浙江省宁波市2020年普通高中保送生模拟测试数学试卷

合集下载

浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。

2020年浙江省宁波市普通高中自主招生数学模拟试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学模拟试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学模拟试卷一.选择题(共5小题,满分25分,每小题5分)1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13782.(5分)在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取1个恰好是白球的概率为13,则放入的黄球总数为( ) A .5个 B .6个 C .8个 D .10个3.(5分)下列命题正确是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有两条边对应相等的两个直角三角形全等C .16的平方根是4D .对角线相等的平行四边形是矩形4.(5分)已知m >0,关于x 的一元二次方程(x +1)(x ﹣2)﹣m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( )A .x 1<﹣1<2<x 2B .﹣1<x 1<2<x 2C .﹣1<x 1<x 2<2D .x 1<﹣1<x 2<2 5.(5分)如图,点A 是函数y =−2x (x <0)在第二象限内图上一点,点B 是函数y =4x (x>0)在第一象限内图象上一点,直线AB 与y 轴交于点,且AC =BC ,连结OA ,OB ,则△AOB 的面积是( )A.2B.3C.4D.5二.填空题(共4小题,满分20分,每小题5分)6.(5分)关于x的不等式组{4a+3x>03a−4x≥0恰好只有三个整数解,则a的取值范围是7.(5分)如图,在△ABC中,AC=BC,∠C=90°,点D,E,F分别在边BC,AC,AB 上,四边形DCEF为矩形,P,Q分别为DE,AB的中点,若BD=1,DC=2,则PQ=.8.(5分)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O的半径是.9.(5分)如图,⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠P的值是.三.解答题(共2小题,满分30分,每小题15分)10.(15分)若一次函数y=mx+n与反比例函数y=kx同时经过点P(x,y)则称二次函数y=mx2+nx﹣k为一次函数与反比例函数的“共享函数”,称点P为共享点.(1)判断y=2x﹣1与y=3x是否存在“共享函数”,如果存在,请求出“共享点”.如果。

2020年浙江省宁波市中考数学模拟试卷(三) 解析版

2020年浙江省宁波市中考数学模拟试卷(三)  解析版

2020年浙江省宁波市中考数学模拟试卷(三)一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10124.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2 6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.129.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣412.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二.填空题13.把多项式x2﹣3x因式分解,正确的结果是.14.已知扇形的面积为3π,圆心角为120°,则它的半径为.15.若分式的值为0,则x的值为.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为米(结果保留根号).18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2020年浙江省宁波市中考数学模拟试卷(三)参考答案与试题解析一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P(1,2)关于原点的对称点P'的坐标是(﹣1,﹣2),故选:D.3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150000000000=1.5×1011,故选:C.4.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.12【分析】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【解答】解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选:B.9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(3﹣n)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(3﹣n)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣5,∵n是整数,∴2n﹣5是整数,∴y的整数值有(2n﹣4)个;故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<3时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,故④错误,故选:C.11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh =k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.12.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二.填空题13.把多项式x2﹣3x因式分解,正确的结果是x(x﹣3).【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).14.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.15.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是6.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•OF,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.【分析】先用平方差公式和单项式乘以多项式的方法将代数式化简,然后将a的值代入化简的代数式即可求出代数式的值.【解答】解:(a+2)(a﹣2)+a(1﹣a)=a2﹣4+a﹣a2=a﹣4将a=5代入上式中计算得,原式=a﹣4=5﹣4=120.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可;(2)首先设应安排a人种植A花木,则安排(26﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设应安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原方程的解,26﹣a=12,答:应安排14人种植A花木,应安排,12人种植B花木,才能确保同时完成各自的任务.25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD(SAS),∴AD=CD.(2)若EF⊥BC,则四边形ABFE是矩形,AE=BF=BC=4.5,∵AB=5,∴AE≠AB∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2﹣1中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×4×=.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×5×=,综上所述,四边形DPFC的面积为或.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD 为△P AB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR =,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ =90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ 的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH ⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG 的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴P A=PB,∴∠P AB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△P AB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,DE∥AB,∴四边形AMDE是平行四边形,四边形AMDF是等腰梯形,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴∠GMD=∠GDM,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.。

