【精品】2018年高考数学(理)总复习达标检测(二十八) 基本不等式含答案
2018年高考理科数学考前集训:不等式(解析版)
2018年高考理科数学考前集训:不等式(解析版)[考情分析]1.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查;2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查;3.不等式的解法多与集合、函数、解析几何、导数交汇考查.1.(2017·高考全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:法一:作出不等式组⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0对应的可行域,如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15,选择A.法二:易求可行域顶点A (0,1),B (-6,-3),C (6,-3),分别代入目标函数,求出对应的z 的值依次为1,-15,9,故最小值为-15. 答案:A2.(2017·高考全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为__________.解析:画出不等式组⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域如图中阴影部分所示,由可行域知,当直线y =32x -z2过点A 时,在y 轴上的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +2y =1,2x +y =-1,解得⎩⎪⎨⎪⎧x =-1,y =1. ∴z min =-5. 答案:-53.(2017·高考全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为__________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-14.(2016·高考全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:不等式组表示的平面区域如图中阴影部分.平移直线x +y =0,当直线经过A 点时,z 取得最大值,由⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得A ⎝⎛⎭⎫1,12, z max =1+12=32.答案:325.(2015·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________. 解析:画出可行域如图阴影部分所示,∵yx表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx 的最大值为3. 答案:3不等式性质及解法[方法结论]1.一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[题组突破]1.(2017·临沂模拟)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:依题意得b <a <0,A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D. 答案:D2.(2017·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是( ) A .{x |x <-ln 2或x >ln 3} B .{x |ln 2<x <ln 3} C .{x |x <ln 3} D .{x |-ln 2<x <ln 3}解析:通解:依题意可得f (x )=a ⎝⎛⎭⎫x -12·(x -3)(a <0),则f (e x )=a ⎝⎛⎭⎫e x -12·(e x -3)(a <0),由f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)>0可得12<e x <3,解得-ln 2<x <ln 3,选D. 优解:由题知,f (x )>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <3,令12<e x <3,得-ln 2<x <ln 3,故选D. 答案:D3.(2017·青岛模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:∵4x -2x +1-a ≥0在[1,2]上恒成立,∴4x -2x +1≥a 在[1,2]上恒成立,令y =4x -2x+1=(2x )2-2×2x +1-1=(2x -1)2-1,∵1≤x ≤2,∴2≤2x ≤4,由二次函数的性质可知,当2x =2,即x =1时,y 有最小值0.∴a 的取值范围为(-∞,0]. 答案:(-∞,0] [误区警示]1.二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.2.解决一元二次不等式恒成立问题要注意二次项系数的符号.基本不等式[方法结论]基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立. (2)a 2+b 2≥2ab ,ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时,等号成立.(3)b a +ab≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立. (4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.[题组突破]1.(2017·合肥第二次质量检测)若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8 C .9D .10解析:因为a ,b 都是正数,所以⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab ≥5+2b a ·4ab=9,当且仅当b =2a 时取等号,选项C 正确. 答案:C2.(2017·郑州第二次质量检测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________.解析:由题意得,y =3-x 22x ,∴2x +y =2x +3-x 22x =3x 2+32x =32⎝⎛⎭⎫x +1x ≥3,当且仅当x =y =1时,等号成立. 答案:33.(2017·泰安模拟)若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为________.解析:法一:因为1a +1b =1,所以a +b =ab ,(a -1)(b -1)=1,所以1a -1+9b -1≥21a -1·9b -1=2×3=6.法二:因为1a +1b =1,所以a +b =ab ,1a -1+9b -1=b -1+9a -9ab -a -b +1=b +9a -10=(b +9a )(1a +1b)-10≥16-10=6. 法三:因为1a +1b =1,所以a -1=1b -1,所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6.答案:6 [类题通法]利用基本不等式求最值的方法利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路: (1)对条件使用基本不等式,建立所求目标函数的不等式求解. (2)条件变形,进行“1”的代换求目标函数最值.线性规划问题及交汇点线性规划是代数与几何的桥梁,是数形结合思想的集中体现.传统的线性规划问题主要研究的是在线性或非线性约束条件下求解目标函数的最值,就知识本身而言并不是难点.但是,近年来这类问题的命题设置在能力立意的命题思想指导下出现了新的动向,即将它与函数、方程、数列、平面向量、解析几何等知识交汇在一起考查.[典例] (1)(2016·高考浙江卷)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2D .6解析:作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y-2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,由⎩⎪⎨⎪⎧x =2,x +y =0得C (2,-2).由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得D (-1,1).所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C.答案:C(2)(2017·长沙模拟)在平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1.若AP →=xAB →+yAD →,则3x +2y 的最大值为________. 解析:|AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×(-12)=(3x +2y )2-3(3x )(2y )≥(3x +2y )2-34(3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.答案:2(3)(2017·石家庄质检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________. 答案: 3 [类题通法]1.数形结合思想是解决线性规划问题中最常用到的思想方法,在应用时要注意作图的准确性.2.转化思想是求解线性规划与其他知识交汇问题的关键,要根据交汇知识点,抓住其联系点、转化求解,同时注意数形结合思想运用.[演练冲关]1.(2017·惠州模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0x +y ≤2,y ≥0若z =ax +y 的最大值为4,则a等于( ) A .3 B .2 C .-2D .-3解析:不等式组⎩⎪⎨⎪⎧x -y ≥0x +y ≤2y ≥0表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z ,∴当a =-2或a =-3时,z =ax +y 在点O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D ;当a =2或a =3时,z =ax +y 在点A (2,0)处取得最大值,∴2a =4,∴a =2,故选B.答案:B2.(2017·贵阳监测)已知O 是坐标原点,点A (-1,2),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2x ≤1y ≤2上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[1,3] D .[1,4]答案:D3.点(x ,y )满足不等式|x |+|y |≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________. 解析:|x |+|y |≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y )到点P (2,2)距离的平方,由图可知Z 的最小值为点P (2,2)到直线x +y =1距离的平方,即为(2+2-12)2=92.答案:924.已知点O 是坐标原点,点A (-1,-2),若点M (x ,y )是平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2,上的一个动点,OA →·(OA →-MA →)+1m≤0恒成立,则实数m 的取值范围是________.解析:因为OA →=(-1,-2),OM →=(x ,y ),所以OA →·(OA →-MA →)=OA →·OM →=-x -2y .所以不等式OA →·(OA →-MA →)+1m ≤0恒成立等价于-x -2y +1m ≤0,即1m ≤x +2y 恒成立.设z =x +2y ,作出不等式组表示的可行域如图所示,当目标函数z =x +2y 表示的直线经过点D (1,1)时取得最小值,最小值为1+2×1=3;当目标函数z =x +2y 表示的直线经过点B (1,2)时取得最大值,最大值为1+2×2=5.所以x +2y ∈[3,5],于是要使1m ≤x +2y 恒成立,只需1m ≤3,解得m ≥13或m <0,即实数m 的取值范围是(-∞,0)∪⎣⎡⎭⎫13,+∞.答案:(-∞,0)∪⎣⎡⎭⎫13,+∞。
【课标通用】2018届高考数学(理)一轮课件:24-不等关系与基本不等式(含答案)
考点53
考点54
试做真题
高手必备 萃取高招 对点精练
3.(2016 课标Ⅰ,理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A∩B=( ) 3 3 A. -3,B. -3, C.
3 1, 2 2
D.
3 ,3 2
2
【答案】 D 由 x2-4x+3<0,解得 1<x<3, 所以 A=(1,3).由 2x-3>0,解得 x> , 所以 B= 所以
>
1 -������ ������ ������ ,∴ < ������ -������
������ ������
D. <
1 . -������ ������ . ������
6.(2013 安徽,理 6)已知一元二次不等式 f(x)<0 的解集为 ������ ������ < -1 或������ > ,则 f(10x)>0 的解集为( ) A.{x|x<-1 或 x>-lg 2} C.{x|x>-lg 2}
专题二十四
不等关系与基本不等式
这一章包括了基本不等式、线性规划及推理与证明三个重要知识 点.基本不等式的考查可能会贯穿整个高考题型,作为工具解决某 些最值或者范围问题,但是需明确“一正二定三相等”的条件是否具 备.使用基本不等式往往会使解题过程简化.线性规划会在客观题 中命题,且命题概率很大,难度不大,题型特征明确,有较为固化的解 题步骤.
