广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题 (20) Word版含答案
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(5)
高考数学三轮复习冲刺模拟试题05空间向量与立体几何( 时间:60分钟 满分100分)一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与B 1相等的向量是( ) A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是( ) A.OM --=23 B.513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于( )A.41 B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为( ) A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为( ) A.213 B.253 C.453 D.4536、在以下命题中,不正确的个数为( )+=-是、共线的充要条件; ②.若a ∥b ,则存在唯一的实数λ,使λ=a ·b ;③.对空间任意一点O 和不共线的三点A 、B 、C ,若--=22,则P 、A 、B 、C 四点共面;④.若{,,}为空间的一个基底,则{+++,,}构成空间的另一个基底;⑤.│(·)│=││·││·││A .2B .3C .4D .57、⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为( ) A.5 B.41 C.4 D.528、已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-,,AB AC AD ,则四点,,,A B C D ( )A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面9、已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)33310、在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的取值范围为 ( )A. 1⎫⎪⎭ B.1, 25⎡⎫⎪⎢⎣⎭ C. 1,⎡⎣ D. 二、填空题(每小题4分,共16分)11、设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12、已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________.13、已知a =(3,1,5),b =(1,2,-3),向量与z 轴垂直,且满足·a =9,·,4-=,则= .14、如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1.,M 在EF 上.且AM ∥平面BDE .则M 点的坐标为 。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(1)
高考数学三轮复习冲刺模拟试题01算法、框图、复数、推理与证明一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1已知复数z =1+2i i 5,则它的共轭复数z -等于( )A .2-iB .2+iC .-2+iD .-2-i2.下面框图表示的程序所输出的结果是( )A .1320B .132C .11880D .1213.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .64.如图所示,输出的n 为( )A .10B .11C .12D .135.下列命题错误的是( )A .对于等比数列{a n }而言,若m +n =k +S ,m 、n 、k 、S ∈N *,则有a m ·a n =a k ·a S B .点⎝ ⎛⎭⎪⎫-π8,0为函数f(x)=tan ⎝⎛⎭⎪⎫2x +π4的一个对称中心 C .若|a|=1,|b|=2,向量a 与向量b 的夹角为120°,则b 在向量a 上的投影为1 D .“sin α=sin β”的充要条件是“α+β=(2k +1)π或α-β=2k π (k ∈Z)” 6.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =4a 1,则1m +4n的最小值为( ) A.32B.53 C.256D .不存在7.二次方程ax 2+2x +1=0(a≠0)有一个正根和一个负根的充分不必要条件是( ) A .a>0 B .a<0 C .a>1D .a<-18.观察等式:sin 230°+cos 260°+sin30°cos60°=34,sin 220°+cos 250°+sin20°cos50°=34和sin 215°+cos 245°+sin15°cos45°=34,…,由此得出以下推广命题,则推广不正确的是( )A .sin 2α+cos 2β+sin αcos β=34B .sin 2(α-30°)+cos 2α+sin(α-30°)cos α=34C .sin 2(α-15°)+cos 2(α+15°)+sin(α-15°)cos(α+15°)=34D .sin 2α+cos 2(α+30°)+sin αcos(α+30°)=349.一次研究性课堂上,老师给出函数f(x)=x1+|x|(x ∈R),甲、乙、丙三位同学在研究此函数时分别给出命题:甲:函数f(x)的值域为(-1,1); 乙:若x 1≠x 2,则一定有f(x 1)≠f(x 2);丙:若规定f 1(x)=f(x),f n (x)=f(f n -1(x)),则f n (x)=x 1+n|x|对任意n ∈N *恒成立你认为上述三个命题中正确的个数有( ) A .3个 B .2个 C .1个 D .0个10.如果函数f(x)对任意的实数x ,存在常数M ,使得不等式|f(x)|≤M(x)恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1; ②f(x)=x 2;③f(x)=(sinx +cosx)x; ④f(x)=xx 2+x +1.其中属于有界泛函数的是( ) A .①② B .①③ C .②④D .③④11.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… 用你所发现的规律得出22011的末位数字是( )A .2B .4C .6D .812.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第4个数(从左往右数)为( ) 11 1212 131613 14112112141512013012015A.11260B.1840C.1504D.1360二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f(x)=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f(x)≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.14.如果一个复数的实部、虚部对应一个向量的横坐标、纵坐标,已知z 1=(1-2i)i 对应向量为a ,z 2=1-3i 1-i对应向量为b ,那么a 与b 的数量积等于________.15直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k ∈N *)个格点,则称函数f(x)为k 阶格点函数,下列函数:①f(x)=sinx ;②f(x)=3π(x-1)2+2;③f(x)=⎝ ⎛⎭⎪⎫14x ;④f(x)=log 0.5x ,其中是一阶格点函数的有________.16.设n 为正整数,f(n)=1+12+13+…+1n ,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)设命题p :命题f(x)=x 3-ax -1在区间[-1,1]上单调递减;命题q :函数y =ln(x 2+ax +1)的值域是R ,如果命题p 或q 为真命题,p 且q 为假命题,求a 的取值范围.18.(本小题满分12分)复数z =⎝ ⎛⎭⎪⎫12-32i 2是一元二次方程ax 2+bx +1=0(a ,b ∈R)的根.(1)求a 和b 的值;(2)若(a +bi)u -+u =z(u ∈C),求u.19.(本小题满分12分)已知a>0,命题p :函数y =a x在R 上单调递减,q :设函数y =⎩⎪⎨⎪⎧2x -2a ,2a ,,函数y>1恒成立,若p ∧q 为假,p ∨q 为真,求a 的取值范围.20.(本小题满分12分)已知复数z 1=sin2x +λi ,z 2=m +(m -3cos2x)i ,λ、m 、x ∈R ,且z 1=z 2.(1)若λ=0且0<x<π,求x 的值;(2)设λ=f(x),已知当x =α时,λ=12,试求cos ⎝ ⎛⎭⎪⎫4α+π3的值.21.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 中点.(1)求证:B 1C ∥平面A 1BD ; (2)求证:B 1C 1⊥平面ABB 1A 1.22.函数f(x)=lnx +1ax -1a(a 为常数,a>0).(1)若函数f(x)在区间[1,+∞)内单调递增,求a 的取值范围; (2)求函数f(x)在区间[1,2]上的最小值.参考答案一.BACDC ADAAD DB 13.a 1+a 2+…+a n ≤n(n ∈N *) 14.3 15.①②16.f(2n)≥n 2+117.[解析] p 为真命题⇔f′(x)=3x 2-a≤0在[-1,1]上恒成立⇔a≥3x 2在[-1,1]上恒成立⇔a≥3,q 为真命题⇔Δ=a 2-4≥0恒成立⇔a≤-2或a≥2. 由题意p 和q 有且只有一个是真命题,p 真q 假⇔⎩⎪⎨⎪⎧a≥3-2<a<2⇔a ∈∅,p 假q 真⇔⎩⎪⎨⎪⎧a<3a≤-2或a≥2⇔a≤-2或2≤a<3,综上所述:a ∈(-∞,-2]∪[2,3). 18.[解析] (1)由题得z =-12-32i ,因为方程ax 2+bx +1=0(a 、b ∈R)是实系数一元二次方程,所以它的另一个根为-12+32i.由韦达定理知:⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-12-32i +⎝ ⎛⎭⎪⎫-12+32i =-b a⎝ ⎛⎭⎪⎫-12-32i ⎝ ⎛⎭⎪⎫-12+32i =1a⇒⎩⎪⎨⎪⎧a =1b =1.(2)由(1)知(1+i)u -+u =-12-32i ,设u =x +yi(x ,y ∈R),则(1+i)(x -yi)+(x +yi)=-12-32i ,得(2x +y)+xi =-12-32i ,∴⎩⎪⎨⎪⎧2x +y =-12x =-32,∴⎩⎪⎨⎪⎧x =-32y =3-12,∴u =-32+23-12i. 19.