最新天津市中考数学模拟试题(有配套答案)(Word版)
中考数学模拟试卷含答案解析(word版)
∴ 方程有两个相等的实数根.
故选 C. 【点评】本题考查的是根的判别式,
熟知一元二次方程 ax2+bx+c=0 ( a≠0)的根与 △的关
系是解答此题的关键.
4.顺次连接矩形 ABCD 各边中点, 所得四边形必定是(
)
A .邻边不等的平行四边形 B .矩形
C.正方形 D .菱形
【分析】作出图形, 根据三角形的中位线定理可得 EF=GH= AC , FG=EH= BD , 再根
∴ 此直角三角形的斜边长为 4, 两条直角边分别为 2 ,
∴ 它的内切圆半径为: R= ( 2 +2 ﹣ 4) =2 ﹣ 2.
故选 B .
【点评】 本题考查了三角形的外接圆和三角形的内切圆,
等腰直角三角形的性质, 要注意
直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:
r= ( a+b﹣ c);
)
A . 45°B .60°C.75°D. 90° 【分析】首先根据 ∠ A: ∠B : ∠C=3 :4: 5, 求出 ∠ C 的度数占三角形的内角和的几分之
几;然后根据分数乘法的意义, 用 180°乘以 ∠ C 的度数占三角形的内角和的分率, 求出 ∠ C
等于多少度即可.
【解答】解: 180°×
= =75 ° 即 ∠ C 等于 75°.
11.如图, 在 x 轴的上方, 直角 ∠ BOA 绕原点 O 按顺时针方向旋转, 若 ∠ BOA 的两边
分别与函数 y= ﹣ 、 y= 的图象交于 B 、 A 两点, 则 ∠ OAB 的大小的变化趋势为(
)
A .逐渐变小 B.逐渐变大 C.时大时小 D.保持不变 【分析】 如图, 作辅助线; 首先证明 △ BOM ∽ △OAN , 得到
数学中考仿真模拟试题(word版含答案)
3.下列计算正确的是( )
A.2A3+3A3=5A6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3A﹣2)(﹣3A+2)=9A2﹣4
4.下列调查中,适宜采用全面调查方式的是()
A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状
C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件
【答案】
【分析】
用科学记数法表示较大的数时,一般形式为A×10n,其中1≤|A|<10,n为整数,据此判断即可.
【详解】
580亿=58000000000=5.8×1010.
故答案为:5.8×1010.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为A×10n,其中1≤|A|<10,确定A与n的值是解题的关键.
5.如图,在⊙O中,若∠C D B=60°,⊙O的直径A B等于4,则B C的长为()
A. B.2C.2 D.4
6.我国古代数学名著《算法统宗》中,有一道“群羊逐草”的问题,大意是:牧童甲在草原上放羊,乙牵着一只羊来,并问甲:“你的羊群有100只吗?”甲答:“如果在这群羊里加上同样的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”问牧童甲赶着多少只羊?若设这群羊有x只,则下列方程中,正确的是( )
11.如图:A B∥C D,直线MN分别交A B、C D于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=50°,则∠CFG= __________.
故选B.
【点睛】
本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.
7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()
天津市中考数学试卷及答案(Word解析版)
天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(•天津)计算(﹣3)+(﹣9)的结果等于()A.12 B.﹣12 C.6D.﹣6考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.解答:解:(﹣3)+(﹣9)=﹣12;故选B.点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.(3分)(•天津)tan60°的值等于()A.1B.C.D.2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.3.(3分)(•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(3分)(•天津)中国园林网4月22日消息:为建设生态滨海,天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为()A.821×102B.82.1×105C.8.21×106D.0.821×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 210 000=8.21×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,∴(1)班成绩的方差>(2)班成绩的方差,∴(2)班比(1)班的成绩稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:所给图形的三视图是A选项所给的三个图形.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键.7.(3分)(•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.8.(3分)(•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:2 考点:正多边形和圆.分析:首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.解答:解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.点此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.9.(3分)(•天津)若x=﹣1,y=2,则﹣的值等于()A.B.C.D.分式的化简求值.考点:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可.分析:解解:原式=﹣答:===,当x=﹣1,y=2时,原式==.故选D.点本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.评:10.(3分)(•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y 升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P 与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3考函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.点评:本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•天津)计算a•a6的结果等于a7.考点:同底数幂的乘法.专题:计算题.分析:利用同底数幂的法则计算即可得到结果.解答:解:a•a6=a7.故答案为:a7点评:此题考查了同底数幂的乘法运算,熟练掌握运算法则是解本题的关键.12.(3分)(•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是6.考点:解一元二次方程-因式分解法.专计算题.分析:原方程转化为x=0或x﹣6=0,然后解两个一次方程即可得到原方程较大的根.解答:解:∵x=0或x﹣6=0,∴x1=0,x2=6,∴原方程较大的根为6.故答案为6.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.13.(3分)(•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是k>0.考点:一次函数图象与系数的关系.分析:根据一次函数图象所经过的象限确定k的符号.解答:解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)(•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段AC=BD(答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),∴AC=BD,AD=BC.故答案为:AC=BD(答案不唯一).点评:本题考查了全等三角形的判定与性质,是基础题,关键在于公共边AB的应用,开放型题目,答案不唯一.15.(3分)(•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.(3分)(•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.点评:此题主要考查了相似三角形的判定和性质以及等边三角形的性质,根据等边三角形的性质证得△ABD∽△DCE是解答此题的关键.18.(3分)(•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8小题,满分66分)19.(6分)(•天津)解不等式组.考点:解一元一次不等式组.专计算题.题:分析:分别解两个不等式得到x<3和x>﹣3,然后根据大于小的小于大的取中间确定不等式组的解集.解答:解:,解①得x<3,解②得x>﹣3,所以不等式组的解集为﹣3<x<3.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.20.(8分)(•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.点评:本题考查了反比例函数图象的性质、待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征.用待定系数法求反比例函数的解析式,是中学阶段的重点.21.(8分)(•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.分析:(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.解答:解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.点评:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.(8分)(•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.点评:此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(8分)(•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).考点:解直角三角形的应用-仰角俯角问题.分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.解答:解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.点评:本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.24.(8分)(•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考一元一次不等式的应用;一元一次方程的应用.点:分析:(1)根据已知得出100+(290﹣100)×0.9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(290﹣100)×0.9x=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(290﹣50)×0.95x=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,y B=0.95x+50(1﹣95%)=0.95x+2.5,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.25.(10分)(•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E 在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.26.(10分)(•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x …﹣1 0 3 …y1=ax2+bx+c …0 0 …考点:二次函数综合题.专题:探究型.分析:(I)先根据物线经过点(0,)得出c的值,再把点(﹣1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式;(II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q (1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P 点坐标,故可得出y2与x之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x 轴下方,因为3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.解解:(Ⅰ)∵抛物线经过点(0,),答:∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.点评:本题考查的是二次函数综合题,涉及到待定系数法二次函数解的解析式、勾股定理及二次函数的性质,解答此类题目时要注意数形结合思想的运用.。
初中数学天津市中考模拟 数学考试题含答案(Word版).docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算的结果等于()A.2 B. C.8 D.试题2:的值等于()A B. C. D.试题3:在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()试题4:据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()评卷人得分A. B. C. D.试题5:右图是一个由4个相同的正方体组成的立体图形,它的主视图是()试题6:估计的值在()A.4和5之间 B.5和6之间 C. 6和7之间D.7和8之间试题7:计算的结果为()A.1 B. C. D.试题8:方程组的解是()A. B. C. D.试题9:如图,将绕点顺时针旋转得,点的对应点恰好落在延长线上,连接.下列结论一定正确的是()A. B. C. D.试题10:若点,,在反比例函数的图象上,则的大小关系是()A. B. C. D.试题11:如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是()A. B. C. D.试题12:已知抛物线与轴相交于点(点在点左侧),顶点为.平移该抛物线,使点平移后的对应点落在轴上,点平移后的对应点落在轴上,则平移后的抛物线解析式为()A. B. C. D.试题13:计算的结果等于.试题14:计算的结果等于.试题15:不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .2试题16:若正比例函数(是常数,)的图象经过第二、四象限,则的值可以是 (写出一个即可).2 试题17:如图,正方形和正方形的边长分别为3和1,点分别在边上,为的中点,连接,则的长为 .w试题18:如图,在每个小正方形的边长为1的网格中,点均在格点上.(1)的长等于;(2)在的内部有一点,满足,请在如图所示的网格中,用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明) .试题19:解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .试题20:某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.试题21:已知是⊙的直径,是⊙的切线,,交⊙于点,是上一点,延长交⊙于点.(1)如图①,求和的大小;(2)如图②,当时,求的大小.试题22:如图,一艘海轮位于灯塔的北偏东方向,距离灯塔120海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,求和的长(结果取整数).参考数据:,取.试题23:用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为(为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 2 …乙复印店收费(元)…(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出关于的函数关系式;(3)当时,顾客在哪家复印店复印花费少?请说明理由.试题24:将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点重合),沿着折叠该纸片,得点的对应点.2(1)如图①,当点在第一象限,且满足时,求点的坐标;(2)如图②,当为中点时,求的长;(3)当时,求点的坐标(直接写出结果即可).试题25:已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标;(2)为抛物线上的一个动点,关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.试题1答案:A试题2答案:D试题3答案:C试题4答案:B试题5答案:D试题6答案: C试题7答案: A试题8答案: D试题9答案: C试题10答案: B试题11答案: B试题12答案: A试题13答案:试题14答案: 9试题15答案:试题16答案: -1试题17答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:。
天津市中考数学模拟试卷-(10套+答案+word整理版)
天津市中考数学模拟试卷1一、选择题(本题共12小题,每小题3分,共36分)1.计算(﹣3)×|﹣2|的结果等于()A.6 B.5 C.﹣6 D.﹣52.2cos45°的值等于()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010 D.6.08×10115.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°8.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196 10.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.11.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<212.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac>0;②a+b+c<0;③a=c﹣2;④方程ax2+bx+c=0的根为﹣1.其中正确的结论为()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题(本题共6小题,每小题3分,共18分)13.计算:=.14.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).16.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为分.17.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.18.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.22.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB 与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )23.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?24.在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O 落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.请回答:(Ⅰ)如图1,若点E的坐标为(0,4),求点A的坐标;(Ⅱ)将矩形沿直线y=﹣x+n折叠,求点A的坐标;(Ⅲ)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.25.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P 以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.天津市中考数学模拟试卷1答案1.C.2.B.3.C.4.C.5.D.6.A.7.B.8.D.9.B.10.D.11.D.12.A.13.0.14.215.∠B=∠C或AE=AD.16.100.17.118..19.解:解不等式①,得:x<2,解不等式②,得:x≥﹣1,把不等式①和②的解集表示在数轴上如下:故不等式组的解集为:﹣1≤x<2,故答案为:(Ⅰ)x<2;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<2.20.解:(1)20÷50%=40名;(2)“步行”学生人数:40×20%=8名;(3)“骑车”部分扇形所对应的圆心角的度数:360°×(1﹣50%﹣20%)=108°;(4)1000×20%=200名.21.(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD ∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.22.解:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,在R t△ADE中,AE===18∴BE=AE﹣AB=18﹣18,在R t△BCE中,CE=BE•tan60°=(18﹣18)=54﹣18,∴CD=CE﹣DE=54﹣18﹣18≈5米.23.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,,解得.故y与x的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.24.解:(Ⅰ)∵点E的坐标为(0,4),∴OE=AE=4,∵四边形OBCD是矩形,∴OD=BC=6,∴DE=2,∴AD==2,∴点A的坐标为(2,6);(Ⅱ)如图2,过点F作FG⊥DC于G∵EF解析式为y=﹣x+n,∴E点的坐标为(0,n),∴OE=n∴F点的坐标为(2n,0),∴OF=2n∵△AEF与△OEF全等,∴OE=AE=n,AF=OF=2n∵点A在DC上,且∠EAF=90°∴∠1+∠3=90°又∵∠3+∠2=90°∴∠1=∠2在△DEA与△GAF中,∴△DEA∽△GAF(AA)∴,∵FG=CB=6∴=∴DA=3∴A点的坐标为(3,6).(Ⅲ)如图3,﹣1≤k≤﹣.∵矩形沿直线y=kx+n折叠,点F在边OB上,①当E点和D点重合时,k的值为﹣1,②当F点和B点重合时,k的值为﹣;∴﹣1≤k≤﹣.25.解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,x﹣3),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,则Q点纵坐标为﹣t,∴x=3﹣t,∴点Q的坐标是(3﹣t,﹣t),①如图1,,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=即4﹣t=2t,解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=px+q,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,),∵,=﹣,∴PQ的中点H的坐标是(1,﹣),假设PQ的中点恰为MN的中点,∵1×2﹣0=2,﹣=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,∴点N的坐标是(2,﹣3),解得t=或t=,∵t<2,∴t=,∴当t<2时,延长QP交y轴于点M,当t=时在抛物线上存在一点N(2,﹣3),使得PQ的中点恰为MN 的中点.天津市中考数学模拟试卷2一、选择题(本题共12小题,每小题3分,共36分)1.﹣10+3的结果是()A.﹣7 B.7 C.﹣13 D.132.3tan60°的值为()A .B .C .D.33.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A .B .C .D .4.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A.3.79×102B.0.379×105 C.3.79×104D.379×1025.由六个小正方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .6.估计的值()A.在4和5之间 B.在3和4之间 C.在2和3之间 D.在1和2之间7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C .()D.(1,﹣1)8.化简的结果()A.x﹣1 B.x C .D .9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y310.正六边形的边心距与边长之比为()A.1:2 B .:2 C .:1 D .:211.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC 于点M,DF′交BC于点N ,则的值为()A .B .C .D .12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分)13.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为.14.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为.15.关于x的方程(m﹣5)x2+4x﹣1=0有实数根,则m应满足的条件是.16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.17.如图,在正方形ABCD内有一折线段,其中AE丄EF ,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.18.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格解不等式组请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为.三、解答题(本题共7小题,共66分)20.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.21.如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.22.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.23.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?24.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P 是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.25.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?天津市中考数学模拟试卷2答案1.A.2.D.3.A.4.C.5.B.6.B.7.D.8.A.9.B.10.D.11.C.12.D.13.﹣3.14.y=﹣x2﹣2x+5.15.m≥1.16..17.80π﹣160.18.x≥﹣2,x<1,﹣2≤x<1.20.解:(1)这次调查的家长总人数为:60÷30%=200(人);故答案为:200;(2)如图所示:持“很赞同”态度的学生家长占被调查总人数的百分比为:(200﹣80﹣20﹣60)÷200×100%=20%;(3)学生家长持“无所谓”态度的扇形圆心角的度数为:×360°=36°.21.解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P 是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.22.解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.23.解:(1)设y与x的函数关系式为y=kx+b,将(40,160),(120,0)代入,得,解得,所以y与x的函数关系式为y=﹣2x+240(40≤x≤120);(2)由题意得(x﹣40)(﹣2x+240)=2400,整理得,x2﹣160x+6000=0,解得x1=60,x2=100.当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.所以销售单价为100元.答:销售单价应定为100元.24.解:(1)①设直线AB的解析式为y=kx+3,把x=﹣4,y=0代入得:﹣4k+3=0,∴k=,∴直线的解析式是:y=x+3,②P′(﹣1,m),∴点P的坐标是(1,m),∵点P在直线AB上,∴m=×1+3=;(2)∵PP′∥AC,△PP′D∽△ACD,∴=,即=,∴a=;(3)以下分三种情况讨论.