)
A.a+ <
B. ������<log2(a+b)<a+
1 ������
������ 2
2018届高考数学二轮复习 基本不等式及其应用专题
基本不等式及其应用专题[基础达标](20分钟45分)一、选择题(每小题5分,共20分)1.已知a,b∈R*且a+b=1,则ab的最大值等于()A.1B.14C.12D.22B【解析】由于a,b∈R*,则1=a+b≥2ab,得ab≤14,当且仅当a=b=12时等号成立.2.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则() A.a<v<ab B.v=abC.<v<a+b2D.v=a+b2A【解析】设甲、乙两地相距S,则平均速度v=2S S+S =2aba+b,又∵a<b,∴v=2aba+b >2abb+b=a.∵a+b>2ab,∴2aba+b−2ab<0,即v<ab,∴a<v<ab.3mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则1m +3n的最小值为()A. 4B. 12C. 16D. 6D【解析】直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则直线过圆心,即3m+n=2,则1 m +3n=1m+3n3m2+n2=3+n2m+9m2n≥3+2n2m·9m2n=6,当且仅当n2m=9m2n,m=13,n=1时取等号,则1m +3n的最小值为6.4x,y满足x+4y=4,则x+28y+4xy的最小值为()A.852B.24C.20D.18D【解析】由题意可得x=4-4y>0,y>0,则0<y<1.令2+6y=t,t∈(2,8),则y=t-26,所以x+28y+4xy=8+24y(4-4y)y=2+6y(1-y)y=t8-t×t-2=36t10t-t2-16=3610- t+16≥3610-8=18,当且仅当t=4时取等号,则x+28y+4xy的最小值为18.二、填空题(每小题5分,共25分)5.当x>1时,函数y=x+1x-1的最小值是.3【解析】因为x>1,y=x+1x-1=(x-1)+1x-1+1≥2(x-1)·1x-1+1=3,当且仅当x-1=1x-1,且x>1,即x=2时等号成立,故函数y的最小值为3.6.实数x,y满足x+2y=2,则3x+9y的最小值是.6【解析】利用基本不等式可得3x+9y=3x+32y≥23x·32y=23x+2y,∵x+2y=2,∴3x+9y≥23x+2y=232=6,当且仅当3x=32y,即x=1,y=12时,取等号,即3x+9y 的最小值为6.7P,Q分别是曲线y=x+4x与直线4x+y=0上的动点,则线段PQ长的最小值为.717 17【解析】由y=x+4x可得y=1+4x,若PQ长取最小值,则点P在与直线4x+y=0平行的切线上,且PQ垂直于直线4x+y=0,由y'=-4x2=-4,解得x=1或-1.当x=1时,点P(1,5),则点P到直线4x+y=0的距离为17=91717,即此时PQ=91717;当x=-1时,P(-1,-3),则点P到直线4x+y=0的距离为17=71717,即此时PQ=71717<91717,则线段PQ长的最小值为71717.8(a,b)在直线2x+3y-1=0上,则代数式2a +3b的最小值为.25【解析】由题意可得2a+3b=1,a>0,b>0,则2a +3b=2a+3b(2a+3b)=13+6ba+6a b ≥13+26ba·6ab=25,当且仅当a=b=15时取等号,所以代数式2a+3b的最小值为25.9.若不等式1x +41-x≥a对任意的x∈(0,1)恒成立,则a的最大值是.9【解析】由x∈(0,1),得1-x>0,1x +41-x=x+1-xx+4(x+1-x)1-x=5+1-xx+4x 1-x ≥5+21-xx×4x1-x=5+4=9,当且仅当1-xx=4x1-x,即x=13时,取等号,所以1x+41-x的最小值为9,所以a≤9,所以a的最大值为9.[高考冲关](15分钟30分)1.(5分f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的“上确界”,若a,b∈R*且a+b=1,则-12a −2b的“上确界”为()A.-92B.92C.14D.-4A【解析】因为12a +2b=12a+2b(a+b)=52+b2a+2ab≥52+2b2a·2ab=92,当且仅当b=2a=23时取等号,所以-12a−2b≤-92,即-12a−2b的“上确界”为-92.2.(5分S n为正项等比数列{a n}的前n项和,若S12-S6 S6-7·S6-S3S3-8=0,且正整数m,n满足a1a m a2n=2a53,则1m+8n的最小值是()A.75B.53C.95D.157B【解析】设等比数列{a n}的公比为q(q>0),则S12-S6S6=q6,S6-S3S3=q3,q6-7q3-8=0,解得q=2(舍负),则a1a m a2n=a13×2m+ 2n-2=2a53=a13×213,化简得m+2n=15,则1 m +8n=1151m+8n(m+2n)=11517+2nm+8mn≥11517+22nm·8mn=53,当且仅当m=3,n=6时取等号,所以1m +8n的最小值是53.3.(5分)若a>0,b>0,且1a +1b=ab,则a3+b3的最小值为.42【解析】因为a>0,b>0,所以1a +1b=ab≥ab,则ab≥2,所以a3+b3=(a+b)(a2-ab+b2)≥2·(2ab-ab)=2()3≥2(2)3=42,当且仅当a=b 时取等号,即a3+b3的最小值为42.4.(5分)已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC 面积S的最大值为.36 17【解析】由S=a2-(b-c)2得b2+c2-a2+S=2bc,则2bc cos A+12bc sin A=2bc,所以cos A=1-14sin A,代入cos2A+sin2A=1中解得sin A=817.又b+c=6≥2bc,则bc≤9,当且仅当b=c=3时取等号,所以△ABC面积S的最大值为12bc sin A≤12×9×817=3617.5.(5分x,y均为正数,且方程(x2+xy+y2)·a=x2-xy+y2成立,则a的取值范围是.1 3,1【解析】由(x2+xy+y2)·a=x2-xy+y2可得a=x2-xy+y2x+xy+y=1-2xyx+xy+y=1-2xy+1+yx,又x,y均为正数,所以xy +yx+1≥2+1=3,0<2xy+yx+1≤23,13≤1-2xy+yx+1<1,则a的取值范围是13,1.6.(5分2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则1a+1+2b的最小值为.3+222【解析】曲线y=cosπx+1(0<x<1)的对称中心12,1在直线2ax+by-1=0上,则a+b=1,1a+1+2b=121a+1+2b[(a+1)+b]=123+ba+1+2(a+1)b≥1 23+2ba+1·2(a+1)b=3+222,当且仅当ba+1=2(a+1)b时取等号,则1a+1+2b的最小值为3+222.。
2018年全国各地高考数学试题及解答分类大全(不等式)
取得最大值, zmax 3 2 2 0 6 .
第 2页 (共 3页)
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3
,
据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
第 1页 (共 3页)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
当且仅当
2a
23b
a 3b 6
【高三数学试题精选】2018年高考真题理科数学不等式归类汇编
2018年高考真题理科数学不等式归类汇编
5 3b,则a>b D若2a-2a=ab-3b,则a<b
【答案】A
【解析】若,必有.构造函数,则恒成立,故有函数在x >0上单调递增,即a>b成立.其余选项用同样方法排除.故选A 3【的最小值为_________
【答案】
【命题意图】本试题考查了线性规划最优解的求解的运用。
常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值。
【解析】做出做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最小,最小值为
14【2018高考江苏13】(5分)已知函数的值域为,若关于x 的不等式的解集为,则实数c的值为▲ .
【答案】9。
【考点】函数的值域,不等式的解集。
【解析】由值域为,当时有,即,
∴ 。
∴ 解得,。
∵不等式的解集为,∴ ,解得。
15【2018高考江苏14】(5分)已知正数满足则的取值范围是▲ .
【答案】。
【考点】可行域。
【解析】条可化为。
设,则题目转化为。
2018年高考理科数学平不等式100题(含答案解析)
2018年高考理科数学不等式100题(含答案解析)1.已知实数x ,y 满足约束条件,则z=的最大值为( )A .B .C .D .2.圆x 2+y 2+4x ﹣2y ﹣1=0上存在两点关于直线ax ﹣2by+1=0(a >0,b >0)对称,则+的最小值为( ) A .3+2B .9C .16D .183.设实数x ,y 满足约束条件,则z=x 2+y 2的最小值为( )A .B .10C .8D .54.设变量x ,y 满足约束条件,则目标函数z=x ﹣2y 的最小值为( )A .B .﹣3C .0D .15.已知实数,x y 满足1,30,220,x x y x y ≥⎧⎪+-≤⎨⎪--≤⎩则z x y =-的最大值为(A )-1 (B )13(C )1 (D )3 6.已知集合{}210A x x =-≥,{}210B x x =-≤,则A B =(A ){}1x x ≥- (B ){}1x x ≥ (C )112x x ⎧⎫-≤≤⎨⎬⎩⎭(D )112x x ⎧⎫≤≤⎨⎬⎩⎭7.若x ,y 满足03030y x y kx y ⎧⎪-+⎨⎪-+⎩≥≥≥,且2z x y =+的最大值为4,则k 的值为( ).A .32-B .32C .23-D .238.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为12 000元,生产1车皮乙种肥料产生的利润为7 000元,那么可产生的最大利润是( )A .29 000元B .31 000元C .38 000元D .45 000元 9.设集合{}|(1)(2)0A x x x =+-<,集合{}|13B x x =<<,则AB =( ). A .{}|13x x -<< B .{}|11x x -<<C .{}|12x x <<D .{}|23x x << 10.已知实数x ,y 满足⎪⎩⎪⎨⎧≤≤--≥+-k x 01y 3x 01y x ,若z=3x ﹣y 的最大值为3,则实数k 的值为( )A .﹣1B .1C .2D .311. 若集合A={x|02x 5x ≤-+},B={x||x|<3},则集合 A ∪B 为( ) A .{x|﹣5<x <3} B .{x|﹣3<x <2}C .{x|﹣5≤x <3}D .{x|﹣3<x≤2}12.若x ,y 满足约束条件,则目标函数z=x+y 的最大值为2,则实数a 的值为( )A .2B .1C .﹣1D .﹣2 13.已知集合A={x||x|>1},B={x|x 2﹣2x ﹣3≤0},则A∩B=( ) A .(﹣1,1) B .R C .(1,3] D .(﹣1,3]14.由直线x ﹣y+1=0,x+y ﹣5=0和x ﹣1=0所围成的三角形区域(包括边界)用不等式组可表示为( )A .⎪⎩⎪⎨⎧≥≤-+≤+-1x 05y x 01y x B .⎪⎩⎪⎨⎧≥≤-+≥+-1x 05y x 01y x C .⎪⎩⎪⎨⎧≤≥-+≥+-1x 05y x 01y x D .⎪⎩⎪⎨⎧≤≤-+≤+-1x 05y x 01y x 15.已知x >0,y >0,且3x+2y=xy ,若2x+3y >t 2+5t+1恒成立,则实数t 的取值范围( )A .(﹣∞,﹣8)∪(3,+∞)B .(﹣8,3)C .(﹣∞,﹣8)D .(3,+∞) 16.已知x ,y 满足不等式组,则z=﹣3x ﹣y 的最小值为( ) A .﹣3 B .﹣7 C .﹣6 D .﹣8 17.已知集合M={x|(x+1)(x ﹣4)<0},N={x|x|<3}则M ∩N=( ) A .(﹣3,﹣1) B .(﹣1,3) C .(3,4) D .(﹣1,4)18.设x ,y 满足约束条件,则z=3x ﹣2y 的最大值为( )A .1B .4C .8D .11 19.设集合M={x|x 2<x},N={x||x|<1},则( ) A .M ∩N=∅ B .M ∪N=MC .M ∩N=MD .M ∪N=R20.已知全集U=R ,集合A={x|3≤x <7},B={x|x 2﹣7x+10<0},则∁R (A ∩B )=( ) A .(﹣∞,3)∪(5,+∞) B .(﹣∞,3)∪[5,+∞) C .(﹣∞,3]∪[5,+∞)D .(﹣∞,3]∪(5,+∞)21.关于实数x ,y 的不等式组所表示的平面区域记为M ,不等式(x ﹣4)2+(y ﹣3)2≤1所表示的区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( ) A . B .C .D .22.设x ,y 满足⎪⎩⎪⎨⎧≤≥-+≤-2x 02y x 0y x ,则(x+1)2+y 2的最小值为( )A .1B . 29C .5D .9 23.设集合A={x|x 2﹣4x <0},B={x|log 2x >1},则A ∩B=( ) A .(2,4) B .(0,2) C .(1,4) D .(0,4) 24.已知x >0,y >0,且4x+y=xy ,则x+y 的最小值为( ) A .8 B .9 C .12 D .16 25.设不等式组⎪⎪⎩⎪⎪⎨⎧≤-≥+≤-0y 2y x 2y x 所表示的区域为M ,函数y=﹣2x 1-的图象与x 轴所围成的区域为N ,向M 内随机投一个点,则该点落在N 内的概率为( ) A . π2B .4π C . 8πD . 16π 26.若实数x ,y 满足约束条件 ⎪⎩⎪⎨⎧≥+-≤-≥-+01y x 401x 01y x 则目标函数z=3x 1y ++的最大值为( )A .41B .32C .23D .2 27.已知集合M={x|1+x≥0},N={x|x14->0},则M∩N=( )A .{x|﹣1≤x <1}B .{x|x >1}C .{x|﹣1<x <1}D .{x|x≥﹣1}28.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+-03y x 301y x 01y x 则目标函数z=4x+y 的最大值为( )A .4B .11C .12D .14 29.设集合A={x|x 2﹣x ﹣6>0},B={x|﹣3≤x≤1},则A∩B=( ) A .(﹣2,1] B .(﹣3,﹣2] C .[﹣3,﹣2)D .(﹣∞,1]∪(3,+∞)30.已知集合A={x|2x 1x -+<0},集合B=N ,则A∩B=( ) A .{﹣1,0,1} B .{1} C .{0,1}D .{﹣1,0}31.设正实数x ,y ,z 满足x 2﹣3xy+4y 2﹣z=0.则当取得最大值时,的最大值为( )A .0B .1C .D .3 32.设集合A={x||x ﹣1|<2},B={y|y=2x,x ∈[0,2]},则A ∩B=( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4)33.设集合U={0,1,2,3,4,5},A={1,2},B={x ∈Z|x 2﹣5x+4<0},则∁U (A ∪B )=( ) A .{0,1,2,3} B .{5} C .{1,2,4} D .{0,4,5}34.设实数x ,y 满足约束条件⎪⎩⎪⎨⎧-≥-≥≥-x 2y 2x y 0y 2x ,则z=2x+y 的最大值为( )A .10B .8C .310D .3835. 由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.36.