[解析] 若p 为真命题,则0<a<1,若q 为真命题,即y min >1, 又y min =2a ,∴2a>1,∴q 为真命题时a>12,又∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假. 若p 真q 假,则0<a≤12;若p 假q 真,则a≥1.故a 的取值范围为0<a≤12或a≥1.20、[解析] (1)∵z 1=z 2,∴⎩⎨⎧sin2x =m λ=m -3cos2x,∴λ=sin2x -3cos2x ,若λ=0则sin2x -3cos2x =0得tan2x =3, ∵0<x<π,∴0<2x<2π, ∴2x =π3或2x =4π3,∴x =π6或2π3.(2)∵λ=f(x)=sin2x -3cos2x=2⎝ ⎛⎭⎪⎫12sin2x -32cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3, ∵当x =α时,λ=12,∴2sin ⎝ ⎛⎭⎪⎫2α-π3=12,∴sin ⎝ ⎛⎭⎪⎫2α-π3=14, sin ⎝ ⎛⎭⎪⎫π3-2α=-14,∵cos ⎝ ⎛⎭⎪⎫4α+π3=cos2⎝ ⎛⎭⎪⎫2α+π6-1 =2cos 2⎝ ⎛⎭⎪⎫2α+π6-1=2sin 2⎝ ⎛⎭⎪⎫π3-2α-1,∴cos ⎝ ⎛⎭⎪⎫4α+π3=2×⎝ ⎛⎭⎪⎫-142-1=-78.21.[解析] (1)证明:如图,连结AB 1,设AB 1∩A 1B =O ,则O 为AB 1中点,连结OD , ∵D 为AC 中点,在△ACB 1中,有OD ∥B 1C.又∵OD ⊂平面A 1BD ,B 1C ⊄平面A 1BD , ∴B 1C ∥平面A 1BD.(2)证明:∵AB =B 1B ,ABC -A 1B 1C 1为直三棱柱,∴ABB 1A 1为正方形,∴A 1B ⊥AB 1, 又∵AC 1⊥平面A 1BD ,A 1B ⊂平面A 1BD , ∵AC 1⊥A 1B ,又∵AC 1⊂平面AB 1C 1,AB 1⊂平面AB 1C 1,AC 1∩AB 1=A , ∴A 1B ⊥平面AB 1C 1,又∵B 1C 1⊂平面AB 1C 1,∴A 1B ⊥B 1C 1. 又∵A 1A ⊥平面A 1B 1C 1,B 1C 1⊂平面A 1B 1C 1, ∴A 1A ⊥B 1C 1,∵A 1A ⊂平面ABB 1A 1,A 1B ⊂平面ABB 1A 1,A 1A∩A 1B =A 1, ∴B 1C 1⊥平面ABB 1A 1.22.[解析] f′(x)=ax -1ax2 (x>0).(1)由已知得f′(x)≥0在[1,+∞)上恒成立, 即a≥1x 在[1,+∞)上恒成立,又∵当x ∈[1,+∞)时,1x ≤1,∴a≥1,即a 的取值范围为[1,+∞).(2)当a≥1时,∵f′(x)>0在(1,2)上恒成立,f(x)在[1,2]上为增函数,∴f(x)min =f(1)=0,当0<a≤12时,∵f′(x)<0在(1,2)上恒成立,这时f(x)在[1,2]上为减函数,∴f(x)min =f(2)=ln2-12a.当12<a<1时,∵x ∈[1,1a )时,f′(x)<0;x ∈(1a ,2]时,f′(x)>0, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1a =-lna +1-1a .综上,f(x)在[1,2]上的最小值为 ①当0<a≤12时,f(x)min =ln2-12a ;②当12<a<1时,f(x)min =-lna +1-1a .③当a≥1时,f(x)min =0.。
【配套K12】广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(20)
高考数学三轮复习冲刺模拟试题20三角变换与解三角形一、选择题1.已知sin α-cos α=2,α∈(0,π),则sin 2α=( ) A .-1 B .-22C.22D .1解析:∵sin α-cos α=2,∴1-2sin αcos α=2, 即sin 2α=-1. 答案:A2.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:利用正弦定理解三角形. 在△ABC 中,AC sin B =BCsin A ,∴AC =BC ·sin Bsin A =32×2232=2 3.答案:B3.若β=α+30°,则sin 2α+cos 2β+sin αcos β=( ) A.14 B.34 C .cos 2βD .sin 2α解析:将β=α+30°代入sin 2α+cos 2β+sin αcos β, 整理得sin 2α+cos 2(α+30°)+sin αcos (α+30°) =sin 2α+(cos αcos 30°-sin αsin 30°)2+ sin α(cos αcos 30°-sin αsin 30°) =sin 2α+(32cos α-12sin α)(32cos α-12sin α+sin α)=sin 2α+(32cos α-12sin α)(32cos α+12sin α) =sin 2α+(32cos α)2-(12sin α)2=sin 2 α+34cos 2α-14sin 2α=34(sin 2α+cos 2α) =34. 答案:B4.已知△ABC 的三边长为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A =( )A.π4B.π6C.2π3D.π12解析:因为S △ABC =12bc sin A =14(b 2+c 2-a 2),所以sin A =b 2+c 2-a 22bc =cos A ,故A =π4.答案:A5.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32B.332C.3+62D.3+ 394解析:利用余弦定理及三角形面积公式求解. 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知 7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴S △ABC =12AB ·BC sin B =12×3×2×32=332.∴BC 边上的高为2S △ABC BC =332.答案:B 二、填空题6.已知α、β均为锐角,且cos (α+β)=sin (α-β),则α=________. 解析:依题意有cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β).∵α、β均为锐角,∴sin β+cos β≠0,∴cos α=sin α, ∴α=π4.答案:π47.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b=________.解析:利用余弦定理求解. ∵a =2,B =π6,c =23,∴b =a 2+c 2-2ac cos B =4+12-2×2×23×32=2. 答案:28.如图,在某灾区的搜救现场,一条搜救犬从A 点出发沿正北方向行进x m 到达B 处发现生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°回到出发点,那么x =________.解析:由题图知,AB =x ,∠ABC =180°-105°=75°,∠BCA =180°-135°=45°. ∵BC =10,∠BAC =180°-75°-45°=60°, ∴xsin 45°=10sin 60°,∴x =10sin 45°sin 60°=1063.答案:1063三、解答题9.如图,为了计算江岸边两景点B 与C 的距离,由于地形的限制,需要在岸上选取A 和D 两个测量点,现测得AD ⊥CD ,AD =10 km ,AB =14 km ,∠BDA =60°,∠BCD =135°,求两景点B 与C 之间的距离.(假设A ,B ,C ,D 在同一平面内,测量结果保留整数,参考数据:2≈1.414)解析:在△ABD 中,设BD =x ,根据余弦定理得,BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA ,即142=x 2+102-2×10x ×cos 60°, 整理得x 2-10x -96=0, 解得x 1=16,x 2=-6(舍去), 在△BCD 中,由正弦定理得BC sin ∠CDB =BDsin ∠BCD,故BC =16sin 135°·sin 30°=82≈11.即两景点B 与C 之间的距离约为11 km.10.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )的值域.解析:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin (2ωx -π6)+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin (2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z),即ω=k 2+13(k ∈Z).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点(π4,0),得f (π4)=0, 即λ=-2sin (56×π2-π6)=-2sin π4=-2,即λ=- 2.故f (x )=2sin (53x -π6)-2,函数f (x )的值域为[-2-2,2-2].11.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sin B cos A =sin A cosC +cos A sin C .(1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 解析:(1)解法一 由题设知, 2sin B cos A =sin (A +C )=sin B . 因为sin B ≠0,所以cos A =12.由于0<A <π,故A =π3.解法二 由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12. 由于0<A <π,故A =π3.(2)解法一 因为AD →2=(AB →+AC →2)2=14(AB →2+AC →2+2AB →·AC →)=14(1+4+2×1×2×cos π3)=74, 所以|AD →|=72.从而AD =72.解法二 因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×12=3,所以a 2+c 2=b 2,B =π2.因为BD =32,AB =1,所以AD = 1+34=72.。
高三数学-2018届高考数学仿真试题(三)(广东) 精品