①当点P在第一象限时,1)若∠AP′C=90°,P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC,△ACP∽△AOB∴==,即=,∴b=22)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC.若△P´CA为等腰直角三角形,则:P′A=CA,∴2a=a+4∴a=4∵P′A=PC=AC,△ACP∽△AOB∴==1,即=1∴b=43)若∠P′CA=90°,则点P′,P都在第一象限内,这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.所有满足条件的a,b 的值为:,.25.解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m ,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m ﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m ,﹣m2+m),∴点D的坐标为(2m ,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P 的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m ,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P 的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.天津市中考数学模拟试卷3一、选择题:(本大题共12小题,每小题3分,共36分.) 1.3tan30°的值等于( ) A .1B .C .D .22.在下列APP 图标的设计图案中,可以看做中心对称图形的有( )A .1个B .2个C .3个D .4个3.已知反比例函数y=的图象经过点(2,6),那么k 的值为( ) A .12B .3C .﹣3D .﹣124.如图中的几何体是由一个正方体切去一个小正方体后形成的,它的俯视图是( )A .B .C .D .5.如图,在平行四边形ABCD 中,连接对角线AC 、BD ,图中的全等三角形的对数( ) A .1对 B .2对 C .3对 D .4对6.下列说法中正确的有( )①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81; ④若一个三角形的三边分别比另一个三角形的三边长2cm ,那么这两个三角形一定相似. A .1个 B .2个 C .3个 D .4个7.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( )A .B .C .D .8.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC=7米,则树高BC 为( )米.A .7tan αB .C .7sin αD .7cos α9.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( ) A .(3,3) B .(4,3) C .(3,1) D .(4,1)10.阳光通过窗口AB 照射到室内,在地面上留下2.7米的亮区DE (如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC 为( ) A .4米 B .3.8米C .3.6米D .3.4米11.已知A ,B ,C 是⊙O 上的三个点,四边形OABC 是平行四边形,那么下列结论中错误的是( ) A .∠AOC=120° B .四边形OABC 一定是菱形 C .若连接AC ,则AC=OA D .若连接AC 、BO ,则AC 与BO 互相垂直平分12.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( ) A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5二、填空题(本大题共6小题,每小题3分,共18分)13.计算cos 245°+tan60°cos30°的值为 .14.甲乙两车沿直路同向行驶,车速分别为20m/s 和25m/s .现甲车在乙车前500m 处,设xs (0≤x ≤100)后两车相距ym .那么y 关于x 的数解析式为 .(写出自变量取值范围)15.甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是.16.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM ,DN 分别交于点E 、F ,把△DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是 .17.如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是 .18.现有10个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:在图1中用实线画出分割线,并在图2的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.如图,在△ABC中,∠B=∠C=67.5°.(Ⅰ)求sinA的值;(Ⅱ)求tanC的值.20.已知反比例函数y=(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.21.已知:在△ABC中,以AC边为直径的⊙O交BC于点D ,在劣弧上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.22.如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀多少个队参赛?解题方案:设比赛组织者应邀请x个队参赛,(1)用含x的代数式表示:那么每个队要与其他个队各赛一场,又由于甲队对乙队的比赛和乙队对甲对的比赛是同一场比赛,所以全部的比赛一共有场;(2)根据题意,列出相应方程;(3)解这个方程,得;(4)检验:;(5)答:.24.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①PA=4,PC=,PB=.②用等式表示PA、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.25.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?天津市中考数学模拟试卷3答案1.C.2.B.3.A.4.C5.D.6.A.7.D.8.A.9.A.10.A.11.C.12.D.13.2.14.y=﹣5x+500(0≤x≤100).15..16.120°.17.(,3)、(﹣,4).18.解:如图所示:19.解:(1)∵在△ABC中,∠B=∠C=67.5°,∴∠A=180°﹣∠B﹣∠C=180°﹣67.5°﹣67.5°=45°,∴sinA=sin45°=,即sinA=;(2)作BD⊥AC于点D,如下图所示,∵由(1)可知∠A=45°,设BD=a,∴AD=a,AB=,∵AB=AC,∴AC=,∴CD=AC﹣AD=,∴=,即tanC=.20.解:(Ⅰ)由题意,设点P的坐标为(m,2)∵点P在正比例函数y=x的图象上,∴2=m,即m=2.∴点P的坐标为(2,2).∵点P在反比例函数y=的图象上,∴2=,解得k=5.(Ⅱ)∵在反比例函数y=图象的每一支上,y随x的增大而减小,∴k﹣1>0,解得k>1.(Ⅲ)∵反比例函数y=图象的一支位于第二象限,∴在该函数图象的每一支上,y随x的增大而增大.∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,∴x1>x2.21.(1)证明:连接AD,∵∠DAC=∠DEC,∠EBC=∠DEC,∴∠DAC=∠EBC,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCA+∠DAC=90°,∴∠EBC+∠DCA=90°,∴∠BGC=180°﹣(∠EBC+∠DCA)=180°﹣90°=90°,∴AC⊥BH;(2)解:∵∠BDA=180°﹣∠ADC=90°,∠ABC=45°,∴∠BAD=45°,∴BD=AD,∵BD=8,∴AD=8,在直角三角形ADC中,AD=8,AC=10,根据勾股定理得:DC=6,则BC=BD+DC=14,∵∠EBC=∠DEC,∠BCE=∠ECD,∴△BCE∽△ECD,∴,即CE2=BC•CD=14×6=84,∴CE==2.22.解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.23.解:设比赛组织者应邀请x个队参赛,(1)用含x的代数式表示:那么每个队要与其他(x﹣1)个队各赛一场,又由于甲队对乙队的比赛和乙队对甲对的比赛是同一场比赛,所以全部的比赛一共有28场;(2)根据题意,列出相应方程:x(x﹣1)=28,(3)解这个方程,得:x1=8,x2=﹣7,(4)检验:x2=﹣7(舍去);(5)答:比赛组织者应邀请8队参赛.故答案为:(x﹣1);28;x(x﹣1)=28;x1=8,x2=﹣7;x2=﹣7(舍去);比赛组织者应邀请8队参赛.24.解:(1)①PB==.故答案为:;②PA2+PC2=PB2,证明:作∠PBP′=∠ABC=60°,且使BP′=BP,连接P′C、P′P,如图1:∴∠1=∠2,∵AB=CB,在△ABP与△CBP′中,,∴△ABP≌△CBP′,∴PA=P′C,∠A=∠BCP′,在四边形ABCP中,∵∠ABC=60°,∠APC=30°,∴∠A+∠BCP=270°,∴∠BCP′+∠BCP=270°,∴∠PCP′=360°﹣(∠BCP′+∠BCP)=90°,∵△PBP′是等边三角形,∴PP′=PB,在Rt△PCP′中,P'C2+PC2=P'P2,∴PA2+PC2=PB2;(2)点P在其他位置时,不是始终具有②中猜想的结论,举例:如图2,当点P在CB的延长线上时,结论为PA2+PB2=PC2.25.解:(1)设抛物线解析式为y=a(x+2)(x﹣4).把C(0,8)代入,得a=﹣1.∴y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(2)假设满足条件的点P存在.依题意设P(2,t).由C(0,8),D(1,9)求得直线CD的解析式为y=x+8,它与x轴的夹角为45°.设OB的中垂线交CD于H,则H(2,10).则PH=|10﹣t|,点P到CD 的距离为.又.∴.平方并整理得:t2+20t﹣92=0,解之得t=﹣10±8.∴存在满足条件的点P,P的坐标为(2,﹣10±8).(3)由上求得E(﹣8,0),F(4,12).①若抛物线向上平移,可设解析式为y=﹣x2+2x+8+m(m>0).当x=﹣8时,y=﹣72+m.当x=4时,y=m.∴﹣72+m≤0或m≤12.∴0<m≤72.②若抛物线向下平移,可设解析式为y=﹣x2+2x+8﹣m(m>0).由,有﹣x2+x﹣m=0.∴△=1﹣4m≥0,∴m ≤.∴向上最多可平移72个单位长,向下最多可平移个单位长.天津市中考数学模拟试卷4一选择题(每小题3分,共12题,共计36分)1.﹣2的绝对值是()A.2B.﹣2C.D.2.下列各数中是有理数的是()A. B.4π C.sin45° D.3.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×1084.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .5.下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5D.(-a)3÷(-a)=a26.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=8.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4B.x>﹣4C.x>2D.x>﹣29.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°第9题图第10题图第12题图10. 如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A. B.2 C. D.211.下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④12.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤二填空题(每小题3分,共6题,共计18分)13.分解因式:x3﹣4x= .14.圆心角为120°,弧长为12π的扇形半径为.15.如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么cos∠ABD的值是.16.如图,已知Rt △ABC,AC=5,BC=12,∠ACB=900,将△ABC 绕点B 顺时针旋转600,得到△A /BC /,连接CC /,与AB 交于点D.则△ACD 与△BC/D 的周长和等于17.如图,点A 为直线y=-x 上一点,过A 作OA 的垂线交双曲线y=(x <0)于点B ,若OA 2﹣AB 2=12,则k 的值为 .18.如图,已知AB//CD,∠ABC=1200,AB=100m,BC=80m,CD=100m,圆O 的半径为2m,开始在A 点处. (1)圆O 的面积为 ;(2)将圆O 沿着A-B-C-D 方向滚动到D 点停止,则圆心O 在滚动的过程中行驶的路程为 .三 计算推理题(共7题,共计66分)19.(8分)解不等式组:⎪⎩⎪⎨⎧->+-≥+1321112x x x ,并把不等式组的解集在数轴上表示出来.20.(8分)在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x ,y ). (1)用列表法或树形图表示出(x ,y )的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.21.(8分)如图,已知AB 为⊙O 的直径,过⊙O 上的点C 的切线交AB 的延长线于点E,AD ⊥EC 于点D 且交⊙O 于点F,连接BC,CF,AC .(1)求证:BC=CF;(2)若AD=6,DE=8,求BE 的长;(3)求证:AF+2DF=AB.22.(10分)某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.23.(10分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)。
2023年天津市部分区县毕业班九年级中考一模考试数学试卷含答案
2023年天津市部分区初中毕业生学业水平考试第一次模拟练习数学试卷一.选择题(本大题共12小题,每小题3分,共36分)1.计算﹣3×4的结果等于()A .﹣12B .﹣1C .12D .12.cos30°的值等于()A .21B .22C .23D .13.将56000000用科学记数法表示应为()A .0.56×108B .5.6×107C .56×106D .560×1054.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A .劳B .动C .光D .荣5.如右图是一个由4个相同的小正方体组成的立体图形,它的主视图是()A .B .C .D .6.估计37的值应在()A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.计算2325+-++x x x 的结果是()A .1B .22+x C .4D .2+x x 8.如图,△OAB 的顶点O (0,0),点A 在第一象限,点B 在x 轴的正半轴上,若OB=16,OA=AB=10,则点A 的坐标是()A .(10,8)B .(6,8)C .(10,6)D .(8,6)9.若一元二次方程x 2﹣4x +3=0的两个根是x 1,x 2,则21x x ⋅的值等于()A .3B .﹣3C .﹣4D .410.已知点A (1,y 1)、B (﹣2,y 2)、C (﹣3,y 3)都在反比例函数xy 6=的图象上,则y 1、y 2、y 3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y211.如图,△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,下列结论不正确的是()A.AP=A1P B.△ABC与△A1B1C1的面积相等C.MN垂直平分线段AA1D.直线AB与A1B1的交点不在MN上12.已知抛物线y=ax2+bx+c(a<0)与x轴交于(x1,0),(x2,0)(x1<x2),其顶点在线段AB上运动(形状保持不变),且A(-4,3),B(1,3),有如下结论:①c≤3;②当x>0时,y随x的增大而减小;③若x2的最大值为4,则x1的最小值为-7.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(本大题共6小题,每小题3分,共18分)13.计算a5÷a的结果等于.14.计算(15+1)(15﹣1)结果等于.15.一个不透明的袋子里装有11个球,其中有5个红球和6个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是.(写出一个即可).17.如图,矩形ABCD的对角线AC,BD相交于点O,E为OB上一点,连接CE,F为CE的中点,∠EOF=90°,若OE=3,OF=2,则BE的长为.18.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均为格点,且点A,B在圆上.(1)线段AC的长等于;(2)过点D 作DF//AC ,直线DF 与圆交于点M ,N (点M 在N 的左侧),画出MN 的中点P ,简要说明点P 的位置是如何找到的(不要求证明).三.解答题(本大题共7小题,共66分)19.解不等式组⎩⎨⎧+≤≥+②,①.3212x x x .请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某初中学校为了解学生课外阅读情况,随机调查了部分学生每周平均阅读时间.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m 的值为;(Ⅱ)求统计的这组每周平均阅读时间数据的平均数、众数和中位数.21.已知△ABC 内接于⊙O ,且AB 为⊙O 的直径,D 为圆上一点,连接DC ,DB .(1)如图①,若D 为弧AB 的中点,∠A=64°,求∠D 和∠ABD 的大小;(2)如图②,若AB ⊥CD ,过点D 作⊙O 的切线与CB 的延长线交于点E ,且DE ⊥CE ,求∠ABD 的大小.22.天津烈士陵园内有一座烈士纪念碑.某校学生测量其高AB,先在点C处用测角仪测得其顶端A的仰角为38°,再由点C向纪念碑走8.8m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求纪念碑的高AB.(结果保留整数)(参考数据:tan38°≈0.78).23.在“看图说故事”活动中,某学习小组设计了一个问题情境.已知小明家、文具店、体育场依次在同一条直线上.体育场离小明家3km,文具店离家2.2km.小明从家跑步15min 到体育场;在那里锻炼30min后,又匀速步行了10min到文具店买圆规;在文具店停留10min后,匀速步行了22min返回家.给出的图象反映了这个过程中小明离开家的距离ykm与小明离开家的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开家的时间/min512205065离开家的距离/km1 2.6(Ⅱ))填空:①体育场到文具店的距离为km;②小明从文具店返回家的速度为km/min;④当小明离家的距离为2km时,他离开家的时间为min.(Ⅲ)当0≤x≤55时,请直接写出y关于x的函数解析式.24.在平面直角坐标系中,O为原点,四边形AOBC是正方形,顶点A(-4,0),点B在y轴的正半轴上,点C在第二象限,△MON的顶点M(0,5),点N(5,0).(Ⅰ)如图①,求点B,C的坐标;(Ⅱ)将正方形AOBC沿x轴向右平移,得到正方形A′O′B′C′,点A,O,B,C的对应点分别为A′,O′,B′,C′.设OO′=t,正方形A′O′B′C′与△MON重叠部分的面积为S.①如图②,1≤t ≤4时,正方形A ′O ′B ′C ′与△MON 重叠部分为五边形,直线B ′C ′分别与y 轴,MN 交于点E ,F ,O ′B ′与MN 交于点H ,试用含有t 的式子表示S ;②若平移后重叠部分的面积为29,则t 的的值是(请直接写出结果即可).25.抛物线y =ax 2+bx ﹣3(a ≠0)与x 轴交于点A (﹣3,0),点B (1,0),与y 轴交于点C .(1)求抛物线的顶点坐标;(2)点Q 在抛物线的对称轴上,当△BCQ 的周长最小时,求点Q 的坐标;(3)点P 是抛物线对称轴上一点,M 是对称轴右侧抛物线上的一点,当△PAM 是以PA 为腰的等腰直角三角形时,求出符合条件的所有点M 的坐标.2023年天津市部分区初中毕业生学业水平考试第一次模拟练习数学试卷答案一.选择题(共12小题)1.A 2.C 3.B 4.D 5.C 6.B 7.A8.D9.A10.B11.D12.C二.填空题(共6小题)13.a 414.1415.11516.117.218.(1)17(2)略三.解答题(共7小题)19.解:(Ⅰ)x ≥﹣1;(Ⅱ)x ≤3;(Ⅲ)略(Ⅳ)﹣1≤x ≤3,20.解:(Ⅰ)50,6;(Ⅱ)平均数是9;众数是9;中位数是9.21.证明:(1)∵弧BC=弧BC ∴∠A=∠D=64°∵AB 是⊙O 的直径∴∠ACB=90°∵D 是弧AB 的中点∴∠ACD=∠BCD=45°∵弧AD=弧AD ∴∠ABD=∠ACD=45°(2)连接OD ,设AB 与CD 交于点F∵AB ⊥CD∴CF=DF ,∠OFD=∠CFB=90°∵ED 为切线∴∠ODE=90°∵DE ⊥CE ∴∠E=90°∴∠ODE+∠E=180°∴OD//BC ∴∠ODF=∠BCF ∴△ODF ≌△BFC∴CF=BF=OB21∵OD=OB∴CF=OB21在Rt △FDO 中,cos ∠FOD=21=OD OF ∴∠FOD=60°∵OB=OD ∴∠ABD=60°22.解:延长DF 交AB 于点G 设AG=EG=x ,则DG=x+8.8在Rt △ADG 中,tan38°=78.08.8≈+=x xDG AG 解得x ≈31.2∴AB=31.2+1.5≈33(m)纪念碑的高度AB 是33m 23.解:(Ⅰ)2.4,3,2.2;(Ⅱ)①0.8;②0.1;③10或67;(Ⅲ)y =⎪⎩⎪⎨⎧≤<+-≤<≤≤=)5545(6.608.0)4515(3)150(2.0x x x x x y .24.解:(Ⅰ)由已知得,OA=4∵正方形OABC∴OA=OB=BC=4∴点B 的坐标为(0,4),C (-4,4)(Ⅱ)①O 'N=O 'H=5-t ,∴B 'H=B 'F=4-(5-t )=t-1S=21521)1(21422-+-=--t t t t ②155-或625.解:(1)抛物线的顶点坐标为(﹣1,﹣4)(2)点C 关于x=-1的对称点为C '(﹣2,﹣3)连接BC '交x=-1于点Q△BCQ=BC+CQ+BQ=10+C 'Q+BQ 当C '、Q 、B 共线时,周长最小C 'B 的直线解析式为1-=x y 当x=-1时,y=-2∴Q (-1,-2)(3)当∠APM=90°时,点M (1,0)当∠PAM=90°时,点M )016()012(,,,--∴点M 坐标为(1,0),或)216()212(,或,---。
2024年天津市中考数学模拟试卷
2024年天津市中考数学模拟试卷一、选择题(每题3分,共36分)1. 下列哪个选项是方程(3x - 7 = 2x + 5) 的解?- A. x = 1- B. x = 3- C. x = 12- D. x = -122. 如果一个几何体的正视图是圆,俯视图是圆,侧视图是矩形,则该几何体可能是:- A. 圆柱- B. 球- C. 圆锥- D. 长方体3. 已知函数(y = kx + b) 的图像经过点(-1, 2)和点(2, -1),且(k > 0),那么(k) 和(b) 的值可能是:- A. (k = 1, b = 3)- B. (k = -1, b = 1)- C. (k = 3, b = -3)- D. (k = -3, b = 3)4. 下列哪个选项是方程(x^2 - 4x + 4 = 0) 的判别式?- A. (B^2 - 4AC = -12)- B. (B^2 - 4AC = 0)- C. (B^2 - 4AC = 16)- D. (B^2 - 4AC = 12)5. 已知(x + y = 5) 且(x - y = 1),求解(x) 和(y) 的值。
- A. (x = 3, y = 2)- B. (x = 2, y = 3)- C. (x = 4, y = 1)- D. (x = 1, y = 4)6. 一个数的75%是60,那么这个数是:- A. 40- B. 60- C. 80- D. 1007. 下列哪个选项是正确的科学记数法表示?- A. (5000000 = 5 times 10^6)- B. (0.0005 = 5 times 10^{-4})- C. (500000 = 5 times 10^5)- D. (200000 = 2 times 10^6)8. 已知反比例函数(y = frac{k}{x}) 的图像经过点(3, 2),那么(k) 的值是:- A. 6- B. 5- C. 4- D. 39. 下列哪个选项是方程(2x^2 - 8x + 4 = 0) 的根?- A. (x = 1)- B. (x = 2)- C. (x = 3)- D. (x = 4)10. 根据题目所给的几何图形,下列哪个选项是正确的几何性质?- A. 一个正方形的对角线相等且互相垂直。
2024年天津市中考数学试卷(Word版含解析)
2024年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算3﹣(﹣3)的结果等于()A.﹣6B.0C.3D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A.0.08×107B.0.8×106C.8×105D.80×1046.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.x C.D.8.若点A(x1,﹣1),B(x2,1),C(x3,5)都在反比例函数的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x39.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,∠B=40°,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在∠BAC 的内部相交于点P;画射线AP,与BC相交于点D,则∠ADC的大小为()A.60°B.65°C.70°D.75°11.如图,△ABC中,∠B=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.∠ACB=∠ACD B.AC∥DE C.AB=EF D.BF⊥CE12.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.14.计算x8÷x6的结果为.15.计算的结果为.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第三、第一象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD的边长为,对角线AC,BD相交于点O,点E在CA的延长线上,OE=5,连接DE.(Ⅰ)线段AE的长为;(Ⅱ)若F为DE的中点,则线段AF的长为.18.如图,在每个小正方形的边长为1的网格中,点A,F,G均在格点上.(I)线段AG的长为;(II)点E在水平网格线上,过点A,E,F作圆,经过圆与水平网格线的交点作切线,分别与AE,AF 的延长线相交于点B,C,△ABC中,点M在边BC上,点N在边AB上,点P在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点M,N,P,使△MNP的周长最短,并简要说明点M,N,P 的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)填空:a的值为,图①中m的值为,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为和;(Ⅱ)求统计的这组学生每周参加科学教育的时间数据的平均数;(Ⅲ)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?21.已知△AOB中,∠ABO=30°,AB为⊙O的弦,直线MN与⊙O相切于点C.(Ⅰ)如图①,若AB∥MN,直径CE与AB相交于点D,求∠AOB和∠BCE的大小;(Ⅱ)如图②,若OB∥MN,CG⊥AB,垂足为G,CG与OB相交于点F,OA=3,求线段OF的长.22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB的高度(如图①).某学习小组设计了一个方案:如图②,点C,D,E依次在同一条水平直线上,DE=36m,EC⊥AB,垂足为C.在D 处测得桥塔顶部B的仰角(∠CDB)为45°,测得桥塔底部A的俯角(∠CDA)为6°,又在E处测得桥塔顶部B的仰角(∠CEB)为31°.(I)求线段CD的长(结果取整数);(Ⅱ)求桥塔AB的高度(结果取整数).参考数据:tan31°≈0.6,tan6°≈0.1.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km,文化广场离家1.5km.张华从家出发,先匀速骑行了4min到画社,在画社停留了15min,之后匀速骑行了6min到文化广场,在文化广场停留6min后,再匀速步行了20min返回家.如图图中x表示时间,y表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(I)①填表:141330张华离开家的时间/min张华离家的距离/km0.6②填空:张华从文化广场返回家的速度为km/min;③当0≤x≤25时,请直接写出张华离家的距离y关于时间x的函数解析式;(Ⅱ)当张华离开家8min时,他的爸爸也从家出发匀速步行了20min直接到达了文化广场,那么从画社到文化广场的途中(0.6<y<1.5)两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点B,C在第一象限,且OC=2,∠AOC=60°.(Ⅰ)填空:如图①,点C的坐标为,点B的坐标为;(Ⅱ)若P为x轴的正半轴上一动点,过点P作直线l⊥x轴,沿直线l折叠该纸片,折叠后点O的对应点O′落在x轴的正半轴上,点C的对应点为C′.设OP=t.①如图②,若直线l与边CB相交于点Q,当折叠后四边形PO′C′Q与▱OABC重叠部分为五边形时,O′C′与AB相交于点E.试用含有t的式子表示线段BE的长,并直接写出t的取值范围;②设折叠后重叠部分的面积为S,当时,求S的取值范围(直接写出结果即可).25.已知抛物线y=ax2+bx+c(a,b,c为常数,a>0)的顶点为P,且2a+b=0,对称轴与x轴相交于点D,点M(m,1)在抛物线上,m>1,O为坐标原点.(I)当a=1,c=﹣1时,求该抛物线顶点P的坐标;(Ⅱ)当时,求a的值;(Ⅲ)若N是抛物线上的点,且点N在第四象限,∠MDN=90°,DM=DN,点E在线段MN上,点F在线段DN上,,当DE+MF取得最小值为时,求a的值.。
