50000+100(2000-4p)=250000- 400pR(p) =pq = p(2000-4p)= 2000 p-4p 2利润函数 L(p) = R(p) - C(p) =2400p-4p 2 -250000,且令L ( p) =2400 -8p = 0得p =300,该问题确实存在最大值.所以,当价格为p =300元时,利润最大.C(x) C(x)100 100 x0.25x 2 0.25x 6x6, C(x)0.5x 6所以,C(10) 100 0.25 102 6 10 185— 100C(10)0.25 10 6 18.10C (10) 0.5 10 6 11—100(2) 令 C (x) 20.25 x0, 得x 20 ( x 20 因为x 20是其在定义域内唯一驻点,且该问题确实存在最小值, 解(1)因为总成本、平均成本和边际成本分别为: 所以当X 20时,平均成本最小.成本函数 C(q)= 60q +2000.舍去)解 (1) 1.2. 3.645q -0.25q 23.4.因为所以 (2) 1q,10 1 1 2q ) q =100q q . 10 101 2q 1000 10 p ,即 p 100收入函数R(q) = p q =( 100因为利润函数 L(q) = R(q) - C(q) = 100qq 2-( 60q +2000) 5.2最大利润 L(300) 2400 3004 3002 250000 11000 (元)•2 6•解 由已知 R qp q(140.01q) 14q 0.01q222利润函数 L R C 14q 0.01q 20 4q 0.01q 10q 20 0.02q则 L 10 0.04q ,令 L10 0.04q 0,解出唯一驻点 q 250.2 =0,得 q 1=140, qq 1 =140是C(q)在其定义域内的唯一驻点,且该问题确实存在最小值所以q 1=140是平均成本函数 C(q)的最小值点,即为使平均成本最低,每天产量应为 140件.此时的平均成本为q 1=50是C(q)在其定义域内的唯一驻点.所以,q 1=50是C(q)的最小值点,即要使平均成本最少,应生产 50件产品.x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值 到最小.10•解因为边际利润L (x) R (x) C (x)=12-0.02x - = 10-0.02x令 L (x) = 0,得 x = 500x = 500是惟一驻点,而该问题确实存在最大值.所以,当产量为500件时,利润最大当产量由500件增加至550件时,利润改变量为因为利润函数存在着最大值,所以当产量为 且最大利润为L(250)250件时可使利润达到最大,7.解因为10 25020 0.02C(q) =-C (q) =0.5qq25022500 20 1250 1230 (元)C (q)=(0.5q369800 q 9800 )=0.5q36 9800T~q令C(q)=0,即 0.598008.C(140) = 0.5 14036解(1)因为 C(q) =C(H^250qC(q) = (空q令C(q)=0,即驾丄q 1020 q q 20 )=10 9800 =176 (元 /件)140q10 250 1 q 2 10 0,得 q 1=50, q 2=-50 (舍去),q 2 = - 140 (舍去).9. 解当产量由4百台增至66百台时,总成本的增量为 640)dx = (x 40x) = 100 (万元)C(x) x0C (x)dxC0=x240x 36=x 4036C(x)x 36 c 120,解得 x 6.x.所以产量为6百台时可使平均成本达5502 | 550L (100.02x)dx(10x 0.01x )=500 - 525 = - 25 (元)500 \/\4 500即利润将减少25元.11. 解 L (x) =R (x)-C (x) = (100 -2x) -8x =100 -10x 令 L (x)=0,得 x = 10 (百台) 又x = 10是L(x)的唯一驻点, 时,利润最大.12•解:因为总成本函数为当 x = 0 时,C(0) =18,即 C(x)= 2x 2又平均成本函数为 得 c =183x 18C(x) A(x)2xx⑵ 当产量由7百吨增加至8百吨时,8L 了(14 2x)dx (14x x即利润将减少1万元.12又 L 10L(x)dx121O (100 10x)dx(100x 5x 2)12 1020即从利润最大时的产量再生产 2百台,利润将减少 20万元.C(x)(4x 23)dx =2x 3x令A(x) 2卑 x 该题确实存在使平均成本最低的产量 .