浙江省宁波市2020年数学中考仿真卷(六)及参考答案

浙江省宁波市2020年数学中考仿真卷(六)及参考答案

(1) 第n行最后(最右边)一个数是________(用含n的代数式表示). (2) 5是第几行中的第几个数?
(3) 这串数列中的第32个数是多少?
(4) 是这串数列中的第________个. 25. 若两条线段将一个三角形分割成三个等腰三角形,则这两条线段称为三分线.
(1) 如图①,△ABC中,AB=AC,∠A=36°,请在图中画出两条三分线,并标出每个等腰三角形顶角的度数(画 出一种分割即可).
18. 请你写出一个关于a,b的代数式,使得这个代数式的值等于max{a,b}(a,b中较大的一个数),这个代数式可以 为________(写出一个即可).
三 、 解 答 题 ( 本 大 题 有 8小 题 , 共 78分 )
19. 求值或化简. (1) 计算:﹣32+(﹣4)×sin60°+ .
(2) 化简:
二 、 填 空 题 ( 每 小 题 4分 , 共 24分 )
13. 若使分式
有意义,则x的取值范围是________.
14. 若扇形的圆心角为 ,半径为 ,则该扇形的弧长为________. 15. 如图,矩形ABCD被分割成一个菱形和两个三角形,如果其中一个三角形的面积是菱形面积的
的值是________.
(2) 如图②,△ABC中,∠C=90°,∠A=60°,请在图中画出两条三分线,并标出每个等腰三角形顶角的度数(画 出一种分割即可).
(3) 如图③,△ABC中,∠BAC为钝角,AE,DE为三分线,BD=BE,DA=DE,CA=CE. ①求∠B和∠C的关系式. ②求∠BAC的取值范围. 26. 已知:如图,矩形ABCD中,点E,F分别在DC,AB边上,且点A,F,C在以点E为圆心,EC为半径的圆上,连 结CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.

2020年浙江省宁波市中考数学第三次模拟考试试卷附解析

2020年浙江省宁波市中考数学第三次模拟考试试卷附解析

2020年浙江省宁波市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是()A.12B.14C.16D.182.已知⊙O 的半径为 5 cm,如果一条直线和圆心0的距离为 5 cm,那么这条直线和⊙O 的位置关系是()A.相交B.相切C.相离 D . 相交或相离3.圆心角为1000,弧长为20л的扇形的半径是()A.36 B. 720C. 6 D. 624.圆锥的底面半径为 1,全面积为4 ,则圆锥的母线长为()A.4 B.3 C.22D.3 25.抛物线y=(x-1)2+1的顶点坐标是()A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)6.某区的食品总消费为 a(kg)(a 为常数),设该区平均每人消费食品数为 y(kg),人口数为 x(人),则y与x 的函数图象为()A.B.C. D.7.等腰梯形的上、下底边分别为1和3,一条对角线长为4,则这个梯形的面积是()A.3B.3C.3D.38.口ABCD的周长为36 cm,AB=BC=2cm,则AD,CD的长度分别为()A.12 cm,6 cm B.8 cm,10 cm C.6 cm,12 cm D.10 cm,8 cm9.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形FGEDCBAC .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形10.4a 7b 5c 3÷(-16a 3b 2c )÷81a 4b 3c 2等于( )A .aB .1C .-2D .-111.如果m 个人完成一项工作需d 天,那么(m n +)个人完成此项工作需要的天数是( ) A .(d b +)天B .()d n -天C .dm n+天 D .mdm n+天 12.若||a a >-,则a 的取值范围是( ) A .0a >B .0a ≥C .0a <D .D. 自然数二、填空题13.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 . 14.已知直线y=2x ,则该直线与x 轴正方向夹角的正切值是 .15.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .16.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为 .17.已知直线y=kx+2(k 为常数,且k≠0),则k= 时,该直线与坐标轴所围成的三角形的面积等于1.18.在“222a ab b □□”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .19.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是 岁,众数是 岁.20.已知一个三角形的三边长分别为3k ,4k ,5k (k 是为自然数),则这个三角形为 ,理由是 .21. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是 .22.若22(3)16x m x +-+是完全平方式,则m 的值等于 .23.从l2:40到13:10,钟表的分针转动的角度是 ,时针转动的角度是 . 24.“两直线平行,同位角相等”的逆命题是 .三、解答题25.如图EG ∥AF.请你从下面三个条件中,选择两个作为已知条件,另一个作为结论,推出一个正确的命题(只需要写出一种情况). ①AB = AC ;②DE = DF ;③BE = CF. 已知:EG ∥AF , = , = . 求证: .请证明上述命题.26.已知 c 为实数,并且方程230x x c-+=一个根的相反数是方程230x x c+-=一个根,求方程230x x c+-=的根和 c的值.27.如图所示,一次函数632yχ=-+的图象与 x轴,y 轴分别交于A,B 两点,求坐标原点 0 到直线 AB 的距离.28.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?DCB AO29.在下列图形中,分别画出△ABC 的三条高.30.如图所示,已知∠COB=2∠AOC ,OD 平分∠AOB ,且∠COD=20º,求∠AOB 的度数。

