最新全国各地2011届高考数学试题汇编:函数、方程及其应用
2011年高考数学真题分类汇编-4---函数与导数
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f ,当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>==+;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综(其中121122x x a a ==)。
2011年高考数学真题(全国卷)理科(详细解析)
1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年高考数学试题分类汇编专题坐标系与参数方程理
2011年高考试题数学(理科)选修系列:坐标系与参数方程一、选择题:1. (2011年高考安徽卷理科5)在极坐标系中,点(,_)到圆2COS 的圆心的距离为(A) 2(B)-,'49 (C)1 9(D) . 3【命题意图】本题考查了极坐标方程与平面直角坐标系中的 -般方程的的互化,属于容易题【答案】D【解析】极坐标系中的点(2, 一)化为直角坐标系中的点为(1,3 );极坐标方程2cos3化为直角坐标方程为x2y22x,即(x 1)2y21,其圆心为(1,0 ),•••所求两点间距离为'(1 1)2 G 3 0)2= 3,故选D.2. (2011年高考安徽卷理科3)在极坐标系中,圆2sin 的圆心的极坐标是A. (1,一)B. (1, )C. (1,0)D. (1,)2 2【命题意图】本题考查极坐标方程与直角坐标系下方程的互化及点互化,是简单题【解析】:2sin x2(y 1)21,圆心直角坐标为(0,-1 ),极坐标为(1,-),2选B。
二、填空题:x 8t21. (2011年高考天津卷理科11)已知抛物线C的参数方程为'(t为参数),若斜率y 8t.为1的直践经过拋物线口的的焦点,且与= 相切,则一______ 【答知忑【解析】由题直知W物线的方程为才二匹因为相切所以容易得出结果.金太阳新课标资源网2 (20L1年高考江西卷理科15)(坐赫系与参数方裡选懺题)若曲线的极坐榻方程为尸Zsin4+48喊以极点为原点,极轴为兀轴正半轴建立直肃坐标系,则该曲线的直甫坐标方程为_______________答案:x 2 y 2 4x 2y 0。
解析:做坐标系与参数方程的题,大家只需记住两点:2x 2 y 2即可。
根据已知2sin4 cos =2?— 4 —,化简可得:2 2y 4x x 2 y 2,所以解析式为:x 2 y 2 4x 2y 0x cos ,3. (2011年高考湖南卷理科 9)在直角坐标系xoy 中,曲线C 的参数方程为(y 1 sin为参数)在极坐标系(与直角坐标系 xoy 取相同的长度单位,且以原点 O 为极点,以x 轴正 半轴为极轴)中,曲线C 2的方程为 cos sin 1 0,则G 与C ?的交点个数为 ________________________ 。
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)一、选择题:1. (2011北京文)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( )(A)2 (B)3 (C)4 (D)51.【答案】C【解析】执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C2.(2011北京理)执行如图所示的程序框图,输出的s 值为( )(A )-3 (B )-12(C )13 (D )22.【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
3. (2011福建文)某校选修乒乓球课程的学生中,高一年级有30名, 高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A. 6B. 8C. 10D.12解析:由30:406:,n =可得8n =,答案应选B 。
4. (2011福建文)阅读右图所示的程序框图,运行相应的程序,输出的结果是( )A.3B.11C.38D.1234.解析:110,12310,a a =<=+=<2321110,11a a =+=>=,答案应选B 。
5. (2011广东理) 设S 是整数集Z 的非空子集,如果S b a ∈∀,,有S ab ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,T ∪V=Z, 且T c b a ∈∀,,,有T c ab ∈,;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是( )A. T,V 中至少有一个关于乘法是封闭的B. T,V 中至多有一个关于乘法是封闭的C. T,V 中有且只有一个关于乘法是封闭的D. T,V 中每一个关于乘法是封闭的5. 解析:(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ,若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D 。
2011年高考理科数学(全国卷)(含答案)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。
...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题:1.(2011安徽文)函数2)1()(x ax x f n -=在区间〔0,1〕上的图像如图所示,则n 可能是( ) (A )1 (B) 2 (C) 3 (D) 41.A 【解析】法一:本题主要考查了函数图像、利用导数求函数最值、均值不等式等知识,属于难题。
解题时根据四个选项中的n 先确定函数解析式,再利用导数求出最值点即可利用排除法找到答案。
由函数图像可知0a >,当1n =时,()232()(1)2f x ax x a x x x =-=-+,()(31)(1)f x a x x '=--,所以函数的最大值点为10.53<,所以A 可能;当2n =时,函数22()(1)f x ax x =-的图像关于直线12x =对称,由图像知B 错误;当3n =时,()32543()(1)2f x ax x a x x x =-=-+,()()()222()583531f x ax x x ax x x '=-+=--,最大值点为30.55>,股C 错误;当4n =时,()42654()(1)2f x ax x a x x x =-=-+,()()()5433()61042321f x a x x x ax x x '=-+=--,函数的最大值点为20.53>,由图像知D 不可能.法二:法三: 【技巧点拨】本题利用函数图像提供给学生的重要信息是最值点小于0.5,很多学生解题时不知道先确定函数解析式,然后利用导数工具求出函数的极值点,再用最值点小于0.5这一关键信息对选项进行排除不能把握最值点小于0.5这一关键信息,解题受阻。
同时还有注意题干中函数“可能”,“是否”等这些不确定性词语时,解题常用的技巧是把答案带入进行验证。