所以当x = 3时,平均成本最低. 18 A(3) 2 3 3 —313•解:(1)因为边际成本为 C (x) 令 L (x)0,得 x = 7 0,解得x = 3 (百台)9 (万元/百台) 1,边际利润L (x) R (x) 最底平均成本为 C (x) = 14 -2x 由该题实际意义可知,x = 7为利润函数 大. L(x)的极大值点,也是最大值点.因此,当产量为7百吨时利润最 该问题确实存在最大值,故 x = 10 是L(x)的最大值点,即当产量为10 (百台)183 — x利润改变量为87 =112 -64-98 + 49 = - 1 (万元)。
经济数学试卷(专科)及参考答案
《经济数学》试卷(专科)一、单项选择题:(每小题4分,共20分)1.y = )A. 0x <B. 0x ≥C. 0x ≠D. 0x > 2.1limx x→∞的极限是( ) A. 1 B. e C. 0 D. ∞ 3.下列结果中,哪个是2y x =的导数( ) A.1xB.2xC.2xD.x 4.行列式2002的值为( ) A.4 B.0 C.2 D.-45.抛两枚硬币,至少有一个正面向上的概率为( )A.1B.14C.12D.34二、填空题:(每小题4分,共20分) 6.请写出2y x =的单调递增区间___________。
7.1lim 1x x x →∞⎛⎫+ ⎪⎝⎭的极限为__________。
8.设某企业生产某产品的成本为C ,销售总收入为R ,则盈亏平衡时的表达式为__________________。
(利润用L 表示)9.1dx ⎰的不定积分为__________________。
10.向指定的目标射击两枪,以A 1,A 2分别表求事件“第一、二枪击中目标”,用A 1,A 2表示两枪都未击中__________________。
三、计算题:(每小题10分,共50分)11.求极限233lim 9x x x →--。
12.求2y x x =-的导数。
13.求定积分21dx x ⎰。
14.求二阶行列式 1234的值。
15.计算z xy =的一阶偏导数z x ∂∂、z y∂∂。
四、经济应用题:(10分)16.某商品,若每件售价10元,可卖出100件,价格每增加2元,就要少卖20件。
写出增加k 个2元时,需求量Q 与价格P 的函数关系。
《经济数学》试卷(专科)参考答案一、单项选择题:1.B2.C3.B4.A5.D二、填空题:6.[]0,+∞ 或{}0,+∞7.e8.0L R C =-=9.x +C (如漏写C ,扣2分) 10.12A A三、计算题:11.解:23333311lim lim lim 9(3)(3)36x x x x x x x x x →→→--===-+-+ 12.解:'21y x =- 13.解:222221111113dx=21222222x x ⎡⎤=-=-=⎢⎥⎣⎦⎰ 14. 解:1234=1*4-2*3=4-6=-2 15. 解:z y x∂=∂ z x y ∂=∂ 四、经济应用题:解:P =10+2k ……①Q=100-2k ……②由①式得k=12(P-10) (或由②式得k=12(100-Q)代入①式) 代入②式得Q=110-P。
经济应用数学基础(一)微积分-试题与答案
。
二、计算下列各题(每题 5 分,共 20 分)
11 lim( − ) 1、 x→1 ln x x −1
2、 y = arcsin 1− 3x ,求 y' ;
3、设函数 y = y(x) 由方程 exy = x − y 所确定,求 dy x=0 ;
4、已知
⎧
⎨ ⎩
y
=
x= cos
sin t t + t sin
高等数学(上)模拟试卷一
一、 填空题(每空 3 分,共 42 分)
1、函数 y = 4 − x + lg(x − 1) 的定义域是
;
⎧2x
x<0
f (x) = ⎨
2、设函数
⎩a + x x ≥ 0在点 x = 0 连续,则 a =
;
3、曲线 y = x4 − 5 在(-1,-4)处的切线方程是
;
∫ 4、已知 f (x)dx = x3 + C ,则 f (x) =
;
∫ 4、已知 f (x)dx = x2 + C ,则 f (x) =
;
ห้องสมุดไป่ตู้
lim (1 +
1
x
)3
5、 x→∞ x =
;
6、函数 f (x) = x3 − x2 +1的极大点是
;
7、设 f (x) = x(x −1)(x − 2)……(x −1000) ,则 f '(0) =
;
8、曲线 y = xex 的拐点是