已知集合A={x|x2﹣3x+2<0},B={x|2x>4},则()A.A⊆B B.B⊆A C.A∩∁R B=R D.A∩B=∅37.设m=﹣,n=﹣,p=﹣,则m,n,p的大小顺序为()A.m>p>n B.p>n>m C.n>m>p D.m>n>p38.若实数x,y满足不等式,且x+y的最大值为9,则实数m=()A.﹣2 B.﹣1 C.1 D.239.已知集合A=x|x2﹣2x﹣3>0},集合B={x|0<x<4},则(∁R A)∩B=()A.(0,3] B.[﹣1,0)C.[﹣1,3] D.(3,4)40.已知关于x的函数f(x)=x2﹣2,若点(a,b)是区域内的随机点,则函数f(x)在R上有零点的概率为()A.B. C.D.41.设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B=()A.(﹣∞,1]∪[3,+∞)B.[1,3] C.D.42.设全集U=R,集合A={x|1og2x≤2},B={x|(x﹣3)(x+1)≥0},则(∁U B)∩A=()A.(﹣∞,﹣1] B.(﹣∞,﹣1]∪(0,3)C.[0,3)D.(0,3)43.若实数x,y满足的约束条件,将一颗骰子投掷两次得到的点数分别为a,b ,则函数z=2ax+by 在点(2,﹣1)处取得最大值的概率为( ) A . B . C . D . 44.设点P (x ,y )在不等式组表示的平面区域上,则z=的最小值为( ) A .1 B . C .2 D .45.设集合A={﹣1,0,1,2},B={x|x 2+2x ﹣3<0},则A ∩B=( ) A .{﹣1} B .{﹣1,0} C .{﹣1,0,1} D .{﹣2,﹣1,0}46.已知集合{}|12A x x =-<,{}2|1og 1B x x =>,则A B =( ). A .(1,3)-B .(0,3)C .(2,3)D .(1,4)-47.已知全集U =R ,集合{}1A x y x ==-,{}220B x x x =-<,则A B =( ).A .{}0x x >B .{}0x x ≥C .{}01x x <<D .{}12x x <≤48.记不等式组表示的平面区域为D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则当∠APB 的最大时,cos ∠APB 为( ) A . B .C .D .49.已知全集U=R ,集合A={x|x+1<0},B={x|x 2+3x <0},则 (∁U A )∩B 等于( ) A .{x|﹣3<x <0} B .{x|﹣1≤x <0}C .{x|x <﹣1}D .{x|﹣1<x <0}50.若a=20.5,b=log π3,c=ln ,则( ) A .b >c >aB .b >a >cC .a >b >cD .c >a >b已知全集U为实数集,集合A={x|x2﹣2x﹣3<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合为()A.{x|1≤x<3} B.{x|x<3} C.{x|x≤﹣1} D.{x|﹣1<x<1}52.函数y=2x+的最小值为()A.1 B.2 C.2D.453.已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1} 54.已知函数f(x)=ax3+bx2+cx+d(a<b),在R上是单调递增函数,则的最小值是()A.3 B.4 C.5 D.655.已知集合A={x|x>1},B={x|x2﹣x﹣2<0},则A∩B=()A.{x|﹣1<x<2} B.{x|x>﹣1} C.{x|﹣1<x<1} D.{x|1<x<2}56.已知不等式组表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A、B,当∠APB最大时,•的值为()A.2 B.C.D.357.设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.[﹣1,2] B.[﹣2,1] C.[﹣3,﹣2] D.[﹣3,1]已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得=4a 1,则+的最小值为( ) A .B .C .2D .59.设全集U=R ,集合,则集合A∩(∁U B )=( )A .{x|x >0}B .{x|x <﹣3}C .{x|﹣3<x ≤﹣1}D .{x|﹣1<x <0} 60. 已知集合,则A∩B=( )A .(1,+∞)B .[1,+∞)C .(﹣∞,0]∪(1,+∞)D .[0,1] 61.已知a >0,b >0,且2a+b=4,则的最小值为( )A .B .C .2D .4 62.已知集合A=x|x 2﹣2x ﹣3>0},集合B={x|0<x <4},则(∁R A )∩B=( ) A .(0,3] B .[﹣1,0) C .[﹣1,3] D .(3,4)63.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≤--≥-0y 03y x 30y 2x 3表示的平面区域的面积是( )A .1B .23C .2D .25 64.已知y x ,均为非负实数,且满足⎩⎨⎧≤+≤+241y x y x ,则y x z 2+=的最大值为( )A .1B .21C .35D .2 65.若a >b >0,c <d <0,则一定有( ) A .ad >bc B .ad <bcC .ac >bdD .ac <bd66.已知集合A={x|(x﹣2)(x+1)≤0,x∈R},B={x|lg(x+1)<1,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}已知x 、y 满足以下约束条件5503x y x y x +⎧⎪-+⎨⎪⎩≥≤≤,使(0)z x ay a =+>取得最小值的最优解有无数个,则a 的值为__________.68.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-⎧⎪--⎨⎪⎩≤≤≥则实数m 的取值范围为__________.69.已知实数x 、y 满足1|1|y y x ⎧⎨-⎩≤≥,则2x y +的最大值是__________. 70.已知O 是坐标原点,点1()2,A -,若点(,)M x y 为平面区域101010x y y x y -⎧⎪⎨⎪⎩≥≥≤++++,上的一个动点,设2z x y =-+,则z 的最大值为____________.71.已知点(2,)P t 在不等式组4030x y x y --⎧⎨+-⎩≤≤,表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为__________.72.某科技小组由学生和教师组成,人员构成同时满足以下三个条件:(i )男学生人数多于女学生人数.(ii )女学生人数多余教师人数.(iii )教师人数的两倍多余男学生人数.①若教师人数为5,则女学生人数的最大值为__________.②该小组人数的最小值为__________.73.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (万元)与机器运转时间x (年数,*x ∈N )的关系为21825y x =-+-,则当每台机器__________年时,年平均利润最大,最大值是__________万元.74.不等式|2x ﹣1|+|2x+9|>10的解集为 .若x >0,y >0,x+4y+2xy=7,则x+2y 的最小值是 . 76. 已知a >0,b >0,c >2,且a+b=2,则2c 52c ab c b ac -+-+的最小值为 . 77. 设不等式⎪⎩⎪⎨⎧≤+≤-≥4y x 0y x 1x 表示的平面区域为M ,若直线y=kx ﹣2上存在M 内的点,则实数k 的取值范围是 .78.若实数x ,y 满足 xy+3x=3(0<x <21),则3y 1x 3-+的最小值为 . 79.已知角 α,β满足22ππ-<α-β<, 0<α+β<π,则3α-β的取值范围是 . 80.已知函数f (x )=(x 2+ax+b )e x ,当b <1时,函数f (x )在(﹣∞,﹣2),(1,+∞)上均为增函数,则2a 2b -+的取值范围是 . 81.设函数f (x )=|x ﹣a|+x 9(a ∈R ),若当x ∈(0,+∞)时,不等式f (x )≥4恒成立,则的取值范围是 .82.已知实数a ,b 满足:a≥21,b ∈R ,且a+|b|≤1,则a 21+b 的取值范围是 . 83.已知a >b >0,那么a 2+)b a (b 1-的最小值为 . 84.若(ax 2+)6的展开式中x 3项的系数为20,则a 2+b 2的最小值为 .85. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01y x 02y 2x 02y x 2,则z=(a 2+1)x ﹣3(a 2+1)y 的最小值是﹣20,则实数a= . 86. 若实数x ,y 满足不等式组,则z=2|x|+y 的最大植为 .87.已知不等式组则z=的最大值为 . 88.设P (x ,y )为函数y=x 2﹣1图象上一动点,记,则当m 最小时,点P 的坐标为 .89.若变量x ,y 满足约束条件,且z=2x+y 的最小值为﹣6,则k= . 90.已知函数,若正实数a ,b 满足f (4a )+f (b ﹣9)=0,则的最小值为 .91. 已知实数x ,y 满足 ⎪⎩⎪⎨⎧≤-≥+≤--02y 03x 01y x ,则 4x 2y --的最大值为 . 92.已知log 2x+log 2y=1,则x+y 的最小值为 .93.点M (x ,y )是不等式组表示的平面区域Ω内的一动点,且不等式2x ﹣y+m ≥0总成立,则m 的取值范围是 .94.设x ,y 满足约束条件,若y=zx+z+3,则实数z 的取值范围为 .95.a ,b 为正数,给出下列命题:①若a 2﹣b 2=1,则a ﹣b <1; ②若﹣=1,则a ﹣b <1;③e a ﹣e b =1,则a ﹣b <1;④若lna ﹣lnb=1,则a ﹣b <1.期中真命题的有 .96.设正实数y x ,满足1=+y x ,则xy y x ++22的取值范围为97. 已知实数x ,y 满足条件⎪⎩⎪⎨⎧≤-≥-+≤-03y 05y x 0y x ,若不等式m (x 2+y 2)≤(x+y )2恒成立,则实数m的最大值是 .98.设数列{}n a 的首项1()a a a =∈R ,且13,34,3n n n n n a a a a a +->⎧=⎨-+⎩≤时,1m =,2,3,.Ⅰ若01a <<,求2a ,3a ,4a ,5a .Ⅱ若04n a <<,证明:104n a +<<.ⅡⅠ若02a <≤,求所有的正整数k ,使得对于任意*n ∈N ,均有n k n a a +=成立. 99.某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其它费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元.(1)把全程运输成本y (元)表示为速度x (海里/小时)的函数.(2)为使全程运输成本最小,轮船应以多大速度行驶?100.设全集是实数集R ,A={x|2x 2﹣7x+3≤0},B={x|x 2+a <0}.(1)当a=﹣4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B=B ,求实数a 的取值范围.答案1.A【考点】简单线性规划.【分析】利用分式函数的性质,转化为直线的斜率,利用数形结合即可得到结论.【解答】解:由约束条件得到可行域如图:则z==3﹣,则z的几何意义是区域内的点到定点M(﹣1,﹣1)的斜率的最小值的相反数与3的和,由图象可知区域边界点A(1.5,2)连接的直线斜率最小为,所以z的最大值为3﹣=;故选:A.2.D【考点】直线与圆的位置关系.【分析】圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+1=0(a>0,b>0)对称,说明直线经过圆心,推出a+b=,代入+,利用基本不等式,确定最小值,推出选项.【解答】解:由圆的对称性可得,直线ax﹣2by+1=0必过圆心(﹣2,1),所以a+b=.所以+=2(+)(a+b)=2(5++)≥2(5+4)=18,当且仅当=,即2a=b时取等号,故选D.3.B【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论.【解答】解:实数x,y满足约束条件的可行域为:z=x2+y2的几何意义是可行域的点到坐标原点距离的平方,显然A到原点距离的平方最小,由,可得A(3,1),则z=x2+y2的最小值为:10.故选:B.4.A【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义求解最小值即可.【解答】解:画出满足条件的平面区域,如图示:y x O,由,解得A (,),由z=x ﹣2y 得:y=x ﹣z ,平移直线y=x ,结合图象直线过A (,)时,z 最小,z 的最小值是:﹣, 故选:A . 5.C【命题意图】本小题主要考查线性规划等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,考查直观想象、数学运算等.【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的三个顶点分别为54(1,0),(1,2),(,)33,把三个点分别代入z x y =-检验得:当1,0x y ==时,z 取得最大值1,故选D.【错选原因】错选A :误把z -的最大值当成z x y =-的最大值;错选B :误把z 的最小值当成z x y =-的最大值;错选C :误把z -的最小值当成z x y =-的最大值.6.D【命题意图】本小题主要考查解不等式、交集等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算.【试题简析】因为1{|}2A x x =≥,{|11}B x x =-≤≤,所以1{|1}2AB x x =≤,故选D.【错选原因】错选A :误求成A B ;错选B :集合B 解错,解成{}11或B x x x =≤-≥;错选C :集合A 解错,解成1{|}2A x x =≤.7.A如图,取4z =得直线方程24y x =-+,分别画出3y x =+,0y =以及24y x =-+, 由图可知,当3y kx =+过点(2,0)时,2y x z =-+通过点(2,0)时截距最大,即z 取得最大值,代入得023k =+,解得32k =-. 故选A .8.C9.A∵{}|12A x x =-<<,{}|13B x x =<<,{}|13A B x x =-<<.故选A .10.B【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到a 的值.【解答】解:不等式组,对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z,则由图象可知当直线y=3x﹣z经过点A时直线y=3x﹣z的截距最小,此时z最大,为3x﹣y=3.,解得,即A(1,0),此时点A在x=k,解得k=1,故选:B.11.C【考点】并集及其运算.【分析】分别化简集合A,B,再由并集的含义即可得到.【解答】解:集合={x|﹣5≤x<2},B={x||x|<3}={x|﹣3<x<3},则A∪B={x|﹣5≤x<3}.故选:C.12.A【考点】简单线性规划.【分析】先作出不等式组的图象,利用目标函数z=x+y的最大值为2,求出交点坐标,代入3x﹣y﹣a=0即可.【解答】解:先作出不等式组的图象如图,∵目标函数z=x+y的最大值为2,∴z=x+y=2,作出直线x+y=2,由图象知x+y=2如平面区域相交A,由得,即A(1,1),同时A(1,1)也在直线3x﹣y﹣a=0上,∴3﹣1﹣a=0,则a=2,故选:A.13.C【考点】1E:交集及其运算.