2. (2011安徽理)函数nmx ax x f )1()(-=在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是( ) (A )1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==2. B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1,2m n ==,)2()1()(232x x x a x ax x f +-=-=,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选B.3. (2011福建文)若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 93.解析:2()1222,(1)12220,6f x x ax b f a b a b ''=--=--=+=≥9ab ≤,当且仅当3a b ==时等号成立,答案应选D 。
2011年高考数学试题分类汇编-专题函数与导数-理
2011年高考数学试题分类汇编-专题函数与导数-理2011年高考试题数学(理科)函数与导数一、选择题:1. (2011年高考山东卷理科5)对于函数(),y f x x R=∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要 【答案】B【解析】由奇函数定义,容易得选项B 正确.2. (2011年高考山东卷理科9)函数2sin 2xy x =-的图象大致是【答案】C【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.3. (2011年高考山东卷理科10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x=-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9【答案】B【解析】因为当02x ≤<时, 3()f x xx=-,又因为()f x 是R上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B.4.(2011年高考安徽卷理科3)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x xx2=2-,则()f 1=(A )-3 (B) -1 (C)1(D)3(A )-3 (B) -1 (C)1 (D)3【命题意图】本题考查了函数的奇偶性和求值,是容易题.【解析】∵设()f x 是定义在R 上的奇函数,当x ≤0()f x '=23(34)a xx -=234()4ax x --,在[0,34]是增函数,不适合.【解题指导】排除法解决存在问题和不确定问题很有效6.(2011年高考辽宁卷理科9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞) 答案: D解析:不等式等价于11,22xx -≤⎧⎨≤⎩或21,1log 2,x x >⎧⎨-≤⎩解不等式组,可得01x ≤≤或1x >,即0x ≥,故选D.8.(2011年高考浙江卷理科1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】 B 【解析】:当2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-,故选B9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=xyD xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定。
2011年高考数学试题分类汇编 函数与导数
2011年高考数学试题分类汇编:函数与导数 一、选择题1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选B.3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.y0.51xO0.54.(安徽文10) 函数()()n f x ax x 2=1-在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.5.(北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A x f x x A A <=≥(A ,c 为常数)。
2011年全国高考理科数学试题含答案(新课标卷)
2011 年普通高等学校招生全国统一考试理科数学第 I 卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数2i 的共轭复数是( )1 2i(A )3 i (B )3i(C )i( D )i55(2)下列函数中,既是偶函数又在(0,+)单调递增的函数是()(A ) y x 3(B) yx1(C )yx 21(D) y2 x(3)执行右面的程序框图,如果输入的 N 是 6,那么输出的 p 是()(A )120(B )720(C )1440(D )5040(4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()(A )1 ()1 ( C )2 (D )33B 342(5)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则 cos 2 =()(A )4(B )3(C )3(D )45 555(6)在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为()(7)设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, L 与 C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为()(A ) 2(B ) 3 (C )2(D )3a 2 x 15(8) x的展开式中各项系数的和为 2,则该展开式中常数项为( )x x(A )-40(B )-20(C )20(D )40(9)由曲线 yx ,直线yx 2 及 y 轴所围成的图形的面积为()(A )10(B )4(C )16(D )633(10)已知 a 与 b 均为单位向量,其夹角为,有下列四个命题()P 1 : a b 10,2P 2 : a b 12,33P 3 : a b 10, P 4 : a b 1,33其中的真命题是()(A ) P 1,P 4(B ) P 1, P 3(C ) P 2, P 3(D ) P 2 , P 4( 11)设函数 f ( x)sin( x) cos( x)(0,) 的最小正周期为,且 f ( x) f ( x),则2()(A )f ( x)在0,单调递减( B )f (x)在4 ,3单调递减24(C )f ( x)在0,单调递增( D )f ( x)在, 3单调递增244(12)函数y1 的图像与函数 y 2sin x( 2x 4) 的图像所有交点的横坐标之和等于()1-x(A )2(B) 4(C) 6(D)8第Ⅱ卷本卷包括必考题和选考题两部分。
(超级精品)2011届高考数学一轮复习精品题集分类汇编之函数(39页)
第2章 函数概念与基本初等函数Ⅰ §2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,4-∞C . 4[,)3+∞D .4(,]3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( ) (1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则)f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆=+∈,、. 若13k ∆=,则函数()fx k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.第2章 函数概念与基本初等函数Ⅰ§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射.考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是22,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。