→
a
=
{3,
−4,
0}
,
→
b
=
{k
,
−1,1}
2066《经济应用数学三(概率论)》期末复习题 参考答案
四川省2015年12月高等教育自考复习题经济应用数学三(概率论)》试题答案及评分参考(课程代码:2066)一、单项选择题(每小题2分,本题共42分。
每小题只有一个选项符合题意,请选择正确答案。
)1.D2.B3.C4.C5.B6.B7.D8.B9.C 10.D11.B12.B13.A14.D15.B16.B17.A 18.C19.A20.A21.D22.B23.A24.D25.B 26.C27.A28.B29.B30.A31.D32.C33.C 34.C35.C36.C37.B38.D39.C40.A41.A 42.C二、填空题(每小题3分,本题共12分。
)1.答案:0.62.答案:3.答案:4.答案:5.答案:6.答案:0.0967.答案:8.答案:5三、计算题(每小题10分,本题共20分。
)1.答案:解:由全概率公式可得, 该厂产品的合格率为于是,次品率为又设表示“有放回取5件,最多取到一件次品”,由于抽样是有放回的,是5重贝努里概型。
则2.答案:解:设X的分布参数为λ,由题意知,可见显然,Y = min(X, 2)对于y < 0 , 有F(y) = P (Y≤y) = 0对于y ≥ 2 , 有F(y) = P {Y ≤ y }= P {min(X, 2) ≤ y} = 1对于0 ≤ y= P( X≤y } =于是,Y的分布函数为3.答案:解:(1)设A表示“取到1个次品”,则而样本点总数故(2)设B表示“取到3个次品”,则而样本点总数故4.答案:解(2)由,可得,即查表可得:。
四、应用题(每小题10分,本题共10分。
)1.答案:解:由已知得(a1是一阶原点矩)2.答案:解:∵似然估计取对数似然方程为五、证明题(每小题8分,本题共16分。
)1.答案:证明:由已知得:严格单调,其反函数的导数为2.答案:证明:P(B∣A)= ==1-。
3.答案:证明:由协方差的定义及数学期望的性质,得4.答案:证明: 因为独立,所以,则有:PA、=P(A-AB)=PA、-PA、PB、=PA、[1-PB、]=PA、PB、故 A也相互独立。
经济应用数学试卷期末
一、选择题(每题2分,共20分)1. 下列哪个不是经济数学中的基本概念?A. 指数B. 概率C. 逻辑D. 线性方程2. 在下列函数中,哪个函数是单调递增的?A. f(x) = x^2B. f(x) = -x^3C. f(x) = xD. f(x) = -x3. 设某商品的需求函数为 Q = 100 - 2P,其中 P 为价格,Q 为需求量。
当价格P 为多少时,需求量 Q 为最大?A. 25B. 50C. 75D. 1004. 若某公司年销售额为100万元,年增长率为10%,则3年后公司的销售额为多少?A. 110万元B. 121万元C. 133万元D. 146万元5. 下列哪个不是经济数学中的优化问题?A. 投资组合问题B. 生产计划问题C. 价格决策问题D. 消费者选择问题6. 设某商品的成本函数为 C(x) = 100 + 10x,其中 x 为产量。
则当产量为多少时,成本函数达到最小?A. 5B. 10C. 15D. 207. 若某商品的需求价格弹性为 -2,价格下降10%,则需求量将增加多少?A. 5%B. 10%C. 20%D. 30%8. 在线性规划问题中,目标函数为最大化利润,约束条件为资源限制。
若增加一个资源限制条件,则以下哪个结论可能成立?A. 目标函数的最大值可能增加B. 目标函数的最大值可能减少C. 目标函数的最大值可能不变D. 无法确定9. 在指数增长模型中,若年增长率为5%,则3年后该量的增长倍数为多少?A. 1.05^3B. 1.05C. 1.15D. 1.2510. 在下列统计量中,哪个用于衡量数据的集中趋势?A. 标准差B. 离散系数C. 中位数D. 四分位数二、填空题(每题2分,共20分)1. 经济数学中的线性方程组通常可以用矩阵形式表示为 Ax = b,其中 A 是______,x 是______,b 是______。
2. 指数函数 y = a^x 在 a > 1 时表示______,在 0 < a < 1 时表示______。
经济应用数学 试卷
四川农业大学网络教育专科考试经济应用数学 试卷(课程代码 391006)本试题一共五道大题,共2页,满分100分。
考试时间90分钟.注意:1、答案必须填写在答题纸上,题号不清或无题号的以零分计。