【分析】先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x||x|>1}={x|x>1或x<﹣1},B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},∴A∩B={x|1<x≤3}=(1,3].故选:C.14.A【考点】简单线性规划.【分析】作出对应的平面区域,根据二元一次不等式组与平面之间的关系即可得到结论.【解答】解:作出对应的平面区域,则三角形区域在直线x=1的右侧,∴x≥1,在x﹣y+1=0的上方,则x﹣y+1≤0,在x+y﹣5=0的下方,则x+y﹣5≤0,则用不等式组表示为,故选:A.15.B【考点】函数恒成立问题;基本不等式在最值问题中的应用.【分析】利用“1”的代换化简2x+3y转化为(2x+3y)()展开后利用基本不等式求得其最小值,然后根据2x+3y>t2+5t+1求得2x+3y的最小值,进而求得t的范围.【解答】解:∵x>0,y>0,且3x+2y=xy,可得: =1,∴2x+3y=(2x+3y)()=13+≥13+2=25.当且仅当x=y=5时取等号.∵2x+3y>t2+5t+1恒成立,∴t2+5t+1<25,求得﹣8<t<3.故选:B.16.B【考点】简单线性规划.【分析】由已知不等式组画出可行域,利用目标函数的几何意义求最小值.【解答】解:已知不等式组表示的可行域如图:由z=﹣3x﹣y变形为y=﹣3x﹣z,当此直线经过图中的C时,在y轴的截距最大,z最小,由得到C(2,1),所以z的最小值为﹣3×2﹣1=﹣7;故选B.17.B【考点】交集及其运算.【分析】化简集合M、N,再根据交集的定义写出M∩N.【解答】解:集合M={x|(x+1)(x﹣4)<0}={x|﹣1<x<4},N={x||x|<3}={x|﹣3<x<3}∴M∩N={x|﹣1<x<3}=(﹣1,3).故选:B.18.D【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设利用数形结合即可的得到结论.【解答】解:x,y满足约束条件的可行域如图:z=3x﹣2y得y=x﹣,平移y=x﹣,当y=x﹣经过可行域的A时,z取得最大值,由,解得A(5,2).此时z的最大值为:3×5﹣2×2=11.故选:D.19.C【考点】集合的表示法;集合的包含关系判断及应用.【分析】解x2<x可得集合M={x|0<x<2},解|x|<1可得集合N,由交集的定义,分析可得答案.【解答】解:x2<x⇔0<x<1,则集合M={x|0<x<1},|x|<1⇔﹣1<x<1,则集合N={x|﹣1<x<1},则M∩N={x|0<x<1}=M,故选C.20.B【考点】交、并、补集的混合运算.【分析】先计算集合B,再计算A∩B,最后计算C R(A∩B).【解答】解:∵B={x|2<x<5},∴A∩B={x|3≤x<5},∴C R(A∩B)=(﹣∞,3)∪[5,+∞).故答案选B.【点评】本题主要考查了集合的交,补混合运算,注意分清集合间的关系.21.A【考点】几何概型.【分析】由题意知本题是一个几何概型,分别求出对应的面积,即可得到结果.【解答】解:关于实数x,y的不等式组所表示的平面区域记为M,面积为=8,不等式(x﹣4)2+(y﹣3)2≤1所表示的区域记为N,且满足不等式组,面积为,∴在M内随机取一点,则该点取自N的概率为=,故选A.22.B【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据两点间的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(x+1)2+y2的几何意义是区域内的点到定点A(﹣1,0)的距离的平方,由图象知A到直线x+y﹣2=0的距离最小,此时距离d==,则距离的平方d2=()2=,故选:B.【点评】本题主要考查线性规划的应用,根据两点间的距离公式是解决本题的关键.23.A【考点】1E :交集及其运算.【专题】37 :集合思想;4O :定义法;5J :集合.【分析】化简集合A 、B ,根据交集的定义写出A ∩B .【解答】解:集合A={x|x 2﹣4x <0}={x|0<x <4},B={x|log 2x >1}={x|x >2},则A ∩B={x|2<x <4}=(2,4).故选:A .24.B 414141,()()59+=+=++=++≥x y x y x y y x y x y x,当且仅当3,6==x y 时取等号.故选B.25.B【分析】作出平面区域,根据面积比得出概率.【解答】解:作出图形如图所示:则区域M为△ABC,区域N为单位圆的下半圆,点O到直线x+y=﹣和直线x﹣y=的距离均为=1,故半圆与AB,BC相切.∴向M内随机投一个点,则该点落在N内的概率为P===.故选B.【点评】本题考查了几何概型的概率计算,属于基础题.26.C【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用斜率的几何意义,进行求解即可.【解答】解:作出不等式组对应的平面区域,z=的几何意义是区域内的点到点D(﹣3,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,5),则z=的最大值z===,故选:C.【点评】本题主要考查线性规划的应用,根据两点之间的斜率公式以及数形结合是解决本题的关键.27.A【考点】交集及其运算.【分析】分别求出集合M和N,由此能求出M∩N的值.【解答】解:∵集合M={x|1+x≥0}={x|x≥﹣1},N={x|>0}={x|x<1},∴M∩N={x|﹣1≤x<1}.故选:A.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.28.B【考点】简单线性规划.【分析】利用线性规划的内容作出不等式组对应的平面区域,然后由z=4x+y得y=﹣4x+z,根据平移直线确定目标函数的最大值.【解答】解:作出不等式组对应的平面区域如图:由z=4x+y得y=﹣4x+z,平移直线y=﹣4x+z,由图象可知当直线经过点A时,直线的截距最大,此时Z最大,由,解得,即A(2,3),代入z=4x+y得最大值为z=4×2+3=11.故选:B.【点评】本题主要考查二元一次不等式组表示平面区域的知识,以及线性规划的基本应用,利用数形结合是解决此类问题的关键.29.C【考点】交集及其运算.【分析】化简集合A,再由集合的交集运算即可得到所求.【解答】解:集合A={x|x2﹣x﹣6>0}=(﹣∞,﹣2)∪(3,+∞),B={x|﹣3≤x≤1}=[﹣3,1],则A∩B=[﹣3,﹣2).故选:C.【点评】本题考查集合的交集运算,同时考查二次不等式的解法,属于基础题.30.C【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩B即可.【解答】解:集合A={x|<0}={x|﹣1<x<2},集合B=N,则A∩B={0,1}.故选:C.【点评】本题考查了集合的化简与运算问题,是基础题目.31.B【考点】7F:基本不等式.【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.32.C【考点】1E:交集及其运算.【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C33.D【考点】交、并、补集的混合运算.【分析】求出集合B中不等式的解集,找出解集中的整数解确定出B,求出A与B的并集,找出全集中不属于并集的元素,即可求出所求.【解答】解:集合B中的不等式x2﹣5x+4<0,变形得:(x﹣1)(x﹣4)<0,解得:1<x<4,∴B={2,3},∵A={1,2},∴A∪B={1,2,3},∵集合U={0,1,2,3,4,5},∴∁∪(A∪B)={0,4,5}.故选D.34.A【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义,求解z的最大值即可.【解答】解:约束条件,画出可行域,结合图象可得当目标函数z=2x+y过点A时,目标函数取得最大值.由,解得A(4,2),则z=2x+y的最大值为10.故选:A.【点评】本题考查线性规划的应用,考查数形结合思想以及计算能力.35.D【考点】几何概型;简单线性规划.【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.36.C【考点】交集及其运算.【分析】化简集合A,B,再判断集合之间的关系.【解答】解:由x2﹣3x+2<0即(x﹣1)(x﹣2)<0,解得1<x<2,故A=(1,2),由2x>4=22,解得x>2,故B=(2,+∞),∴A∩B=∅,故选:D37.D【考点】不等关系与不等式.【分析】不妨设m>n,由此得出m>n,同理得出n>p,即可得出m、n、p的大小顺序.【解答】解:∵m=﹣>0,n=﹣>0,p=﹣>0,不妨设m>n,则﹣>﹣,∴11﹣2>13﹣2,∴>1+,∴42>31+2,∴11>2,∴121>120,∴m>n,同理n>p;∴m、n、p的大小顺序是m>n>p.故选:D.38.C【考点】简单线性规划.【分析】先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m值即可.【解答】解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2x﹣y﹣3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入x﹣my+1=0得m=1,故选C.39.A【考点】交、并、补集的混合运算.【分析】化简集合A,根据补集与交集的定义进行计算即可.【解答】解:集合A=x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},集合B={x|0<x<4},∴∁R A={x|﹣1≤x≤3},∴(∁R A)∩B={x|0<x≤3}=(0,3].故选:A.40.B【考点】几何概型.【分析】根据条件求出函数有零点的取值范围,利用几何概型的概率公式,求出相应的面积即可得到结论.【解答】解:若函数f(x)在R上有零点,则满足判别式△=4b﹣4a2≥0,即b>a2区域的面积S==18,由,解得x=2,y=4,即(2,4),则函数f(x)在R上有零点,区域的面积S===,∴根据几何概型的概率公式可知函数f(x)在R上有零点的概率为,故选:B.41.D【考点】并集及其运算.【分析】先分别求出集合A和B,由此能求出A∪B.【解答】解:∵集合A={x|x2﹣4x+3≥0}={x|x≤1或x≥3},B={x|2x﹣3≤0}={x|x≤},∴A∪B={x|x或x≥3}=(﹣∞,]∪[3,+∞).故选:D.42.D【考点】交、并、补集的混合运算.【分析】根据题意,先求出集合A,B,进而求出B的补集,进而根据交集的定义,可得答案.【解答】解:∵集合A={x|1og2x≤2}=(0,4],B={x|(x﹣3)(x+1)≥0}=(﹣∞,﹣1]∪[3,+∞),∴C U B=(﹣1,3),∴(C U B)∩A=(0,3),故选:D【点评】本题考查集合混合运算,注意运算的顺序,其次要理解集合交、并、补的含义.43.D【考点】几何概型;简单线性规划.【分析】利用古典概型概率计算公式,先计算总的基本事件数N,再计算事件函数z=2ax+by在点(2,﹣1)处取得最大值时包含的基本事件数n,最后即可求出事件发生的概率.【解答】解:画出不等式组表示的平面区域,∵函数z=2ax+by在点(2,﹣1)处取得最大值,∴直线z=2ax+by的斜率k=﹣≤﹣1,即2a≥b.∵一颗骰子投掷两次分别得到点数为(a,b),则这样的有序整数对共有6×6=36个其中2a≥b的有(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共30个则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为=.故选:D.44.D【分析】作出不等式组对应的平面区域,利用数形结合以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,z==则z的几何意义是区域内的点到点D(1,0)的距离,由图象知D到直线2x﹣y=0的距离最小,此时d==,故选:D【点评】本题主要考查线性规划的应用以及距离的求解,利用数形结合以及点到直线的距离公式是解决本题的关键.45.B【分析】分别求出集合A,B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={﹣1,0,1,2},B={x|x 2+2x ﹣3<0}={x|(x ﹣1)(x+3)<0}={x|﹣3<x <1},∴A ∩B={x|﹣1<x <0}={﹣1,0}.故选:B .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.46.C{}{}|1|213A x x x x =-<=-<<,{}{}2log 12B x x x x =>=>, ∴{}23AB x x =<<.故选C .47.A ∵{}1A x x =≥,{}02B x x =<<,∴{}0AB x x =>,选择A .48.D【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据数形结合求确定当∠PAB 最大时点P 的位置,利用余弦函数的倍角公式,即可求出结论.【解答】解:作出不等式组表示的平面区域D ,如图所示, 要使∠APB 最大,则∠OPB 最大,∵sin ∠OPB==, ∴只要OP 最小即可.则P 到圆心的距离最小即可,由图象可知当OP 垂直直线3x+4y ﹣10=0,此时|OP|===2,|OA|=1, 设∠APB=α,则∠APO=,即sin ==, 此时cosα=1﹣2sin 2=1﹣2×()2=1﹣=,即cos ∠APB=.故选:D .【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键,要求熟练掌握两角和的倍角公式.49.B【考点】交、并、补集的混合运算.【分析】先化简集合A、B,求出∁U A,再计算∁U A)∩B.【解答】解:∵全集U=R,集合A={x|x+1<0}={x|x<﹣1},∴∁U A={x|x≥﹣1},又B={x|x2+3x<0}={x|﹣3<x<0},(∁U A)∩B={x|﹣1≤x<0}.故选:B.50.C【考点】对数值大小的比较.【分析】利用对数函数的单调性即可得出.【解答】解:∵a=20.5,>1,0<b=logπ3<1,c=ln<0,∴a>b>c.故选:C.51.A【考点】Venn图表达集合的关系及运算.【分析】由韦恩图中阴影部分表示的集合为A∩(∁R B),然后利用集合的基本运算进行求解即可.【解答】解:A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},由韦恩图中阴影部分表示的集合为A∩(∁U B),∴A∩(∁U B)={x|1≤x<3},故选:A.52.C【考点】基本不等式.【分析】直接利用基本不等式化简求解即可.【解答】解:函数y=2x+≥2=2,当且仅当x=时,等号成立.故选:C.53.B【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:1<x<3,即B={x|1<x<3},∵A={x|x>2},∴A∩B={x|2<x<3},故选:B.54.B【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用.【分析】求出函数的导数,得到c≥,a>0,根据基本不等式的性质求出代数式的最小值即可.【解答】解:f′(x)=3ax2+2bx+c,若函数f(x)在R上是单调递增函数,则,解得:c≥,a>0,故≥=≥=,当且仅当3a=2b﹣3a即b=3a时“=”成立,此时的最小值是==4,故选:B.【点评】本题考查了求函数的单调性问题,考查基本不等式的性质,是一道中档题.55.D【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出B中不等式的解集,找出A与B的交集即可.【解答】解:x2﹣x﹣2<0,即为(x﹣2)(x+1)<0,解的﹣1<x<2,即A={x|﹣1<x<2},又A={x|x>1},则A∩B={x|1<x<2},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.56.B【考点】平面向量数量积的运算;简单线性规划.