2011年高考数学试题分类汇编函数
2011年高考数学试题分类汇编——函数1.(2011安徽理)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=( ) (A )-3 (B) -1 (C)1 (D)32.(2011安徽文)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是( )(A )(a1,b ) (B ) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b)3.(2011北京理)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为()x A f x c x A <=≥(A ,c 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品时用时15分钟,那么c 和A 的 值分别是( ) A. 75,25B. 75,16C. 60,25D. 60,164.(2011福建文)已知函数f (x )=⎩⎨⎧2x , x >0x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .35.(2011广东理)设函数()f x 和g(x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是 ( ) A .()f x +|g(x)|是偶函数 B .()f x -|g(x)|是奇函数 C .|()f x | +g(x)是偶函数 D .|()f x |- g(x)是奇函数6.(2011广东文)设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f ∙;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =∙.则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ∙∙=∙ B .()()()()()())(x h g h f x h g f ∙=∙ C .()()()()()())(x h g h fx h g f =D .()()()()()())(x h g h fx h g f ∙∙∙=∙∙7.(2011湖北理)已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f ()1,0≠>a a 且,若()a g =2,则()=2f ( ) A. 2 B .415 C.417 D. 2a8.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________9.(2011辽宁理)设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是( )A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]10.(2011全国Ⅰ理)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )(A )2 (B) 4 (C) 6 (D)811.(2011全国Ⅱ理)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=( )(A)12-(B)14-(C)14(D)1212.(2011山东理文)函数2sin 2x y x =-的图象大致是( )13.(2011山东理)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为( )(A )6 (B )7 (C )8 (D )914.(2011山东理)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .15.(2011陕西理)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是16.(2011陕西文)函数13y x =的图像是 ( )17.(2011陕西文)设lg ,0()10,0x x x f x x >⎧=⎨⎩…,则((2))f f -=______.18.(2011上海理)设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 .19.(2011上海理)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.20.(2011四川理)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是( )21.(2011年天津理)对实数a 与b ,定义新运算“⊗”:,1,,1.aa b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =--∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭22.(2011天津理)已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >> 23.(2011浙江理)若函数2()f x x x a =-+为偶函数,则实数a =24.(2011重庆文)设,,,则,,的大小关系是(A) (B) (C) (D)25.(2011重庆文)若函数在处取最小值,则 ( )(A) (B) (C)3 (D)4。
最新全国各地2011届高考数学试题汇编:不等式1
不等式 题组一一、选择题1. (福建省厦门外国语学校2011届高三11月月考理)已知满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+-=的最小值是( ▲ )A .15B .-18C .26D .-20答案 B.2.(甘肃省天水一中2011届高三上学期第三次月考试题理)设,x y 满足约束条件:112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,则2z x y =-的最小值为( )A .6B .-6 C.12 D.-7答案 B. 3、(河南省辉县市第一中学2011届高三11月月考理)若0a b >>,则A .22()a c b c c R >∈B .1ba > C .lg()0ab ->D .11()()22a b<答案 D.4.(湖北省黄冈市浠水县市级示范高中2011届高三12月月考)不等式2601x x x --->的解集为( ) A.{}2,3x x x -<或> B.{}213x x x -<,或<<C.{}213x x x -<<,或> D.{}2113x x x -<<,或<< 答案 C.5.(河南省辉县市第一中学2011届高三11月月考理)设双曲线122=-y x 的两条渐近线与直线22=x 围成的三角形区域(包含边界)为D , P (y x ,)为D 内的一个动点,则目标函数y x z 2-=的最小值为(A )2- (B )22- (C )0 (D )223 答案 B.6.