2、答题前,请在答题纸上准确、清楚地填写各项目;3、学号、考点名称、考室号、姓名、身份证号、课程代码、课程名称、培养层次等,不写、乱写及模糊不清者,答题纸作废;4、闭卷考试,若有雷同以零分计。
一、 是非题(每小题3分,共15分)1。
y =的间断点为1x =±。
错2。
22sin ()1xf x x =+是奇函数。
对 3。
若lim ()0x af x →=,lim ()0x ag x →=.则一定有()lim0()x af xg x →=。
错 4. 设)(x f 在a x =点处连续,则有()()f x f a '=。
对 5。
若()f x 为边际收益函数(x 为产量),则0()()x F x f x dx =⎰为总收益函数。
对二、填空题(每小题3分,共15分)6.函数1lg 1y x=- [3,1)- )。
7。
设211sin ,0,(),0.x x f x xk xx ⎧+≠⎪=⎨⎪+=⎩ 在0=x 连续,则k =( 1 ).8。
导数6(sin 1)4[]x d e dx dx+=⎰( 0 )。
9。
定积分22021xdxx =+⎰( ln5 ).10. )(x f 一个原函数为sin x ,则⎰=dx x f )('( cos x C -+ )。
三、选择题(每小题3分 ,共15分)11. 当2→x 时,2312x x x ++-是( B ).A .无穷小量B .无穷大量C .1D .—1 12。
极限0sin3lim3x xx→= ( A )A .1B .0C .不存在D .313.在下列函数中,在0=x 不可导的是( C )。
A .xe y = B .x y sin = C .21xy = D .x y arcsin = 14.设122=+y x ,则dxdy=( D ). A .21x x - B .xyC .y xD . y x -15。
《经济应用数学》6套期末考试题AB卷带答案模拟测试题
《经济应用数学》试题 (1)(4)已知 y sin x ,则 y().A .sin xB .sin xC . cos xD .cos xxxxx 年x 月题 号一 二 三 四 五 六 总 分x(5)设 f (x, y) y , 则f x y ( )' ( , )xxA . y ln yB . x 1 xyC. xyD.x 1lnxyy题得 分 评分人得 分 评分人一、填空(每题 2 分,共 10 分)三、求下列函数的极限(每题 6 分,共 12 分)班级答12(1)y 4 x的定义域为__________________x 1 (2) 函数 2 2 1 y x x 的单调递增区间是 __________________(1)2xlim2x1xx 21(3) 设函数 z sin( x y) , 则 dz __________________要2(4) 已知 f (x)dx x sin x c, 则 f (x) ___________________学号不(5) 3 sin x 2 dx 1 cosx2 得 分评分人 _______ 二、选择题 ( 每题 2分,共 10分)(2) lim x2 x (x 2 cos sin x x) 21 姓 名内(1)若 lim f (x) Axx,则 f (x) 在点 x 0 处()线A .有定义,且 f ( x 0 ) AB .没有定义C .有定义,且 f ( ) 可为任意值D .可以有定义,也可以没有定义x得 分 评分人四、求导数或微分(每题 6 分,共 24 分)封(2)下列函数中()是奇函数A. 2 1y x B .xy e C.y x sin 3x D .y x c os 1xx cos(1)y 3e x x 求y'密(3)设f (x) 为可导函数,以下各式正确的是()A. f ( x)dx f (x) B. f ( x)dx f (x) x cos 求dy(2)y e xC . f ( x)dx f (x)D . f ( x)dx f (x) C《经济应用数学》试题(1)第1页《经济应用数学》试题(1)第2页(共4 页)得分评分人(3)yy 1 xe ,求d ydx六、应用题(每题9 分,共18 分)11.求由曲线 3 , y x3y x所围成的平面图形的面积.题x ey(4)设0xy e ,求d ydx答班级五、求下列积分和解微分方程(每题 6 分,解微分方程8 得分评分人分,共26分) 要学号不2x x cosx 2(1)dxx2.已知某产品的边际成本为 C '(q )4q ( 万元/百台) ,边际收入为R '(q) 60 2q( 万元/百台), 如果该产品的固定成本为10 万元,求:(1)产量为多少时总利润L(q) 最大?姓名内(2) 2sin x dx(2)从最大利润产量的基础上再增产200台,总利润会发生什么变化?