【专题】计算题;平面向量及应用.【分析】作出不等式组对应的平面区域,根据数形结合求确定当α最小时,P的位置,利用向量的数量积公式,即可得到结论.【解答】解:作出不等式组对应的平面区域如图,要使∠APB最大,则P到圆心的距离最小即可,由图象可知当OP垂直直线x+y﹣2=0,此时|OP|==2,|OA|=1,设∠APB=α,则sin=,=此时cosα=,•==.故选:B【点评】本题主要考查线性规划的应用,考查学生分析解决问题的能力,利用数形结合是解决本题的关键.57.B【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.【解答】解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线,作出不等式组对应的平面区域如图:则A(1,1),B(2,4),∵z=ax+y的最大值为2a+4,最小值为a+1,∴直线z=ax+y过点B时,取得最大值为2a+4,经过点A时取得最小值为a+1,若a=0,则y=z,此时满足条件,若a>0,则目标函数斜率k=﹣a<0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≥k BC=﹣1,即0<a≤1,若a<0,则目标函数斜率k=﹣a>0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≤k AC=2,即﹣2≤a<0,综上﹣2≤a≤1,故选:B.【点评】本题主要考查线性规划的应用,根据条件确定A,B是最优解是解决本题的关键.注意要进行分类讨论.58.B【考点】等比数列的通项公式.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】由正项等比数列通项公式结合已知条件求出q=2,再由,求出m+n=6,由此利用均值定理能求出结果.【解答】解:∵正项等比数列{a n}满足:a7=a6+2a5,∴,整理,得q2﹣q﹣2=0,又q>0,解得,q=2,∵存在两项a m,a n使得,∴,整理,得2m+n﹣2=16,即m+n=6,∴,当且仅当=取等号,但此时m,n∉N*.又m+n=6,所以只有当m=4,n=2时,取得最小值是.故选:B.【点评】本题考查代数式的最小值的求法,是中档题,解题时要认真审题,注意正项等比数列的性质和均值定理的合理运用.59.D【考点】交、并、补集的混合运算.【分析】分别求出集合A,∁U B,从而求出其交集.【解答】解:由<0,即x(x+3)<0,解得﹣3<x<0,则A={x|﹣3<x<0},∵B={x|x≤﹣1},∴∁U B={x|x>﹣1},∴A∩(∁U B)={x|﹣1<x<0},故选:D60.A【考点】交集及其运算.【专题】计算题;函数思想;定义法;集合.【分析】先分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合,∴A={x|x≤0或x>1},B={y|y≥1},∴A∩B=(1,+∞).故选:A.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.61.B【考点】7F:基本不等式.【分析】由4=2a+b可求ab的范围,进而可求的最小值【解答】解:∵a>0,b>0,且4=2a+b∴ab≤2∴∴的最小值为故选B62.A【考点】1H:交、并、补集的混合运算.【分析】化简集合A,根据补集与交集的定义进行计算即可.【解答】解:集合A=x|x 2﹣2x ﹣3>0}={x|x <﹣1或x >3},集合B={x|0<x <4},∴∁R A={x|﹣1≤x ≤3},∴(∁R A )∩B={x|0<x ≤3}=(0,3].故选:A .63.B【考点】简单线性规划.【分析】由约束条件作出可行域,求出三角形的顶点坐标,再由三角形的面积公式求解. 【解答】解:由约束条件作出可行域如图, 联立,解得B (2,3),∴平面区域的面积S=. 故选:B .64.D试题分析:如下图所示,阴影部分为),(y x 表示的可行域.。
最新-2018年高考数学试题分项版解析专题18 不等式(教师版) 理 精品
2018年高考试题分项版解析数学(理科)专题18 不等式(教师版)一、选择题:1. (2018年高考广东卷理科5)已知变量x ,y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为( )A.12B.11C.3D.-13. (2012年高考福建卷理科5)下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+4. (2018年高考福建卷理科9)若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23D .25. (2018年高考辽宁卷理科8)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )(A) 20 (B) 35 (C) 45 (D) 556.(2018年高考辽宁卷理科12)若[0,)x ∈+∞,则下列不等式恒成立的是( ) (A)21xe x x ++ (211)124x x <-+(C)21cos 12x x -…(D)21ln(1)8x x x +-…7.(2018年高考江西卷理科8)某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,508.(2018年高考湖南卷理科8)已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 ( )A . B.9. (2018年高考四川卷理科9)某公司生产甲、乙两种桶装产品。
2018年高考数学—不等式专题
不等式(必修 5P80A3 改编 )若对于 x 的一元二次方程 x2-(m+ 1)x- m= 0 有两个不相等的实数根,则 m 的取值范围是 ________.分析由题意知= [(m+ 1)]2+>即2++>,4m 0. m 6m 1 0解得 m>- 3+2 2或 m<- 3-2 2.答案(-∞,- 3-2 2)∪(-3+2 2,+∞ )x- y+1≥0,(2016 ·全国Ⅱ卷 )若x,y 知足拘束条件x+ y-3≥0,则z=x- 2y 的最小值为x- 3≤ 0,________.分析画出可行域,数形联合可知目标函数的最小值在直线x= 3与直线 x-y+1=0 的交点 (3, 4)处获得,代入目标函数z=x-2y获得- 5.答案-52x- y+1≥0,(2016 ·全国Ⅲ卷 )设 x, y 知足拘束条件x-2y-1≤0,则=z 2x x≤1,+3y-5 的最小值为 _____.分析画出不等式组表示的平面地区如图中暗影部分所示.由题意可知,2 5 z当直线 y=-3x+3+3过点 A(-1,-1)时,z获得最小值,即 z min=2×(- 1)+3×(-1)-5=- 10.2x - y ≤ 0,(2017 ·西安检测 )已知变量 x , y 知足 x -2y + 3≥ 0,x ≥0,则 z =( 2)2x +y的最大值为 ________.分析作出不等式组所表示的平面地区,如图暗影部分所示.令 m =2x +y ,由图象可知当直线 y =- 2x + m 经过点 A 时,直线 y =- 2x +m 的纵截距最大,此时 m 最大,故 z 最大 .由2x -y =0,x =1,x - 2y +3=0, 解得y =2,即 A(1,2).代入目标函数 z =( 2)2x +y得, z = ( 2)2×1+2=4.答案42x -y ≤0, (2016·北京卷 若 , 知足 x + y ≤ 3, 则 2x + y 的最大值为 ())x yx ≥0,A.0B.3C.4D.5分析画出可行域,如图中暗影部分所示,令 z = 2x +y ,则 y =- 2x + z ,当直线 y =- 2x + z 过点 A(1,2)时, z 最大, z max = 4.答案 Cx +y ≤2, (2016 ·山东卷 )若变量 x ,y 知足 2x -3y ≤ 9,则 x 2+ y 2的最大值是 ()x ≥0,A.4B.9C.10D.12分析作出不等式组所表示的平面地区,如图(暗影部分 )所示,x 2+y 2 表示平面地区内的点到原点的距离的平方,由图易知平面地区内的点 A(3,-1)到原点的距离最大 .因此 x 2+y 2 的最大值为32+(-1)2=10.答案Cx y(2015 ·福建卷 )若直线 a + b = 1(a >0,b >0)过点 (1,1),则a +b 的最小值等于()A.2B.3C.4D.5x y1 1分析 由于直线 a +b =1(a >0,b >0)过点 (1,1),因此 a +b =1.因此 + = + 1 1 a b a b = =时取 · + ≥2+2 ·= ,当且仅当 2a b (a b) a b =2+b +a b a4a b“=”,应选 C.答案 Cb 4a的最小值为 () (2016 ·合肥二模 )若 a , b 都是正数,则 1+a · 1+ b A.7 B.8 C.9 D.10分析 ∵a ,b 都是正数,∴ 1+ b 1+ 4a b 4ab 4a a b =5+ + b ≥5+2 · =9,当且仅a a b当 b = 2a>0 时取等号 .应选 C.答案 C1 2(2015 ·湖南卷 )若实数 a ,b 知足 a + b = ab ,则 ab 的最小值为 ()A. 2B.2C.2 2D.4分析1 2 2 2 2依题意知 a >0,b >0,则 + ≥ 2 =,a babab1 2当且仅当a=b,即 b= 2a 时,“ =”建立 .1 2 2 22,由于+= ab,因此ab≥,即 ab≥2a b ab因此 ab 的最小值为 2 2,应选 C 答案 C。
高中数学基本不等式练习题(含答案)
基本不等式【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 .【习题3】已知,x y 满足方程210x y --=,当x >353712x y x y m x y +-+-=+--的最小值为_______.【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______.【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 .【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 .【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += . 【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 .【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x的取值范围是_______. 【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 .【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 .【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 . 【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______.【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b+++的最大值是 . 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________.【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______.【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221ab a +的最大值是 .【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 .【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a+的取值范围是 . 【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________.【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 . 【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 .【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________.【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________.【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________.【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______.【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________.【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________.【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______. 【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( ) A. 47 B. 2233 C. 2 D.32【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______.【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______. 【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________.【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________. 【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22b a ba +-的最大值为___________.【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( )A .1B .6C .9D .16【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯babbaa,则ba 32+的取值范围为__________________. 【习题50】设+∈Rb a ,,4222=-+b a b a ,则ba 11+的最小值是 .基本不等式(答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 .【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______. 【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 .【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 .【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________ 【答案】8【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += . 【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x 的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 . 