(广东省惠州三中2011届高三上学期第三次考试理)不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数()y f x =-的图象为( )答案 C.7.(湖北省黄冈市浠水县市级示范高中2011届高三12月月考)不等式2601x x x --->的解集为( ) A.{}2,3x x x -<或> B.{}213x x x -<,或<<C.{}213x x x -<<,或> D.{}2113x x x -<<,或<< 答案 C.8.(湖北省南漳县一中2010年高三第四次月考文)已知0<a<b<1,则 A .3b <3a B .log 3a >log 3b C (lga)2<(lgb)2 D .(1e )a <(1e)b答案 A.9.(湖北省武汉中学2011届高三12月月考理)设1100,x zx y z t y t≤≤≤≤≤+则的最小值是 ( )A .2B .12C .15D .110答案 C. 二、填空题10.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知二次项系数为正的二次函数)(x f 对任意R ∈x ,都有)1()1(x f x f +=-成立,设向量= a (si nx ,2),= b (2si nx ,21),= c (cos2x ,1),= d (1,2),当∈x [0,π]时,不等式f (⋅ a b )>f (⋅ c d )的解集为 。
2011年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)
2011年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题:1. (2011安徽文、理)双曲线x y 222-=8的实轴长是( )(A )2(B) (C) 41.C 【解析】本题主要考查双曲线的标准方程和简单几何性质,属简单题.双曲线方程可变为x y 22-=148,所以,a a 2=4=2,a 2=4。
【易错提示】把椭圆和双曲线中参数,,a b c 的关系搞混了,是丢分的主要原因。
2. (2011福建文、理)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于( )A.1322或B.23或2C.12或2 D.2332或2. 解析:当曲线为椭圆时121231422F F e PF PF ===++;当曲线为双曲线时121233422F F e PF PF ===--,答案选A 。
3.(2011广东文)设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( )A .抛物线B .双曲线C .椭圆D .圆3.解析:(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线4. (2011湖北文、理)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B . 1=n C. 2=n D. 3≥n 【答案】C解析:根据抛物线的对称性,正三角形的两个顶点一定关于 x 轴对称,且过焦点的两条直线倾斜角分别为030和0150, 这时过焦点的直线与抛物线最多只有两个交点,如图所以 正三角形的个数记为n ,2=n ,所以选C.5.(2011湖南文、理)设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。
2011年全国各地高考理科数学试题汇编汇总2011广东高考数学(文科)试题及详解
试卷类型:B2011年普通高等学校招生全国统一考试(广东卷)数学(文科)参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,样本数据12,,,n x x x 的标准差,222121[()()()]n s x x x x x x n=-+-++-,其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A.i -B.iC.1-D.1 1.(A).1()i z i i i i -===-⨯- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A.4B.3C.2D.12.(C).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= A.14 B.12C.1D.2 3.(B).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.函数1()lg(1)1f x x x=++-的定义域是 A.(,1)-∞- B.(1,)+∞ C.(1,1)(1,)-⋃+∞ D.(,)-∞+∞23正视图 图1侧视图 图22 俯视图 2图34.(C).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.不等式2210x x -->的解集是A.1(,1)2-B.(1,)+∞C.(,1)(2,)-∞⋃+∞D.1(,)(1,)2-∞-⋃+∞ 5.(D).21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为(2,1),则z OM OA =⋅的最大值为A.3B.4C.32D.42 6.(B).2z x y =+,即2y x z =-+,画出不等式组表示的平面区域,易知当直线2y x z =-+经过点(2,2)时,z 取得最大值,max 2224z =⨯+=7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A.20B.15C.12D.107.(D).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为 A.抛物线 B.双曲线 C.椭圆 D.圆8.(A).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线 9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A.43 B.4 C.23 D.29.(C).该几何体是一个底面为菱形的四棱锥,菱形的面积1223232S =⨯⨯=,四棱锥的高为3, 则该几何体的体积112332333V Sh ==⨯⨯=10.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ()x :对任意x ∈R ,()fg ()x =(())f g x ;()f g ()x =()()f x g x ,则下列等式恒成立的是A.(()fg h )()x =(()f h ()g h )()x B.(()f g h )()x =(()f h ()g h )()x C.(()fg h )()x =(()f g ()g h )()x D.(()f g h )()x =(()f g ()g h )()x 10.(B).