2018-2018届高考数学仿真试题(三)(广东)命题:廖美东 考试时间:2018-4-9本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B)用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 正棱锥、圆锥的侧面积公式P (A+B )=P (A )+P (B ) cl S 21=锥侧 如果事件A 、B 相互独立,那么 其中c 表示底面周长,l 表示斜P (AB )=P (A )P (B ) 高或母线长 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 次的概率 334R V π=k n kk n n P P C k P --=)1()( 其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={(x ,y )|y =}k ,Q ={(x ,y )|y =a x +}1,且P ∩Q =∅,那么k 的取值范围是 A.(-∞,1)B.(-∞,]1C.(1,+∞)D.(-∞,+∞)2.已知sin θ=-1312,θ∈(-2π,0),则cos(θ-4π)的值为 A.-2627 B.2627 C.-26217D.26217 3.双曲线kx 2+5y 2=5的一个焦点是(0,2),则k 等于A.35B.-35 C.315 D.-315 4.已知a =(2,1),b =(x ,1),且a +b 与2a -b 平行,则x 等于 A.10 B.-10 C.2 D.-25.数列121,341,581,7161,…,(2n -1)+n 21的前n 项之和为S n ,则S n 等于A.n 2+1-n 21B.2n 2-n +1-n 21C.n 2+1-121-nD.n 2-n +1-n 216.已知非负实数x ,y 满足2x +3y -8≤0且3x +2y -7≤0,则x +y 的最大值是A.37 B.38 C.3 D.27.一个凸多面体的面数为8,各面多边形的内角总和为16π,则它的棱数为 A.24 B.22 C.18 D.168.若直线x +2y +m =0按向量a =(-1,-2)平移后与圆C :x 2+y 2+2x -4y =0相切,则实数m 的值等于A.3或13B.3或-13C.-3或7D.-3或-139.设F 1、F 2为椭圆42x +y 2=1的两个焦点,P 在椭圆上,当△F 1PF 2面积为1时,1PF ·2PF 的值为A.0B.1C.2D.21 10.显示屏有一排7个小孔,每个小孔可显示0或1,若每次显示其中3个孔,但相邻的两孔不能同时显示,则该显示屏能显示信号的种数共有A.10B.48C.60D.80第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.锐角△ABC 中,若B =2A ,则ab的取值范围是___________.12.一个正方体的六个面上分别标有字母A 、B 、C 、D 、E 、F ,右图是此正方体的两种不同放置,则与D 面相对的面上的字母是_________.13.随机抽取甲、乙两位同学在平时数学测验中的5次成绩如下:从以上数据分析,甲、乙两位同学数学成绩较稳定的是_________同学. 14.给出以下命题:①已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,且|1OP |=|2OP |=|3OP |=1,则△P 1P 2P 3为正三角形;②已知a >b >c ,若不等式ca kc b b a ->-+-11恒成立,则k ∈(0,2); ③曲线y =31x 3在点(1,31)处切线与直线x +y -3=0垂直; ④若平面α⊥平面γ,平面β∥平面γ,则α∥β.其中正确命题的序号是___________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8.(1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率;(2)如果每人投篮三次,求甲投进2球且乙投进1球的概率.已知向量a =(cos23x ,sin 23x ),b =(cos 2x ,-sin 2x ),且x ∈[2π,23π].(1)求a ·b 及|a +b |;(2)求函数f (x )=a ·b -|a +b |的最小值.如图,已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为BB 1上一点,D 为BC 的中点,且BF =2BD . (1)当1FB BF为何值时,对于AD 上任意一点总有EF ⊥FC 1; (2)若A 1B 1=3,C 1F 与平面AA 1B 1B 所成角的正弦值为15104,当1FB BF在(1)所给的值时,求三棱柱的体积.一条斜率为1的直线l 与离心率为3的双曲线2222by a x =1(a >0,b >0)交于P 、Q 两点,直线l 与y 轴交于R 点,且OP ·OQ =-3,PR =3RQ ,求直线与双曲线的方程.已知点B 1(1,y 1),B 2(2,y 2),…,B n (n ,y n ),…(n ∈N *)顺次为直线y =4x +121上的点,点A 1(x 1,0),A 2(x 2,0),…,A n (x n ,0)顺次为x 轴上的点,其中x 1=a (0<a <1).对于任意n ∈N *,点A n 、B n 、A n +1构成以B n 为顶点的等腰三角形.(1)求数列{y n }的通项公式,并证明它为等差数列; (2)求证:x n +2-x n 是常数,并求数列{x n }的通项公式.(3)上述等腰△A n B n A n +1中是否可能存在直角三角形,若可能,求出此时a 的值;若不可能,请说明理由.已知函数f (x )=31x 3+21(b -1)x 2+cx (b 、c 为常数). (1)若f (x )在x =1和x =3处取得极值,试求b 、c 的值.(2)若f (x )在x ∈(-∞,x 1),(x 2,+∞)上单调递增且在x ∈(x 1,x 2)上单调递减,又满足x 2-x 1>1,求证:b 2>2(b +2c );(3)在(2)的条件下,若t <x 1,试比较t 2+bt +c 与x 1的大小,并加以证明.2018-2018届高考数学仿真试题(三)(广东)参考答案一1.B 2.A 3.B 4.C 5.A 6.C 7.D 8.D 9.A 10.D 二 11.(2,3) 12.B 13.乙 14.①③三15.设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为: P =P (A ·B )+P (A ·B )+P (A ·B ) =0.7×0.2+0.3×0.8+0.7×0.8 =0.94. 6分(2)所求事件的概率为:P =C 230.72×0.3×C 130.8×0.22=0.182336. 12分16.(1)a ·b =cos 23x cos 2x +sin 23x (-sin 2x)=cos 23x cos 2x -sin 23x sin 2x=cos(23x +2x )=cos2x .2分 a +b =(cos23x +cos 2x ,sin 23x -sin 2x )3分∴|a +b |=22)2sin 23(sin )2cos 23(cos xx x x -++=22cos 2+x =x 2cos 4 =2|cos x |.5分 ∵x ∈[2π,23π],∴|a +b |=-2cos x .6分(2)f (x )=a ·b -|a +b |=cos2x -(-2cos x )=cos2x +2cos x =2cos 2x +2cos x -1=2(cos x +21)2-23. 10分∵x ∈[2π,23π],∴-1≤cos x ≤0,∴当cos x =-21时,[f (x )]min =-23.12分17.(1)由三垂线定理得C 1F ⊥DF ,易证Rt △BDF ≌Rt △B 1FC 1, ∴B 1F =BD =21BF ,∴F B BF 1=2.6分(2)在平面A 1B 1C 1中,过C 1作C 1G ⊥A 1B 1于G ,连FG ,易证∠C 1FG 就是C 1F 与侧面AA 1B 1B 所成的角, 8分 则有FC G C 11=15104,C 1G =15104C 1F , △A 1B 1C 1中,取B 1C 1的中点D 1,连A 1D 1,设B 1F =x ,由C 1G ·A 1B =B 1C ·A 1D 1,解得x =1,∴BB 1=3, 10分∴V 1111D C B A ABC -=21B 1G ·A 1D 1·BB 1=62. 13分18.∵e =3,∴b =2a 2,∴双曲线方程可化为2x 2-y 2=2a 2,2分设直线方程为y =x +m , 由⎩⎨⎧=-+=22222,ay x m x y 得x 2-2mx -m 2-2a 2=0.4分∵Δ=4m 2+4(m 2+2a 2)>0, ∴直线一定与双曲线相交, 6分设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2m ,x 1x 2=-m 2-2a 2, ∵PR =3, ∴x R =4321x x +,x 1=-3x 2, ∴x 2=-m ,-3x 22=-m 2-2a 2, 消去x 2得,m 2=a 2,8分·=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m )=2x 1x 2+m (x 1+x 2)+m 2 =m 2-4a 2 =-3, 10分∴m =±1,a 2=1,b 2=2,直线方程为y =x ±1,双曲线方程为x 2-22y =1.13分19.(1)y n =41n +121,y n +1-y n =41,∴数列{y n }是等差数列,4分(2)由题意得,21++n n x x =n ,∴x n +x n +1=2n , ① x n +1+x n +2=2(n +1), ② ①、②相减,得x n +2-x n =2,∴x 1,x 3,x 5,…,x 2n -1,…成等差数列;x 2,x 4,x 6,…,x 2n ,…成等差数列, 6分∴x 2n -1=x 1+2(n -1)=2n +a -2,x 2n =x 2+(n -1)·2=(2-a )+(n -1)·2 =2n -a , ∴x n =⎩⎨⎧--+)( )( 1为偶数为奇数n a n n a n 7分(3)当n 为奇数时,A n (n +a -1,0),A n +1 (n +1-a ,0) 所以|A n A n +1|=2(1-a );当n 为偶数时,A n (n -a ,0),A n +1 (n +a ,0), 所以|A n A n -1|=2a ,作B n C n ⊥x 轴于C n ,则|B n C n |=41n +121. 要使等腰三角形A n B n A n +1为直角三角形,必须且只须|A n A n +1|=2|B n C n |. 12分 所以,当n 为奇数时,有2(1-a )=2(41n +121), 即12a =11-3n ,(*)当n =1时,a =32; 当n =3时,a =61;当n ≥5时,方程(*)无解.当n 为偶数时,12a =3n +1,同理可求得a =127. 综上,当a =32,或a =61或a =127时,存在直角三角形.16分20.(1)f ′(x )=x 2+(b -1)x +c ,由题意得,1和3是方程x 2+(b -1)x +c =0的两根,∴⎩⎨⎧⨯=+=-,31,311c b 解得⎩⎨⎧=-=.3,3c b4分(2)由题得,当x ∈(-∞,x 1),(x 2,+∞)时,f ′(x )>0 x ∈(x 1,x 2)时,f ′(x )<0,∴x 1,x 2是方程x 2+(b -1)x +c =0的两根, 则x 1+x 2=1-b ,x 1x 2=c , 7分∴b 2-2(b +2c )=b 2-2b -4c=[1-(x 1+x 2)]2-2[1-(x 1+x 2)]-4x 1x 2 =(x 1+x 2)2-4x 1x 2-1 =(x 2-x 1)2-1, ∵x 2-x 1>1,∴(x 2-x 1)2-1>0, ∴b 2>2(b +2c ). 9分(3)在(2)的条件下,由上一问知x2+(b-1)x+c=(x-x1)(x-x2),即x2+bx+c=(x-x1)(x-x2)+x, 12分所以,t2+bt+c-x1=(t-x1)(t-x2)+t-x1,=(t-x1)(t+1-x2),14分∵x2>1+x1>1+t,∴t+1-x2<0,又0<t<x1,∴t-x1<0,∴(t-x1)(t+1-x2)>0,即t2+bt+c>x1. 16分。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(20)201806010231