【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 . 【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______. 【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221ab a +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a+的取值范围是 . 【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________.【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 .【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51 【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________.【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x 【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________. 【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______. 【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________.【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________.【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______. 【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( ) A. 47 B. 2233 C. 2 D.32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______. 【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________. 【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22ba ba +-的最大值为___________. 【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 . 【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯babbaa, 则ba32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。
最新-2018年高考数学 考点28 基本不等式 精品
考点28 基本不等式一、选择题1. (2011·福建卷文科·T10)若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( )(A). 2 (B). 3(C). 6 (D). 9【思路点拨】先由(1)0f '=得到关于,a b 的关系式,然后再分析求ab 的最大值.【精讲精析】选D.由题意得2()1222,f x x ax b '=--()1f x x =函数在处有极值, (1)0,12220,f a b '∴=∴--=即6a b +=.又0,0,a b >>由均值不等式得:226()()9,22a b ab +≤==故ab 的最大值是9. 2.(2018·北京高考文科·T7)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )(A )60件 (B )80件 (C )100件 (D )120件【思路点拨】写出平均每件产品费用的函数,再利用均值不等式求出最值.【精讲精析】选B.平均每件产品的费用为28008008208x x y x x +==+≥=当且仅当8008x x =,即80x =时取等号.所以每批应生产产品80件,才能使平均到每件产品的生产准备费用与仓储费用之和最小.3. (2018·陕西高考文科·T3)设0a b <<,则下列不等式中正确的是 ( )(A )2a b a b +<< (B)2a b a b +<<< (c)2a b a b +<<< (2a b a b +<<< 【思路点拨】根据不等式的性质,结合作差法,放缩法,基本不等式或特殊值法等进行比较.【精讲精析】选B (方法一)已知a b <2a b +<,比较a因为22()0a a a b -=-<,所以a <同理由22()0b b b a -=->b <;作差法:022a b b a b +--=>,所以2a b b +<,综上可得2a b a b +<<<;故选B .(方法二)取2a =,8b =,4=,52a b +=,所以2a b a b +<<<. 二、填空题4.(2018·江苏高考·T8)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________【思路点拨】本题考查的是直线的两点间的距离公式和基本不等式的应用,解题的关键是表示出线段的长度,然后利用基本不等式求得其最小值。
精编2018高考数学理科通用版一轮复习检测第六篇不等式(必修5)第4节基本不等式和答案
第4节基本不等式选题明细表基础对点练(时间:30分钟)1.若a,b∈R,且ab>0,则下列不等式中恒成立的是( D )(A)a+b≥2(B)+>(C)+>2 (D)a2+b2≥2ab解析:当a<0,b<0时,A,B错误.当a=b时,C错误,所以选D.2.设0<a<b,则下列不等式中正确的是( B )(A)a<b<<(B)a<<<b(C)a<<b<(D)<a<<b解析:特殊值法,取a=1,b=4代入选项,可得B正确,选B.3.若函数f(x)=x+(x>2)在x=a处取得最小值,则a等于( C )(A)1+(B)1+(C)3 (D)4解析:因为x>2,所以x-2>0.所以f(x)=x+=x-2++2≥2+2=4,当且仅当x-2=,即x=3时上式取“=”.所以选C.4.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是( A )(A)(-∞,] (B)(0,](C)(-,0) (D)(-∞,)解析:由题意知圆心(-1,2)在直线2ax-by+2=0上,则a+b=1,所以ab≤=.当且仅当a=b=时上式取“=”,故选A.5.(2016·日照模拟)已知a,b∈(0,+∞),函数y=2ae x+b的图象过点(0,1),则+的最小值是.解析:因为函数过点(0,1),所以2a+b=1,所以+=+=3++≥3+2,当且仅当=时取等号.答案:3+26.(2016·浙江杭州模拟)设x,y∈R,a>1,b>1,若a x=b y=4且a+b=2,则+的最大值为.解析:由a x=b y=4得x=loga 4,y=logb4,故+=+=log 4a+log 4b=log 4ab.又因为a>1,b>1,a+b=2, 故log 4ab ≤log 4()2=log 42=,所以+≤,当且仅当a=b=,即x=y=4时等号成立.所以+的最大值为. 答案:7.(2016·万州模拟)已知向量a=(x-1,2),b=(4,y),若a ⊥b,则16x +4y 的最小值为 .解析:因为a ⊥b,a=(x-1,2),b=(4,y),所以4(x-1)+2y=0,即4x+2y=4,因为16x +4y =24x +22y ≥2=2=8,当且仅当24x =22y ,即4x=2y=2时取等号.答案:88.设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是 .解析:易知定点A(0,0),B(1,3).且无论m 取何值,两直线垂直.所以无论P 与A,B 重合与否,均有|PA|2+|PB|2=|AB|2=10(P 在以AB 为直径的圆上).所以|PA|·|PB|≤(|PA|2+|PB|2)=5.当且仅当|PA|=|PB|=时,等号成立.答案:59.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值. 解:(1)已知0<x<,所以0<3x<4.所以x(4-3x)=(3x)(4-3x)≤()2=,当且仅当3x=4-3x,即x=时“=”成立.所以当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3. 所以2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.所以当x=,y=时,2x+4y取最小值为4.a,b都是正实数,且a+b=1.(1)求证:+≥4;(2)求(a+)2+(b+)2的最小值.(1)证明:+=+=2++≥2+2=4,当且仅当a=b=时等号成立.(2)解:(a+)2+(b+)2≥≥=.所以(a+)2+(b+)2≥,当且仅当a=b=时等号成立.故所求最小值为.11.(2016·江苏无锡模拟) 要制作一个如图的框架(单位:米),要求所围成的总面积为19.5(平方米),其中四边形ABCD是一个矩形,四边形EFCD是一个等腰梯形,梯形高h=AB,tan ∠FED=,设AB=x米,BC=y米.(1)求y关于x的表达式;(2)怎样设计x,y的长度,才能使所用材料最少?解:(1)如图,作DH⊥EF于点H.依题意,DH=AB=x,EH==×x=x,所以=xy+(x+x+x)·x=xy+x2,所以y=-x.因为x>0,y>0,所以-x>0,解得0<x<,所以所求表达式为y=-x(0<x<).(2)Rt△DEH中,因为tan ∠FED=,所以sin ∠FED=,所以DE==x×=x,所以l=(2x+2y)+2×x+(2×x+x)=2y+6x=-x+6x=+x≥2=26.当且仅当=x,即x2=9,即x=3时取等号,此时y=-x=4,所以AB=3米,BC=4米时,能使整个框架所用材料最少.能力提升练(时间:15分钟)f(x)=ax2+bx+c的导函数为f′(x).若∀x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为( B )(A)+2 (B)-2(C)2+2 (D)2-2解析:由题意得f′(x)=2ax+b,由f(x)≥f′(x)在R上恒成立得ax2+(b-2a)x+c-b≥0在R上恒成立,则a>0且Δ≤0,可得b2≤4ac-4a2,则≤=,令t=-1,可知t≥0.当t>0时,≤=≤=-2(当且仅当t=时等号成立),当t=0时,=0,故的最大值为-2.故选B.13.(2016·江苏宿迁一模)若a2-ab+b2=1,a,b是实数,则a+b的最大值是.解析:由a2-ab+b2=1,可得(a+b)2=1+3ab≤1+3×,则(a+b)2≤1,-2≤a+b≤2,所以a+b的最大值是2.答案:214.某栋楼的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2 000元/m2;材料工程费在建造第一层时为400元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本最低,则应把楼盘的楼房设计成层.解析:设应把楼房设计成x层,每层有面积y m2,则平均每平方米建筑面积的成本费为k==+20x+380≥2+380=780,当且仅当=20x,即x=10时取等号,故应把楼房设计成10层.答案:10,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解:(1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一依题意x=0.2a.所以P====≤=≤=<.答:P不可能大于.法二依题意x=0.2a.所以P====.假设P>,得ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解.答:P不可能大于.好题天天练∀x∈[,4],x2≥m(x-1)恒成立,则实数m的取值范围是( D ) (A)(-∞,5-5] (B)(-∞,](C)(-∞,10) (D)(-∞,10]解题关键:分离参数m,将不等式变形为m≤x2·,然后配凑成可利用基本不等式的形式,求出函数f(x)=x2·的最小值即可.分离参数法是解决恒成立问题的常用方法.解析:对∀x∈[,4],x2≥m(x-1)恒成立,等价于m≤x2·=[(x-1)++2]≥[2+2]=10,当且仅当x-1=,即x=2∈[,4]时上式等号成立,所以m≤10.即实数m的取值范围是(-∞,10].。
2018年高考数学(理)总复习 双基过关检测:“不等式” Word版含解析
“不等式”双基过关检测一、选择题1.(2017·洛阳统考)已知a <0,-1<b <0,那么( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a解析:选D ∵-1<b <0,∴b <b 2<1, 又a <0,∴ab >ab 2>a ,故选D. 2.下列不等式中正确的是( ) A .若a ∈R ,则a 2+9>6a B .若a ,b ∈R ,则a +bab≥2 C .若a ,b >0,则2lg a +b2≥lg a +lg bD .若x ∈R ,则x 2+1x 2+1>1 解析:选C ∵a >0,b >0,∴a +b2≥ab . ∴2lg a +b 2≥2lg ab =lg(ab )=lg a +lg b .3.(2016·武汉调研)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +ab≥2解析:选D ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab≥2b a ·a b=2. 4.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72C.154D.152解析:选A 由条件知x 1,x 2为方程x 2-2ax -8a 2=0,(a >0)的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.5.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13D.14解析:选D 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14.6.(2017·成都一诊)已知x ,y ∈(0,+∞),且log 2x +log 2y =2,则 1x +1y 的最小值是( )A .4B .3C .2D .1解析:选D 1x +1y =x +y xy ≥2xy xy =2xy ,当且仅当x =y 时取等号.∵log 2x +log 2y =log 2(xy )=2,∴xy =4. ∴1x +1y ≥2xy=1.7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2解析:选A 法一:将z =y -2x 化为y =2x +z ,作出可行域和直线y =2x (如图所示),当直线y =2x +z 向右下方平移时,直线y =2x +z 在y 轴上的截距z 减小,数形结合知当直线y =2x +z 经过点A (5,3)时,z 取得最小值3-10=-7.故选A.法二:易知平面区域的三个顶点坐标分别为(1,3),(2,0),(5,3),分别代入z =y -2x 得z 的值为1,-4,-7,故z 的最小值为-7.故选A.8.(2017·东北育才中学模拟)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:选C 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a≥2+2 a b ·ba=4,当且仅当a =b =2时取“=”,故选C. 二、填空题9.