对A 选项 (()fg h )()x =()f g ()()x h x (())()f g x h x = (()f h ()g h )()x =()f h (()()g h x )=()f h ((()()g x h x ) (()())(()())f g x h x h g x h x =,故排除A对B 选项 (()f g h )()x =()(())f g h x =(())(())f h x g h x(()f h ()g h )()x =()()()()f h x g h x (())(())f h x g h x =,故选B 对C 选项 (()fg h )()x =()(())f g h x ((()))f g h x =(()f g ()g h )()x =()(()())()((()))f g g h x f g g h x = (((())))f g g h x =,故排除C对D 选项 (()f g h )()x =()()()()()()f g x h x f x g x h x = (()f g ()g h )()x =()()()()()()()()f g x g h x f x g x g x h x =,故排除D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = . 11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= .12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为5cos sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.25(1,)514.25(1,)5. 5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x =图4BAC DEF22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为25(1,)515.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =, EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________. 15.75如图,延长,AD BC ,ADBC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值. 16.解:(1)(0)2sin()16f π=-=-(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦, ∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= PBAC DEFBAB 'A 'CC 'DD 'EE 'G H '1O2O1O '2O '图5∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n =的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩n x7076727072(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 17.解:(1)61(7076727072)756x +++++=,解得690x = 标准差22222222212611[()()()](5135315)766s x x x x x x =-+-++-=+++++= (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种 这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A == 18.(本小题满分13分)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为CD ,C D '',DE ,D E ''的中点,1122,,,O O O O ''分别为CD ,C D '',DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.BAB 'A 'CC 'DD 'EE 'G H '1O2O1O '2O 'H18.证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点∴1290A O D B O D ''''''∠=∠= ∴1A O ''∥2BO '∵BB '//22O O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H'''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形 ∴2BO '∥1HO ' ∴2BO H G ''⊥,H GH B H ''''=∴2BO '⊥平面H B G ''.19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 19.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---=令2()2(1)2(1)1g x a a x a x =---+224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得1(31)(1)2(1)a a a x a a -±--=- 则当1(31)(1)02(1)a a a x a a ----<<-或1(31)(1)2(1)a a a x a a -+-->-时,()0f x '>当1(31)(1)1(31)(1)2(1)2(1)a a a a a a x a a a a -----+--<<--时,()0f x '<则()f x 在1(31)(1)(0,)2(1)a a a a a -----,1(31)(1)(,)2(1)a a a a a -+--+∞-上单调递增,在1(31)(1)1(31)(1)(,)2(1)2(1)a a a a a a a a a a -----+----上单调递减② 当113a ≤≤时,0∆≤,()0f x '≥,则()f x 在(0,)+∞上单调递增 ③ 当1a >时,0∆>,令()0f x '=,解得1(31)(1)2(1)a a a x a a -±--=-∵0x >,∴1(31)(1)2(1)a a a x a a ----=-则当1(31)(1)02(1)a a a x a a ----<<-时,()0f x '>当1(31)(1)2(1)a a a x a a ---->-时,()0f x '<则()f x 在1(31)(1)(0,)2(1)a a a a a -----上单调递增,在1(31)(1)(,)2(1)a a a a a ----+∞-上单调递减20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,2n a ≤11n b ++.20.