天津市中考模拟考试数学试题含答案
天津市中考模拟考试数学试题含答案中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)(1)请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.张强两次共购买香蕉(第二次多于第一次),共付出元,请问张强第一次,第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】解:由树状图可知共有4×3=12种可能,两个转盘指针指向数字之和不超过4的有6种,∴两个转盘指针指向数字之和不超过4的概率是,故选:D.列举出所有情况,看两个转盘指针指向数字之和不超过4的情况占总情况的多少即可.本题主要考查列表法与树状图法,画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.根据平行四边形的性质判定定理和性质定理判断A;根据等腰三角形的判定定理判断B;根据平行四边形的性质判断C,根据等腰三角形的性质判断D.本题考查的是三角形中位线定理、平行四边形的判定和性质、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.【答案】C【解析】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x-2),即y=2x-4,故选:C.先确定直线l的解析式,然后根据平移的规律即可求得.本题考查了一次函数图象与几何变换,解决本题的关键是求直线解析式和熟练掌握平移的规律.10.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】D【解析】解:如图,观察图象可知,满足条件的点P有4个.故选:D.根据等腰三角形的定义画出图形即可.本题考查等腰三角形的判定,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.【答案】A【解析】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.根据题意,将运动过程分成两段.分段讨论求出解析式即可.本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.13.【答案】3.598976×104【解析】解:将35989.76用科学记数法表示为:3.598976×104.故答案为:3.598976×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】x1=2+,x2=2-【解析】解:x==2所以x1=2+,x2=2-.本题可用公式法对方程进行求解,公式为:x=,由此可解此题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.15.【答案】2或8【解析】解:①当圆心在三角形内部时,BC边上的高AD=+5=8;②当圆心在三角形外部时,BC边上的高AD=5-=2.因此BC边上的高为2或8.分两种情况讨论:当圆心在三角形内部时和当圆心在三角形的外部时.本题利用了勾股定理和垂径定理求解,注意要分两种情况讨论求解.16.【答案】33【解析】解:设这100个数为:1,0,-1,-1,0,1,1,0,-1,-1…,∴通过观察得:第1个数开始6个数一循环,∴100÷6=16 (4)又每组的6个数中有两个0,则这100个数中“0”的个数为:16×2+1=33个故这100个数中“0”的个数为33个.根据题意可知数列为:1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0…从第1个数开始6个数一循环,所以100÷6=16…4,所以100个数中“0”的个数为33个.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【答案】3【解析】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tanB==,又∵BC=5,CE=3,BE=4,∴AE=CF=5-4=1,AF=CE=3,∵CD=10,∴DF=10-1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.本题考查了解直角三角形和矩形的性质和判定、平行线的性质等知识点,能构造直角三角形是解此题的关键.18.【答案】-【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF=1×2-×1×1-=-.故答案为:-.利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.19.【答案】解:原式===;当x=+1时,原式=.【解析】先将所求的代数式化简,再将未知数的值代入计算求解.此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分:分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,∴D(1,-4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),则:AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=-1即,抛物线的解析式:y=-x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,-x2+2x+3),则OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(-x2+2x+3)=x+1,化简,得:2x2-3x-5=0解得:x1=-1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4-b)2=2(b2+4),化简,得:b2+8b-8=0,解得:b=-4±2;即点Q的坐标为(1,-4+2)或(1,-4-2).【解析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值,由此得出抛物线的解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21.【答案】解:(1)(2)甲成绩的众数是84,乙成绩的众数是90,从两人成绩的众数看,乙的成绩较好;甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲成绩、乙成绩的中位数、平均数都是84,但从(85分)以上的频率看,乙的成绩较好.【解析】(1)根据中位数、众数、频率的计算方法,求得甲成绩的中位数,乙成绩的众数,85分以上的频率.(2)可分别从众数、方差、频率三方面进行比较.本题重点考查平均数,中位数,众数及方差、频率的概念及求法,以及会用这些知识来评价这组数据.22.【答案】(1)证明:∵AB =CD ,∴= . ∴- = - . ∴= . ∴BD =CA .在△AEC 与△DEB 中, ∠∠ ∠,∴△AEC ≌△DEB (AAS ).(2)解:点B 与点C 关于直线OE 对称.理由如下:如图,连接OB 、OC 、BC .由(1)得BE =CE .∴点E 在线段BC 的中垂线上,∵BO =CO ,∴点O 在线段BC 的中垂线上,∴直线EO 是线段BC 的中垂线,∴点B 与点C 关于直线OE 对称.【解析】(1)要证△AEC ≌△DEB ,由于AB=CD ,根据等弦所对的弧相等得=,根据等量减等量还是等量,得=,由等弧对等弦得BD=CA ,由圆周角定理得,∠ACE=∠DBE ,∠AEC=∠DEB ,即可根据AAS 判定;(2)由△AEC ≌△DEB 得,BE=CE ,得到点E 在直线BC 的中垂线上,连接BO ,CO ,BO 和CO 是半径,则BO 和CO 相等,即点O 在线段BC 的中垂线上,亦即直线EO 是线段BC 的中垂线,所以点B 与点C 关于直线OE 对称.本题利用了圆周角定理、等弦所对的弧相等,等弧对等弦、全等三角形的判定和性质求解.23.【答案】解:(1)由图可知,b =-7.(1分)故抛物线为y=(1-a)x2+8x-7.又因抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点.∴ ,解之,得1<a<.(3分)即a的取值范围是1<a<.(6分)(2)设B(x1,0),由OA=20B,得7=2x1,即x1=.(7分)由于x1=,方程(1-a)x2+8x-7=0的一个根,∴(1-a)()2+8×-7=0∴.(9分)故所求所抛物线解析式为y=-x2+8x-7.(10分)【解析】(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围;(2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式.此题考查了二次函数的图象的性质,开口方向,与x轴的交点个数与△的关系,待定系数法求函数解析式等;解题的关键是数形结合思想的应用.24.【答案】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x ≤20,y >40时,由题意可得. 解得.(不合题意,舍去)③当20<x <25时,则25<y <30,此时张强用去的款项为5x +5y =5(x +y )=5×50=250<264(不合题意,舍去);④当20<x ≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <25时,则25<y <30.本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.25.【答案】解:(1)如图所示;(2)在Rt △AOB 中,AB = = = ,∴扇形BAA 1的面积= = π, 梯形A 1A 2O 2B 的面积= ×(2+4)×3=9, ∴变换过程所扫过的面积=扇形BAA 1的面积+梯形A 1A 2O 2B 的面积= π+9. 【解析】(1)根据旋转的性质,结合网格结构找出点A 、O 的对应点A 1、O 1,再与点B 顺次连接即可得到△BO 1A 1;再根据中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.下列各组数的大小比较中,正确的是( * ).(A )21> (B )23->- (C )10-> (D )22>2.下列计算正确的是( * ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x 3.如图,如果︒=∠+∠18021,那么( * ). (A ) ︒=∠+∠18042 (B )︒=∠+∠18043(C ) ︒=∠+∠18031 (D )41∠=∠4. 图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( * ).① ② ③ ④ (A )①② (B )②③ (C )③④ (D )①④ 5.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m ,9m ,9.4m ,8.2m ,9.2m ,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( * ).(A )甲、乙成绩一样稳定 (B ) 甲成绩更稳定 (C )乙成绩更稳定 (D )不能确定谁的成绩更稳定 6. 若b a <,下列各式中不成立的是( * ).(A )b a 22< (B )b a 22-<- (C )22+<+b a (D )22-<-b a 7.下列函数的图象中,不经过第一象限的是( * ).(A )3+=x y (B )3-=x y (C ) 1+-=x y (D )1--=x y 8. 函数222++-=x x y 的顶点坐标是( * ).(A )(1,3) (B )(1-,3) (C )(1,-2) (D )(-1,2)9.如果点E ,F ,G ,H 分别是菱形ABCD 四边AB ,BC ,CD ,DA 上的中点,那么四边形EFGH 是( * ).(A )菱形 (B )矩形 (C )正方形 (D )以上都不是 10. 边长分别等于6 cm 、8 cm 、10cm 的三角形的内切圆的半径为( * )cm .(A) 3 (B )2 (C) 23 (D )6第二部分 非选择题(共120分)二、填空题(本大题共6题,每小题3分,满分18分) 11.若代数式1-x 有意义,则实数x 的取值范围是= * .12.2015年4月8日,广东省扶贫基金会收到了88家爱心企业合计217000000元的捐赠.将217000000用科学记数法表示为 * . 13.分解因式:2ab a -= * .14. 在Rt △ABC 中,∠C =90°CB =8cm ,若斜边AB 的垂直平分线交CB 于点D ,CD =2cm ,则AD= * cm .第3题15.已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 * ,该逆命题是 * 命题(填“真”或“假”). 16. 反比例函数xk y 11=与一次函数b x k y +=22的图象交于A (-2,-1)和B 两点,点B 的纵坐标为-3,若21y y <,则x 的取值范围是 * .三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:213-=x x 18.(本小题满分9分)在□ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC . 19.(本小题满分10分) 已知xy 2=,求22)5()y x y x y x -+-+(的值. 20.为测山高,在点A 处测得山顶D 的仰角为31°,从点A 向山方向前进140米到达点B ,在B 处测得山顶D 的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D 作DC ⊥AB ,交AB 的延长线于点C ; (2)山高DC 是多少(结果取整数)?21.(本小题满分12分)某校九年级在母亲节倡议“感恩母亲,做点家务”活动.为了解同学们在母亲节的周末做家务情况,年级随机调查了部分同学,并用得到的数据制成如下不完整的统计表. (1)统计表中的=x ,=y ; (2)被调查同学做家务时间的中位数是 小时,平均数是 小时; (3)年级要组织一次"感恩母亲“的主题级会,级长想从报名的4位同学中随机抽取2位同学在会上谈体会.据统计,报名的4人分别是母亲节的周末做家务1小时的1人、做家务1.5小时的2人、做家务2小时的1人.请你算算选上的2位同学恰好是一位做家务2小时和一位做家务1.5小第18题第20题图①图②31︒AD62︒B时的概率.22.(本小题满分12分) 已知关于x 的方程-2xmx 3-x 4-+m =0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 是方程的两个实数根,且1x +2x =6.请求出方程的这两个实数根.23.(本小题满分12分)直线l 经过(2,3)和(-2,-1)两点,它还与 x 轴交于A 点,与y 轴交于C 点,与经过原点的直线OB 交于第三象限的B 点,且∠ABO =30°.求: (1)点A 、C 的坐标; (2)点B 的坐标.24.(本小题满分14分)已知关于x 的二次函数k x k k x y 2)43(22+--+=的图象与x 轴从左到右交于A ,B 两点,且这两点关于原点对称. (1)求k 的值;(2)在(1)的条件下,若反比例函数xmy =的图象与二次函数k x k k x y 2)43(22+--+=的图象从左到右交于Q ,R ,S 三点,且点Q 的坐标为(-1,-1),点R (R x ,R y ),S (S x ,S y )中的纵坐标R y ,S y 分别是一元二次方程012=-+my y 的解,求四边形AQBS 的面积AQBS S 四边形;(3)在(1),(2)的条件下,在x 轴下方是否存在二次函数k x k k x y 2)43(22+--+=图象上的点P 使得PAB S ∆=2RAB S ∆,若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分14分)如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PC PB <,PA 交BC 于E ,F第23题xy点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.数学参考答案一.选择题(每小题3分,共30分) CCCCB BDABB二.填空题(本大题共6题,每小题3分,满分18分) 11.1≥x 12.8102.17⨯ 13.)1)(1(b b a +-14.615. 如果一个四边形是旋转对称图形,那么这个四边形是平行四边形. 假 16.2-<x 或032<<-x (说明:只答对2-<x 中学数学二模模拟试卷一.选择题(每小题3分,共30分 1.(3分)﹣的绝对值是( ) A .2B .C .﹣D .﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm 的小洞,则0.000000039用科学记数法可表示为( ) A .3.9×10﹣8B .﹣3.9×10﹣8C .0.39×10﹣7D .39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是( )A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣39.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.。
天津初三初中数学中考模拟带答案解析
天津初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )A .140°B .160°C .170°D .150°2.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q3.抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac ﹣b 2<0;②2a ﹣b=0;③a+b+c <0;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.如图,正方形ABCB 1中,AB=1,AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3B 4,…,依此规律,则A 2015A 2016= . 二、填空题1.将多项式ax 2﹣4ax+4a 分解因式为.2.关于x 的分式方程有解,则字母a 的取值范围是 .3.菱形ABCD 的对角线AC=6cm ,BD=4cm ,以AC 为边作正方形ACEF ,则BF 长为.4.若x 2+x+m=(x ﹣3)(x+n )对x 恒成立,则n= .5.已知m 是方程x 2﹣x ﹣1=0的一个根,则m (m+1)2﹣m 2(m+3)+4的值为 .6.已知x 是的小数部分,则= .7.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.三、解答题1.不等式组的解集是.2.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.3.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.4.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.5.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.6.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF 交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.7.如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.8.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m 满足什么条件时,平移后的抛物线总有不动点.9.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P 作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.10.已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b的值.天津初三初中数学中考模拟答案及解析一、选择题1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.【考点】直角三角形的性质.2.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】B【解析】∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .【考点】有理数大小比较.3.抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac ﹣b 2<0;②2a ﹣b=0;③a+b+c <0;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】函数与x 轴有两个交点,则b 2﹣4ac >0,即4ac ﹣b 2<0,故①正确;函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a ,2a ﹣b=0,故②正确;当x=1时,函数对应的点在x 轴下方,则a+b+c <0,则③正确;则y 1和y 2的大小无法判断,则④错误.故选C .【考点】二次函数图象与系数的关系.4.如图,正方形ABCB 1中,AB=1,AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3B 4,…,依此规律,则A 2015A 2016= . 【答案】2()2015 【解析】∵四边形ABCB 1是正方形,∴AB=AB 1,AB ∥CB 1,∴AB ∥A 1C ,∴∠CA 1A=30°,∴A 1B 1=,AA 1=2,∴A 1B 2=A 1B 1=,∴A 1A 2=2,同理:A 2A 3=2()2,A 3A 4=2()3,…∴A n A n+1=2()n ,∴A 2015A 2016=2()2015, 故答案为:2()2015.【考点】正方形的性质.二、填空题1.将多项式ax 2﹣4ax+4a 分解因式为.【答案】a (x ﹣2)2【解析】原式=a (x 2﹣4x+4)=a (x ﹣2)2,故答案为:a (x ﹣2)2.【考点】提公因式法与公式法的综合运用.2.关于x 的分式方程有解,则字母a 的取值范围是 .【答案】a≠5,a≠0【解析】方程 去分母得:5(x ﹣2)=ax ,去括号得:5x ﹣10=ax ,移项,合并同类项得:(5﹣a )x=10,∵关于x 的分式方程有解,∴5﹣a≠0,x≠0且x≠2,即a≠5, 系数化为1得:x=,∴≠0且x≠0且x≠2,即a≠5,a≠0,综上所述:关于x 的分式方程有解,则字母a的取值范围是a≠5,a≠0,故答案为:a≠5,a≠0.【考点】分式方程的解.3.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.【答案】5cm或cm【解析】∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF=cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF==5cm,综上所述,BF长为5cm或cm.故答案为:5cm或cm.【考点】菱形的性质;正方形的性质.4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n= .【答案】4【解析】∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.【考点】因式分解-十字相乘法等.5.已知m是方程x2﹣x﹣1=0的一个根,则m(m+1)2﹣m2(m+3)+4的值为.【答案】3【解析】∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2=m+1,∴m(m+1)2﹣m2(m+3)+4=m(m2+2m+1)﹣(m+1)(m+3)+4=m(m+1+2m+1)﹣(m2+4m+3)+4=3m2+2m﹣m2﹣4m﹣3+4=2m2﹣2m+1=2(m+1)﹣2m+1=2m+2﹣2m+1=3.故答案为3.【考点】一元二次方程的解.6.已知x是的小数部分,则= .【答案】【解析】原式化简得,∵x是的小数部分,且2<<3,∴x=﹣2,∴原式==.故答案为:.【考点】分式的混合运算.7.二次函数y=x 2的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=x 2的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为 . 【答案】2 【解析】连结BC 交OA 于D ,如图,∵四边形OBAC 为菱形,∴BC ⊥OA ,∵∠OBA=120°,∴∠OBD=60°,∴OD=BD ,设BD=t ,则OD=t ,∴B (t , t ),把B (t , t )代入y=x 2得t 2=t ,解得t 1=0(舍去),t 2=1,∴BD=1,OD=, ∴BC=2BD=2,OA=2OD=2,∴菱形OBAC 的面积=×2×2=2. 故答案为2.【考点】菱形的性质;二次函数图象上点的坐标特征.三、解答题1.不等式组的解集是. 【答案】﹣1≤x <3【解析】解不等式①得:x≥﹣1,解不等式②得:x <3,所以不等式组的解集是:﹣1≤x <3,故答案为:﹣1≤x <3.【考点】解一元一次不等式组.2.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.【答案】(1)见解析;(2)88万人;(3)P(抽取的两人恰好是甲和乙)==.【解析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.试题解析:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)880×10%=88万人;(3)画树形图得:则P(抽取的两人恰好是甲和乙)==.【考点】列表法与树状图法;扇形统计图;条形统计图.3.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【答案】M、N两点之间的直线距离是1500米【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.试题解析:在△ABC与△AMN中,, =,∴,又∵∠A=∠A,∴△ABC∽△AMN,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;【考点】相似三角形的应用.4.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【答案】(1)见解析;(2)∠APD=∠FCD=45°.【解析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.试题解析:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【考点】全等三角形的判定与性质.5.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【答案】(1)反比例函数的解析式为:y=;(2)D(2,2)在反比例函数y=的图象上.【解析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.试题解析:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上,∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【考点】反比例函数与一次函数的交点问题.6.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.【答案】(1)见解析;(2)CE=2.【解析】(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2)2=x2+(3x)2求得答案.试题解析:(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠FAB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2)2=x2+(3x)2,∴x=2.∴CE=2.【考点】切线的性质;相似三角形的判定与性质.7.如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.【答案】(1)DM⊥FM,DM=FM,证明见解析;(2)DM⊥FM,DM=FM.