2020年浙江省宁波市普通高中保送生模拟测试数学试卷(含答案)

2020年浙江省宁波市普通高中保送生模拟测试数学试卷(含答案)

2020年宁波市普通高中保送生模拟测试数学试卷一.选择题(每小题5分)1.设x 是有理数,11++-=x x y ,则正确的是( )A .y 没有最小值B .只有一个x 使y 取到最小值C .有有限多个x (不止一个)使y 取到最小值D .有无穷多个x 使y 取到最小值 2.如图,点A 在双曲线xy 6=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) B.5 C.72A.43.点D 、E 分别在AB 、AC 上,且AD=2BD ,CE=2AE ,若1BDF S ∆=,ADC S ∆=( ).A.12B.13C. 14D.154.如图所示,二次函数2y ax bx c =++的图象与x 轴负半轴相交与A 、B 两点,1(,)2Q n 是二次函数2y ax bx c =++图象上的一点,且AQ BQ ⊥,则a 的值为( )A 、1-B 、2-C 、13-D 、12-5.如图,在△ABC 中,AC=BC =2,D 是BC 的中点,过A ,C ,D 三点的⊙O 与AB 边相切于点A ,则⊙O 的半径为 ( ) A..1 D二.填空题(每小题5分) 6. 若关于 的分式方程的解为非负数,则 的取值范围为________________. . 7. 设2a 0=,{}n n n a a a 1][1+=+(n 为自然数),其中][n a 与{}n a 分别表示n a 的整数部分和小数部分,如[2.5]=2, {}5.2=0.5;-3[-2.6]=, {}6.2-=0.4;则2019a =________ 8.已知:如图,矩形OABC 中,点B 的坐标为(,双曲线 (0)ky k x=≠ 的一支与矩形两边AB ,BC 分别交于点E ,F . 若将△BEF 沿直线EF 对折,B 点落在y 轴上的点D 处,则点D 的坐标是9.如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E 做直线l ∥BC . 若∠ABC 的平分线BF 交AD 于点F , DE=4,DF=3,则AF 的长为________.三、解答题(共30分,每题15分)10.已知,在平面直角坐标系xOy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线上的一个动点.(1)如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,请通过测量或计算,比较PA 与PB 的大小关系:PA______PB (直接填写“>”“<”或“=”,不需解题过程); (2)请利用(1)的结论解决下列问题:①如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,简单说明理由; ②如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.11.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”. (1)当⊙M 半径为2,点M 和点O 重合时,○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围; (2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.保送生模拟数学答案10.解:(1)PA___=____PB (2)①P (2,2)②-44y x y x ==或11. 解:(1)○11P ,2P ; ○2当直线y=x+b 与O 相切时,b =或-;∴b -≤≤(2)当直线y=4与M 相切时,m =2或6. ∴2≤m ≤6.。