(2017·沈阳模拟)已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1, 所以x 2+y 2=1+xy .所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎫x +y 22,当且仅当x =y 时等号成立, 即(x +y )2≤4,解得-2≤x +y ≤2. 所以x +y 的最大值为2. 答案:210.(2016·郑州二模)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.解析:画出线性目标函数所表示的区域,如图阴影部分所示,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,招聘的教师最多,此时x =a +b =13.答案:1311.一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________ m ,宽为________ m 时菜园面积最大.解析:设矩形的长为x m ,宽为y m .则x +2y =30, 所以S =xy =12x ·(2y )≤12⎝⎛⎭⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.答案:1515212.(2017·邯郸质检)若不等式组⎩⎪⎨⎪⎧x +y -3≥0,y ≤kx +3,0≤x ≤3表示的平面区域为一个锐角三角形及其内部,则实数k 的取值范围是________.解析:直线y =kx +3恒过定点(0,3),作出不等式组表示的可行域知,要使可行域为一个锐角三角形及其内部,需要直线y =kx +3的斜率在0与1之间,即k ∈(0,1).答案:(0,1) 三、解答题13.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6 =-a 2+6a +3,∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 故⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.14.(2016·济南一模)已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值. 解:(1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,即xy ≤10, 当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020,当且仅当5y x =2xy 时等号成立. ∴1x +1y 的最小值为7+21020.。
【精品】2018年高考数学(理)总复习达标检测(六十)不等式证明含答案
高考达标检测(六十)不等式证明1.设a ,b ,c 为正数且a +b +c =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2≥1003.证明:⎝⎛⎭⎪⎫a +1a 2+⎝⎛⎭⎪⎫b +1b 2+⎝⎛⎭⎪⎫c +1c2=13(12+12+12)[⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2]≥13[1×⎝ ⎛⎭⎪⎫a +1a +1×⎝ ⎛⎭⎪⎫b +1b +1×⎝ ⎛⎭⎪⎫c +1c ]2 =13[1+(1a +1b +1c )] 2=13[1+(a +b +c )(1a +1b +1c )]2 ≥13×(1+9)2=1003. 即原不等式成立.2.(2017·大连双基测试)已知x ,y 是两个不相等的正实数,求证:( x 2y +x +y 2)( xy 2+y +x 2)>9x 2y 2.证明:因为x ,y 是正实数,所以x 2y +x +y 2≥33x 2y ·x ·y 2=3xy ,当且仅当x 2y =x =y 2,即x =y =1时,等号成立; 同理:xy 2+y +x 2≥33xy 2·y ·x 2=3xy , 当且仅当xy 2=y =x 2,即x =y =1时,等号成立. 所以(x 2y +x +y 2)(xy 2+y +x 2)≥9x 2y 2, 当且仅当x =y =1时,等号成立. 因为x ≠y ,所以( x 2y +x +y 2)( xy 2+y +x 2)>9x 2y 2. 3.已知x ,y ∈R ,且| x |<1,| y |<1. 求证:11-x 2+11-y 2≥21-xy. 证明:法一:(分析法)∵| x |<1,| y |<1, ∴11-x 2>0,11-y 2>0, ∴11-x 2+11-y 2≥2-x2-y2.故要证明结论成立,只要证明2-x2-y 2≥21-xy 成立. 即证1-xy ≥-x2-y2成立即可.∵(y -x )2≥0,有-2xy ≥-x 2-y 2, ∴(1-xy )2≥(1-x 2)(1-y 2), ∴1-xy ≥-x2-y2>0.∴不等式成立.法二:(综合法)∵211-x 2+11-y2≤1-x 2+1-y22=2-x 2+y 22≤2-2|xy |2=1-|xy |, ∴11-x 2+11-y 2≥21-|xy |≥21-xy , ∴原不等式成立.4.设函数f (x )=| x -4 |+| x -3 |,f (x )的最小值为m . (1)求m 的值;(2)当a +2b +3c =m (a ,b ,c ∈R)时,求a 2+b 2+c 2的最小值. 解:(1)法一:f (x )=| x -4 |+| x -3 |≥| (x -4)-(x -3) |=1, 故函数f (x )的最小值为1,即m =1. 法二:f (x )=⎩⎪⎨⎪⎧2x -7,x ≥4,1,3≤x <4,7-2x ,x <3.当x ≥4时,f (x )≥1;当x <3时,f (x )>1;当3≤x <4时,f (x )=1,故函数f (x )的最小值为1,即m =1.(2)( a 2+b 2+c 2)( 12+22+32)≥( a +2b +3c )2=1, 故a 2+b 2+c 2≥114,当且仅当a =114,b =17,c =314时取等号.故a 2+b 2+c 2的最小值为114.5.(2017·云南统一检测)已知a 是常数,对任意实数x ,不等式| x +1 |-| 2-x |≤a ≤ | x +1 |+| 2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=| x +1 |-| 2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,| x +1 |-| 2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |, 则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,| x +1 |+| 2-x |≥a 都成立,即h (x )≥a , ∴a ≤3. ∴a =3.(2)证明:由(1)知a =3. ∵2m +1m 2-2mn +n2-2n =(m -n )+(m -n )+1m -n2,且m >n >0,∴(m -n )+(m -n )+1m -n2≥33m -nm -n1m -n2=3.∴2m +1m 2-2mn +n 2≥2n +a .6.(2017·吉林实验中学模拟)设函数f (x )=| x -a |. (1)当a =2时,解不等式f (x )≥4-| x -1 |;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为| x -2 |+| x -1 |≥4, ①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2], ∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1,所以1m +12n=1(m >0,n >0),所以m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n =2+m 2n +2nm ≥2+2 m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2017·合肥模拟)已知a >0,b >0,记A =a +b ,B =a +b . (1)求2A -B 的最大值;(2)若ab =4,是否存在a ,b ,使得A +B =6?并说明理由. 解:(1)2A -B =2a -a +2b -b =-⎝ ⎛⎭⎪⎫a -222-⎝ ⎛⎭⎪⎫b -222+1≤1, 当且仅当a =b =12时等号成立,即2A -B 的最大值为1.(2)A +B =a +b +a +b ≥2ab +2ab ,因为ab =4,所以A +B ≥4+22>6,所以不存在这样的a ,b ,使得A +B =6. 8.(2016·西安质检)已知函数f (x )=| x -1 |. (1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f ab |a |>f ⎝ ⎛⎭⎪⎫b a . 解:(1)f (2x )+f (x +4)=| 2x -1 |+| x +3 |=⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝ ⎛⎦⎥⎤-∞,-103∪[2,+∞). (2)证明:f ab |a |>f ⎝ ⎛⎭⎪⎫b a 等价于f (ab )>|a | f ⎝ ⎛⎭⎪⎫b a ,即| ab -1 |>| a -b |. 因为| a |<1,| b |<1,所以| ab -1 |2-| a -b |2=( a 2b 2-2ab +1 )-( a 2-2ab +b 2)=( a 2-1 )( b 2-1 )> 0,所以| ab -1 |>| a -b |. 故所证不等式成立.。
2018届高考数学一轮复习专项检测试题: 27含答案
基本不等式例1:求证)(2222222c b a a c c b b a ++≥+++++。
分析:此问题的关键是“灵活运用重要基本不等式ab b a 222≥+,并能由)(2c b a ++这一特征,思索如何将ab b a 222≥+进行变形,进行创造”。
证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+,即2)(222b a b a +≥+;∴)(222122b a b a b a +≥+≥+,同理可得:)(2222c b c b +≥+,)(2222a c a c +≥+, 三式相加即得)(2222222c b a a c c b b a ++≥+++++。
例2:若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 。
解:∵+∈R b a ,,∴323+≥++=ab b a ab ,令ab y =,得0322≥--y y , ∴3≥y ,或1-≤y (舍去),∴92≥=ab y ,∴ab 的取值范围是[).,9+∞。
说明:本题的常见错误有二。
一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab 。
前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2y 视为ab 。
因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之。
例3:已知R c b a ∈,,,求证.222ca bc ab c b a ++≥++ 证明:∵ab b a 222≥+,bc c b 222≥+,ca a c 222≥+,三式相加,得)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握。
例4:已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++。
2018年高考数学(理)总复习高考达标检测(二十八) 基本不等式
高考达标检测(二十八) 基本不等式一、选择题1.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2B .a <ab <a +b2<b C .a <ab <b <a +b2D 、ab <a <a +b2<b解析:选B 因为0<a <b ,所以a -ab =a (a -b )<0,故a <ab ;b -a +b 2=b -a2>0,故b >a +b2;由基本不等式知a +b2>ab ,综上所述,a <ab <a +b2<b ,故选B 、2.(2017·衡水模拟)设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab , 而a b +b a≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +b a≥2”的必要不充分条件. 3.设正实数a ,b 满足a +b =1,则( ) A 、1a +1b有最大值4B 、ab 有最小值12C 、a +b 有最大值 2D .a 2+b 2有最小值22解析:选C 由于a >0,b >0,由基本不等式得1=a +b ≥2ab ,当且仅当a =b 时,等号成立,∴ab ≤12,∴ab ≤14,1a +1b =a +b ab =1ab ≥4,因此1a +1b的最小值为4,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-12=12,(a +b )2=a +b +2ab =1+2ab ≤1+1=2,所以a +b有最大值2,故选C 、4.(2017·开封摸底考试)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C 、92D 、112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4,故选B 、5.(2017·江南十校联考)设x ,y ∈R ,a >1,b >1,若a x =b y=2,2a +b =8,则1x +1y的最大值为( )A .2B .3C .4D .log 23解析:选B ∵a x=b y=2,∴x =log a 2,y =log b 2, ∴1x +1y =1log a 2+1log b 2=log 2a +log 2b =log 2(ab ). 又a >1,b >1,∴8=2a +b ≥22ab ,即ab ≤8, 当且仅当2a =b ,即a =2,b =4时取等号, ∴1x +1y=log 2(ab )≤log 28=3、故⎝ ⎛⎭⎪⎫1x +1y max =3、6.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选 C 不等式x 2+2x <ab+16ba对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min ,由于a b +16ba ≥2 ab ·16ba=8(当a =4b 时等号成立), ∴x 2+2x <8,解得-4<x <2,故选C 、 7.若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B 、 94C .9D .16解析:选B1a +1+4b +1=14⎝ ⎛⎭⎪⎫1a +1+4b +1[(a +1)+(b +1)]=14⎝⎛⎭⎪⎫1+4+b +1a +1+a +b +1≥14(5+24)=94,当且仅当b +1a +1=a +b +1,即a =13,b=53时取等号,故选B 、 8.(2016·洛阳统考)若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z取最大值时,1x+12y -1z的最大值为( ) A .2B 、32C .1D 、12解析:选D ∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞), ∴xy z =xy x 2+4y 2-3xy =1x y +4yx-3≤1(当且仅当x =2y 时等号成立), 此时1x +12y -1z =1y -12y2,令1y =t >0,则1x +12y -1z =t -12t 2=-12(t -1)2+12≤12(当且仅当t =1时等号成立).