【解析】(1)连接DF,NF,由四边形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,即可得到结论;(2)连接DF,NF,由四边形ABCD是正方形,得到AD∥BC,由点E、B、C在同一条直线上,于是得到AD∥CN,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,于是结论得到.试题解析:(1)如图2,DM=FM,DM⊥FM,证明:连接DF,NF,∵四边形ABCD和CGEF是正方形,∴AD∥BC,BC∥GE,∴AD∥GE,∴∠DAM=∠NEM,∵M是AE的中点,∴AM=EM,在△MAD与△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,在△DCF与△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM(2)猜想:DM⊥FM,DM=FM,证明如下:如图3,连接DF,NF,连接DF,NF,∵四边形ABCD是正方形,∴AD∥BC,∵点E、B、C在同一条直线上,∴AD∥CN,∴∠ADN=∠MNE,在△MAD与△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,在△DCF与△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM.【考点】四边形综合题.8.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m 满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形,理由见解析;(3)当m≤时,平移后的抛物线总有不动点.【解析】(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围.试题解析:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB=3,BM=2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,即当m≤时,平移后的抛物线总有不动点.【考点】二次函数综合题.9.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.【答案】(1)点M的坐标为:(t+4,t);(2)MN=OA=4;(3)当m≤时,平移后的抛物线总有不动点.【解析】(1)作ME⊥x轴于E,则∠MEP=90°,先证出∠PME=∠CPO,再证明△MPE≌△PCO,得出ME=PO=t,EP=OC=4,求出OE,即可得出点M的坐标;(2)连接AM,先证明四边形AEMF是正方形,得出∠MAE=45°=∠BOA,AM∥OB,证出四边形OAMN是平行四边形,即可得出MN=OA=4;(3)先证明△PAD∽△PEM,得出比例式,得出AD,求出BD,求出四边形BNDM的面积S是关于t 的二次函数,即可得出结果.试题解析:(1)作ME⊥x轴于E,如图1所示:则∠MEP=90°,ME∥AB,∴∠MPE+∠PME=90°,∵四边形OABC是正方形,∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,∵PM⊥CP,∴∠CPM=90°,∴∠MPE+∠CPO=90°,∴∠PME=∠CPO,在△MPE和△PCO中,,∴△MPE≌△PCO(AAS),∴ME=PO=t,EP=OC=4,∴OE=t+4,∴点M的坐标为:(t+4,t);(2)线段MN的长度不发生改变;理由如下:连接AM,如图2所示:∵MN∥OA,ME∥AB,∠MEA=90°,∴四边形AEMF是矩形,又∵EP=OC=OA,∴AE=PO=t=ME,∴四边形AEMF是正方形,∴∠MAE=45°=∠BOA,∴AM∥OB,∴四边形OAMN是平行四边形,∴MN=OA=4;(3)∵ME∥AB,∴△PAD∽△PEM,∴,即,∴AD=﹣t2+t,∴BD=AB﹣AD=4﹣(﹣t2+t)=t2﹣t+4,∵MN∥OA,AB⊥OA,∴MN⊥AB,∴四边形BNDM的面积S=MN•BD=×4(t2﹣t+4)=(t﹣2)2+6,∴S是t的二次函数,∵>0,∴S有最小值,当t=2时,S的值最小;∴当t=2时,四边形BNDM的面积最小.【考点】四边形综合题.10.已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b的值.【答案】(1)k为1,2;(2)M的坐标为(-,);(3)b=1或b=.【解析】(1)先根据一元二次方程根的情况利用判别式与0的关系可以求出k的值;(2)利用m先表示出M与N的坐标,再根据两点间的距离公式表示出MN的长度,根据二次函数的极值即可求出MN的最大长度和M的坐标;(3)根据图象的特点,分两种情况讨论,分别求出b的值即可.试题解析:(1)∵关于x的一元二次方程有两个不相等的实数根.∴.∴k﹣1<2.∴k<3.∵k为正整数,∴k为1,2.(2)把x=0代入方程得k=1,此时二次函数为y=x2+2x,此时直线y=x+2与二次函数y=x2+2x的交点为A(﹣2,0),B(1,3)由题意可设M(m,m+2),其中﹣2<m<1,则N(m,m2+2m),MN=m+2﹣(m2+2m)=﹣m2﹣m+2=﹣.∴当m=﹣时,MN的长度最大值为.此时点M的坐标为(,).(3)当y=x+b过点A时,直线与新图象有3个公共点(如图2所示),把A(﹣2,0)代入y=x+b得b=1,当y=x+b与新图象的封闭部分有一个公共点时,直线与新图象有3个公共点.由于新图象的封闭部分与原图象的封闭部分关于x轴对称,所以其解析式为y=﹣x2﹣2x ∴有一组解,此时有两个相等的实数根,则所以b=,综上所述b=1或b=.【考点】二次函数综合题.。
天津市中考数学模拟考试卷和答案--解析版
天津市初中毕业生学业考试试卷一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中.只有一项是符合题目要求的)(1)sin45°的值等于 B(A) 12 (B) 22 (C) 32 (D) 1(2)下列汽车标志中,可以看作是中心对称图形的是 A(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为 B(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(4) 估计10的值在 C(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问(5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 C (A) 15° (B) 30° (C) 45° (D) 60°考点:翻折变换(折叠问题);正方形的性质.专题:计算题.分析:利用翻折变换的不变量,可以得到∠EBF 为直角的一半.解答:解:∵将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,∴∠ABE=∠DBD=∠DBF=∠FBC ,∴∠EBF= 12∠ABC=45°,故选C . 点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键(6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 D(A) 相交 (B) 相离 (C) 内切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是 A(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是 B(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定 (C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定方差;条形统计图.专题:计算题;数形结合.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答:解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B .点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
【3套试卷】天津市中考模拟考试数学试题含答案
中考模拟考试数学试题含答案一.选择题(满分48分,每小题4分)1.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.a+a=a2B.a3÷a=a3C.a2•a=a3D.(a2)3=a54.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣36.如图,八个大小相同的小矩形可拼成下面两个大矩形,拼成图2时,中间留下了一个边长为1的小正方形,则每个小矩形的面积是()A.12 B.14 C.15 D.167.某中学篮球队12名队员的年龄情况如下表:年龄/岁12 13 14 15 16人数 1 3 4 2 2关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为14 8.在关于x的函数y=+(x﹣1)0中,自变量x的取值范图是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≥﹣2且x≠1 D.x≥19.如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是()A.B.C.D.10.下列说法错误的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形11.我们可以只用直尺和圆规作出圆的部分内接正多边形.在我们目前所学知识的范围内,下列圆的内接正多边形不可以用尺规作图作出的是()A.正三角形B.正四边形C.正六边形D.正七边形12.如图①,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线BD,FH剪开,拼成如图②所示的四边形KLMN,若中间空白部分四边形OPQR恰好是正方形,且四边形KLMN的面积为52,则正方形EFGH的面积是()A.24 B.25 C.26 D.27二.填空题(满分16分,每小题4分)13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.(x﹣3y)(x+3y)=.15.如图,AB是半圆O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,,AD=3.给出下=5,其中正确的是列结论:①AC平分∠BAD;②△ABC∽△ACE;③AB=3PB;④S△ABC(写出所有正确结论的序号).16.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(﹣3,0),B(0,6)分别在x轴,y轴上,反比例函数的图象经过点D,且与边BC交于点E,则点E的坐标为.三.解答题17.(8分)计算:4sin60°﹣|﹣1|+(﹣1)0+18.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(8分)黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船在黄岩岛附近海域巡航,某一时刻海监船在A处测得该岛上某一目标C在它的北偏东45°方向,海监船沿北偏西30°方向航行60海里后到达B处,此时测得该目标C在它的南偏东75方向,求此时该船与目标C之间的距离CB的长度,(结果保留根号)20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某数学兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<4000 8 a4000≤x<8000 15 0.38000≤x<12000 12 b12000≤x<16000 c0.216000≤x<20000 3 0.0620000≤x<24000 d0.04 请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)我市约有5000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,用树形图或列表法求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.(12分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O 上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.(1)求证:△OBP与△OPA相似;(2)当点P为AB中点时,求出P点坐标;(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.22.(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.24.(14分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB 于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、负数有倒数,例如﹣1的倒数是﹣1,选项错误;B、正数的倒数不一定比自身小,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、﹣1的倒数是﹣1,正确.故选:D.2.解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选:C.3.解:A、a+a=2a,此选项计算错误;B、a3÷a=a2,此选项计算错误;C、a2•a=a3,此选项计算正确;D、(a2)3=a6,此选项计算错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a <0. 故选:C .6.解:设小矩形的长为x ,宽为y , 根据题意得:,解得:,∴xy =5×3=15. 故选:C .7.解:A 、这12个数据的众数为14,正确;B 、极差为16﹣12=4,错误;C 、中位数为=14,错误;D 、平均数为=,错误;故选:A .8.解:根据题意得:x +2≥0且x ﹣1≠0, 解得:x ≥﹣2且x ≠1. 故选:C .9.解:当0≤t ≤2时,AM =t ,AN =2t , 所以S =S正方形ABCD﹣S △AMN ﹣S △BCM ﹣S △CDN =4×4﹣•t •2t ﹣•4•(4﹣t )﹣•4•(4﹣2t )=﹣t 2+6t ;当2<t ≤4时,CN =8﹣2t ,S =•(8﹣2t )•4=﹣4t +16,即当0≤t ≤2时,S 关于t 函数的图象为开口向下的抛物线的一部分,当2<t ≤4时,S 关于t 函数的图象为一次函数图象的一部分. 故选:D . 10.解:由平行四边形的判定方法可知:两组对边分别平行、两组对边分别相等、一组对边平行且相等的四边形是平行四边形,故A 、B 、D 说法正确,当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故C 是说法错误的, 故选:C .11.解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正七边形,故选:D.12.解:如图,设PM=PL=N R=KR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=52,∴a2=26,∴正方形EFGH的面积=a2=26,故选:C.二.填空题(共4小题,满分16分,每小题4分)13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:(x﹣3y)(x+3y)=x2﹣9y2.15.解:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;故①正确,∵AB是直径,∴∠ACB=∠AEC=90°,∵∠CAE=∠CAB,∴△AEC∽△ACB,故②正确,∵∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴=,∴PC2=PB•PA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3PB;故③正确过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴=,∵AB=3PB,AB=2OB,∴OB=PB,∴===∴OC=,∴AB=5,∵△PBC∽△PCA,∴==,∴AC=2BC,在Rt△ABC中,AC2+BC2=AB2,∴(2BC)2+BC2=52,∴BC=,∴AC=2,=AC•BC=5.故④正确.∴S△ABC故答案为①②③④.16.解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+6②,联立①②得:或(舍去),∴点E的坐标为:(﹣2,7).故答案为:(﹣2,7).三.解答题17.解:原式=4×﹣1+1+4=2+4=6.18.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.19.解:由题意得:∠EBA=∠FAB=30°,∴∠ABC=∠EBC﹣∠EBA=75°﹣30°=45°,∴∠C=180°﹣45°﹣75°=60°;过A作AD⊥BC于D,则BD=AD=AB•sin∠ABD=2×30×=30,CD=,∴CB=BD+CD=(30+10)海里.答:该船与岛上目标C之间的距离即CB的长度为(30+10)海里.20.解:(1)a==0.16;b==0.24;c=50×0.2=10;d=50×0.04=2;如图,(2)5000×(0.2+0.06+0.04)=1500,所以估计日行走步数超过12000步(包含12000步)的教师有1500名;(3)步数超过16000步(包含16000步)的三名教师用A、B、C表示,步数超过20000步(包含20000步)的两名教师用a、b表示,画树状图为:共有20种等可能的结果数,其中被选取的两名教师恰好都在20000步(包含20000步)以上的结果数为2,所以被选取的两名教师恰好都在20000步(包含20000步)以上的概率==.21.解:(1)证明:∵AB是过点P的切线,∴AB⊥OP,∴∠OPB=∠OPA=90°;(1分)∴在Rt△OPB中,∠1+∠3=90°,又∵∠BOA=90°∴∠1+∠2=90°,∴∠2=∠3;(1分)在△OPB中△APO中,∴△OPB∽△APO.(2分)(2)∵OP⊥AB,且PA=PB,∴OA=OB,∴△AOB是等腰三角形,∴OP是∠AOB的平分线,∴点P到x、y轴的距离相等;(1分)又∵点P在第一象限,∴设点P(x,x)(x>0),∵圆的半径为2,∴OP=,解得x=或x=﹣(舍去),(2分)∴P点坐标是(,).(1分)(3)存在;①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,∴∠POQ=90°,∵OP=OQ,∴△POQ是等腰直角三角形,∴O B是∠POQ的平分线且是边PQ上的中垂线,∴∠BOQ=∠BOP=45°,∴∠AOP=45°,设P(x,x)、Q(﹣x,x)(x>0),(2分)∵OP=2代入得,解得x=,∴Q点坐标是(﹣,);(1分)②如图示OPAQ为平行四边形,同理可得Q点坐标是(,﹣).(1分)22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC , 此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =(m =>0,舍),∴P (,). (3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴=,即=,∴DQ 1=,∴OQ 1=,即Q 1(0,);②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴=,即=,∴OQ 2=,即Q 2(0,);③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E ,则△BOQ 3∽△Q 3EA , ∴=,即=,∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,即Q 3(0,﹣1),Q 4(0,﹣3).综上,Q 点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).24.解:(1)∵一次函数y =﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C , ∴A (4,0),C (0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).中考第一次模拟考试数学试卷数 学(满分:120分 考试时间:120分钟)一、选择题(共10小题,每小题3分,满分30分) 1.3-8=( D ) A .2 B .-2 2 C .-83D .-2[命题考向:此题考查立方根,根据-8的立方根是-2解答.]2.据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为( D ) A .4.6×108 B .46×108 C .4.69D .4.6×109[命题考向:此题考查科学记数法表示较大的数的方法,形式为a ×10n ,准确确定a 与n 的值是关键.]3.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .已知AB AC =13,则( C )(第3题图)A.AB BC =13B.AD FC =13C.DE EF =12D.BE FC =12[命题考向:本题考查平行线分线段成比例定理,属于中考常考题型.] 4.如图是杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图,为了了解该天上午和下午的气温哪个更稳定,则应选择的统计量是( C )(第4题图)A .众数B .平均数C .方差D .中位数[命题考向:本题主要考查折线统计图和统计量的选择,解题的关键是理解方差的意义:方差(或标准差)越大,数据的离散程度越大,稳定性越差;反之,则离散程度越小,稳定性越好.] 5.下列各式变形中,正确的是( A ) A .(x )2=xB .(-x -1)(1-x )=1-x 2 C.x -x +y =-x x +y D .x 2+x +1=⎝ ⎛⎭⎪⎫x +122-34[命题考向:本题考查的是二次根式的化简、平方差公式、分式的基本性质和配方法.]6.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( C ) A.⎩⎨⎧x -1=y ,x =2yB.⎩⎨⎧x =y ,x =2(y -2)C.⎩⎨⎧x -1=y ,x =2(y -1)D.⎩⎨⎧x +1=y ,x =2(y -1)[命题考向:此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.] 7.若(5-m )m -3>0,则( D ) A .m <5 B .3≤m <5 C .3≤m ≤5D .3<m <5[命题考向:本题考查不等式的性质,二次根式的非负性.解题的关键是熟练运用不等式的性质,本题属于基础题型.解析:原不等式等价于⎩⎨⎧m -3>0,5-m >0,∴3<m <5,故选D.]8.已知A ,B 两地相距120 km ,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:km)与时间t (单位:h)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:km),则y 关于t 的函数图象是( B )(第8题图)A BC D[命题考向:本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.解析:由题意和图象可得,乙到达B 地时甲距A地120 km,开始时两人的距离为0;甲的速度是120÷(3-1)=60km/h,乙的速度是80÷3=803km/h,即乙出发1 h后两人距离为803km;设乙出发后被甲追上的时间为x h,则60(x-1)=803x,解得x=1.8,即乙出发后被甲追上的时间为1.8 h.所以符合题意的函数图象只有选项B.故选B.]9.如图,AB是⊙O的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF,BF,则(C)A.sin∠AFE=12B.cos∠BFE=12C.tan∠EDB=32D.tan∠BAF= 3(第9题图) (第9题答图)[命题考向:本题考查的是圆周角定理、全等三角形的判定和性质、锐角三角函数的定义,掌握圆周角定理、直角三角形的性质是解题的关键.解析:如答图,连结OC,OE,作EG⊥AB于点G,∵OD=12OA=12OC,∴∠OCD=30°,∴∠COD=60°,∴∠BOC=180°-60°=120°,∵点E是弧BC的中点,∴∠COE=∠BOE=60°,∴∠AOE=∠AOC+∠COE=120°,∴∠AFE=1 2∠AOE=60°,∴sin∠AFE=32,A错误;∵∠BOE=60°,∴∠BFE=30°,∴cos∠BFE=32,B错误;设OD=a,则OC=2a,由勾股定理得CD=OC 2-OD 2=3a ,在△COD 和△EOG 中,⎩⎨⎧∠COD =∠EOG ,∠CDO =∠EGO ,OC =OE ,∴△COD ≌△EOG (AAS ),∴EG =CD =3a ,OG =OD =a ,∴tan ∠EDB =EGDG=32,C 正确;∵tan ∠EDB =32,∴∠EDB =∠ADF ≠60°,则∠BAF ≠60°,∴tan ∠BAF ≠3,D 错误.故选C.]10.如图,已知在△ABC 中,点D 为BC 边上一点(不与点B ,点C 重合),连结AD ,点E 、点F 分别为AB ,AC 上的点,且EF ∥BC ,交AD 于点G ,连结BG ,并延长BG 交AC 于点H .已知AE BE =2,①若AD 为BC 边上的中线,则BGBH 的值为23;②若BH ⊥AC ,当BC >2CD 时,BH AD <2sin ∠DAC .则( A )(第10题图)A .①正确;②不正确B .①正确;②正确C .①不正确;②正确D .①不正确;②不正确[命题考向:本题是三角形的一个综合题,主要考查了直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.解析:①如答图①,过点B 作BM ∥AC ,与AD 的延长线相交于点M ,∴∠C =∠MBD ,在△ACD 和△MBD中,⎩⎨⎧∠C =∠MBD ,CD =BD ,∠ADC =∠MDB ,∴△ACD ≌△MBD (ASA ),∴AD =MD ,∵EF ∥BC ,AEBE=2,∴AGDG=AEBE=2,∴MGAG=42=2,∵BM∥AC,∴△MBG∽△AHG,∴BGHG=MGAG=2,∴BGBH=23,故①正确;②如答图②,过点D作DN⊥AC于点N,则DN=AD·sin∠DAC,∵BH⊥AC,DN⊥AC,∴BH∥DN,∴BHDN=BCDC,即BHAD sin∠DAC =BCDC,∵BC>2CD,∴BHAD sin∠DAC>2,∴BHAD>2sin∠DAC.故②错误.故选A.](第10题答图①) (第10题答图②) 二、填空题(共6小题,每小题4分,满分24分)11.计算:a·a2=__a3__.[命题考向:本题主要考查同底数幂的乘法,熟练掌握运算法则是解题的关键.]12.分解因式:m4n-4m2n=__m2n(m+2)(m-2)__.[命题考向:本题考查了提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.]13.如图,点P在⊙O外,PA,PB分别切⊙O于点A、点B,若∠P=50°,则∠A=__65°__.(第13题图)[命题考向:本题考查了切线的性质.解题的关键是掌握切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.解析:∵PA,PB分别切⊙O于点A,点B,∴PA=PB,∴∠A=∠B.∵∠P=50°,∴∠A=∠B=12×(180°-50°)=65°.]14.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是__16__.[命题考向:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点:概率=所求情况数与总情况数之比.解析:列表如下:由表格可得,共有30种等可能结果,其中组成的两位数是6的倍数的有5种结果,∴组成的两位数是6的倍数的概率是530=16,故答案为16.]15.已知在▱ABCD中,∠B和∠C的平分线分别交直线AD于点E、点F,AB =5,若EF>4,则AD的取值范围是__0<AD<6或AD>14__.[命题考向:本题考查了平行四边形的性质,角平分线的性质,利用分类讨论思想解决问题是本题的关键.解析:若点E在点F右边,如答图①,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=5,同理可得DF =CD=5,∴AD=AE+DF-EF=10-EF,∵EF>4,∴0<AD<6;若点E在点F左边,如答图②,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=5,同理可得DF=CD=5,∴AD=AE+EF+FD=10+EF,∵EF>4,∴AD>14.故答案为0<AD<6或AD>14.](第15题答图①)(第15题答图②)16.在△ABC 中,点A 到直线BC 的距离为d ,AB >AC >d ,以A 为圆心,AC 为半径画圆弧,圆弧交直线BC 于点D ,过点D 作DE ∥AC 交直线AB 于点E ,若BC =4,DE =1,∠EDA =∠ACD ,则AD =.[命题考向:本题考查等边三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是运用分类讨论的思想,利用参数结合几何图形中的等量关系构建方程解决问题.解析:分两种情形:Ⅰ.如答图①中,当点D 在线段BC 上时.∵DE ∥AC ,∴∠ADE =∠CAD ,∵∠ADE =∠C ,∴∠CAD =∠C ,∴DA=DC ,∵AD =AC ,∴AD =DC =AC ,设AD =x ,∵DE ∥AC ,∴DE AC =BDBC ,∴1x =4-x4,解得x =2.