线2x(3)xe dx封《经济应用数学》试题(1)参考答案一、填空(每题 2 分,共10分)密(4)xy ' y 3, y 0x 1 1, 2,1 1,2 ;2, 1, ;3,cos x y( ydx xdy );4, 2x cosx;5,0 二、选择题( 每题2 分,共10 分)1,D 2,D 3,C 4,B 5,A三、求下列函数的极限(每题分,共分)6 121,原式limx 1 x 2 x 1 3x 1 x 1 2,《经济应用数学》试题(1)第3页《经济应用数学》试题(1)第4页(共4 页)2,原式2cos x 112 2x xlim 12xsin x1x《经济应用数学》试题(2)xxxxx年月题号一二三四五六总分四、求导数或微分(每题 6 分,共24 分)班级题答x 11,4,y'=3e +sinx+2 xx x2, y' e (cos x sin x) dy e (cos x sin x) d xydy e' y y 'y e xe y y3,x xdx 1 xexdy e y' ' 0x yy xy e e y yx xdx x e五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)得分评分人一、填空(每题 2 分,共10 分)2 x g x x(1) 设函数 f (x) x 6 10, ( ) 3,则f g(x) =________________(2) 曲线 2 1y x 在点(1,0) 处的切线方程为______3 x(3) 函数y ( ) 3 1在定义域内单调___________(递增、减少)f x x要1, 原式2 12(x cos x)dx x sin x 2ln x cx 2(4) 若x s in x是f (x) 的一个原函数,则 f ( x) d x ________学号不2, 原式3, 原式22sin xdx sin xdx cosx cos 41 12 2 2xsin tdt(5)0lim ___________2x 0xxxe d x e c22姓 名内4, y 1 xy 3 x, P 1 x Q 3 x得 分 评分人二、选择题 ( 每题 2 分,共 10 分)线封 1 1 dx3 dxpdxPdxy eQedx cedx cexxx由 yx 1得 c 3特解y 33x六、应用题(每题 9 分,共 18 分) 1, 由对称性141 311 3433S 2 (xx )dx 2xx 1 4 41 x3x c(1)设 f (x) 的定义域为 0,1 , 则 f (x 1) 的定义域为()A . 0,1B . 1,2C . 1,0D . 0,2(2)下列函数中()是奇函数1x2D.y eC y x cos3xy sin.xA y f ( x)B lim f (x) .x.函数在的一个邻域内有定义xx21y xB .A .(3)函数 yf (x) 在点 x 0 处连续,则()存在;密2,(1) L(q) R(q ) C( q )L '(q ) R '(q) C '(q) 60 6qC .极限值等于x 处的函数值 f ( x 0 ) 即 lim f ( x)f (x 0 ) 0x xD . y f (x) 在x 点无定令 L '(q )0 得 q 10义驻点唯一, q 10 百台 1000台为最大值,此时利润最大x(4) f (x dx xe C ,则 f (x)( ))(2)12122A .x(x 2)eB .x(x 1)e C .xxeD .x(x 1)eL 60 6qdq 60q 3q 12(万元)120000(元)1010《经济应用数学》试题(1)第5页《经济应用数学》试题(1)第6页(共4 页)(5)微分方程y ' y 满足初始条件y(0) 1 的特解为()A.x x x x y e B.y e 1 C.y e 1 D.y 2 ex cos 3,求dy (3)设y e x得分评分人三、求下列函数的极限(每题 6 分,共12 分)(4) 3 3z x y y x,求z z' , 'x y题(1) 1limx3 x x 2 3答班级得分评分人要(2) limx 0 1 cos2x2x五、求下列积分和解微分方程(每题 6 分,解微分方程8分,共26 分)学号(1)4x(1 x )dx不得分评分人姓名内四、求导数或微分(每题 6 分,共24 分)(2)e sin x cosxdx线(1)设x 1f ( x) ,求 f '( x)x 1 (3) 11xexedx封密 5 x x x x4 3 2(2)y 2x 3 5 4 7 ,求y" (4)1y' y 02x《经济应用数学》试题(1)第7页《经济应用数学》试题(1)第8页(共4 页)得分评分人六、应用题(每题9分,共18 分)1 ,f '( x)1 1x 1 x 112 x 2 x2 2x 1 x x 11.