故选D 、二、填空题9.(2017·云南两市联考)已知向量a =(m,1),b =(1-n,1),m >0,n >0,若a ∥b ,则 1m +2n的最小值是________.解析:向量a ∥b 的充要条件是m ×1=1×(1-n ),即m +n =1,故1m +2n=(m +n )⎝ ⎛⎭⎪⎫1m +2n =3+n m+2m n≥3+22,当且仅当n =2m =2-2时等号成立,故1m +2n的最小值是3+22、答案:3+2 210.已知a ,b ,c 都为实数,且b ,c 同号,若a +1b +1c =bc a,则⎝ ⎛⎭⎪⎫a +1b ⎝ ⎛⎭⎪⎫a +1c 的最小值为________.解析:由已知得a 2+a b +a c=bc ,所以⎝ ⎛⎭⎪⎫a +1b ⎝ ⎛⎭⎪⎫a +1c =a 2+a b +a c +1bc =bc +1bc≥2(当且仅当bc =1时取等号),故⎝ ⎛⎭⎪⎫a +1b ⎝ ⎛⎭⎪⎫a +1c 的最小值为2、 答案:211.(2016·周口调研)已知对任意正实数x ,y ,x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________.解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xyx +y≤2(当且仅当x =2y时取等号),即x +22xy x +y 的最大值是2,又λ≥x +22xyx +y恒成立,所以λ≥2,即λ的最小值是2、答案:212、某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x 米,外周长(梯形的上底与两腰长的和)为y 米,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________、解析:设横断面的高为h ,由题意得AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(AD +BC )h =12(2BC +x )·32x ,故BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥ 3,BC =18x -x 2>0,得2≤x <6, ∴y =BC +2x =18x+3x2(2≤x <6), 从而y =18x +3x2≥218x ·3x2=63, 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.答案:2 3 三、解答题13.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64、(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22xy·8yx=18、当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18、14.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x+916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ·7 200x=240,当且仅当x =60时等号成立,从而S ≤676、故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2、高考达标检测(一) 集 合一、选择题1.(2017·郑州质量预测)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:选A 因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A 、 2.(2017·福州模拟)集合A ={-3,-1,2,4},B ={x |2x<8},则A ∩B =( ) A .{-3} B .{-1,2} C .{-3,-1,2}D .{-3,-1,2,4}解析:选C 由题意知,集合A ={-3,-1,2,4},B ={x |2x <8}={x |x <3},则A ∩B ={-3,-1,2},故选C 、3.(2017·重庆适应性测试)设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x -2>0,B ={x ∈R|0<x <2},则(∁U A )∩B =( )A .(1,2]B .[1,2)C .(1,2)D .[1,2]解析:选B 依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B 、 4.(2017·武汉调研)已知集合A ={x |-2≤x ≤3},B ={x |x 2+2x -8>0},则A ∪B =( )A .(-∞,-4)∪[-2,+∞)B .(2,3]C .(-∞,3]∪(4,+∞)D .[-2,2)解析:选A 因为B ={x |x >2或x <-4},所以A ∪B ={x |x <-4或x ≥-2},故选A 、 5.(2016·浙江高考)已知集合P ={x ∈R|1≤x ≤3},Q ={x ∈R|x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)解析:选B ∵Q ={x ∈R|x 2≥4},∴∁R Q ={x ∈R|x 2<4}={x ∈R|-2<x <2}. ∵P ={x ∈R|1≤x ≤3},∴P ∪(∁R Q )={x ∈R|-2<x ≤3}=(-2,3].6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3、 所以元素(x ,y )的所有结果如下表所示:所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .{a |a <1}B .{a |0≤a <1}C .{a |a ≥1}D .{a |a ≤1}解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(图略).若A ∩B 中只有一个元素,则0≤a <1,故选B 、8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2017·辽宁师大附中调研)若集合A ={x |(a -1)·x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18、综上可知,实数a 的值为1或-18、答案:1或-1810.(2017·湖南岳阳一中调研)已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:由∁R B ={x |x ≤1或x ≥2}, 且A ∪(∁R B )=R , 可得a ≥2、 答案:[2,+∞)11.(2017·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A 、则集合A =________、(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种). ②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14、所以(43-y )min =43-14=29、 答案:①16 ②29 三、解答题13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}. (1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}. 易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3、故实数a 的取值范围是(2,3).14.(2017·青岛模拟)若集合M ={x |-3≤x ≤4},集合P ={x |2m -1≤x ≤m +1}. (1)证明M 与P 不可能相等;(2)若集合M 与P 中有一个集合是另一个集合的真子集,求实数m 的取值范围. 解:(1)证明:若M =P ,则-3=2m -1且4=m +1,即m =-1且m =3,不成立.故M 与P 不可能相等.(2)若P M ,当P ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1<4,m +1≥2m -1或⎩⎪⎨⎪⎧-3<2m -1,m +1≤4,m +1≥2m -1,解得-1≤m ≤2;当P =∅时,有2m -1>m +1,解得m >2,即m ≥-1; 若M P ,则⎩⎪⎨⎪⎧-3≥2m -1,4<m +1,m +1≥2m -1或⎩⎪⎨⎪⎧-3>2m -1,4≤m +1,m +1≥m -1,无解.综上可知,当有一个集合是另一个集合的真子集时,只能是P M ,此时必有m ≥-1,即实数m 的取值范围为[-1,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考达标检测(二十八) 基本不等式一、选择题1.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<bC .a <ab <b <a +b 2D.ab <a <a +b2<b解析:选B 因为0<a <b ,所以a -ab =a (a -b )<0,故a <ab ;b -a +b2=b -a2>0,故b >a +b2;由基本不等式知a +b2>ab ,综上所述,a <ab <a +b2<b ,故选B.2.(2017·衡水模拟)设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab , 而a b +b a≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +b a≥2”的必要不充分条件. 3.设正实数a ,b 满足a +b =1,则( ) A.1a +1b有最大值4B.ab 有最小值12C.a +b 有最大值 2D .a 2+b 2有最小值22解析:选C 由于a >0,b >0,由基本不等式得1=a +b ≥2ab ,当且仅当a =b 时,等号成立,∴ab ≤12,∴ab ≤14,1a +1b =a +b ab =1ab ≥4,因此1a +1b 的最小值为4,a 2+b2=(a +b )2-2ab =1-2ab ≥1-12=12,(a +b )2=a +b +2ab =1+2ab ≤1+1=2,所以a +b 有最大值2,故选C.4.(2017·开封摸底考试)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4,故选B.5.(2017·江南十校联考)设x ,y ∈R ,a >1,b >1,若a x =b y=2,2a +b =8,则1x +1y的最大值为( )A .2B .3C .4D .log 23解析:选B ∵a x=b y=2,∴x =log a 2,y =log b 2, ∴1x +1y =1log a 2+1log b 2=log 2a +log 2b =log 2(ab ). 又a >1,b >1,∴8=2a +b ≥22ab ,即ab ≤8, 当且仅当2a =b ,即a =2,b =4时取等号, ∴1x +1y=log 2(ab )≤log 28=3.故⎝ ⎛⎭⎪⎫1x +1y max =3.6.不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选 C 不等式x 2+2x <a b +16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min ,由于a b +16ba ≥2 ab ·16b a=8(当a =4b 时等号成立), ∴x 2+2x <8,解得-4<x <2,故选C. 7.若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B. 94C .9D .16解析:选B1a +1+4b +1=14⎝ ⎛⎭⎪⎫1a +1+4b +1[(a +1)+(b +1)]=14⎝⎛⎭⎪⎫1+4+b +1a +1+a +b +1≥14(5+24)=94,当且仅当b +1a +1=a +b +1,即a =13,b =53时取等号,故选B.8.(2016·洛阳统考)若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xyz取最大值时,1x +12y -1z的最大值为( )A .2 B.32C .1D.12解析:选D ∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞), ∴xy z =xy x 2+4y 2-3xy =1x y +4yx-3≤1(当且仅当x =2y 时等号成立), 此时1x +12y -1z =1y -12y2,令1y =t >0,则1x +12y -1z =t -12t 2=-12(t -1)2+12≤12(当且仅当t =1时等号成立).故选D.二、填空题9.(2017·云南两市联考)已知向量a =(m,1),b =(1-n,1),m >0,n >0,若a ∥b ,则1m +2n的最小值是________.解析:向量a ∥b 的充要条件是m ×1=1×(1-n ),即m +n =1,故1m +2n=(m +n )⎝ ⎛⎭⎪⎫1m +2n =3+n m +2m n ≥3+22,当且仅当n =2m =2-2时等号成立,故1m +2n的最小值是3+2 2.答案:3+2 210.已知a ,b ,c 都为实数,且b ,c 同号,若a +1b +1c =bc a,则⎝ ⎛⎭⎪⎫a +1b ⎝ ⎛⎭⎪⎫a +1c 的最小值为________.解析:由已知得a 2+a b +a c=bc ,所以⎝ ⎛⎭⎪⎫a +1b ⎝ ⎛⎭⎪⎫a +1c=a 2+a b +a c +1bc =bc +1bc≥2(当且仅当bc =1时取等号),故⎝⎛⎭⎪⎫a +1b ⎝⎛⎭⎪⎫a +1c 的最小值为2.答案:211.(2016·周口调研)已知对任意正实数x ,y ,x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________.解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xyx +y≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2,又λ≥x +22xyx +y恒成立,所以λ≥2,即λ的最小值是2.答案:212.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x 米,外周长(梯形的上底与两腰长的和)为y 米,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.解析:设横断面的高为h ,由题意得AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(AD +BC )h =12(2BC +x )·32x ,故BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥ 3,BC =18x -x 2>0,得2≤x <6, ∴y =BC +2x =18x +3x2(2≤x <6), 从而y =18x +3x 2≥2 18x ·3x2=63, 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.答案:2 3 三、解答题13.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.14.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x+916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ·7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。