Ⅱ.如答图②中,当点D 在线段BC 的延长线上时,同法可证:AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4+x4,解得x=-2+22或-2-22(舍去),综上所述,满足条件的AD的值为2或-2+22,故答案为2或-2+2 2.](第16题答图①) (第16题答图②)三、解答题(共7小题,满分66分)17.(6分)跳跳一家外出自驾游,出发时油箱里还剩有汽油30 L,已知跳跳家的汽车每百千米平均油耗为12 L,设油箱里剩下的油量为y(单位:L),汽车行驶的路程为x(单位:km).(1)求y关于x的函数表达式;(2)若跳跳家的汽车油箱中的油量低于5 L时,仪表盘会亮起黄灯警报.要使油箱中的存油量不低于5 L,跳跳爸爸至多行驶多少千米就要进加油站加油?[命题考向:本题考查了一次函数的应用,解一元一次不等式,读懂题目信息,理解剩余油量的表示是解题的关键.]解:(1)y关于x的函数表达式为y=-0.12x+30;(2)当y≥5时,-0.12x+30≥5,解得x≤625 3.答:跳跳爸爸至多行驶6253km就要进加油站加油.18.(8分)为了满足学生的个性化需求,新课程改革势在必行,某校积极开展拓展性课程建设,大体分为学科、文体、德育、其他等四个框架进行拓展课程设计.为了了解学生喜欢的拓展课程类型,学校随机抽取了部分学生进行调查,调查后将数据绘制成扇形统计图和条形统计图(未绘制完整).(第18题图)(1)求调查的学生总人数,把条形图补充完整并填写扇形图中缺失的数据;(2)小明同学说:“因为调查的同学中喜欢文体类拓展课程的同学占16%,而喜欢德育类拓展课程的同学仅占12%,所以全校2 000名学生中,喜欢文体类拓展课程的同学人数一定比喜欢德育类拓展课程的同学人数多.”你觉得小明说得对吗?为什么?[命题考向:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.]解:(1)被调查的总人数为4÷16%=25(人),学科的人数为25×32%=8(人),其他的百分比为1-(32%+16%+12%)=40%,补全图形如答图:(第18题答图)(2)不对,样本容量不够大,无法用样本预测整体.19.(8分)如图,已知在△ABC中,AB=AC,点D为BC上一点(不与点B、点C 重合),连结AD,以AD为边在右侧作△ADE,DE交AC于点F,其中AD=AE,∠ADE=∠B.(1)求证:△ABD∽△AEF;(2)若BDEF=43,记△ABD的面积为S1,△AEF的面积为S2,求S1S2的值.(第19题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的性质是解题的关键.] 解:(1)证明:∵AB =AC ,∴∠B =∠C , ∵AD =AE ,∴∠ADE =∠E , 又∵∠ADE =∠B ,∴∠B =∠E ,∵∠BDE =∠ADB +∠ADE =∠C +∠DFC =∠E +∠AFE , ∴∠ADB =∠AFE ,∴△ABD ∽△AEF ; (2)由(1)得△ABD ∽△AEF ,而BD EF =43, ∴S 1S 2=⎝⎛⎭⎪⎫BD EF 2=169.20.(10分)在同一平面直角坐标系中,设一次函数y 1=mx +n (m ,n 为常数,且m ≠0,m ≠-n )与反比例函数y 2=m +nx .(1)若y 1与y 2的图象有交点(1,5),且n =4m ,当y 1≥5时,求y 2的取值范围; (2)若y 1与y 2的图象有且只有一个交点,求mn 的值.[命题考向:此题主要考查了反比例函数与一次函数的交点问题,正确利用数形结合思想分析问题是解题关键.]解:(1)把(1,5)代入y 1=mx +n ,得 m +n =5.又∵n =4m ,∴m =1,n =4.∴y 1=x +4,y 2=5x . ∴当y 1≥5时,x ≥1.此时,0<y 2≤5; (2)令m +nx =mx +n ,得mx 2+nx -(m +n )=0.由题意得Δ=n 2+4m (m +n )=(2m +n )2=0,即2m +n =0. ∴m n =-12.21.(10分)如图,在矩形ABCD 中,2AB >BC ,点E 和点F 为边AD 上两点,将矩形沿着BE 和CF 折叠,点A 和点D 恰好重合于矩形内部的点G 处. (1)当AB =BC 时,求∠GEF 的度数; (2)若AB =2,BC =2,求EF 的长.(第21题图)[命题考向:本题考查了翻折变换,矩形的性质,勾股定理,等腰直角三角形的性质,证明△EGF 为等腰直角三角形是解第(2)问的关键.] 解:(1)当AB =BC 时,矩形ABCD 为正方形,由折叠得AB =BG ,CD =CG ,∠EGB =∠A =90°=∠FGC , ∵AB =BC =CD ,∴BG =BC =GC ,∴∠GBC =60°,∴∠ABG =30°,∴∠AEG =360°-∠A -∠BGE -∠ABG =150°, ∴∠GEF =30°;(2)在矩形ABCD 中,AB =CD =2,由折叠得AB =BG ,CD =CG ,AE =EG ,DF =FG , ∴BG =GC =2,∵BG 2+CG 2=4,BC 2=4,∴BG 2+CG 2=BC 2, ∴∠BGC =90°,且BG =CG ,∴∠GBC =45°, ∴∠ABG =45°,∴∠AEG =360°-∠A -∠BGE -∠ABG =135°, ∴∠FEG =45°, 同理可得∠EFG =45°, ∴△EGF 为等腰直角三角形, 设EG =x ,则AE =FD =x ,EF =2x , 由AE +EF +FD =AD ,得2x +2x =2, ∴x =2-2,∴EF =2x =22-2.22.(12分)在平面直角坐标系中,函数y 1=ax +b (a ,b 为常数,且ab ≠0)的图象如图所示,y 2=bx +a ,设y =y 1·y 2. (1)当b =-2a 时,①若点(1,4)在函数y 的图象上,求函数y 的表达式;②若点(x 1,p )和(x 2,q )在函数y 的图象上,且⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,比较p ,q 的大小;(2)若函数y 的图象与x 轴交于(m ,0)和(n ,0)两点,求证:m =1n .(第22题图)[命题考向:本题考查的是一次函数及二次函数的应用,利用函数与方程及不等式的关系是解题关键.]解:(1)由题意得y =(ax +b )(bx +a ), 当b =-2a 时,y =(ax -2a )(-2ax +a ). ①把(1,4)代入表达式,得a 2=4, 由题意可知a <0,则a =-2,故函数y 的表达式为y =(-2x +4)(4x -2)=-8x 2+20x -8; ②令(ax -2a )(-2ax +a )=0,得x 1=2,x 2=12,∴二次函数y =(ax -2a )(-2ax +a )与x 轴的两个交点坐标为(2,0),⎝ ⎛⎭⎪⎫12,0,∴二次函数y 的对称轴为直线x =54, 又∵⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,∴点(x 1,p )离对称轴较近,且抛物线y 开口向下, ∴p >q ;(2)证明:令(ax +b )(bx +a )=0,得x 1=-b a ,x 2=-a b ,∴mn =⎝ ⎛⎭⎪⎫-b a ×⎝ ⎛⎭⎪⎫-a b =1,即m =1n 得证.23.(12分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE交AB于点M,DF交AC于点N,连结EF,EF分别交AB,AD,AC于点G,O,H.(1)求证:EG=HF;(2)当∠BAC=60°时,求AHNC的值;(3)设HFHE=k,△AEH和四边形EDNH的面积分别为S1和S2,求S2S1的最大值.(第23题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,正方形的性质,正确的识别图形是解题的关键.]解:(1)证明:在正方形AEDF中,OE=OF,EF⊥AD,∵AD⊥BC,∴EF∥BC,∴∠AGH=∠B,∠AHG=∠C,∵AB=AC,∴∠B=∠C,∴∠AGH=∠AHG,∴AG=AH,∴OG=OH,∴OE-OG=OF-OH,∴EG=HF;(2)当∠BAC=60°时,△ABC为正三角形.∵AD⊥BC,∴∠OAH=30°,∴AOOH=3,设OH=a,则OA=OE=OF=3a,∴EH =(3+1)a ,HF =(3-1)a ,∵AE ∥FN ,∴△AEH ∽△NFH ,∴AH NH =EH FH =3+13-1, ∵EF ∥BC ,∴△AOH ∽△ADC ,∴OH DC =AO AD =12,∴CD =2a ,∵△HNF ∽△CND ,∴NH NC =HF CD =3-12,∴AH NC =AH NH ·NH NC =3+12;(3)设EH =2m ,则FH =2km ,∴EF =EH +FH =2m +2km ,∴OA =12EF =(k +1)m ,∴S 1=12EH ·OA =(k +1)m 2,由(2)得△AEH ∽△NFH ,∴S △HNF =k 2S 1=k 2(k +1)m 2,而S △EDF =OA 2=(k +1)2m 2,∴S 2=S △EDF -S △HNF =(k +1)2m 2-k 2(k +1)m 2=(-k 2+k +1)(k +1)m 2,∴S 2S 1=-k 2+k +1=-⎝ ⎛⎭⎪⎫k -122+54, ∴当k =12时,S 2S 1最大,其最大值为54.102019年杭州市萧山区临浦片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,满分30分)1.下列计算正确的是(D)A.-16=-4B.16=±4C.(-4)2=-4D.3(-4)3=-4[命题考向:本题考查平方根、立方根的计算.]2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440 000万人,将440 000用科学记数法表示为(B)A.4.4×106B.4.4×105C.44×104D.0.44×105[命题考向:本题考查科学记数法.]3.哥哥身高1.68 m,在地面上的影子长是2.1 m,同一时间测得弟弟的影子长1.8 m,则弟弟身高是(A)A.1.44 m B.1.52 mC.1.96 m D.2.25 m[命题考向:本题考查相似三角形的应用.能够根据同一时刻,物高与影长成比例,列出正确的比例式,再进行求解.解析:设弟弟的身高是x m,则x1.8=1.682.1,解得x=1.44.故选A.]4.如图是某厂2018年各季度产值统计图(单位:万元),则下列说法正确的是(D)(第4题图)A .四个季度中,每个季度生产总值有增有减B .四个季度中,前三个季度生产总值增长较快C .四个季度中,各季度的生产总值变化一样D .第四季度生产总值增长最快[命题考向:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.]5.下列运算中,错误的是( C )A.x -y x +y =-y -x y +xB.-a -b a +b =-1C.a 2=aD.(1-2)2=2-1[命题考向:此题主要考查了二次根式的性质以及分式的性质,正确化简各式是解题关键.]6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( C )A.⎩⎨⎧8y +3=x ,7y -4=xB.⎩⎨⎧8x +3=y ,7x -4=y。
【3套试卷】天津市中考模拟考试数学试题
中考模拟考试数学试卷含答案一、选择题(每小题3分,共30分)1.的绝对值是()A.3 B.﹣3 C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=1 B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说法正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是96.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.52°B.102°C.98°D.108°7.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.8.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a<1且a≠﹣2 D.a>1且a≠2 9.如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B 的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y 与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2 B.C.D.1二、填空题(每小题3分,共18分)11.据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元.投资数据1159.56亿元用科学记数法可表示为元.12.分解因式:2a3﹣8a=.13.有四张看上去无差别的卡片,正面分别写有“天秀山”、“北山森林公园”、“湿地公园”、“环城路公园”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“天秀山”的概率是.14.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.15.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.16.如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题17.(4分)先化简,再求值:(1﹣)÷,其中a=2﹣1+(π﹣2019)0.18.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?19.(6分)如图所示,某海盗船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处使,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,求出此时海监船与岛屿P 之间的距离(即PC 的长,结果精确到0.1)(参考数据:≈1.732,≈1.414)20.(6分)已知:△ABC 三个顶点的坐标分别为A (﹣2,﹣2),B (﹣5,﹣4),C (﹣1,﹣5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.21.(7分)小明根据学习函数的经验,对函数y=x +的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=x +的自变量x的取值范围是.(2)下表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 4 …y…﹣﹣﹣2 ﹣﹣m 2 n…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,请完成:①当y=﹣时,x=.②写出该函数的一条性质.③若方程x+=t有两个不相等的实数根,则t的取值范围是.22.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.23.(9分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(12分)已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.25.(12分)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.参考答案一、选择题1.解:|﹣|=.故﹣的绝对值是.故选:C.2.解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.3.解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.解:俯视图从左到右分别是2,1,2个正方形,如图所示:.故选:B.5.解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=91,众数是87,极差是97﹣87=10.故选:C.6.解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:C.7.解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.8.解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.9.解:∵点D,E分别是边AC,AB的中点,∴DE是△ABC的中位线,∴DE∥BC且=,②正确;∴∠ODE=∠OBC、∠OED=∠OCB,∴△ODE∽△OBC,∴===,①错误;=()2=,③错误;∵===,∴=,④正确;故选:B.10.解:由图象可知:AE=3,BE=4,∠DAE=∠CEB=α,设:AD=BC=a,在Rt△ADE中,cosα==,在Rt△BCE中,sinα==,由(sinα)2+(cosα)2=1,解得:a=,当x=6时,即:EN=3,则y=MN=EN sinα=.故选:B.二、填空题11.解:将1159.56亿用科学记数法表示为:1.15956×1011.故答案为:1.15956×1011.12.解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)13.解:∵在这4张无差别的卡片上,只有1张写有“天秀山”,∴从中随机一张卡片正面写有“天秀山”的概率是,故答案为:.14.解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.15.解:∵∠C '=∠C =90°,∠DMB '=∠C 'MF =50°,∴∠C 'FM =40°,设∠BEF =α,则∠EFC =180°﹣α,∠DFE =∠BEF =α,∠C 'FE =40°+α,由折叠可得,∠EFC =∠EFC ',∴180°﹣α=40°+α,∴α=70°,∴∠BEF =70°,故答案为:70°.16.解:∵直线l 为y =x ,点A 1(1,0),A 1B 1⊥x 轴, ∴当x =1时,y =, 即B 1(1,),∴tan ∠A 1OB 1=, ∴∠A 1OB 1=60°,∠A 1B 1O =30°,∴OB 1=2OA 1=2,∵以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2,∴A 2(2,0),同理可得,A 3(4,0),A 4(8,0),…,∴点A n 的坐标为(2n ﹣1,0),故答案为:2n ﹣1,0.三、解答题17.解:原式=(﹣)÷=•=,当a =2﹣1+(π﹣2019)0=+1=时,原式===.18.解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人), A 方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A 种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A 和B 两种支付方式的购买者共有928名.19.解:在Rt △PAB 中,∵∠APB =30°,∴PB =2AB ,由题意BC =2AB ,∴PB =BC ,∴∠C =∠CPB ,∵∠ABP =∠C +∠CPB =60°,∴∠C =30°,∴PC =2PA ,∵PA =AB •tan60°,∴PC =2×20×≈69.3(海里).20.解:(1)如图所示:△A 1B 1C 1即为所求:(2)如图所示:△A 2B 2C 2即为所求; B 2(10,8)或B 2(﹣10,﹣8)21.解:(1)∵x在分母上,∴x≠0.故答案为:x≠0.(2)当x=时,y=x+=;当x=3时,y=x+=.故答案为:;.(3)连点成线,画出函数图象.(4)①当y=﹣时,有x+=﹣,解得:x1=﹣4,x2=﹣.故答案为:﹣4或﹣.②观察函数图象,可知:函数图象在第一、三象限且关于原点对称.故答案为:函数图象在第一、三象限且关于原点对称.③∵x+=t有两个不相等的实数根,∴t<﹣2或t>2.故答案为:t<﹣2或t>2.22.解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.23.解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折线O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=100m/min.故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.解:(1)结论:DM⊥EM,DM=EM.理由:如图1中,延长EM交AD于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME(AAS),∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME;(2)如图2中,结论不变.DM⊥EM,DM=EM.理由:如图2中,延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.25.解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P点.设过点C′、O直线解析式为:y=kx∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=0(舍去)或a=4∴a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点M 由(2)M为(2,﹣1)∴由相似CN=,MN=由面积法求N到MC距离为则N点坐标为(,﹣)∴N点坐标为(4,﹣3)或(,﹣)中考第一次模拟考试数学试卷含答案(1)一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x23.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=6.已知关于x的不等式组只有2个整数解,则m的取值范围为()A.m>4 B.4<m<5 C.4≤m<5 D.4<m≤57.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有()A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5二.填空题(共6小题)11.要使二次根式有意义,则x的取值范围是.12.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为km.13.分解因式:x3﹣4x=.14.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为m2.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.16.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y =3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为.三.解答题(共10小题)17.计算:18.先化简,再求值:,其中x的值是方程x2+2x=0的根.19.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.20.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了名市民;扇形统计图中B项对应的圆心角是度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.22.某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在水平地面上BD 上,在C点测得点A的仰角为30°,斜面EC的坡度为1:,测得B、E间距离为10米,立柱AB高30米,求立柱CD的高(结果保留根号).23.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,CA∥y轴,且CB⊥AB.(1)求反比例函数的解析式及点B的坐标:(2)求tan C的值和△ABC的面积.24.如图所示,AB是⊙O的直径,G为弦AE的中点,OG的延长线交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线:(2)⊙O的半径为10,tan A=,求BF的长.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.参考答案与试题解析一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣2|=2.故选:A.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的法则解答即可.【解答】解:A、原式不能合并,错误;B、(x+3)2=x2+6x+9,错误;C、(xy2)3=x3y6,正确;D、x10÷x5=x5,错误;故选:C.3.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件【分析】根据抽样调查和全面调查的概念、方差的意义、利列表法和树状图法求随机事件的概率及不可能事件的概念逐一求解可得.【解答】解:A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则乙的成绩比甲稳定,此选项错误;C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是,此选项错误;D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【解答】解:设有x人,物品的价格为y元,根据题意,可列方程:,故选:A.6.已知关于x的不等式组只有2个整数解,则m的取值范围为()A.m>4 B.4<m<5 C.4≤m<5 D.4<m≤5【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解答】解:由①得:x<m,由②得:x>2,则不等式组的解集是:2<x<m.不等式组有2个整数解,则整数解是3,4.则4<m≤5.故选:D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是不轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:C.8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S=,根据△DA′E∽△DAB知()2=,据此求解可得.△ABC【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有()A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤【分析】①抛物线对称轴在y轴左侧,则ab同号,而c<0,即可求解;②x=2时,y=4a+2b+c>0,即可求解;③5a﹣b+c=5a﹣4a﹣5a≠0,即可求解;④y=a(x+5)(x﹣1)+1,相当于由原抛物线y=ax2+bx+c向上平移了1个单位,即可求解;⑤若方程|ax2+bx+c|=1,即:若方程ax2+bx+c=±1,当ax2+bx+c﹣1=0时,由韦达定理得:其两个根的和为﹣4,即可求解.【解答】解:二次函数表达式为:y=a(x+2)2﹣9a=ax2+4ax﹣5a=a(x+5)(x﹣1),①抛物线对称轴在y轴左侧,则ab同号,而c<0,则abc<0,故正确;②函数在y轴右侧的交点为x=1,x=2时,y=4a+2b+c>0,故正确;③5a﹣b+c=5a﹣4a﹣5a≠0,故错误;④y=a(x+5)(x﹣1)+1,相当于由原抛物线y=ax2+bx+c向上平移了1个单位,故有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确;⑤若方程|ax2+bx+c|=1,即:若方程ax2+bx+c=±1,当ax2+bx+c﹣1=0时,用韦达定理得:其两个根的和为﹣4,同理当ax2+bx+c+1=0时,其两个根的和也为﹣4,故正确.故选:D.10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=1,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.二.填空题(共6小题)11.要使二次根式有意义,则x的取值范围是x≥3 .【分析】直接利用二次根式的定义得出答案.【解答】解:二次根式有意义,故x﹣3≥0,则x的取值范围是:x≥3.故答案为:x≥3.12.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.13.分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为m2.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.【解答】解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2),故答案为:.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.16.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y =3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为y=3,y=x+1 ;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为y=(x﹣2)2+3 .【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式.【解答】解:(1)∵点M(2,3),∴点M(2,3)是x=2,y=3,y=x+1,y=﹣x+5,故答案为y=3,y=x+1;(2)点D有一条特征线是y=x+1,∴b﹣a=1,∴b=a+1∵抛物线解析式为y=(x﹣a)2+b,∴y=(x﹣a)2+a+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(a,b),∴B(2a,2a),∴(2a﹣a)2+b=2a,将b=a+1代入得到a=2,b=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3.故答案为y=(x﹣2)2+3.三.解答题(共10小题)17.计算:【分析】直接利用二次根式的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=3+4+1﹣1=7.18.先化简,再求值:,其中x的值是方程x2+2x=0的根.【分析】根据分式的运算法则进行化简,然后解方程求出x的值,最后将x的值代入原式即可求出答案.【解答】解:原式==x﹣1,又∵x2+2x=0得x1=0,x2=﹣2,当x=0时,分式无意义,∴当x=﹣2时,原式=﹣319.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.【分析】(1)首先推知△AFE≌△DCE(AAS),则其对应边相等AF=CD,结合已知条件AF =BD得到:BD=CD,即D是BC的中点;(2)四边形AFBD是菱形.连接FD.构造平行四边形AFDC.根据对角线相互垂直的平行四边形是菱形证得结论:四边形AFBD是菱形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.∵E为AD的中点,∴AE=DE.∴有,∴△AFE≌△DCE(AAS).∴AF=CD.∵AF=BD,∴BD=CD,即D是BC的中点;(2)四边形AFBD是菱形.理由如下:连接FD.∵AF∥BD且AF=BD,∴四边形AFBD是平行四边形.同理可证四边形AFDC是平行四边形.∴FD∥AC.∵BA⊥AC,∴BA⊥FD.∴四边形AFBD是菱形.20.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了2000 名市民;扇形统计图中B项对应的圆心角是54 度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.【分析】(1)根据D组的人数以及百分比,即可得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)由各选项人数和等于总人数求出C选项的人数,从而补全图形;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.【解答】解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×=54°,故答案为:2000,54;(2)选择公交车人数为800人,补全条形统计图如图所示(3)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,。