高考数学三轮复习冲刺模拟试题20三角变换与解三角形一、选择题1.已知sin α-cos α=2,α∈(0,π),则sin 2α=()A.-1 B.-2 22C. D.12解析:∵sin α-cos α=2,∴1-2sin αcos α=2,即sin 2α=-1.答案:A2.在△ABC中,若∠A=60°,∠B=45°,BC=3 2,则AC=() A.4 3 B.2 3C. 3D. 3 2解析:利用正弦定理解三角形.AC BC在△ABC中,=,sin B sin A23 2 ×BC·sin B 2∴AC===2 3.sin A 32答案:B3.若β=α+30°,则sin 2α+cos 2β+sin αcos β=()1 3A. B.4 4C.cos 2βD.sin 2α解析:将β=α+30°代入sin 2α+cos 2β+sin αcos β,整理得sin 2α+cos 2(α+30°)+sin αcos (α+30°)=sin 2α+(cos αcos 30°-sin αsin 30°)2+sin α(cos αcos 30°-sin αsin 30°)3 1 3 1=sin 2α+( cos α-sin α)( cos α-sin α+sin α)2 2 2 23 1 3 1=sin 2α+( cos α-sin α)( cos α+sin α)2 2 2 2- 1 -3 1 =sin 2α+( cos α)2-( sin α)2 2 2 3 1 =sin 2 α+ cos 2α- sin 2α4 4 3= (sin 2α+cos 2α) 4 3 = . 4 答案:B14.已知△ABC 的三边长为 a ,b ,c ,且面积 S △ABC = (b 2+c 2-a 2),则 A =( )4 π π A. B. 4 6 2π π C. D. 3121 1 b 2+c 2-a 2解析:因为 S △ABC = bc sin A = (b 2+c 2-a 2),所以 sin A = =cos A ,故 A = 2 4 2bc π . 4答案:A5.在△ABC 中,AC = 7,BC =2,B =60°,则 BC 边上的高等于( ) 3 3 3 A. B.223+ 6 C.D. 23+ 39 4解析:利用余弦定理及三角形面积公式求解. 设 AB =a ,则由 AC 2=AB 2+BC 2-2AB ·BC cos B 知 7=a 2+4-2a ,即 a 2-2a -3=0,∴a =3(负值舍去). 1 1 3 3 3∴S △ABC = AB ·BC sin B = ×3×2× = .2 2 2 2 2S △ ABC3 3∴BC 边上的高为 = . BC 2 答案:B 二、填空题6.已知 α、β 均为锐角,且 cos (α+β)=sin (α-β),则 α=________. 解析:依题意有 cos αcos β-sin αsin β=sin αcos β-cos αsin β,即 cosα(cos β+sin β)=sin α(sin β+cos β).∵α、β 均为锐角,∴sin β+cos β≠0,∴cos α=sin α,- 2 -π∴α=.4π答案:4π7.在△ABC中,角A,B,C所对边的长分别为a,b,c.若a=2,B=,c=2 3,则b=6________.解析:利用余弦定理求解.π∵a=2,B=,c=2 3,6∴b=a2+c2-2ac cos B3 =4+12-2 × 2 × 2 3 ×=2.2答案:28.如图,在某灾区的搜救现场,一条搜救犬从A点出发沿正北方向行进x m到达B处发现生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°回到出发点,那么x=________.解析:由题图知,AB=x,∠ABC=180°-105°=75°,∠BCA=180°-135°=45°.∵BC=10,∠BAC=180°-75°-45°=60°,x10∴=,sin 45°sin 60°10sin 45°10 6∴x==.sin 60° 310 6答案:3三、解答题- 3 -9.如图,为了计算江岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=10 k m,AB=14 k m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离.(假设A,B,C,D在同一平面内,测量结果保留整数,参考数据: 2 ≈1.414)解析:在△ABD中,设BD=x,根据余弦定理得,BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2×10x×cos60°,整理得x2-10x-96=0,解得x1=16,x2=-6(舍去),BC BD在△BCD中,由正弦定理得=,sin ∠CDB sin ∠BCD16故BC=·sin30°=8 2≈11.sin 135°即两景点B与C之间的距离约为11 km.10.设函数f(x)=sin 2ωx+2 3sin ωx·cosωx-cos 2ωx+λ(x∈R)的图象关于直1 线x=π对称,其中ω,λ为常数,且ω∈( ,1).2(1)求函数f(x)的最小正周期;π(2)若y=f(x)的图象经过点( ,0),求函数f(x)的值域.4解析:(1)因为f(x)=sin 2ωx-cos 2ωx+2 3sin ωx·cosωx+λ=-cos 2ωx+3πsin 2ωx+λ=2sin (2ωx-)+λ,6由直线x=π是y=f(x)图象的一条对称轴,可得πsin (2ωπ-)=±1,6ππk 1所以2ωπ-=kπ+(k∈Z),即ω=+(k∈Z).6 2 2 31 5又ω∈( ,1),k∈Z,所以k=1,故ω=.2 6- 4 -6π所以f(x)的最小正周期是.5ππ(2)由y=f(x)的图象过点( ,0),得f( )=0,4 45 πππ即λ=-2sin ( ×-)=-2sin =-2,6 2 6 4即λ=-2.5 π故f(x)=2sin ( x-)-2,函数f(x)的值域为[-2-2,2-2].3 611.设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2sin B cos A=sin A cos C+cos A sin C.(1)求角A的大小;(2)若b=2,c=1,D为BC的中点,求AD的长.解析:(1)解法一由题设知, 2sin B cos A=sin(A+C)=sin B.1因为sin B≠0,所以cos A=.2π由于0<A<π,故A=.3解法二由题设可知,b2+c2-a2 a2+b2-c2 b2+c2-a22b·=a·+c·,于是b2+c2-a2=bc,所以cos A=2bc2ab2bcb2+c2-a2 1=.2bc 2π由于0<A<π,故A=.3→→AB+AC→(2)解法一因为AD2=( )221 →→→→ =(AB2+AC2+2AB·AC)41 π7=(1+4+2×1×2×cos)=,4 3 4→7 7所以|AD|=.从而AD=.2 2解法二因为a2=b2+c2-2bc cos A1 =4+1-2×2×1×=3,2- 5 -。
2018届广东省高考数学三轮复习冲刺模拟试题有答案(共275题)
高考数学三轮复习冲刺模拟试题01集合一、选择题1 .已知集合,,则( ) A .B .C .D .2 .设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x ∈R},若A ⋂B=φ,则实数a 的取值范围是( )A .{a|0≤a ≤6}B .{a|a ≤2,或a ≥4}C .{a|a ≤0,或a ≥6}D .{a|2≤a ≤4}3 .已知集合2A ={|log<1},B={x|0<<c}x x x,若=A B B ,则c 的取值范围是( )A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题4 .若不等式4+-2+1x m x≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B ___________.5 .设集合是A={32|()=83+6a f x xax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B ð= ;6.试题)己知集合222{|28},{|240}xxA xB x x mx -=<=+-<, 若{|11},{|43}A B x x A B x x =-<<=-<<,则实数m 等于__________ .7 .设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A ,则实数a 取值范围是___________.三、解答题8 .已知={()|1},B={()|3,0x 3}2A x,y y =-x+mx -x,y x+y =≤≤,若A B ⋂是单元素集,求实数m的取值范围.参考答案一、选择题 1. 【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<=,选B.2. 【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3. 【答案】D【解析】2{log 1}{01}A x x x x =<=<<.因为A B B =,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题4. {}-1<3x x ≤; 5. 【答案】(,1)(4,)-∞+∞【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为144x x +≥=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B ð(,1)(4,)-∞+∞.6. 【答案】32222{|28}{|230}{13}x xA x x x x x x -=<=--<=-<<,因为{|11},{|43}AB x x A B x x =-<<=-<<,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(10)