(1)解:∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111n n n n a b a b--=⋅+ ① 当1b =时,111n n n n a a ---=,则{}nn a 是以1为首项,1为公差的等差数列∴1(1)1nnn n a =+-⨯=,即1n a = ② 当0b >且1b ≠时,11111()11n n n n a b b a b--+=+-- 当1n =时,111(1)n n a b b b +=-- ∴1{}1n n a b+-是以1(1)b b -为首项,1b 为公比的等比数列 ∴111()11n n n a b b b+=⋅-- ∴111(1)1(1)n n nn n b a b b b b b-=-=--- ∴(1)1nn nn b b a b-=- 综上所述(1),01111nn n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)证明:① 当1b =时,1212n n a b +=+=;② 当0b >且1b ≠时,211(1)(1)n n n b b b b b ---=-++++要证121n n a b +≤+,只需证12(1)11nn nn b b b b+-≤+-, 即证2(1)11n nn b b b b-≤+- 即证21211n n nn b b b b b --≤+++++即证211()(1)2n n n b b b b n b--+++++≥即证21121111()()2n nn n b b b b n b b b b --+++++++++≥∵21121111()()n nn n b b b b b b b b--+++++++++21211111()()()()n n n n b b b b b b b b--=++++++++2121111122222n n n n b b b b n b bb b--≥⋅+⋅++⋅+⋅=,∴原不等式成立xy O2x =-APl MMxy O 2x =-TN l HNH∙H xy OTA 1l1l1l∴对于一切正整数n ,2n a ≤11n b++.21.(本小题满分14分)在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标;(3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.21.解:(1)如图所示,连接OM ,则PM OM =∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或M 在x 的负半轴上,设(,)M x y ① 当MP l ⊥时,2MP x =+,22OM x y =+222x x y +=+,化简得244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <- ① 若H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 则HO HT HN HT +=+当,,N H T 三点共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点 显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- (3)如图,设抛物线顶点(1,0)A -,则直线AT 的斜率12ATk =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论: ① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点 ② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点 ③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点 综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。
最新全国各地2011届高考数学试题汇编:函数、方程及其应用1
函数、方程及其应用题组一一、选择题1.(宁夏银川一中2011届高三第五次月考试题全解全析理) a 是x x f x 21log 2)(-=的零点,若a x <<00,则)(0x f 的值满足 ( )A .0)(0=x fB .0)(0<x fC .0)(0>x fD .)(0x f 的符号不确定 【答案】B【分析】函数2()2log xf x x =+在(0,)+∞上是单调递增的,这个函数有零点,这个零点是唯一的,根据函数是单调递增性,在(0,)a 上这个函数的函数值小于零,即0()0f x <。
【考点】函数的应用。
【点评】在定义域上单调的函数如果有零点,则只能有唯一的零点,并且以这个零点为分界点把定义域分成两个区间,在其中一个区间内函数值都大于零,在另一个区间内函数值都小于零。
2.(重庆市重庆八中2011届高三第四次月考文)函数()26f x ax bx =++满足条件()()13f f -=,则()2f 的值为 ( )A .5B .6C .8D .与a ,b 值有关答案 B 提示:由()()13f f -=知对称轴12b a -=,故()226f x ax ax =-+,所以()26f =.3.(重庆市重庆八中2011届高三第四次月考文)函数()22f x x ax a =-+在(),1x ∈-∞上有最小值,则函数()()f xg x x=在()1,x ∉+∞上一定 ( )A .有最小值B .有最大值C .是减函数D .是增函数答案: D 提示:由函数()22f x x ax a =-+在(),1-∞有最小值, 知1a <,又()2a g x x a x=+-,由1x >及1a <知()222'1a x a g x x x -=-=210a x ->>,故()g x 为增函数. 4.(安徽省百校论坛2011届高三第三次联合考试理)已知函数221,1,()[(0)]4,1,x x f x f f a x ax x ⎧+<⎪==⎨+≥⎪⎩若,则实数a 等于 ( )A .12B .45C .2D .9答案 C. 5.(安徽省蚌埠二中2011届高三第二次质检文)已知函数)10()3(log )(2≠>+-=a a ax x x f a 且满足:对任意实数x 1、x 2,当221a x x ≤<时,总有0)()(21>-x f x f ,那么实数a 的取值范围是( )A .(0,3)B .(1,3)C .)32,1(D .)32,0(答案 C.6.(福建省莆田一中2011届高三上学期第三次月考试题文)已知函数)0,0)(sin(2)(πϕωϕω<<>+=x x f 的图象如图所示,则ω等于( )A .13 B . 32C . 1D .2 答案 B.7.(福建省莆田一中2011届高三上学期第三次月考试题文)函数)(x f 在定义域R 内可导,若()(2),f x f x =-且(1)'()0x f x -<,若),3(),21(),0(f c f b f a ===则c b a ,,的大小关系是( ) A .c b a >> B .b a c >> C .a b c >> D .b c a >>答案 B. 二、填空题8.(安徽省合肥八中2011届高三第一轮复习四考试理) 已知函数3()2'(2),'(2),f x x f x n f =-+=则二项式()nx x+展开式中常数项是第 项。
2011年高考数学试题分类考点8 函数与方程、函数模型及其应用