天津初三初中数学中考模拟带答案解析
天津初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、单选题1.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×1083.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+14.如图是下面某个几何体的三种视图,则该几何体是()A.圆锥B.圆柱C.三棱锥D.三棱柱5.不等式组的非负整数解的个数是()A.4B.5C.6D.76.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°7.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.8.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A. ①②B. ①②③C. ①③④D. ①②④9.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1二、填空题1.因式分解:x2y﹣4y=_____.2.若式子有意义的x的取值范围是_____.3.下表是某校女子排球队队员的年龄分布:则该校女子排球队队员年龄的众数是______岁.4.圆锥底面圆的半径为2,母线长为5,它的侧面积等于_____(结果保留π).5.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为_____.6.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是________.三、解答题1.先化简,再求值:(1﹣ )÷ ,其中x=﹣2.2.实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开;再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2,折叠该纸片,探究MN 与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.3.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.4.已知关于x 的一元二次方程x 2+(2k+1)x+k 2=0①有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k=1时,求x 12+x 22的值.5.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B 点测得C 点的仰角为60°,然后到42米高的楼顶A 处,测得C 点的仰角为30°,请你帮助李明计算⑪号楼的高度CD .6.如图,⊙O 的直径AB=12cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD . (1)求证:点P 为 的中点;(2)若∠C=∠D ,求四边形BCPD 的面积.7.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表:地铁站ABCDE(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=x 2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.8.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.天津初三初中数学中考模拟答案及解析一、单选题1.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【答案】C【解析】﹣、、是有理数,π是无理数,故选C.2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×108【答案】B【解析】1100000000=1.1×109,故选B.3.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【答案】B【解析】A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选B4.如图是下面某个几何体的三种视图,则该几何体是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.点睛:考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.不等式组的非负整数解的个数是()A.4B.5C.6D.7【答案】B【解析】∵解不等式3x+7≥2得:x≥﹣,解不等式2x-9<1得:x<5,∴不等式组的解集为﹣≤x<5,∴不等式组的非负整数解为0,1,2,3,4,共5个,故选B.6.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【答案】C【解析】∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.点睛:本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键7.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.【答案】D【解析】当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.8.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A. ①②B. ①②③C. ①③④D. ①②④【答案】D【解析】①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.9.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【答案】C【解析】A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故A选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为: =﹣3,故B选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故C选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故D选项正确,不合题意;故选C.10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°, ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN , ∴∠EPM=∠FPN ,∵OP 平分∠AOB ,PE ⊥OA 于E ,PF ⊥OB 于F , ∴PE=PF ,在△POE 和△POF 中, ,∴△POE ≌△POF , ∴OE=OF ,在△PEM 和△PFN 中,, ∴△PEM ≌△PFN ,∴EM=NF ,PM=PN ,故(1)正确, ∴S △PEM =S △PNF ,∴S 四边形PMON =S 四边形PEOF =定值,故(3)正确,∵OM+ON=OE+ME+OF ﹣NF=2OE=定值,故(2)正确, MN 的长度是变化的,故(4)错误,故选B .点睛:本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、填空题1.因式分解:x 2y ﹣4y=_____. 【答案】y (x+2)(x-2)【解析】先提取公因式y ,再利用平方差公式分解因式即可,即x 2y ﹣4y=y (x 2﹣4)=y (x ﹣2)(x+2). 【考点】因式分解. 2.若式子有意义的x 的取值范围是_____.【答案】x <【解析】由题意得:1﹣2x >0,解得:x <.3.下表是某校女子排球队队员的年龄分布:年龄/岁13141516则该校女子排球队队员年龄的众数是______岁. 【答案】15【解析】根据表格得:该校女子排球队队员年龄的众数是15岁.4.圆锥底面圆的半径为2,母线长为5,它的侧面积等于_____(结果保留π). 【答案】10π【解析】根据圆锥的侧面积公式:πrl=π×2×5=10π.5.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P ,若OP=,则k 的值为_____.【答案】3【解析】设点P (m ,m+2), ∵OP=, ∴ =,解得m 1=1,m 2=﹣3(不合题意舍去), ∴点P (1,3), ∴3=,解得k=3.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.6.已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y=(x+1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________. 【答案】2≤m≤8【解析】设平移后的解析式为y=y=(x+1)2﹣m , 将B 点坐标代入,得 4﹣m=2,解得m=2, 将D 点坐标代入,得 9﹣m=1,解得m=8,y=(x+1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8.点睛:本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B ,D 的坐标代入是解题关键.三、解答题1.先化简,再求值:(1﹣ )÷,其中x=﹣2.【答案】, .【解析】把分式进行化简,再把x 的值代入即可求出结果. 试题解析:原式===.当x=﹣2时,原式== .2.实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开;再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2,折叠该纸片,探究MN 与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【答案】(1)猜想:∠MBN=30°,理由见解析;(2)结论:MN=BM .折纸方案及证明见解析. 【解析】(1)猜想:∠MBN=30°.只要证明△ABN 是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;试题解析:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.3.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】(1)甲投放的垃圾恰好是A类的概率为;(2)乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【解析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.试题解析:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:,由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.4.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k=1时,求x 12+x 22的值. 【答案】(1)k >﹣;(2)x 12+x 22=7.【解析】(1)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)将k=1代入方程,由韦达定理得出x 1+x 2=﹣3,x 1x 2=1,代入到x 12+x 22=(x 1+x 2)2﹣2x 1x 2可得. 试题解析:(1)∵方程有两个不相等的实数根, ∴△=(2k+1)2﹣4k 2=4k+1>0, 解得:k >﹣;(2)当k=1时,方程为x 2+3x+1=0, ∵x 1+x 2=﹣3,x 1x 2=1,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=9﹣2=7.点睛:本题考查了根与系数的关系及根的判别式,熟练掌握方程的根的情况与判别式的值间的关系及韦达定理是解题的关键.5.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B 点测得C 点的仰角为60°,然后到42米高的楼顶A 处,测得C 点的仰角为30°,请你帮助李明计算⑪号楼的高度CD .【答案】⑪建筑物的高度CD 为63m .【解析】作AE ⊥CD ,用BD 可以分别表示DE ,CD 的长,根据CD ﹣DE=AB ,即可求得BC 的长,即可解题. 试题解析:作AE ⊥CD , ∵CD=BD•tan60°=BD ,CE=BD•tan30°=BD , ∴AB=CD ﹣CE=BD , ∴BD=21m , CD=BD•tan60°=BD=63m .答:⑪建筑物的高度CD 为63m .6.如图,⊙O 的直径AB=12cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD . (1)求证:点P 为 的中点;(2)若∠C=∠D ,求四边形BCPD 的面积.【答案】(1)证明见解析;(2)四边形BCPD 的面积= 18.【解析】(1)连接OP ,根据切线的性质得到PC ⊥OP ,根据平行线的性质得到BD ⊥OP ,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D ,根据三角形的内角和得到∠C=30°,推出四边形BCPD 是平行四边形,于是得到结论.试题解析:(1)连接OP , ∵CP 与⊙O 相切于点P , ∴PC ⊥OP , ∵BD ∥CP , ∴BD ⊥OP , ∴ ,∴点P 为 的中点; (2)∵∠C=∠D , ∵∠POB=2∠D , ∴∠POB=2∠C , ∵∠CPO=90°, ∴∠C=30°, ∵BD ∥CP , ∴∠C=∠DBA , ∴∠D=∠DBA , ∴BC ∥PD ,∴四边形BCPD 是平行四边形, ∵PO= AB=6, ∴PC=6,∵∠ABD=∠C=30°, ∴OE=OB=3, ∴PE=3,∴四边形BCPD 的面积=PC•PE=6×3=18.7.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=x 2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)y 1关于x 的函数表达式为y 1=2x+2;(2)李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【解析】(1)根据表格中的数据,运用待定系数法,即可求得y 1关于x 的函数表达式;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=x 2﹣9x+80,根据二次函数的性质,即可得出最短时间. 试题解析:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:, 解得:,故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则 y=y 1+y 2=2x+2+x 2﹣11x+78=x 2﹣9x+80, ∴当x=9时,y 有最小值,y min ==39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.8.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.【答案】(1)二次函数的表达式为y=﹣x2+2x;(2)BQ=;(3)点E的坐标为:(,0)或(,)或(2+,2﹣)或(4,0).【解析】(1)利用待定系数法求二次函数的表达式;(2)先求出OB和AB的长,根据勾股定理的逆定理证明∠ABO=90°,由对称计算∠QCB=60°,利用特殊的三角函数列式可得BQ的长;(3)因为D在OB上,所以F分两种情况:i)当F在边OA上时,ii)当点F在AB上时,当F在边OA上时,分三种情况:①如图2,过D作DF⊥x轴,垂足为F,则E、F在OA上,②如图3,作辅助线,构建△OFD≌△EDF≌△FGE,③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E;当点F在OB上时,过D作DF∥x轴,交AB于F,连接OF与DA,依次求出点E的坐标即可.试题解析:(1)将点A的坐标代入二次函数的解析式得:﹣×42+4b=0,解得b=2,∴二次函数的表达式为y=﹣x2+2x.(2)∵y=﹣x2+2x=﹣(x﹣2)2+2,∴B(2,2),抛物线的对称轴为x=2.如图1所示:由两点间的距离公式得:OB= =2,BA= =2.∵C是OB的中点,∴OC=BC=.∵△OB′C为等边三角形,∴∠OCB′=60°.又∵点B与点B′关于CQ对称,∴∠B′CQ=∠BCQ=60°.∵OA=4,OB=2,AB=2,∴OB2+AB2=OA2,∴∠OBA=90°.在Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC=,∴tan60°=,∴BQ=CB=×=.(3)分两种情况:i)当F在边OA上时,①如图2,过D作DF⊥x轴,垂足为F,∵△DOF≌△DEF,且E在线段OA上,∴OF=FE,由(2)得:OB=2,∵点D在线段BO上,OD=2DB,∴OD=OB=,∵∠BOA=45°,∴cos45°=,∴OF=OD•cos45°= =,则OE=2OF=,∴点E的坐标为(,0);②如图3,过D作DF⊥x轴于F,过D作DE∥x轴,交AB于E,连接EF,过E作EG⊥x轴于G,∴△BDE∽△BOA,∴ =,∵OA=4,∴DE=,∵DE∥OA,∴∠OFD=∠FDE=90°,∵DE=OF=,DF=DF,∴△OFD≌△EDF,同理可得:△EDF≌△FGE,∴△OFD≌△EDF≌△FGE,∴OG=OF+FG=OF+DE=+=,EG=DF=OD•sin45°=,∴E的坐标为(,);③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,过B作BM⊥x轴于M,过E作EN⊥BM于N,由翻折的性质得:△DOF≌△DEF,∴OD=DE=,∵BD=OD=,∴在Rt△DBE中,由勾股定理得:BE= =,则BN=NE=BE•cos45°=×=,OM+NE=2+,BM﹣BN=2﹣,∴点E的坐标为:(2+,2﹣);ii)当点F在AB上时,过D作DF∥x轴,交AB于F,连接OF与DA,∵DF∥x轴,∴△BDF∽△BOA,∴,由抛物线的对称性得:OB=BA,∴BD=BF,则∠BDF=∠BFD,∠ODF=∠AFD,∴OD=OB﹣BD=BA﹣BF=AF,则△DOF≌△DAF,∴E和A重合,则点E的坐标为(4,0);综上所述,点E的坐标为:(,0)或(,)或(2+,2﹣)或(4,0).点睛:本题是二次函数的综合题,考查了利用了待定系数法求二次函数的解析式、勾股定理、三角形全等和相似的性质和判定、特殊的三角函数、等边三角形,第三问有难度,正确画图、采用分类讨论的思想是关键.。
【3套试卷】天津市中考模拟考试数学试题含答案
中考模拟考试数学试题含答案考试模拟卷(六)(考试时间:120分钟满分:150分)班级:________姓名:________得分:________一、选择题(本大题共15个小题,每小题3分,共45分) 1.2 020的相反数是(C)A.2 020 B.12 020C.-2 020 D.-12 0202.健康成年人的心脏全年流过的血液总量约为2 540 000 000毫升,将2 540 000 000用科学记数法表示应为(C)A.2.54×108 B.25.4×108C.2.54×109D.0.254×1010 3.下列运算正确的是(B)A.a3+a2=a5B.(-3a3b2)3=-27a9b6C.8a8÷4a4=2a2 D.(-a)2=a4.如图是一个圆柱和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为(C)5.一个三角形的两边长是2和4,则这个三角形的周长可能是(C)A.-6 B.7 C.11 D.126.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是(D)A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是77.若抛物线y=x2-2x+c与y轴交点的坐标是(0,-3),则下列说法不正确的是(C)A.抛物线的开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值是-4D.抛物线与x轴的交点坐标为(-1,0),(3,0)8.我市某楼盘准备以每平方10 000元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方8 100元的均价开盘销售,则平均每次下调的百分率是( C )A .8%B .9%C .10%D .11%9.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,有下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC ,其中正确结论的个数为( D )A .1B .2C .3D .410.不等式组⎩⎨⎧4x -3>2x -6,25-x ≥-35的整数解的个数为( C ) A .1 B .2 C .3 D .411.在平面直角坐标系中,将线段OA 向左平移2个单位长度,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O(0,0),A(1,4),则点O 1,A 1的坐标分别是( D )A .(0,0),(1,4)B .(0,0),(3,4)C .(-2,0),(1,4)D .(-2,0),(-1,4)12.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若△ADE 与四边形DBCE 的面积相等,则DE BC 等于( B )A .1 B.22 C.12 D.14第9题图 第12题图 第13题图13.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是( D )A .6B .4C .3D .214.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C′处,BC ′交AD 于点E ,则下列结论不一定成立的是( C )A .AD =BC′B .∠EBD =∠EDBC .△ABE ∽△CBDD .sin ∠ABE =AE ED 第14题图 第15题图15.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示.则下列结论:①4a -b =0;②c <0;③-3a +c >0;④4a -2b >at 2+bt (t为实数);⑤点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,则y 1<y 2<y 3.其中正确结论的个数是( B )A .4B .3C .2D .1二、填空题(本大题共5个小题,每小题5分,共25分)16.因式分解:-2x 3+4x 2y -2xy 2=__-2x(x -y)2__.17.一次函数y =ax +b 的图象如图所示,则不等式ax +b ≥0的解集是__x ≤2__.第17题图 第18题图 18.有一种落地晾衣架如图①所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图②是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85 cm ,BO =DO =65 cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为__120__cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6)19.△ABC 的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y =k x 在第一象限内的图象与△ABC 有交点,则k 的取值范围是 2≤k ≤16 .第19题图 第20题图 20.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n 个“平行四边形数”和“正六边形数”分别为a 和b ,若a +b =103,则a b 的值是 1291. 三、解答题(本大题共7个小题,共80分)21.(8分)(1)计算:2 0180-25+2sin 45°-(-2)-1;解:原式=1-5+2×22+12=1-5+1+12=-52. 22.(8分)先化简x 2-2x +1x 2-1÷⎝ ⎛⎭⎪⎫x -1x +1-x +1,然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.解:原式=x 2-2x +1x 2-1÷⎣⎢⎢⎡⎦⎥⎥⎤x -1x +1-(x -1) =(x -1)2(x -1)(x +1)÷x -1-(x -1)(x +1)x +1=x -1x +1÷x -1-(x 2-1)x +1=x -1x +1·x +1x (1-x )=-1x. ∵满足-5<x<5的整数有-2,-1,0,1,2.又∵x =±1或x =0时,分母值为0,∴x 只能取-2或2.当x =-2时,原式=12.(或当x =2时,原式=-12) 23.(10分)某学校为了解全校学生对电视节目的喜爱情况(新闻,体育,动画,娱乐,戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;(3)若该校约有1 500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).解:(1)从喜欢动画节目人数可得15÷30%=50(人).(2)50-4-15-18-3=10(人),补图略.(3)1 500×1850=540(人).∴全校喜欢娱乐节目的约有540人.(4)列表或画树状图略.共有12种结果,恰好选中甲,乙两人的有2种情况,∴P(选中甲、乙两人)=212=16.24.(12分)如图,▱ABCD的对角线AC,BD相交于点O,E,F 是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC又∵AE=CF,∴OA -AE =OC -CF ,即OE =OF.在△DOE 和△BOF 中⎩⎪⎨⎪⎧OE =OF ,∠DOE =∠BOF ,OD =OB ,∴△DOE ≌△BOF ; (2)解:四边形EBFD 是矩形.理由如下:∵BD ,EF 相交于点O ,OD =OB, OE =OF ,∴四边形EBFD 是平行四边形.又∵BD =EF ,∴四边形EBFD 是矩形.25.(12分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销,据市场调查,销售单价是100元时,每天销量是50件,而销售单价每降价1元,每天可多售出5件,但销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4 000元,且每天的总成本不超过7 000元,那么销售单价应控制在什么范围?解:(1)由题意,得y =(x -50)[50+5(100-x )]即y =-5x 2+800x -27 500(50≤x ≤100).(2)∵y =-5x 2+800x -27 500=-5(x -80)2+4 500.∵a =-5<0,∴抛物线开口向下.