高考数学三轮复习冲刺模拟试题10集合与简易逻辑、函数与导数一、选择题(每小题5分,共60分) 1.若集合}{2-==x y y M ,}1{-==x y y P ,那么=P M ( )A .),1(+∞B .),1[+∞C .),0(+∞D .),0[+∞2.若函数)(x f y =的图象与函数)1lg(-=x y 的图象关于直线0=-y x 对称,则=)(x fA .x 101-B .110+xC .110+-xD .110--x3.函数)1(21)(x x x f --=的最大值是( )A .49B .94C .47D .744.已知函数)(1x f y -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点( )A .)2,1(B .)1,2(C .)2,0(D .)0,2(5.设集合},,{c b a M =,}1,0{=N ,映射N M f →:满足)()()(c f b f a f =+,则映射N M f →:的个数为( )A .1B .2C .3D .4A .042,0200>+-∈∃x x R xB .042,2≤+-∈∀x x R xC .042,2>+-∈∀x x R x D .042,2≥+-∈∀x x R x 6.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是A .在区间(-2,1)上)(x f 是增函数B .在(1,3)上)(x f 是减函数C .在(4,5)上)(x f 是增函数D .当8. 若函数))(12()(a x x xx f -+=为奇函数,则a 的值为 ( )A .21B .32C .43D .19.已知定义域为R 的函数f(x)在区间(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( ) A .f(2)>f(3) B .f(3)>f(6) C .f(3)>f(5) D . f(2)>f(5)10.已知a>0且a≠1,若函数f (x )= log a (ax 2–x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞C .11[,)(1,)84+∞D .11[,)64 11. 用},,min{c b a 表示c b a ,,三个数中的最小值,}102,2m in{)(x x x f x-+=,, (x ≥0) ,则)(x f 的最大值为 ( )A .4B .5C .6D .712. 若函数f(x)=⎩⎨⎧>+≤0)( 1)ln(0)(x x x x ,若f(2-x 2)>f(x),则实数x 的取值范围是A .(-∞,-1)∪(2,+∞)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题(每小题4分,共16分.把答案填在题中的横线上)13.设全集U 是实数集R ,{}24M x|x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是___________。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(9)
高考数学三轮复习冲刺模拟试题09直线、圆锥曲线一、选择题1 若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A 1(,44±B 1(,84±C 1(,)44D 1(,842 椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( ) A 20 B 22 C 28 D 243 若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A ()0,0 B ⎪⎭⎫⎝⎛1,21 C ()2,1 D ()2,2 4 与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A 1222=-y x B 1422=-y x C 13322=-y x D 1222=-y x 5 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A (315,315-) B (315,0) C (0,315-) D (1,315--)6.直线x =2212y x +=的位置关系为A.相离B.相切C.相交D.不确定 7.抛物线2y x =的切线中,与直线240x y -+=平行的是A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=8.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为A.2B.3C.4D.9.过椭圆22221(0)4x y a a a+=>的一个焦点F 作直线交椭圆于,P Q 两点,若线段FP 和FQ 的长分别为,p q ,则11p q+= A.4a B.12aC.4aD.2a 10.若直线:1(0)l y kx k =+≠被椭圆22:14x y E m +=截得的弦长为d ,则下列被椭圆E 截得的弦长不是d 的直线是A.10kx y ++=B.10kx y --=C.10kx y +-=D.0kx y += 11.直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是A.(0,1]B.(0,5)C.[1,5)(5,)+∞D.[1,5) 12.设1F ,2F ,为双曲线2214x y -=的两焦点,点P 在双曲线上,且满足122F PF π∠=,则△12F PF 的面积是C.2 D二、填空题13AB 是抛物线2y x =的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 . .14.设双曲线221916x y -=的右顶点为A ,右焦点为F ,过F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 . .15.过椭圆22143x y +=的一个焦点且与它的长轴垂直的弦长等于 .16.过抛物线24y x =的焦点F 做垂直于x 轴的直线,交抛物线,A B 两点,则以AB 为直径的12.若直线y kx =与双曲线22194x y -=相交,则k 的取值范围为 ..三、解答题17.已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)18.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1) 求△21PF F 的面积; (2) 求P 点的坐标.19.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.20.已知动圆过定点F(0,2),且与定直线L:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.21.已知圆(x-2)2+(y-1)2=203,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为22,若圆与椭圆相交于A、B,且线段AB是圆的直径,求椭圆的方程.22.抛物线的顶点在原点,它的准线过双曲线22221x ya b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为32⎛⎝,.求抛物线与双曲线的方程.参考答案BDDAD ADCAD CA13.52 14.3215 15. 3 16.23()32-, 17.[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴ 22122y y x x =+=⇒yy x x 21222=-=,又Q 是OP 的中点∴ 221212y y xx ==⇒yy y x x x 422422121==-==,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .18. [解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P19、解:法一:设点M 的坐标为(x ,y),∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y). ∵l 1⊥l 2,且l 1、l 2过点P(2,4), ∴PA⊥PB,k PA ·k PB =-1.而k PA =4-02-2x ,k PB =4-2y 2-0,(x≠1),∴21-x ·2-y 1=-1(x≠1). 整理,得x +2y -5=0(x≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM|=|AB|.而∴=化简,得x+2y-5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y-2=-12(x-1), 即x+2y-5=0即为所求.20、解:(1)依题意,圆心的轨迹是以F(0,2)为焦点,L :y =-2为准线的抛物线.因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y.(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A(x 1,y 1),B(x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16. 抛物线方程为y =18x 2,求导得y′=14x.所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ⊥BQ. 21.解:∵e=ca=a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点, 设A(2-m,1-n),B(2+m,1+n),则⎩⎪⎨⎪⎧(2-m)2+2(1-n)2=2b 2,(2+m)2+2(1+n)2=2b 2,|AB|=2 203⇒⎩⎪⎨⎪⎧8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16.故所求椭圆的方程为x 2+2y 2=16.22解.抛物线的顶点在原点,它的准线过双曲线22221x y a b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为32⎛ ⎝.求抛物线与双曲线的方程.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为22(0)y px p =>, 将交点32⎛ ⎝,代入得2p =,故抛物线方程为24y x =,焦点坐标为(10),, 这也是双曲线的一个焦点,则1c =. 又点362⎛ ⎝,也在双曲线上,因此有229614a b -=. 又221a b +=,因此可以解得221344a b ==,,因此,双曲线的方程为224413y x -=.。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(2)201806010230