【精品推荐】最新浙江省宁波市2020年高考模拟考试数学试卷及答案

【精品推荐】最新浙江省宁波市2020年高考模拟考试数学试卷及答案

宁波市2020年高考模拟考试高三数学试卷说明:本试题卷分选择题和非选择题两部分。

全卷共4页,满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

参考公式:如果事件A , B 互斥, 那么 柱体的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示柱体的底面积, h 表示柱体的高 P (A ·B )=P (A )·P (B )锥体的体积公式 如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积, h 表示锥体的高 P n (k )=k n C p k(1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 台体的体积公式S = 4πR 212()13V h S S =球的体积公式 其中S 1, S 2分别表示台体的上、下底面积,V =43πR 3h 表示台体的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{|06}U A B x Z x ==∈≤≤U ,(){1,3,5}U A C B =I ,则B =(▲)A .{2,4,6}B .{1,3,5}C .{0,2,4,6}D .{|06}x Z x ∈≤≤ 2.把复数z 的共轭复数记作z ,若(1+)1i z i =-,i 为虚数单位,则z =(▲)A .iB .i -C .1i -D .1i + 3.()612x +展开式中含2x 项的系数为(▲)A .15B .30C .60D .120 4.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()D X =(▲) A .15 B .25CD5.已知平面,αβ和直线12,l l ,且2l αβ=I ,则“12//l l ”是“1//l α,且1//l β” 的(▲)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6.设2,0()log ,0x x f x x x -≤⎧=⎨>⎩,.则函数(())y f f x =的零点之和为(▲)A .0B .1C .2D .47.从1,2,3,4,5这五个数字中选出三个不相同数组成一个三位数,则奇数位上必须 是奇数的三位数个数为(▲)A .12B .18C .24D .8.如图,12,F F 是椭圆1C 与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若11AF BF ⊥,且13AF O π∠=,则1C 与2C 的离心率之和为(▲)A .B .4C .D .9.已知函数()=sin cos 2f x x x ,则下列关于函数()f x A .最大值为1 B .图象关于直线2x π=-对称C .既是奇函数又是周期函数 D .图象关于点3,04π⎛⎫⎪⎝⎭中心对称 10.如图,在直二面角A BD C --中,ABD ∆,CBD ∆均是以BD 为斜边的等腰直角三角形,取AD 中点E ,将ABE ∆沿BE 翻折到 1A BE ∆,在ABE ∆的翻折过程中,下列不可能...成立的是(▲) A .BC 与平面1A BE 内某直线平行 B .//CD 平面1A BE C .BC 与平面1A BE 内某直线垂直 D .1BC A B ⊥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。

2020年浙江省宁波市普通高中自主招生数学押题试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学押题试卷及答案解析

第 1 页 共 14 页
2020年浙江省宁波市普通高中自主招生数学押题试卷
一.选择题(共5小题,满分25分)
1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数. 例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )
A .289
B .1024
C .1225
D .1378
2.(5分)小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .1
3
B .1
6
C .
1
12
D .
1
27
3.(5分)下面命题正确的是( ) A .矩形对角线互相垂直
B .方程x 2=14x 的解为x =14
C .六边形内角和为540°
D .一条斜边和一条直角边分别相等的两个直角三角形全等 4.(5分)二次函数y =ax 2+bx +c 的x ,y 的对应值如下表:
x … ﹣1 −1
2
0 12 1 32 2 … y