∵50≤x ≤100,对称轴是x =80,∴当x =80时,y 有最大值为4 500.即当销售单价为80元时,每天销售利润最大,最大利润为4 500元.(3)当y =4 000时,-5(x -80)2+4 500=4 000.解得x 1=70,x 2=90.∴当70≤x ≤90时,每天利润不低于4 000元.由每天的总成本不超过7 000元,得50(-5x +550)≤7 000.解得x ≥82.所以82≤x ≤90.∴销售单价应该控制在82元至90元之间.26.(14分)如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,点O 在AB 上,以O 为圆心,OB 长为半径的圆过点D ,且交BC 于点E.(1)求证:AC 是⊙O 的切线;(2)若AB =6,sin ∠BAC =23,求BE 的长.(1)证明:连接OD ,∵OB =OD ,∴∠OBD =∠ODB.又∵BD 是∠ABC 的平分线,∴∠OBD =∠CBD ,∴∠ODB =∠CBD ,∴OD ∥BC.∵∠ACB =90°,即BC ⊥AC ,∴OD ⊥AC.又∵OD 是⊙O 的半径,∴AC 是⊙O 的切线;(2)解:设⊙O 的半径为r ,在Rt △ABC 中,∵AB =6,sin ∠BAC =BC AB =23,∴BC =23×6=4.∵OD ∥BC , ∴△AOD ∽△ABC ,∴OD BC =OA AB ,即r 4=6-r 6,解得r =2.4. 过点O 作OF ⊥BC 于点F ,则OF ∥AC ,∴∠BOF =∠BAC ,∴sin ∠BOF =BF OB =23,∴BF =23×2.4=1.6, ∴BE =2BF =2×1.6=3.2.27.(16分)如图,直线y =-23x +c 与x 轴交于点A(3,0),与y轴交于点B ,抛物线y =-43x 2+bx +c 经过点A ,B.(1)求点B 的坐标和抛物线的解析式;(2)M(m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N.①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标; ②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其他两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.解:(1)B (0,2),抛物线的解析式为y =-43x 2+103x +2. (2)∵MN ⊥x 轴,M (m ,0),∴N ⎝ ⎛⎭⎪⎫m ,-43m 2+103m +2. ①易求得直线AB 的解析式为y =-23x +2,OA =3,OB =2. ∵在△APM 和△BPN 中,∠APM =∠BPN ,∠AMP =90°,∴若要使△BPN 和△APM 相似,则有∠NBP =90°或∠BNP =90°.分两种情况讨论如下:(i )当∠NBP =90°时,过点N 作NC ⊥y 轴于点C.则∠NBC +∠BNC =90°,NC =m ,BC =-43m 2+103m +2-2=-43m 2+103m. ∵∠NBP =90°,∴∠NBC +∠ABO =90°,∴∠ABO =∠BNC , ∴Rt △NCB ∽Rt △BOA ,∴NC OB =CB OA ,∴m 2=-43m 2+103m 3, 解得m 1=0(舍去),m 2=118,∴M ⎝ ⎛⎭⎪⎫118,0. (ii )当∠BNP =90°时,BN ⊥NM.∴点N 的纵坐标为2.∴-43m 2+103m +2=2, ∴m 1=0(舍去),m 2=52.∴M ⎝ ⎛⎭⎪⎫52,0. 综上,点M 的坐标为⎝ ⎛⎭⎪⎫118,0或⎝ ⎛⎭⎪⎫52,0.14或m=1 2.②m=-1或m=-中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=5ab(a2﹣2a+1)=5ab(a﹣1)2,故答案为:5ab(a﹣1)214.计算:=.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣18×=﹣.故答案为:﹣.15.不等式组的整数解是0 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150 度.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.【分析】根据题意画出图形,由勾股定理求出BH的长,则HE可求出.【解答】解:如图1,当AH在△ABC内时,∵△ABC的面积为,BC=10,∴.∴.∴=.∴.如图2,当AH在△ABC外时,同理可得AH=,BH=,∴.故答案为:或.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为48 .【分析】已知平行四边形的高AE、AF,设BC=AD=x,则CD=20﹣x,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=AD=x,则CD=20﹣x,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故答案为:48.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=2.【分析】连接CD,作CH⊥DE于H,由直角三角形的性质可得CD=BD=AD=2,∠A=30°,可得HD=HC=,由直角三角形的性质可得CE=2HC=2.【解答】解:连接CD,作CH⊥DE于H∵∠ACB=90°,∠B=60°,AB=4,D为AB中点,∴CD=BD=AD=2,∠A=30°∴∠ACD=∠A=30°,∵CE平分∠ACB∴∠ACE=45°∴∠DCE=15°∴∠HDC=∠DEC+∠DCE=45°,且CH⊥DE∴∠HCD=∠HDC=45°,且CD=2∴HD=HC=∵∠DEC=30°,CH⊥DE∴CE=2CH=2故答案为:2三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长6+4.【分析】(1)根据轴对称图形的性质作出只有一条对称轴的图形即可求解;(2)作出四边形ABCE即为所求四边形ABCE,进而利用周长解答即可.【解答】解:(1)如图1所示:凸四边形ABCD即为所求;(2)如图2所示,凸四边形ABCE即为所求,四边形ABCE的周长=6+4.故答案为:6+4.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【分析】(1)由帽儿山的人数及其所占百分比可得总人数;(2)根据各部分人数之和等于总人数可得凤凰山的人数;(3)利用样本估计总体思想求解可得.【解答】解:(1)20÷25%=80(名),答:本次抽样调查共抽取了80名学生.(2)最喜欢凤凰山的学生人数为80﹣24﹣8﹣20﹣12=16(名),补全条形统计图(3)1200×=360(名),由样本估计总体得该中学最喜欢香炉山的学生约有360名.24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.【分析】(1)利用三角形中位线定理证明DE∥CF,再证明EF∥CD即可;(2)利用等高模型即可解决问题;【解答】(1)证明:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠DCA,∵∠CEF=∠A,∴∠CEF=∠ECD,∴EF∥CD,∴四边形CDEF是平行四边形.(2)如图2中,与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.理由:∵四边形CDEF是平行四边形,∴△EFC与△DEC的面积相等,∵AE=ED,DE∥BC,∴△ADE与△EDC,△EDC与△EDB的面积相等,∴与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?【分析】(1)首先设第一次每棵树苗的进价是x元,则第二次每棵树苗的进价是2x元,依题意得等量关系:第一购进树苗的棵数﹣第二次购进树苗的棵树=100,由等量关系列出方程即可;(2)设每斤苹果的售价是a元,依题意得等量关系:两次购进树苗的总棵树×成活率为85%×每棵果树平均产苹果30斤﹣两次购进树苗的成本≥89800元,根据不等关系代入相应的数值,列出不等式.【解答】解:(1)设第一次每棵树苗的进价是x元,依题意得:﹣=100,解得:x=5,经检验x=5是原分式方程的解,∴第一次每棵树苗的进价是5元.(2)设每斤苹果的售价是a元,依题意得:(+)×85%×30a﹣1000×2≥89800,解得:a≥12,答:每斤苹果的售价至少是12元.26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.【分析】(1)由等腰三角形的性质和圆的内接四边形的性质可得结论;(2)可证出BD=CD,可得∠FBC=∠BAC,证出∠BFC=∠ABC=∠C,结论得证;(3)取AB中点P,连接MH、GH、DE,可得平行四边形BDEM、等边△MHE,可得出∠GAH =∠GHA=15°,求出GA=GH=•EH=,求出AE=,可求出AB和BG长,Rt△BGK中,可得∠GBK=45°,求出GK=BK=,Rt△QGK中勾股定理可得QK=,延长BK到T使KT=PK,连接GK则△BKP≌△GKT,得出∠KGT=∠KBP,可得QG=QT=15,则PK可求出,GP=GK﹣PK=.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵四边形BFEG内接于⊙O,∴∠BGE+∠BFE=180°∵∠BGE+∠AGE=180°,∴∠BFE=∠AGE,∵△AGM中,∠BAD+∠AGE+∠AMG=180°,△ANF中,∠CAD+∠BFE+∠ANF=180°,∴∠AMG=∠ANF,∵∠ANF=∠BND,∴∠AMG=∠BND;(2)证明:如图,连接DE,∵AB=AC,AD⊥BC,∴BD=CD,∵AE=CE,∴DE是△ABC的中位线,∴DE∥AB,∴∠DEC=∠BAC,∵∠DEC=∠FBC,∴∠FBC=∠BAC,∵AB=AC,∴∠ABC=∠C,∴∠BFC=∠ABC=∠C,∴BF=BC;(3)解:如图,取AB中点M,连接MH、GH、DE,∵AE=CE,∴四边形BDEM是平行四边形,∴ME∥BD,∴∠GME=∠ABC,∵∠ABC=∠C,∠C=∠EDC=∠BGE,∴∠MGE=∠GME,∴GE=ME,∵MH=ME,EH=EG,∴△MHE是等边三角形,∵AD垂直平分BC,∴AH垂直平分ME,∴∠GAH=∠GHA=15°,∴GA=CH=•EH==,∴在△AGE中,AE=,∴AB=AC=,∴BG=AB﹣AG=,∵Rt△BGK中,可得∠GBK=45°,∴GK=BK=,∴Rt△QGK中,QK==,延长BK到T使KT=PK,连接GK,∵∠BKP=∠GKT,∴△BKP≌△GKT(SAS),∴∠KGT=∠KBP,∴∠BPK=∠GTK,∵∠QGT=∠KGQ+∠KGT=∠KGQ+∠PBK,∠KGQ=2∠GBP,∴∠QGT=2∠GBP+∠PBK,∵∠PBK=45°﹣∠GBP,∴∠QGT=45°+∠PBG=∠BPK,∴∠QGT=∠GTK,∴QG=QT=15,∴PK=KT=QT﹣QK=,∴GP=GK﹣PK=12=.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【分析】(1)过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD交CF于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA=BK=BC,MK=MA,证明Rt△BKQ≌Rt△BCQ(HL),推出QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,由tan∠MNA=tan∠QMT=tan∠BAO=,推出QT=10,MQ=,MT=,作PS⊥MQ于点S,根据,计算即可.【解答】解:(1)如图1中,在y=x+6中,令y=0,得x=﹣8;令x=0,得y=6 ∴A(﹣8,0),B(0,6),∴OA=8,OB=6,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵BC⊥AB,∴∠ABO+∠CBH=90°,∴∠BCH=∠ABO,又∠BHC=∠AOB=90°,BC=AB,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8﹣6=2,∴C(6,﹣2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB==10,∴BC=10,∴BF=BD=5,∴PF2﹣PC2=(PG2+FG2)﹣(PG2+CG2)=FG2﹣CG2=(DF2﹣DG2)﹣(DC2﹣DG2)=DF2﹣DC2=DF2﹣BD2=BF2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK∥MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,∵tan∠MNA=tan∠QMT=tan∠BAO=,∴QT=10,MQ=,MT=∴MN∥x轴,MQ∥y轴,作PS⊥MQ于点S,∴,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS=PL+LS=t+10,∴,∴.中考一模数学试题及答案一.选择题(共10小题)1.﹣5的相反数是()A.5B.C.﹣5D.2.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A.0.1018×105B.1.018×105C.0.1018×106D.1.018×1063.下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xy D.x6÷x3=x24.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A.B.C.D.5.不等式3x<2(x+2)的解是()A.x>2B.x<2C.x>4D.x<46.作业时间是中小学教育质量综合评价指标的考查要点之一,某班主任随机抽查了本班6位学生每天课外作业时间分别是(单位:分):75,85,95,60,45,120,则这组数据的中位数是()A.60B.75C.80D.857.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.8.如图,已知梯形ABCD中BC∥AD,AB=BC=CD=AD,点A与原点重合,点D(4,0)在x轴上,则点C的坐标是()A.(3,2)B.(3,)C.(,2)D.(2,3)9.如图:AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,交AB于H,下列结论中不正确的是()A.=B.=C.=D.EF=GH10.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AB=6cm;②直线NH的解析式为y=﹣5t+90;③△QBP不可能与△ABE相似;④当∠PBQ=30°时,t=13秒.其中正确的结论个数是()A.1B.2C.3D.4二.填空题(共6小题)11.因式分解:a3﹣9ab2=.12.如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为.。
【3套试卷】天津市中考模拟考试数学精选含答案
中考一模数学试题及答案(1)一.填空题(满分18分,每小题3分)1.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|c﹣2b|+|a+2b|=.2.在直角坐标系中,O是坐标原点,点P(m,n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=.3.若关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k(1﹣k)的值为.4.如图所示,△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠BOC的度数是.5.如图,在△ABC中,点D是AB上一点,∠ACD=∠B.已知AD=2,BD=1,则AC=.6.按如图所示的方法用小棒摆正六边形,摆2个正六边形要11根小棒,摆3个正六边形要16根小棒,摆n个正六边形需要根小棒.二.选择题(满分32分,每小题4分)7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克8.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π9.使分式的值等于0的x的值是()A.﹣1 B.﹣1或5 C.5 D.1或﹣510.若一个多边形的每个内角都是108°,则这个多边形的内角和为()A.360°B.540°C.720°D.900°11.下列计算结果正确的是()A.B.C.D.12.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20°B.25°C.30°D.35°13.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 14.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B′,AB与CD相交于点F,若AB=3,sin∠CAB=,则DF的长度是()A.1 B.2 C.D.3三.解答题(共9小题,满分70分)15.(6分)已知:如图,∠1=∠2.请添加一个条件,使得△ABD≌△CDB,然后再加以证明.16.(6分)先化简,再求值:,其中a=﹣2.17.(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 aB组70≤x<80 8C组80≤x<90 12D组90≤x<100 14(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?18.(6分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.19.(7分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.20.(8分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x… ﹣2 ﹣1 0 1 2 … y =ax 2+bx +c … t m ﹣2 ﹣2 n…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)写出关于x的一元二次方程ax2+bx+c=t的根;(3)若m=﹣1,求此二次函数的解析式.21.(8分)“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成.(1)乙工程队单独完成这项工程需几个月的时间?(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做a个月,乙工程队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?22.(9分)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积.23.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.填空题1.解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,c﹣2b>0,a+2b<0,则原式=a+c﹣(c﹣2b)﹣a﹣2b=a+c﹣c+2b﹣a﹣2b=0.故答案为:02.解:(1)根据题意,得k﹣2==1,∴k=3.(2)∵点P(m,n)在反比例函数y=的图象上.∴mn=k又∵OP=2,∴=2,∴(m+n)2﹣2mn﹣4=0,又m+n=k,mn=k,得k2﹣2k=4,(k﹣1)2=5,∵x>0时,y随x的增大而减小,则k>0.∴k﹣1=,k=1+.3.解:∵关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,∴△=0,即(﹣2k)2﹣4××(1﹣4k)=0,整理得,2k2+4k﹣1=0,∴k2+2k=,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=﹣+4=3.故答案为:3.4.解:∵△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,∴∠AOC=∠BOD=35°,且∠AOD=90°,∴∠BOC=20°,故答案为20°5.解:在△ADC与△ACB中,∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB;∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=AD+BD=2+1=3,∴AC2=3×2=6,∴AC=,故答案为.6.解:设摆n个正六边形需要a n根小棒.∵a1=6=1×5+1,a2=11=2×5+1,a3=16=3×5+1,…,∴a n=5n+1.故答案为:(5n+1).二.选择题7.解:0.00 000 0076克=7.6×10﹣8克,故选:C.8.解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选:B.9.解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.10.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,则此多边形的内角和为(5﹣2)×180°=540°,故选:B.11.解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.12.解:∵AD切⊙O于点D,∴OD⊥AD,∴∠ODA=90°,∵∠A=40°,∴∠DOA=90°﹣40°=50°,由圆周角定理得,∠BCD=∠DOA=25°,故选:B.13.解:这些运动员成绩的中位数、众数分别是4.70, 4.75.故选:C.14.解:∵sin∠CAB=∴∠CAB=30°∵折叠可知:∠FAC=∠BAC=30°∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,DC=AB=3∴∠FCA=∠CAB=30°,∴FC=FA,∠DAF=30°FA=FC=DC﹣FD=3﹣FD∴sin∠DAF==解得DF=1.所以DF的长为1.故选:A.三.解答题15.解:AB=CD,理由是:∵在△ABD和△CDB中∵,∴△ABD≌△CDB(SAS),故答案为:AB=CD(答案不唯一).16.解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.17.解:(1)抽取的学生成绩有14÷35%=40(个),则a=40﹣(8+12+14)=6,故答案为:40,6;(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.18.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.19.解:(1)依题意列表如下:1 2 3 4 5 61 2,1 3,1 4,1 5,1 6,12 1,2 3,2 4,2 5,2 6,23 1,3 2,3 4,3 5,3 6,34 1,4 2,4 3,4 5,4 6,45 1,5 2,5 3,5 4,5 6,56 1,6 2,6 3,6 4,6 5,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.20.解:(1)根据图表可知:二次函数y=ax2+bx+c的图象过点(0,﹣2),(1,﹣2),∴对称轴为直线x==,c=﹣2;(2)根据二次函数的对称性可知:(﹣2,t)关于对称轴x=的对称点为(3,t),即﹣2和3是关于x的方程ax2+bx+c=t的两个根;(3)若m=﹣1,则抛物线经过点(﹣1,﹣1),(0,﹣2),(1,﹣2),代入y=ax2+bx+c得,解得,∴此二次函数的解析式为y=x2﹣x﹣2.21.解:(1)设乙队需要x个月完成,根据题意得: +=1,解得:x=15,经检验x=15是原方程的根,答:乙队需要15个月完成;(2)根据题意得:,解得: a≤4 b≥9.∵a≤12,b≤12且a,b都为正整数,∴9≤b≤12又a=10﹣b,∴b为3的倍数,∴b=9或b=12.当b=9时,a=4;当b=12时,a=2∴a=4,b=9或a=2,b=12.方案一:甲队作4个月,乙队作9个月;方案二:甲队作2个月,乙队作12个月;22.证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=•12•﹣﹣×(2)2=9﹣2π.23.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.中考第一次模拟考试数学试卷一.选择题(共6小题)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=12.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.B.C.D.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8二.填空题(共12小题)7.计算:=.8.计算:sin30°tan60°=.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是.(只需写一个即可)11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线.12.如图,AD与BC相交于点O,如果,那么当的值是时,AB∥CD.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.三.解答题(共7小题)19.已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.20.如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.21.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.22.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)23.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.24.如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.25.如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC 交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.参考答案与试题解析一.选择题(共6小题)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=1【分析】根据比例的性质进行判断即可.【解答】解:A、当a=10,b=4时,a:b=5:2,但是a+b=14,故本选项错误;B、由a:b=5:2,得2a=5b,故本选项错误;C、由a:b=5:2,得=,故本选项正确;D、由a:b=5:2,得=,故本选项错误.故选:C.2.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)【分析】由二次函数y=(x+1)2,可得其对称轴、顶点坐标;由二次项系数,可知图象开口向上;对每个选项分析、判断即可;【解答】解:A、由二次函数二次函数y=(x+1)2中a=>0,则抛物线开口向上;故本项错误;B、当x=0时,y=,则抛物线不过原点;故本项错误;C、由二次函数y=(x+1)2得,开口向上,对称轴为直线x=﹣1,对称轴右侧的图象上升;故本项错误;D、由二次函数y=(x+1)2得,顶点为(﹣1,0);故本项正确;故选:D.3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)【分析】过点A作AB⊥x轴于点B,由于tanα=3,设AB=3x,OB=x,根据勾股定理列出方程即可求出x的值,从而可求出点A的坐标.【解答】解:过点A作AB⊥x轴于点B,由于tanα=3,∴,设AB=3x,OB=x,∵OA=,∴由勾股定理可知:9x2+x2=10,∴x2=1,∴x=1,∴AB=3,OB=1,∴A的坐标为(1,3),故选:A.4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.B.C.D.【分析】根据共线向量的定义作答.【解答】解:∵2||=3||,∴||=||.又∵非零向量与的方向相同,∴.故选:B.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.【分析】利用表中数据和二次函数的性质得到抛物线的对称轴为直线x=2,则顶点坐标为(2,﹣1),于是可判断抛物线的开口向上,则x=0和x=4的函数值相等且大于0,然后可判断A选项错误.【解答】解:∵x=1和x=3时,y=0;∴抛物线的对称轴为直线x=2,∴顶点坐标为(2,﹣1),∴抛物线的开口向上,∴x=0和x=4的函数值相等且大于0,∴x=0,y=﹣3错误.故选:A.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8【分析】先确定点C到⊙A的最大距离为8,最小距离为2,利用⊙C与⊙A相交或相切确定r的范围.【解答】解:∵⊙A的半径AB长是5,点C在AB上,且AC=3,∴点C到⊙A的最大距离为8,最小距离为2,∵⊙C与⊙A有公共点,∴2≤r≤8.故选:D.二.填空题(共12小题)7.计算:=.【分析】实数的运算法则同样适用于本题的计算.【解答】解:原式=3+2﹣=.故答案是:.8.计算:sin30°tan60°=.【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:sin30°tan60°=×=.故答案为:.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是m≠1.【分析】依据二次函数的二次项系数不为零求解即可.【解答】解:∵函数y=(m﹣1)x2+x(m为常数)是二次函数,∴m﹣1≠0,解得:m≠1,故答案为:m≠1.