高考数学三轮复习冲刺模拟试题02三角函数、三角恒等变换、解三角形一、选择题:本大题共12个小题,每题5分,共60分.每个小题所给四个选项中,只有一个选项符合题目要求,请将所选答案代号填在答题卡的相应位置.1. P (3,4)为终边上一点,则sina=()343A、B、C、D、554432. 下列函数中,以为周期且在区间(0,)上为增函数的函数是().2xA.y sinB.y sin xC.ytan x D.ycos2x 223. 已知,则的值为( )cos2sin4cos43131171 A. B. C. D.181894. 函数y sin2x cos2x的值域是()1[-2,2][-1,1]1A、B、C、D、,2214,145.已知ABC中,A ,B ,C的对边分别为a,b,c若a c 62且A 75,则bo ( )A.2 B.4+23C.4—23D.626. 如果函数y=3cos2x +的图像关于点()4,0中心对称,那么||的最小值为3(A)6(B)4(C)3(D) 2π7使奇函数f(x)=sin(2x+θ)+3cos(2x+θ)在[-,0]上为减函数的θ值为4ππA.-B.-3 65π2πC. D.6 3π 3 sin2x-2sin2x8已知cos( +x)=,则的值为4 5 1-tanx7 12 13 18A. B. C. D.25 25 25 25- 1 -9. 在△ABC 中,若 sin 2A +sin 2B -sinAsinB =sin 2C ,且满足 ab =4,则该三角形的面积为 A .1 B .2 C. 2 D. 3 10在△ABC 中,内角 A 、B 、C 的对边分别是 a 、b 、c ,若 a 2 b 2 3bc ,sinC=2 3 sinB ,则 A=( ) (A )30°(B )60°(C )120°(D )150°11. 在 △ ABC 中 , 角 A , B , C 所 对 的 边 长 分 别 为 a,b,c , 若 ∠ C=120°, c 2a ,则( ) A 、a>b B 、a<b C 、a=b D 、a 与 b 的大小关系不能确定 1 1 12. 若函数 f(x)=sin 2ωx + 3sinωxcosωx ,x ∈R ,又 f(α)=- ,f(β)= ,且|α-β| 2 23π的最小值等于 ,则正数 ω 的值为41 2 4 3 A. B. C. D. 3 3 3 2二.填空题:本大题共 4个小题,每题 4分,共 16分.请将答案填在答题卡的相应位置. 13. 函数 y=2sin 2x + 2cosx -3的最大值是 。
广东省2018届高考数学三轮复习冲刺模拟试题4含答案
高考数学三轮复习冲刺模拟试题04三角函数01一、选择题1 .若f (x )a sin x b =+(a ,b 为常数)的最大值是5,最小值是-1,则ab 的值为 ( )A .、23-B .、23或23- C .、 32-D .、322 .边长为的三角形的最大角与最小角的和是( )( )A .B .C .D .3 .在钝角△ABC 中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是( )A .23 B .43 C .23 D .43 4 .设函数f(x)=Asin(ϕω+x )(A>0,ω>0,-2π<ϕ<2π)的图象关于直线x=32π对称,且周期为π,则f(x) ( )A .图象过点(0,21) B .最大值为-AC .图象关于(π,0)对称D .在[125π,32π]上是减函数 5 .设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( )A .23B .43C .32D .36 .已知21)4tan(=+απ,则ααα2cos 1cos 2sin 2+-的值为( )7 .为了得到函数x x x y 2cos 21cos sin 3+=的图象,只需将函数x y 2sin =的图象 ( )A .向左平移12π个长度单位 B .向右平移12π个长度单位 A .35-B .56-C .-1D .2C .向左平移6π个长度单位 D .向右平移6π个长度单位 8 .在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A B .2C .12D .12-9 .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,1+2cos(B+C)=0,则BC 边上的高等于 ( )A B C .2D .210.把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( )A .=(2-),R 3y sin x x π∈ B .=(+),R 26x y sin x π∈C .=(2+),R 3y sin x x π∈D . 2=(2+),R 3y sin x x π∈ 11.在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形12.设函数sin()3yx π=+(x ∈R),则f(x)( )A .在区间[-π,2π-]上是减函数B .在区间27[,]36ππ上是增函数 C .在区间[8π,4π]上是增函数 D .在区间5[,]36ππ上是减函数 13.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为( )A .8π B .4π C .2π D .π14.把函数sin(2)4y x π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是 ( )A .y=sin (4x+83π)B .y=sin (4x+8π) C . y=sin4x D .y=sinx15.函数ln cos y x=⎪⎭⎫ ⎝⎛<<-22ππx 的图象是16.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆面积为则sin sin a bA B+=+( )A B .3C .D .17.函数2()22sin f x x x -,(02x π≤≤)则函数f(x)的最小值为( )A .1B .-2C .√3D .-√318.在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是 ( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对19.△ABC 的三个内角C B A ,,所对的边分别为c b a ,,,a A b B A a 2cossin sin 2=+,则=ab( )A .32B .22C .3D .220.将函数⎪⎭⎫⎝⎛+=42sin 2)(πx x f 的图像向右平移)0(>ϕϕ个单位,再将图像上每一点横坐标缩短到原来的21倍,所得图像关于直线4π=x 对称,则ϕ的最小正值为 ( )A .8πB .83πC .43πD .2π二、填空题 21.已知函数,给出下列四个说法: ①若,则; ②的最小正周期是;③在区间上是增函数; ④的图象关于直线对称.其中正确说法的序号是______.22.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若222+=2012a b c ,则(+)t a nAt a nBt a n C t a nA t a nB 的值为 ;23.函数()=(+)(,,f x Asin x A ωϕωϕ为常数,A>0, ω>0)的部分图象如图所示,则f (0)的值是 ;24.函数()sin(2)3f x x π=-(x ∈R)的图象为C,以下结论中:①图象C 关于直线1112x π=对称;②图象C 关于点2(,0)3π对称; ③函数f(x)在区间5(,)1212ππ-内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C. 则正确的是 .(写出所有正确结论的编号)25.已知3sin cos 8x x =,且(,)42x ππ∈,则cos sin x x -=_________. 26.在△ABC 中,若sinA=2sinBcosC 则△ABC 的形状为________。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(25)2 精品
高考数学三轮复习冲刺模拟试题25集合、常用逻辑用语与定积分一、选择题1.命题“存在实数x,使x>1”的否定是( )A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1解析:利用特称(存在性)命题的否定是全称命题求解.“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.故选C.答案:C2.集合M={x|lg x>0} ,N={x|x2≤4},则M∩N=( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]解析:解对数、一元二次不等式后,直接求解.M={x|lg x>0}={x|x>1},N={x|x2≤4}={x|-2≤x≤2},∴M∩N=(1,2].答案:C3.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R 上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:结合函数单调性的定义求解.由题意知函数f(x)=a x在R上是减函数等价于0<a<1,函数g(x)=(2-a)x3在R上是增函数等价于0<a<1或1<a<2,∴“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.答案:A4.已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是( ) A.(0,1) B.(0,2)C.(2,3) D.(2,4)解析:由p是假命题可知,∀x∈R,x2+2ax+a>0恒成立,故Δ=4a2-4a<0,解之得0<a<1.答案:A5.已知全集U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(ðU N )={x |x =1或x ≥3},那么( )A .a =-1B .a ≤1C .a =1D .a ≥1解析:由题意得M ={x |x ≥-a },N ={x |1<x <3},所以ðU N ={x |x ≤1或x ≥3},又M ∩(ðU N )={x |x =1或x ≥3},因此-a =1,a =-1,选A.答案:A6.给出下列命题:①若a ≥0,则a >0;②函数f (x )=1x+x 的单调递增区间是[1,+∞);③二次函数f (x )=x 2-2x 不可能在区间(-∞,1]上单调递增;④∀x ∈R,sin x +cos x ≠1.其中真命题的个数为( )A .1B .2C .3D .4 解析:对于①,若a =0,则得不到a >0,故①是假命题;对于②,f (x )是奇函数,(-∞,-1]也是其增区间,故②是假命题;对于③,f (x )的图象开口向上,不可能在对称轴的左侧递增,故③是真命题;对于④,x =π2时,sin x +cos x =1,故④是假命题.综上可知,真命题的个数为1.选A.答案:A 7.