﹣1
14
m
54
1
14
n

下列关于该函数性质的判断
①该二次函数有最大值;②当x >0时,函数y 随x 的增大而减小;③不等式y <﹣1
的。

浙江省宁波市2020年中考数学模拟卷

浙江省宁波市2020年中考数学模拟卷

宁波市2020年中考模拟卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. 5的绝对值是()A.5 B.﹣5 C.D.﹣2.下列算式中,计算结果为a5的是()A.a2•a3B.(a2)3C.a2+a3D.a4÷a3.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×10104.函数y=中的自变量x的取值范围是()A.x≠B.x≥1 C.x>D.x≥5.如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,2 B.81,80 C.80,80 D.81,27.下列命题中假命题是()A.对顶角相等B.直线y=x﹣5不经过第二象限C.五边形的内角和为540°D.因式分解x3+x2+x=x(x2+x)8.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π9.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是() A.B.C.D.10.如图,大长方形ABCD是由一张周长为C1正方形纸片①和四张周长分别为C2,C3,C4,C5的长方形纸片②,③,④,⑤拼成,若大长方形周长为定值,则下列各式中为定值的是( )A.C1B.C3+C5C.C1+C3+C5D.C1+C2+C4二、填空题(每小题4分,共24分)11.计算÷的结果是.12.分解因式:2x 2﹣2y 2= .13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 .14.如图,在P 处利用测角仪测得某建筑物AB 的顶端B 点的仰角为60°,点C 的仰角为45°,点P 到建筑物的距离为PD =20米,则BC = 米.15.如图,ABCD Y 的对角线AC ,BD 交于点O ,AC =10,∠DAC =45°,∠BAC =30°,P 是线段AO 上一动点,⊙P 的半径为1,当⊙P 与ABCD Y 的边相切时,AP 的长为________.16.如图,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =________.三、解答题(本大题有8小题,共78分)C17.(本题6分)先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷18.(本题8分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.19.(本题8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为,图①中m的值为;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.20.(本题10分)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.21.(本题10分)抛物线21y ax c =+与x 轴交于A 、B 两点,与y 轴交于点C ,点P 在抛物线上,过P (1,-3),B (4,0)两点作直线2y kx b =+.(1) 求a 、c 的值;(2) 根据图象直接写出12y y >时,x 的取值范围;(3) 在抛物线上是否存在点M ,使得S △ABP =5S △A BM ,若存在,求出点M 的坐标,若不存在,请说明理由.22.(本题10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.23.(本题12分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)24.(本题14分)如图1,平面直角坐标系xOy中,点A(0,2),B(1,0),C(﹣4,0)点D为射线AC 上一动点,连结BD,交y轴于点F,⊙M是△ABD的外接圆,过点D的切线交x轴于点E.(1)判断△ABC的形状;(2)当点D在线段AC上时,①证明:△CDE∽△ABF;②如图2,⊙M与y轴的另一交点为N,连结DN、BN,当四边形ABND为矩形时,求tan∠DBC;(3)点D在射线AC运动过程中,若13CDCA,求DEDF的值.。

2020年普通高等学校招生全国统一考试(浙江模拟卷)数学考试试题(无答案)

2020年普通高等学校招生全国统一考试(浙江模拟卷)数学考试试题(无答案)