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是y=﹣x2+2(答案不唯一).(只需写一个即可)【分析】二次函数的图象在其对称轴左侧部分是上升的可知该函数图象的开口向下,得出符合条件的函数解析式即可.【解答】解:∵二次函数的图象在其对称轴左侧部分是上升的,∴a<0,∴符合条件的二次函数解析式可以为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线x =3.【分析】直接利用二次函数图象平移规律得出答案.【解答】解:将抛物线y=﹣2x2向右平移3个单位得到的解析式为:y=﹣2(x﹣3)2,故所得到的新抛物线的对称轴是直线:x=3,故答案为:x=3.12.如图,AD与BC相交于点O,如果,那么当的值是时,AB∥CD.【分析】由可得出=,再利用平行线分线段成比例的推论可得出当=时AB∥CD.【解答】解:∵,∴==.若=,则AB∥CD,∴当=时,AB∥CD.故答案为:.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是35°.【分析】连接OC交AB于E.想办法求出∠OAC即可解决问题.【解答】解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【分析】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【解答】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是6.【分析】根据正n边形的内角是它中心角的两倍,列出方程求解即可.【解答】解:依题意有=×2,解得n=6.故答案为:6.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是16米.【分析】直接利用坡度的定义表示出AM,BN的长,进而利用已知表示出AB的长,进而得出答案.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是2.【分析】由“钻石菱形”的面积可求对角线的乘积,再根据比例中项的定义可求“钻石菱形”的边长.【解答】解:由比例中项的定义可得,“钻石菱形”的边长==2.故答案为:2.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.【分析】如图,过A作AH⊥BC于H,得到∠AHB=∠AHC=90°,BH=CH,根据三角函数的定义得到AH=3,求得CH=BH==4,根据旋转的性质得到∠BAF =∠CAE,根据平行线的性质得到∠CAE=∠C,设AF=BF=x,得到FH=4﹣x,根据勾股定理即可得到结论.【解答】解:如图,过A作AH⊥BC于H,∴∠AHB=∠AHC=90°,BH=CH,∵AB=AC=5,sin C==,∴AH=3,∴CH=BH==4,∵将△ABC绕点A逆时针旋转得到△ADE,∴∠BAF=∠CAE,∵AE∥BC,∴∠CAE=∠C,∵∠B=∠C,∴∠BAF=∠B,∴AF=BF,设AF=BF=x,∴FH=4﹣x,∵AF2=AH2+FH2,∴x2=32+(4﹣x)2,解得:x=,∴BF=,故答案为:,三.解答题(共7小题)19.已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用二次函数平移规律得出平移后解析式.【解答】解:(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.20.如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.【分析】(1)根据已知条件得到=,由=,得到=+,由于G是重心,得到==(+)=+,于是得到结论;(2)延长BG交AC于H,根据等腰三角形的判定得到GA=GC,求得AH=AC=1,求得BH⊥AC,解直角三角形即可得到结论.【解答】解:(1)∵AD是△ABC的中线,=,∴=,∵=,∴=+,∵G是重心,∴==(+)=+,∴=×(+)═+;(2)延长BG交AC于H,∵∠GAC=∠GCA,∴GA=GC,∵G是重心,AC=2,∴AH=AC=1,∴BH⊥AC,在Rt△ABH中,∠AHB=90°,AB=3,∴BH==2,∴BG=BH=.21.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.【分析】(1)如图连接AD,作AH⊥BD于H.利用面积法求出AH,再利用勾股定理求出BH即可解决问题;(2)作DM⊥AC于M.利用面积法求出DM即可解决问题;【解答】解:(1)如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90°,BC=5,AC=2,∴AB==,∵•AB•AC=•BC•AH,∴AH==2,∴BH==1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.(2)作DM⊥AC于M.∵S△ACB=S△ABD+S△ACD,∴××2=×2×2+×2×DM,∴DM=,∴sin∠DAC===.22.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)【分析】(1)过C作CG⊥AB于G,过D作DH⊥AB于H,解直角三角形顶点AG=AC =10,CG=AG=10,根据相似三角形的性质得到DH;(2)过C′作C′S⊥MN于S,解直角三角形得到A′S=C′S=10,求得A′B=10+10,根据线段的和差即可得到结论.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.23.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.24.如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.【分析】(1)利用待定系数法求二次函数和一次函数的解析式;(2)先说明OA=OH=6,则∠OAH=45°,作辅助线,根据正切值证明∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:先根据中点坐标公式可得F(,﹣),易得直线OB的解析式为:y=﹣5x,根据两直线垂直的关系可得直线FC的解析式为:y=x﹣,列方程x﹣=x﹣6,解出可得C的坐标;解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),根据OC=BC,列方程可得结论.【解答】解:(1)把点A(6,0)和点B(1,﹣5)代入抛物线y=ax2+bx得:,解得:,∴这条抛物线的表达式:y=x2﹣6x,设直线AB的解析式为:y=kx+b,把点A(6,0)和点B(1,﹣5)代入得:,解得:,则直线AB的解析式为:y=x﹣6;(2)当x=0时,y=6,当y=0时,x=6,∴OA=OH=6,∵∠AOH=90°,∴∠OAH=45°,过B作BG⊥x轴于G,则△ABG是等腰直角三角形,∴AB=5,过O作OE⊥AB于E,S△AOH=AH•OE=OA•OH,6•OE=6×6,OE=3,∴BE=AB﹣AE=5﹣3=2,Rt△BOE中,tan∠OBE===,∵∠BOC的正切值是,∴∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:∵B(1,﹣5),∴F(,﹣),易得直线OB的解析式为:y=﹣5x,设直线FC的解析式为:y=x+b,把F(,﹣)代入得:﹣=+b,b=﹣,∴直线FC的解析式为:y=x﹣,x﹣=x﹣6,x=,当x=时,y=﹣6=﹣,∴C(,﹣);解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),则AC=(6﹣m),∵OC=BC,∴m2+(m﹣6)2=[5﹣(6﹣m)],m=,∴C(,﹣).25.如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC 交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【分析】(1)由题意可得四边形DCEF是平行四边形,可得CD=EF,通过证明△CFE∽△CAB,可得,可得BE=CE,则可求CE:BE的值;(2)延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H,由题意可得四边形ADCN是矩形,可得AD=CN=4,CD=AN=3,BN=3,由平行线分线段成比例可求BE,ME,MC,CH,GC的长,即可求GD的长,由三角求形面积公式可△DFG的面积;(3)由△AFD∽△ADG,可得∠AFD=∠ADG=90°,由余角的性质可得∠DAG=∠B,即可求∠DAG的余弦值.【解答】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC==5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴=∴HC=m,∵CG∥EF∴即∴GC=∴DG=CD﹣GC=3﹣=∴S△DFG=×DG×CH=(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC∴∠B+∠GAB=90°,且∠DAG+∠GAB=90°∴∠B=∠DAG∴cos∠DAG=cos B=中考第一次模拟考试数学试题含答案一、选择题(共8小题,每小题3分,共24分)1.在数1,2,3和4中,是方程x2+x-6=0的根的为()A.1B.2C.3D.42.桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃3.抛物线y=2(x-3)2-7的顶点坐标是()A.(3,7)B.(- 3,7)C. (3,-7)D. (- 3,- 7)4.在○O中,弦AB的长为8,00的半径为5,则圆心0到AB的距离为()A.4B.3C.2D.15.在平面直角坐标系中,有A(3,- 2),B(- 3,- 2),C(2,2),D(- 3,2)四点.其中关于原点对称的两点为()A.点A和点BB.点B和点CC.点C和点DD.点D和点A6.方程x2-x+2=0的根的情况是()A.两实数根的积为2B.两实数根的和为1C.没有实数根D.有两个不相等的实数根7.将抛物线y=-(x+1)2向右平移3个单位,再向卫平移2个单位后得到的抛物线的解析式为()A. y=-(x+4)2+2 B .y=-(x+4)2-2 C. y=-(x-2)2-2 D. y=-(x-2)2+28.如图,点O1是OABC的外心,以AB为直径作○O恰好经过点O1.若AC=2.BC=4,则A O1的长是()A.3B.C.2D.2二、填空题(共5个小题,每小题3分,共15分)11.掷一枚质地不均勾的骰子,做了大量的重复试验,发现“朝上一面为3点"出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为______.。
天津初三初中数学中考模拟带答案解析
天津初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.计算(﹣2)+(﹣4)的结果等于()A.﹣2B.6C.﹣6D.82.sin30°的值等于()A.1B.C.D.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1065.如图所示的立体图形的主视图是()A.B.C.D.6.实数在哪两个整数之间()A.1与2B.2与3C.3与4D.4与57.在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)8.方程的解是()A.x="3"B.x=﹣2C.x="2"D.x=59.在反比例函数y=的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.310.已知圆的半径是2,则该圆的内接正六边形的面积是( )A .3B .9C .18D .3611.如图,四边形ABDC 中,△EDC 是由△ABC 绕顶点C 旋转40°所得,顶点A 恰好转到AB 上一点E 的位置,则∠1+∠2=( )A .90°B .100°C .110°D .120°12.已知抛物线y=2x 2﹣8x+6与x 轴相交于点A 、B (点A 在点B 的左边),与y 轴交于点C ,BC 的中点为M ,点B 关于y 轴的对称点为N ,则MN 的长度等于( ) A .B .C .D .6二、填空题1.计算3x 2•x 3的结果等于 .2.若一次函数y=﹣x+b ﹣的图象不过第三象限,则b 的取值范围是 .3.一个不透明的盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是 .4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则AC 的长为 .5.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 cm .三、解答题1.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO 的三个顶点A 、B 、O 都在格点上.(1)画出△ABO 绕点O 逆时针旋转90°后得到的△A 1B 1O 三角形; (2)点B 的运动路径的长;(3)求△ABO 在上述旋转过程中所扫过的面积.2.解不等式组并将解集在数轴上表示出来.3.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= 4 ; (2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?4.已知△ABC 中,BC=5,以BC 为直径的⊙O 交AB 边于点D . (1)如图1,连接CD ,则∠BDC 的度数为;(2)如图2,若AC 与⊙O 相切,且AC=BC ,求BD 的长; (3)如图3,若∠A=45°,且AB=7,求BD 的长.5.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A 处测得天塔最高点C 的仰角为45°,再往天塔方向前进至点B 处测得最高点C 的仰角为54°,AB=112m ,根据这个兴趣小组测得的数据,计算天塔的高度CD (tan36°≈0.73,结果保留整数).6.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果) (2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少? 7.在△ABC 中,AB=AC=5,cos ∠ABC=,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值与最小值的差.8.在平面直角坐标系xOy 中,二次函数y=mx 2﹣(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.天津初三初中数学中考模拟答案及解析一、选择题1.计算(﹣2)+(﹣4)的结果等于()A.﹣2B.6C.﹣6D.8【答案】C.【解析】原式利用同号两数相加的法则计算即可得到结果.原式=﹣(2+4)=﹣6,故选C.【考点】有理数的加法.2.sin30°的值等于()A.1B.C.D.【答案】D.【解析】根据特殊角的三角函数值来解本题.sin30°=.故选D.【考点】特殊角的三角函数值.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【答案】A.【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【考点】轴对称图形.4.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106【答案】B.【解析】将140000用科学记数法表示即可.140000=1.4×105,故选B.【考点】科学记数法—表示较大的数.5.如图所示的立体图形的主视图是()A.B.C.D.【答案】B.【解析】分别找出此几何体从正面看所得到的视图.此立体图形从正面看所得到的图形为矩形,里面有一条竖线,故选:B.【考点】简单几何体的三视图.6.实数在哪两个整数之间()A.1与2B.2与3C.3与4D.4与5【答案】D.【解析】先求出的范围,即可得出选项.4<<5,即在4与5之间,故选D.【考点】估算无理数的大小.7.在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)【答案】B.【解析】将OA绕原点O顺时针旋转180°,实际上是求点A关于原点的对称点的坐标.根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.【考点】坐标与图形变化-旋转.8.方程的解是()A.x="3"B.x=﹣2C.x="2"D.x=5【答案】C.【解析】方程两边都乘以3(5﹣x),得3x=2(5﹣x).解得x=2.检验:x=2时,3(5﹣x)≠0,∴x=2时原分式方程的解,故选:C.【考点】解分式方程.9.在反比例函数y=的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.3【答案】A.【解析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0.解得k<1.故选A.【考点】反比例函数的性质.10.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.36【答案】C.【解析】连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.【考点】正多边形和圆.11.如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=()A.90°B.100°C.110°D.120°【答案】C.【解析】由旋转的性质可知AC=EC,BC=DC,∠BCD=∠ACE=40°,在△BCD中,由内角和定理求∠1,根据外角定理可求∴∠2=∠ACE=40°,∴∠1+∠2=70°+40°=110°,故选C.【考点】旋转的性质.12.已知抛物线y=2x2﹣8x+6与x轴相交于点A、B(点A在点B的左边),与y轴交于点C,BC的中点为M,点B关于y轴的对称点为N,则MN的长度等于()A. B. C. D.6【答案】A.【解析】求出A,B.C的坐标,根据中点公式求出点M坐标,根据对称求出点N坐标,运用两点距离公式即可求解.y=2x2﹣8x+6,当x=0时,y=6,∴点C(0,6),当y=0时,2x2﹣8x+6=0,解得:x=1或x=3,∴点A(1,0),点B(3,0),可求BC的中点为M(,3),点B关于y轴的对称点为N(﹣3,0),MN=.故选A.【考点】抛物线与x轴的交点.二、填空题1.计算3x2•x3的结果等于.【答案】3x5【解析】根据单项式乘单项式,系数乘系数,同底数的幂相乘,可得答案.3x2•x3=3x2+3=3x5,故答案为:35.【考点】单项式乘单项式.2.若一次函数y=﹣x+b﹣的图象不过第三象限,则b的取值范围是.【答案】b≤.【解析】∵一次函数y=﹣x+b﹣的图象不过第三象限,∴b﹣≤0,解得b≤.故答案为:b≤.【考点】一次函数的性质.3.一个不透明的盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是 . 【答案】.【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球, ∴该盒子中任意摸出一个球,摸到黄球的概率是; 故答案为:. 【考点】概率公式.4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则AC 的长为 .【答案】6.【解析】∵DE ∥BC ,∴,∴,∴AC=6,故答案为:6.【考点】平行线分线段成比例.5.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 cm .【答案】8.【解析】作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.试题解析:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC ,AE 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠DBC=∠D=60°,∴△BDM 为等边三角形,∴△EFD 为等边三角形,∵BD=5,DE=3, ∴EM=2,∵△BDM 为等边三角形,∴∠DMB=60°,∵AN ⊥BC ,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm ),故答案为8.【考点】等边三角形的判定与性质;等腰三角形的性质.三、解答题1.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO 的三个顶点A 、B 、O 都在格点上.(1)画出△ABO 绕点O 逆时针旋转90°后得到的△A 1B 1O 三角形; (2)点B 的运动路径的长;(3)求△ABO 在上述旋转过程中所扫过的面积.【答案】(1)见试题解析;(2)2π;(3)4π+4.【解析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可; (2)利用弧长公式列式计算即可得解;(3)观察图形,△ABO 旋转过程中所扫过的面积等于一个扇形的面积加上三角形的面积列式计算即可得解.【考点】作图-旋转变换;弧长的计算;扇形面积的计算.2.解不等式组并将解集在数轴上表示出来.【答案】x <2.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.试题解析:,解①得:x≥﹣3,解②得:x <2.不等式组的解集是:﹣3≤x <2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.3.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= 4 ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?【答案】(1)100;40%;(2)见试题解析;(3)估计全校选择“绘画”的学生大约有800人.【解析】(1)用音乐的人数除以所占的百分比计算即可求出a,再用绘画的人数除以总人数求出b;(2)求出体育的人数,然后补全统计图即可;(3)用总人数乘以“绘画”所占的百分比计算即可得解.试题解析:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.【考点】条形统计图;用样本估计总体;扇形统计图.4.已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(1)如图1,连接CD,则∠BDC的度数为;(2)如图2,若AC与⊙O相切,且AC=BC,求BD的长;(3)如图3,若∠A=45°,且AB=7,求BD的长.【答案】(1)90°;(2)(3)BD的长为3或4.【解析】(1)如图1,只需依据直径所对的圆周角是直角就可解决问题;(2)如图2,连接CD,根据条件可得△ACB是等腰直角三角形,从而得到∠B=45°,再根据直径所对的圆周角是直角可得△BDC是等腰直角三角形,然后运用勾股定理就可解决问题;(3)如图3,连接CD,根据条件可得△ADC是等腰直角三角形,从而得到DA=DC,设BD=x,然后在Rt△BDC运用勾股定理就可解决问题.试题解析:(1)如图1,∵BC 是⊙O 的直径,∴∠BDC=90° 故答案为90°;(2)连接CD ,如图2,∵AC 与⊙O 相切,BC 是⊙O 的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC , ∴∠A=∠B=45°,∴∠DCB=∠B=45°,∴DC=DB .∵BC=5,∴BD 2+DC 2=2BD 2=52, ∴BD=;(3)连接CD ,如图3,∵BC 是⊙O 的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A ,∴DA=DC .设BD=x ,则CD=AD=7﹣x .在Rt △BDC 中,x 2+(7﹣x )2=52,解得x 1=3,x 2=4, ∴BD 的长为3或4. 【考点】圆的综合题.5.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A 处测得天塔最高点C 的仰角为45°,再往天塔方向前进至点B 处测得最高点C 的仰角为54°,AB=112m ,根据这个兴趣小组测得的数据,计算天塔的高度CD (tan36°≈0.73,结果保留整数).【答案】天塔的高度CD 约为:415m . 【解析】首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m ,在Rt △ACD 中,易求得BD=AD ﹣AB=CD ﹣112;在Rt △BCD 中,可得BD=CD•tan36°,即可得CD•tan36°=CD ﹣112,继而求得答案. 试题解析:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m , ∵在Rt △ACD 中,∠ACD=∠CAD=45°,∴AD=CD ,∵AD=AB+BD , ∴BD=AD ﹣AB=CD ﹣112(m ),∵在Rt △BCD 中,tan ∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD ﹣112,∴CD=≈≈415(m ).答:天塔的高度CD 约为:415m .【考点】解直角三角形的应用-仰角俯角问题.6.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:(1)请用含x 的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果) (2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少? 【答案】(1)W=﹣2x+400;(2)售价为130元时,当月的利润最大,最大利润是9800元. 【解析】(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润. 试题解析:(1)①销售该运动服每件的利润是(x ﹣60)元;②设月销量W 与x 的关系式为w=kx+b ,由题意得,,解得,,∴W=﹣2x+400;(2)由题意得,y=(x ﹣60)(﹣2x+400)=﹣2x 2+520x ﹣24000=﹣2(x ﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.【考点】二次函数的应用.7.在△ABC 中,AB=AC=5,cos ∠ABC=,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值与最小值的差.【答案】(1)①见试题解析;②(3).【解析】(1)①根据旋转的性质和平行线的性质证明;②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,根据三角函数和三角形的面积公式解答;(2)过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,和以C 为圆心BC 为半径画圆交BC 的延长线于F 1,得出最大和最小值解答即可.试题解析:(1)①证明:∵AB=AC ,B 1C=BC ,∴∠AB 1C=∠B ,∠B=∠ACB ,∵∠AB 1C=∠ACB (旋转角相等),∴∠B 1CA 1=∠AB 1C ,∴BB 1∥CA 1;②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图①:∵AB=AC ,AF ⊥BC ,∴BF=CF ,∵cos ∠ABC=,AB=5,∴BF=3,∴BC=6,∴B 1C=BC=6,∵CE ⊥AB ,∴BE=B 1E=×6=, ∴BB 1=,CE=×6=,∴AB 1=-5=, ∴△AB 1C 的面积为:; (2)如图2,过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,EF 1有最小值,此时在Rt △BFC 中,CF=,∴CF 1=, ∴EF 1的最小值为-3=;如图,以C 为圆心BC 为半径画圆交BC 的延长线于F 1,EF 1有最大值;此时EF 1=EC+CF 1=3+6=9,∴线段EF 1的最大值与最小值的差为9-=.【考点】几何变换综合题.8.在平面直角坐标系xOy 中,二次函数y=mx 2﹣(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.【答案】(1)该二次函数的图象与轴必有两个交点;(2)y=﹣x ﹣1;(3)m 的取值范围为:﹣<m <0.【解析】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B ,A 点坐标,进而求出直线AB 的解析式,再利用平移规律得出答案;(3)根据当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)≤2,即可得出m 的取值范围.试题解析:(1)令mx 2﹣(m+n )x+n=0,则△=(m+n )2﹣4mn=(m ﹣n )2,∵二次函数图象与y 轴正半轴交于A 点,∴A (0,n ),且n >0,又∵m <0,∴m ﹣n <0,∴△=(m ﹣n )2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx 2﹣(m+n )x+n=0,解得:x 1=1,x 2=,由(1)得<0,故B 的坐标为(1,0),又因为∠ABO=45°,所以A (0,1),即n=1,则可求得直线AB 的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l :y=﹣x ﹣1;(3)由(2)得二次函数的解析式为:y=mx 2﹣(m+1)x+1.∵M (p ,q ) 为二次函数图象上的一个动点, ∴q=mp 2﹣(m+1)p+1.∴点M 关于轴的对称点M′的坐标为(p ,﹣q ). ∴M′点在二次函数y=﹣m 2+(m+1)x ﹣1上.∵当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m >﹣.∴m 的取值范围为:﹣<m <0.【考点】二次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。