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x,x ∈(1,e],(其中e 为自然对数的底数),则⎠⎛0e f (x )dx 的值为 A.43B.54C.65D.76 解析:⎠⎛0e f (x )d x =⎠⎛01f (x )d x +⎠⎛1e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1x dx =13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+1=43. 答案:A8.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若⌝p 是⌝q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,0]B .(-∞,12]C .[0,12]D .[12,+∞) 解析:由|4x -3|≤1可得:12≤x ≤1,由题意知方程x 2-(2a +1)x +a (a +1)=0的两根x 1,x 2(设x 1<x 2)满足:x 1≤12且x 2≥1.令f (x )=x 2-(2a +1)x +a (a +1),只需⎩⎪⎨⎪⎧f (12)≤0f (1)≤0,解得:0≤a ≤12. 答案:C二、填空题9.计算定积分⎠⎛-11(x 2+sin x )d x =________. 解析:求导逆运算确定定积分.∵(13x 3-cos x )′=x 2+sin x , ∴⎠⎛-11(x 2+sin x )d x =(13x 3-cos x )⎪⎪⎪10=23. 答案:2310.给出下列命题:①存在实数x ,使得sin x +cos x =2;②f (x )=x +4x (x >0)的最小值为4;③函数f (x )=x 3-x 2在区间(0,23)上单调递减; ④若a 1a 2=b 1b 2=c 1c 2≠0,则不等式a 1x 2+b 1x +c 1>0与a 2x 2+b 2x +c 2>0同解. 其中真命题的序号是________.解析:对于①,sin x +cos x =2sin (x +π4)<2,故①是假命题;对于②,利用基本不等式可得,f (x )=x +4x(x >0)的最小值为4,②正确;对于③,由f ′(x )=3x 2-2x <0可得,0<x <23,③正确;对于④,若取 a 1a 2=b 1b 2=c 1c 2=-1,结论显然不正确.故只有②③是真命题. 答案:②③11.在“a,b是实数”的大前提之下,已知原命题“若不等式x2+ax+b≤0的解集是非空数集,则a2-4b≥0”,给出下列命题:①若a2-4b≥0,则不等式x2+ax+b≤0的解集是非空数集;②若a2-4b<0,则不等式x2+ax+b≤0的解集是空集;③若不等式x2+ax+b≤0的解集是空集,则a2-4b<0;④若不等式x2+ax+b≤0的解集是非空数集,则a2-4b<0;⑤若a2-4b<0,则不等式x2+ax+b≤0的解集是非空数集;⑥若不等式x2+ax+b≤0的解集是空集,则a2-4b≥0.其中原命题的逆命题,否命题,逆否命题以及原命题的否定依次是________(填上相应的序号).解析:“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,相应答案是①③②④.答案:①③②④。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(3)
高考数学三轮复习冲刺模拟试题03不等式1、若,,则下列不等式成立的是( )A. B. C.D.2、不等式的解集为( )A. B. C. D.3、若,,则下列不等式成立的是( )A. B. C.D.4、已知实数满足,下列5个关系式:①;②;③;④;⑤.其中不可能成立的有()A.1个 B.2个 C.3个 D.4个5、若,则下列不等式成立的是( )A. B.C. D.6、不等式ax2+bx+2>0的解集是,则a+b的值是( )A.10 B.-10 C.-14 D.147、设,则下列不等式中恒成立的是 ( )A B C D8、已知0<t≤,那么-t的最小值为( )A. B.C.2 D.-29、下列不等式一定成立的是()A. B.C. D.10、若函数图像上存在点满足约束条件,则实数的最大值为()A. B.1 C. D.211、设 a>b>1, ,给出下列三个结论:①> ;②< ; ③,其中所有的正确结论的序号是.()A.① B.①② C.②③ D.①②③12、小王从甲地到乙地的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v< B.v= C.<v< D.v=13、若则下列不等式不成立的是_______________.①;②;③;④14、若不等式对一切实数恒成立,则实数的取值范围是15、已知有下列不等式:①②③④其中一定成立的不等式的序号是_____________________ .16、若实数x,y满足的最小值为3,则实数b的值为17、已知函数.(1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围;(3)求函数在区间上的最大值18、若不等式对于满足的一切实数恒成立,求实数的取值范围.19、设,函数,当时,.(1)求证:;(2)求证:当时,.20、当时,不等式恒成立,则实数的取值范围为21、对于满足的所有实数,求使不等式恒成立的的取值范围。
广东省广州市普通高中2018届高考数学三轮复习冲刺模拟试题(7)
高考数学三轮复习冲刺模拟试题07圆锥曲线与方程一、 选择题:本大题共12小题,每小题5分,共60分。
1曲线 与曲线 (0 <k<9) 具有( ) A 、相等的长、短轴 B 、相等的焦距 C 、相等的离心率 D 、相同的准线2、若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( )A.直线B.圆C.椭圆或双曲线D.抛物线3、如果抛物线y 2= ax 的准线是直线x=-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0) 4、平面内过点A (-2,0),且与直线x=2相切的动圆圆心的轨迹方程是 ( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x5、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26 C .36D .336、若椭圆的中心及两个焦点将两条准线之间的距离四等分,则椭圆的离心率为( )A 、B 、C 、D 、 7、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 8、抛物线214y x =关于直线0x y -=对称的抛物线的焦点坐标是( ) A 、(1,0) B 、1(,0)16 C 、(0,0) D 、1(0,)169、中心在原点,对称轴为坐标轴,离心率e =30x -=的双曲线方程是 ( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -=192522=+y x 192522=-+-ky k x 2122233310、椭圆上一点P 到一个焦点的距离恰好等于短半轴的长b,且它的离心率e =P 到另一焦点的对应准线的距离为 ( )(A)6 (B)3 (C)2(D) 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
广东省2018届高考数学三轮复习冲刺模拟试题3含答案
高考数学三轮复习冲刺模拟试题03函数02二、填空题1.定义一种运算,令,且,则函数的最大值是______.2.设函数______.3.函数f(x)的定义域为D,若对于任意的x 1,x 2∈D,当x 1<x 2时都有f(x 1)≤f(x 2),则称函数f(x)为D 上的非减函数.设f(x)为定义在[0,1]上的非减函数,且满足一下三个条件: (1)f(0)=0; (2)f(1-x)+f(x)=1 x ∈[0,1]; (3)当x ∈[0,31]时,f(x)≥23x 恒成立,则f(73)+f(95)= . 4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=________.5.已知函数y mx =的图像与函数11x y x -=-的图像没有公共点,则实数m 的取值范围是6.已知a>0,且a ≠1,若函数2(-2+3)()=lg xx f x a 有最大值,则不筹式2(-5+7)>0a log x x 的解集为 ;7.函数f(x)=a x+2+x a 的值域为_________. 8.已知函数f (x )=⎩⎨⎧>≤--.1,log 1,1)2(x x ,x x a a 若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________。
9.定义:如果函数)(x f y =在定义域内给定区间b][,a 上存在)(00b x a x <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是b][,a 上的“平均值函数”,0x 是它的一个均值点,如4x y =是]1,1[-上的平均值函数,0就是它的均值点.现有函数1)(2++-=mx x x f 是]1,1[-上的平均值函数,则实数m 的取值范围是 .10.已知x R ∀∈,(1+)=(1-)f x f x ,当1x ≥时,()=(1)f x l n x +,则当<1x 时,()=f x .11.已知函数y [0,+)∞,则a 的取值范围是 .12.函数212()=log (-2-3)f x x x 的单调递减区间为 .13.已知1f x -,则()=f x (x ∈ ).14.若(f x ,则()f x 的定义域为 .15.已知函数3111,0,362()21,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩ ,函数π()sin()22,(0)6=-+>g x a x a a ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是____________.16.定义在)1,1(-上的函数⎪⎪⎭⎫ ⎝⎛--=-xy y x f y f x f 1)()(,当)0,1(-∈x 时0)(>x f .若)0(,21,11151f R f Q f f P =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=,则P ,Q,R 的大小关系为_____________.三、解答题17.对于函数()f x 若存在0x R ∈,00()=f x x 成立,则称0x 为()f x 的不动点.已知2()=(1)-1(0)f x ax b x b a +++≠(1)当=1,=-2a b 时,求函数(f x )的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若=()y f x 图象上A 、B 两点的横坐标是函数()f x 的不动点,且A 、B 两点关于直线2121y kx a =++对称,求b 的最小值.18.已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当x >0时,()0f x <又(1)2f =-.(1)判断()f x 的奇偶性;(2)求证:()f x 是R 上的减函数; (3)求()f x 在区间[-3,3]上的值域;(4)若x R ∀∈,不等式2()2()()4f ax f x f x -<+恒成立,求a 的取值范围.参考答案二、填空题 1. 【答案】54【解析】令,则∴由运算定义可知,∴当1sin 2x =,即6x π=时,该函数取得最大值54. 由图象变换可知,所求函数的最大值与函数在区间上的最大值相同.2. 【答案】52【解析】令1x =-得(1)(1)(2)f f f =-+,即1(2)(1)(1)2(1)212f f f f =--==⨯=。