2011年高考数学试题分类考点考点8 函数与方程、函数模型及其应用一、选择题1. (2011·福建卷文科·T6)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是( )(A )(-1,1)(B )(-2,2)(C )(-∞,-2) ∪(2,+∞)(D )(-∞,-1)∪(1,+∞)【思路点拨】方程x 2+mx+1=0若有两个不相等的实数根,需满足其判别式,由此即可解得240m ∆=->m 的取值范围.【精讲精析】选C. 方程有两个不相等的实数根,需判别式,解得Q 210x mx ++=240m ∆=->2m >或.2m <-2.(2011·新课标全国高考文科·T10)在下列区间中,函数的零点所在的区间为()43x f x e x =+-( )(A ) (B ) (C ) (D ) 1,04⎛⎫- ⎪⎝⎭10,4⎛⎫ ⎪⎝⎭11,42⎛⎫ ⎪⎝⎭13,24⎛⎫ ⎪⎝⎭【思路点拨】结合函数的单调性,将4个选项中涉及的端点值代入函数的解析式,零点必在使()f x ()f x 得端点函数值异号的区间内.【精讲精析】选C.是上的增函数且图象是连续的,又Q ()f x R ,定在内存在零点. 114411(+432044f e e =⨯-=-<112211()4310,22f e e =+⨯-=->∴()f x 11,42⎛⎫ ⎪⎝⎭3.(2011·山东高考理科·T10)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y=f (x )的图象在区间[0,6]上与x 轴的交点个数为( )(A )6 (B )7 (C )8 (D )9【思路点拨】本题可以先求当0≤x <2时函数的零点,即函数与x 轴交点的个数,然后根据周期性确定零点的个数.【精讲精析】选B.令f (x )=x 3-x=0,即x(x+1)(x-1)=0,所以x=0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2,因为f (x )是R 上最小正周期为2的周期函数,所以2≤x <4,4≤x <6也分别有两个零点,由f (6)= f (4)=f (2)=f (0),所以f (6)也是函数的零点,所以函数y=f (x )的图象在区间[0,6]上与x 轴的交点个数为7个.4.(2011·陕西高考理科·T6)函数在内( )()cos f x x =-[0,)+∞(A )没有零点 (B )有且仅有一个零点(C )有且仅有两个零点 (D )有无穷多个零点【思路点拨】利用数形结合法进行直观判断,或根据函数的性质(值域、单调性等)进行判断.【精讲精析】选B.(方法一)数形结合法,令,设函数和()cos f x x =-0=cos x =y =,它们在的图象如图所示,显然两函数的图象的交点有且只有一个,所以函数cos y x =[0,)+∞在内有且仅有一个零点;()cos f x x =-[0,)+∞(方法二)在,,所以; [,)2x π∈+∞1>cos 1x ≤()cos f x x =-0>在上,,所以函数是增函数,又因为,(0,]2x π∈()sin 0f x x '=+>()cos f x x =(0)1f =-,所以在有且只有一个零点.()02f π=>()cos f x x =[0,)∈+∞内x 5.(2011·浙江高考理科·T1)设函数 若,则实数( )2,0,(),0.x x f x x x -≤⎧=⎨>⎩()4f a =a =(A ) —4或—2 (B ) —4或2 (C )—2或4 (D )—2或2【思路点拨】分段函数的给值求解需要逐段来求.【精讲精析】选B.当时,;0a ≤()4,4f a a a =-==-当时,.综上,0a >2()4,2f a a a ===4 2.a =-或6. (2011·陕西高考文科·T6)方程在内( )cos x x =(),-∞+∞(A)没有根 (B)有且仅有一个根(C)有且仅有两个根 (D)有无穷多个根【思路点拨】数形结合法,构造函数并画出函数的图象,直观判断.【精讲精析】选C.构造两个函数和,在同一个坐标系内画出它们的图象,如图所示,观||y x =cos y x =察图象知有两个公共点,所以已知方程有且仅有两个根.二、填空题7.(2011·浙江高考文科·T11)设函数 ,若,则实数=__________. 4()1f x x =-()2f a =a 【思路点拨】代入求解即可.【精讲精析】,解得. 4()21f a a==-1a =-【答案】1-8. (2011·福建卷文科·T16)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及常数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b-c )和(b-a )的等比中项,据此可得,最佳乐观系数x 的值等于_____________.【思路点拨】(c-a )是(b-c )和(b-a )的等比中项,将代2()()()c a b c b a ⇔-=--()c a x b a =+-入上式,化简整理可得关于的方程,解方程即可.x 【精讲精析】由题意得:,,将其代入上式,得2()()()c a b c b a -=--Q ()c a x b a =+-=[]2()a x b a a +--[]()()b a x b a b a ----,解得222()()(1),,0∴-=-->∴->Q x b a b a x b a b a 221,+x-1=0x x x ∴=-即, 12==x x Q 01x <<x ∴= 9.(2011·山东高考理科·T16)已知函数=f x ()log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数的零点 .f x ()*0(,1),,n=x n n n N ∈+∈则【思路点拨】由条件易知函数f(x)在(0,+∞)内为增函数,然后利用函数的零点存在定理求出函数的零点所在区间.【精讲精析】因为函数在(0,上是增函数,()log (23)a f x x x b a =+-<<)+∞, (2)log 22log 230,a a f b a b b =+-<+-=-<(3)log 33log 340a a f b a b b =+->+-=->即.0(2,3)x ∴∈2n =【答案】210.(2011·山东高考文科·T16)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .【思路点拨】由条件易知函数f(x)在(0,+∞)上为增函数,然后利用函数的零点存在定理求出函数的零点所在区间.【精讲精析】因为函数在(0,上是增函数,()log (23)a f x x x b a =+-<<)+∞, (2)log 22log 230,a a f b a b b =+-<+-=-<(3)log 33log 340a a f b a b b =+->+-=->即.0(2,3)x ∴∈2n =【答案】211.(2011·北京高考理科·T13)已知函数若关于32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩x 的方程有两个不同的实根,则实数k 的取值范围()f x k =是 .【思路点拨】把方程根的问题,转化为函数图象的交点问题.x y【精讲精析】(0,1).方程有两个不同的实根,则y=f(x)与y=k 有两个不同交点.作出y=f(x)的图()f x k =象,可知.(0,1)k ∈【答案】(0,1)。
2011年高考数学真题分类汇编-4---函数与导数
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 (A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>=>=;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综上所述,f(x)的单调区间如下表:(其中121122x x a a =-=+)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数、方程及其应用题组一一、选择题1.(宁夏银川一中2011届高三第五次月考试题全解全析理) a 是x x f x 21log 2)(-=的零点,若a x <<00,则)(0x f 的值满足 ( )A .0)(0=x fB .0)(0<x fC .0)(0>x fD .)(0x f 的符号不确定 【答案】B【分析】函数2()2log x f x x =+在(0,)+∞上是单调递增的,这个函数有零点,这个零点是唯一的,根据函数是单调递增性,在(0,)a 上这个函数的函数值小于零,即0()0f x <。