求由曲线y x2 , y x 所围成的平面图形的面积. 4 3 2 3 22, y ' 10 x12 x15 x2x 4 y" 40 x36 x30 x 2xy e x x (cos3 3sin 3 )dy e x x dxx3, ' (cos3 3sin 3 )题' 3 2 3' 3 3 24,z x y yz x xyxy五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)班级答要1, 原式2, 原式3, 原式1342 140222 x xdx xx3 20 34xxsinsinsin e dx ec1111x xx d 1 e ln 1 e ln 1 e ln 2e 0学号不2.某企业分批生产某产品,每批产量为q吨,固定成本8万元,总成本函数为34,dyydy 1,dx2x2dxy x11xln y ln cxy ce,dy 1, dx2y x2C(q) 8 q , 其中 k 为待定系数,已知批量 q 9 吨时,总成本 C 62万元。
经济应用数学(专升本)答案
经济应用数学( 经济应用数学(专升本 )试卷答案及评分标准
一、填空: (共 32 分,每空 2 分) : 1.{a,c,d,f,g};{a};{a,b,e,f,g}。 2.1/6;1/2。 3.0;0.5。 4.0,1. 5.独立。 6.3;0.01。
a 10 7.4;0;14; 0 0 2
1.D=
0 b 0
10
0 1 3 0 ; 5 7 。 10 c 2 1 5 2 1 1 2 0 4 0 3 0 6 2 4 0
二、计算: (共 24 分,每题 6 分)
1 2 0
4 1 3 2 6 2
3 − 1 2 1 c4 − c2 3 − 1 2 2 1 5
3
p( B1 A) ≈ 0.514 , p( B2 A) ≈ 0.200 , p( B3 A) ≈ 0.286 --11 分
可知,该次品的由甲车间生产的可能性最大。 五、 (15 分) (1) a=2; --------5 分 (2) E(x)=2/3 -----------10 分 (3) D(x)=1/18----------15 分
大学专业试卷经济应用数学二B
《线性代数》考试试卷(B )适用专业: 考试日期:考试时间:120分钟; 考试方式:闭卷; 总分100分一.填空题(21020⨯=分分).1.=-ααααsin cos cos sin . 2. 设⎥⎦⎤⎢⎣⎡=5321A , 则A 的逆矩阵=-1A .3. 设14111112--=D , ij A 为D 中ij a 的代数余子式, 则=++333231A A A . 4. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=30220111A , 则=A A T.5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=443120131211A , 则A 的秩 =)(A r .6. 设21,λλ是3阶实对称矩阵A 的两个不同的特征值, T ),,(2011=α,T a ),,(322=α是 对应于21,λλ的特征向量, 则=a .二.选择题(21020⨯=分分).1. 行列式412175943-的元素a 23的代数余子式23A 是( ). A. 3 B. 3- C. 5 D. 5- 2. 设A 为3阶方阵,且1=A , 则 =A 3( ).A. 3B. 27C. 3-D. 27- 3. 若B A ,为)2(≥n n 阶方阵,则下列各式正确的是( ).A.B A B A +=+B.T T TB A AB =)( C.BA AB = D.BA AB =4. 设矩阵n m A ⨯的秩n m A r <=)(,下述结论中正确的是( ).A. A 的任意m 个列向量必线性无关;B. A 的任意一个m 阶子式不等于零;C. 齐次方程组0=Ax 只有零解;D. 非齐次方程组b Ax =必有无穷多解. 5. 设4321,,,αααα是一组n 维向量,其中321,,ααα线性相关, 则( )A. 4321,,,αααα必线性相关,B. 21,αα必线性相关,C.32,αα必线性无关, D. 321,,ααα中必有零向量.6. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101011A 的特征值为 ( ). A. 0,1,1 B. 2,1,1-- C. 2,1,1 D. 2,1,1-三. 计算与证明题1.(8分) 计算行列式aa a a ++++43214321432143212.(6分) 求解下面矩阵方程中的矩阵X⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛431201121100110001100001010X .3.(7分) 设A 的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=-3330220011A , 求A 的伴随矩阵*A .4. (15分) 求线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++-=++-=+-53332212242143214321431x x x x x x x x x x x x x x 的通解,并用对应齐次线性方程组基础解系表示通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《经济应用数学》试卷(A )
一、选择题(每题3分共30分)
1、函数1arctan y x
=的连续区间是( ) A. [1,3]- B. (3,)+∞ C. (,0)
(0,3]-∞ D. (,3]-∞ 2、x 12sin lim 2sin x x x x
→--=+( ) A. 0 B. 1 C. 13 D. 不存在 3、下列等式成立的是( )
A.21lim()21x x x e x →∞-=+ B.21lim()21x x x e x →∞+=- C.10021lim()21x x e x →∞-=+ D.10021lim()21
x x x e x -→∞+=- 4、当x→0时,变量12-x e 的等价无穷小是( )
A. x
B.2x
C.x 2sin
D.2sin x
5、d =( ) A 1
2x B 2dx x C D 6、设曲线22y x x =+-在点M 处的切线斜率为3,则点M 的坐标为( )
A (0,1)
B (1,0)
C (0,0)
D (1,1)
7、函数2
ln(1)y x =+的单调增加区间是( )
A.(,)-∞+∞
B.[0,)+∞
C.(,0]-∞
D. 以上都不对
8、点(0,1)是曲线c bx ax y ++=23的拐点,则有( )
A.1,3,1=-==c b a
B. 1,0,==c b a 为任意值
C. 为任意值c b a ,0,1==
D. 1,=c b a 为任意值、
9、设函数()f x 的一个原函数是
1x 则()f x '=( ) A
1x B ln x C 32x D 21x - 10、如果x e -是()f x 的一个原函数,则()x f x dx =⎰( )
A (1)x e x c --+
B (1)x e x c --+
C (1)x e x c -++
D (1)x e x c --++
二、填空(每空3分共30分)
1、sin 3x y e =是由 复合而成的。
2、设⎩⎨⎧>+≤+=001)(x b
ax x e x f x ,如果)(x f 在0=x 处可导,则=a ,=b 。
3、的是x x x f x sin )(0=
= 间断点。
4、3x x y e e -=+,则当0y '=时,x = 。
5、曲线x y ln =上某点的切线平行于直线23y x =-,该点的坐标是 。
。
6、已知=--='→h f h f f h 2)3()3(lim
2)3(0则 。
7、曲线5352y x x x =+--的拐点为 。
8、2011lim()sin x x x x
→-= 。
9、已知2()f x dx x c =+⎰,则23(1)x f x dx -=⎰ 。
三、极限运算题(两题共12分)
1、求01cos lim sin x x x x
→- (6分) 2、已知分段函数2,0()13cos ,0
x ke x f x x x x ⎧<=⎨-≥⎩ 在分段点0x =处连续 , 求常数k 的值。
(6分)
四、导数及应用题(三题共13分)
1、已知22cos y x =,求y '。
(4分)
2、已知ln y x x =,求y ''。
(4分)
3、求223(1)(5)y x x =+- 的单调区间和极值。
(6分)
五、积分计算题(三题共15分)
1、求
⎰ (4分)
2、求
2
2
1
dx
x
⎰(5分)
3、求
1
arctan
x xdx
⎰(5分)。