广东省普通高中2018届高考数学三轮复习冲刺模拟试题(35)201805300323
广东省中山市普通高中2017-2018学年高一数学1月月考试题一选择题(本大题共12个小题,每题5分共60分)1.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=( )A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 2.设a =π0.3,b =log π3,c =30,则a ,b ,c 的大小关系是( )A .a >b >cB .b >c >aC .b >a >cD .a >c >b3.下列函数中,既是奇函数又是增函数的为( ) A. 1y x =+ B. 2y x =- C. 1y x=D. ||y x x = 4. 若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )A .正数B .负数C .非负数D .与m 有关5.若函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10)= ( )A.lg101B.1C.2D.06 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 非奇非偶函数7 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A 1B 1或32 C 1,32或 D8.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是( )A .a =-1或a =3B .a =-1C .a =3D .a 不存在9 下列函数与x y =A 2x y = B xx y 2=x a a y log =10、偶函数)(x f y =在区间[0,4]上单调递减,则有( )A 、)()3()1(ππ->>-f f fB 、)()1()3(ππ->->f f fC 、)3()1()(ππf f f >->-D 、)3()()1(ππf f f >->-11、若函数)(x f 满足)()()(b f a f ab f +=,且n f m f ==)3(,)2.(,则)72(f 的值为( ) A 、n m +B 、n m 23+C 、n m 32+D 、23n m +12.当0<a <1时,函数①y =a |x |与函数②y =log a |x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .①是增函数,②是减函数D .①是减函数,②是增函数二填空题(本大题共4小题,每题4分共16分)13.函数y =(13)x -3x在区间[-1,1]上的最大值为________.14.化简11410104848++的值等于_________15.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.16.函数y =lg x +1x -1的定义域为________.三、解答题(本大题共6个题,17-21题每题12分,22题14分共74分,要求写出必要的过程) 17(本小题12分)设A={x }01)1(2{,04222=-+++==+a x a x x B x x ,其中x ∈R,如果A ⋂B=B ,求实数a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学三轮复习冲刺模拟试题20
三角变换与解三角形
一、选择题
1.已知sin α-cos α=2,α∈(0,π),则sin 2α=( ) A .-1 B .-2
2 C.22
D .1
解析:∵sin α-cos α=2,∴1-2sin αcos α=2, 即sin 2α=-1. 答案:A
2.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3
D.32
解析:利用正弦定理解三角形. 在△ABC 中,AC sin B =BC sin A , ∴AC =BC ·sin B
sin A =32×22
32=2 3.
答案:B
3.若β=α+30°,则sin 2α+cos 2β+sin αcos β=( ) A.14 B.34 C .cos 2β
D .sin 2α 解析:将β=α+30°代入sin 2α+cos 2β+sin αcos β, 整理得
sin 2α+cos 2(α+30°)+sin αcos (α+30°)
=sin 2α+(cos αcos 30°-sin αsin 30°)2+ sin α(cos αcos 30°-sin αsin 30°)
=sin 2α+(32cos α-12sin α)(32cos α-1
2sin α+sin α) =sin 2α+(32cos α-12sin α)(32cos α+1
2sin α) =sin 2α+(32cos α)2-(1
2sin α)2 =sin 2
α+34cos 2
α-14sin 2α
=3
4(sin 2α+cos 2α) =34. 答案:B
4.已知△ABC 的三边长为a ,b ,c ,且面积S △ABC =1
4(b 2+c 2-a 2),则A =( ) A.π4 B.π6 C.2π3
D.π12
解析:因为S △ABC =12bc sin A =14(b 2+c 2
-a 2),所以sin A =
b 2+
c 2-a 22bc =cos A ,
故A =π4.
答案:A
5.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62
D.
3+ 394
解析:利用余弦定理及三角形面积公式求解. 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知
7=a2+4-2a,即a2-2a-3=0,∴a=3(负值舍去).
∴S
△ABC =
1
2AB·BC sin B=
1
2×3×2×
3
2=
33
2.
∴BC边上的高为2S△ABC
BC=
33
2.
答案:B
二、填空题
6.已知α、β均为锐角,且cos (α+β)=sin (α-β),则α=________.
解析:依题意有cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β).
∵α、β均为锐角,∴sin β+cos β≠0,∴cos α=sin α,
∴α=π4.
答案:π4
7.在△ABC中,角A,B,C所对边的长分别为a,b,c.若a=2,B=π
6,c =23,则b=________.
解析:利用余弦定理求解.
∵a=2,B=π
6,c=23,∴b=a2+c2-2ac cos B
=4+12-2×2×23×
3
2=2.
答案:2
8.如图,在某灾区的搜救现场,一条搜救犬从A 点出发沿正北方向行进x m 到达B 处发现生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°回到出发点,那么x =________.
解析:由题图知,AB =x ,∠ABC =180°-105°=75°,∠BCA =180°-135°=45°.
∵BC =10,∠BAC =180°-75°-45°=60°, ∴x sin 45°=10
sin 60°, ∴x =10sin 45°sin 60°=1063. 答案:1063 三、解答题
9.如图,为了计算江岸边两景点B 与C 的距离,由于地形的限制,需要在岸上选取A 和D 两个测量点,现测得AD ⊥CD ,AD =10 km ,AB =14 km ,∠BDA =60°,∠BCD =135°,求两景点B 与C 之间的距离.(假设A ,B ,C ,D 在同一平面内,测量结果保留整数,参考数据:2≈1.414)
解析:在△ABD 中,设BD =x ,根据余弦定理得,
BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA , 即142=x 2+102-2×10x ×cos 60°, 整理得x 2-10x -96=0, 解得x 1=16,x 2=-6(舍去), 在△BCD 中,由正弦定理得
BC sin ∠CDB =BD
sin ∠BCD
,
故BC =16
sin 135°·sin 30°=82≈11. 即两景点B 与C 之间的距离约为11 km.
10.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(1
2,1).
(1)求函数f (x )的最小正周期;
(2)若y =f (x )的图象经过点(π
4,0),求函数f (x )的值域.
解析:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin (2ωx -π
6)+λ,
由直线x =π是y =f (x )图象的一条对称轴,可得 sin (2ωπ-π
6)=±1,
所以2ωπ-π6=k π+π2(k ∈Z),即ω=k 2+1
3(k ∈Z). 又ω∈(12,1),k ∈Z ,所以k =1,故ω=5
6. 所以f (x )的最小正周期是6π
5.
(2)由y =f (x )的图象过点(π4,0),得f (π
4)=0,
即λ=-2sin (56×
π2-π6)=-2sin π
4=-2, 即λ=- 2.
故f (x )=2sin (53x -π
6)-2,函数f (x )的值域为[-2-2,2-2].
11.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sin B cos A =sin A cos C +cos A sin C .
(1)求角A 的大小;
(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 解析:(1)解法一 由题设知, 2sin B cos A =sin (A +C )=sin B . 因为sin B ≠0,所以cos A =1
2. 由于0<A <π,故A =π
3. 解法二 由题设可知,
2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.
由于0<A <π,故A =π
3.
(2)解法一 因为AD →2=(AB →+AC →
2)2
=14(AB →2+AC →2+2AB →·AC →) =14(1+4+2×1×2×cos π3)=74, 所以|AD →|=72.从而AD =72.
解法二 因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×
1
2=3, 所以a 2+c 2=b 2,B =π
2.
因为BD =
3
2
,AB =1,所以AD = 1+34=72
.。