【考点】函数的应用。
【点评】在定义域上单调的函数如果有零点,则只能有唯一的零点,并且以这个零点为分界点把定义域分成两个区间,在其中一个区间内函数值都大于零,在另一个区间内函数值都小于零。
2.(重庆市重庆八中2011届高三第四次月考文)函数()26f x ax bx =++满足条件()()13f f -=,则()2f 的值为 ( )A .5B .6C .8D .与a ,b 值有关答案 B 提示:由()()13f f -=知对称轴12b a -=,故()226f x ax ax =-+,所以()26f =.3.(重庆市重庆八中2011届高三第四次月考文)函数()22f x x ax a =-+在(),1x ∈-∞上有最小值,则函数()()f xg x x=在()1,x ∉+∞上一定 ( )A .有最小值B .有最大值C .是减函数D .是增函数答案: D 提示:由函数()22f x x ax a =-+在(),1-∞有最小值, 知1a <,又()2a g x x a x=+-,由1x >及1a <知()222'1a x a g x x x-=-=210a x ->>,故()g x 为增函数. 4.(安徽省百校论坛2011届高三第三次联合考试理)已知函数221,1,()[(0)]4,1,xx f x f f a x ax x ⎧+<⎪==⎨+≥⎪⎩若,则实数a 等于 ( ) A .12B .45C .2D .9答案 C.5.(安徽省蚌埠二中2011届高三第二次质检文)已知函数)10()3(log )(2≠>+-=a a ax x x f a 且满足:对任意实数x 1、x 2,当221a x x ≤<时,总有0)()(21>-x f x f ,那么实数a 的取值范围是 ( )A .(0,3)B .(1,3)C .)32,1(D .)32,0(答案 C.6.(福建省莆田一中2011届高三上学期第三次月考试题文)已知函数)0,0)(sin(2)(πϕωϕω<<>+=x x f 的图象如图所示,则ω等于( )A .13 B . 32C . 1D .2答案 B. 7.(福建省莆田一中2011届高三上学期第三次月考试题文)函数)(x f 在定义域R 内可导,若()(2),f x f x =-且(1)'()0x f x -<,若),3(),21(),0(f c f b f a ===则c b a ,,的大小关系是( ) A .c b a >>B .b a c >>C .a b c >>D .b c a >>答案 B.二、填空题 8.(安徽省合肥八中2011届高三第一轮复习四考试理) 已知函数3()2'(2),'(2),f x x f x n f =-+=则二项式2()nx x+展开式中常数项是第 项。
答案: 9. 三、简答题9.(安徽省百校论坛2011届高三第三次联合考试理) (本小题满分13分)已知函数22()ln (0,)f x x a x x a x=++>为常数,对任意两个不相等的正数12,x x ,证明:当1212()()0,().22f x f x x x a f ++≤>时答案10.(安徽省百校论坛2011届高三第三次联合考试理)(本小题满分13分)已知函数32()(63),.x f x x x x t e t R =-++∈(1)若函数(),,()y f x x a x b x c a b c ====<<依次在处取到极值,求t 的取值范围; (2)若存在实数[0,2]t ∈,使对任意的[1,],()x m f x x ∈≤不等式恒成立,求正整数m 的最大值。
答案11.(安徽省野寨中学、岳西中学2011届高三上学期联考文) (本题满分13分)设实数0a <, 设函数2()111f x a x x x =-+++-的最大值为()g a 。
(1)设11t x x =++-,求t 的取值范围,并把()f x 表示为t 的函数()h t ;(2)求()g a 。
答案 12. 解:(1)因为[]112,2t x x =++- ,221112x t -=- 所以[]21(),2,22h t at t a t =+- (2)直1t a =-线是抛物线[]21(),2,22h t at t a t =+- 的对称轴,又0a < 所以,当(]10,2t a=-,即22a ?,则()(2)2g a h ==;当(]12,2t a =- ,即2122a -<?,则11()()2g a h a a a =-=--;当()12,t a =-? ,即202a -<<,则()(2)2g a h a ==+综上,有12,2121(),22222,2a a g a a a a a ìï+>-ïïïïïï=---<?íïïïïï?ïïïî12.(北京市西城区2011届高三第一学期期末考试理)(本小题满分13分)已知函数2()3sin 22sin f x x x =-.(Ⅰ)若点(1,3)P -在角α的终边上,求()f α的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的值域.答案 (本小题满分13分)解:(Ⅰ)因为点(1,3)P -在角α的终边上,所以3sin 2α=-,1cos 2α=, ………………2分所以22()3sin 22sin 23sin cos 2sin f αααααα=-=- ………………4分231323()2()3222=⨯-⨯-⨯-=-. ………………5分 (Ⅱ)2()3sin 22sin f x x x =-3sin2cos21x x =+- ………………6分2sin(2)16x π=+-, ………………8分 因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分 13. (北京市西城区2011届高三第一学期期末考试理)(本小题满分14分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.答案 (本小题满分14分) 解:2()(21)f x ax a x'=-++(0)x >. ………………2分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分 (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………………5分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分 ②当102a <<时,12a >,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. …………7分③当12a =时,2(2)()2x f x x-'=, 故()f x 的单调递增区间是(0,)+∞. ………8分④当12a >时,102a <<, 在区间1(0,)a和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a. ………9分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ……………11分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减,故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<, 所以,22ln 0a --<,max ()0f x <, ………………13分 综上所述,ln 21a >-. ………………14分。