2020年普通高等学校招生全国统一模拟考试(浙江卷)数学试题参考公式:若事件A,B 互斥,则P(A+B)=P(A)+P(B) 若事件A,B 相互独立,则P(AB)=P(A)P(B)若事件A 在一次试验中发生的概率是P,则n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=台体的体积公式()1213V S S h =+ 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高 柱体的体积公式V=Sh.其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =.其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积343S R π=.其中R 表示球的半径 第I 卷选择题部分(共40分)一、选择题(本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|14},{|}A x x B y y A =-≤≤=∈,则) (A B C A B ⋃⋂= A.[-1,0]∪[2,4]B.[-1,0)∪(2,4]C.[-2,-1]∪[2,4]D.[-2,-1)∪(2,4]2.设复数z 的共轭复数为z ,若2z+z =-3+2i(其中i 是虚数单位),则复数z 在复平面内对应的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3.已知二项式212nx ⎫⎪⎭的展开式中存在常数项0T ,则当正整数n 最小时,0.2A T =-0.2B T = 0.7C T =-0.7D T =4.设x,y ∈R 且满足约束条件2424 0x y x y x y +≤⎧⎪+≥-⎨⎪-≥⎩.则z=3x-yA.有最大值16,最小值83- B.有最大值16,最小值0 C.有最大值83最小值0D.有最大值83最小值43- 5.已知a ∈R ,则“sin()1223πα-=”是“1sin()33πα+=”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件6.已知F 是椭圆的左焦点,A,B,C 分别是其上、下和左顶点,设直线AC 与直线BF 交于点D,若O 为坐标原点,则A.|AD|·|CF|=|CD|·|OF|.|||||||B AD CF CD OF ⋅=⋅ C.|AD|·|CF|=2|CD|·|OF|.|||||||D AD CF CD OF ⋅=⋅7.已知随机变量ξ的分布列如下表,A.若a,b,c 依次成等比数列,则E(ξ)1-B.若a,b,c 依次成等比数列,则E(ξ)的最小值为1C.若a,b,c 依次成等差数列,则D(ξ)的最小值为19 D.若a,b,c 依次成等差数列,则D(ξ)的最小值为138.已知三棱柱11ABC A B C -的各棱长均相等,D 是棱BC 上的点(不包括端点),记直线1B D 与直线AC 所成的角为1,θ直线1B D 与平面111A B C 所成的角为2,θ二面角111C A B D --的平面角为3,θ则213.A θθθ<<231.B θθθ<<123.C θθθ<<132.D θθθ<<9.已知函数f(x)与g(x)的定义域均为R ,且g(x)在R 上单调,若函数y=f(g(x))-x 恰有一个零点,则函数y=g(f(x))的解析式可能是2.3A y x x =--21.1B y x =- 2.4C y x =+D.y=cosx10.在数列{}n a 中,0n a >且*1121311121,,...4()21111n n n a a n n a a a a +≠=++++=+∈----N 记n S 为数列{}n a 的前n 项和,n T 为数列{}n a 的前n 项积,则对任意*,n ∈N 下列结论错误的是1.12n n A a a +<<<41.2232n B n S n -<≤- 213.04n n T C S n --<2410.ln 33n n D S T n +->+第II 卷:非选择题部分(共110分)二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分)11.我国古代数学著作《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人与车共几何?”其大意是:“每车坐3人,有2辆车空出来;每车坐2人,多出9人步行.问人数和车辆数各是多少?”则在该问题中,车辆数是___,人数是_____.12.已知某柱体的三视图如图所示(单位:cm),则该柱体的体积是_____3.cm13.在△ABC 中,角A,B,C 所对的边分别是a,b,c,22(6)sin 22sin cos absinA ac B b A C +-=.则ac=_____,若b=ac,则△ABC 面积的最大值是____.14.已知定义在R 上的奇函数f(x)满足f(x)+f(x+2)=0,且当x ∈[0,1]时,2()log (),f x x a =+则实数a=___,若总存在b ∈R ,使得对任意2(,)36ππθ∈-,均有1(sin )2f b c θ+<成立,则实数c 的取值范围是____. 15.在新冠病毒疫情爆发期间,口罩成为了必需品.已知某药店有4种不同类型的口罩A,B,C,D,其中D 型口罩仅剩1只(其余3种库存足够),今甲、乙、丙、丁、戊5人先后在该药店各购买了1只口罩,统计发现他们恰好购买了3种不同类型的口罩,则所有可能的购买方 式共有____种.(用数字作答)16.设不垂直于坐标轴的直线l 与圆221x y +=和抛物线22(0)y px p =>均相切,分别记两个切点为M,N,则|MN|的最小值为_____,此时p 的值等于_____17.已知平面向量a ,b ,c ,d 满足1|||||1,0,|-⋅===⋅=⋅=>⋅a ba b c a c b c a dc .d =0,记s =x a +y b (x,y>0且xy=1),则|s +2c |+|s -d |的最小值为____三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分14分) 已知函数()2sin sin()3f x x x π=+(I)设(0,),4πα∈若11(),10f α=求5tan()12πα+的值; (II)令g(x)=|f(x)|,求g(x)的单调递减区间.19.(本小题满分15分)如图,已知多面体EF-ABCD,其底面ABCD 为矩形,四边形BDEF 为平行四边形,平面FBC ⊥平面ABCD,FB=FC=BC=2,AB=3,G 是CF 的中点.(I)判断直线BG 与平面AEF 的位置关系,并说明理由; (II)求直线AE 与平面BDEF 所成角的余弦值.20.(本小题满分15分)已知正项等差数列{}n a 和等比数列{}n b 满足121,4,a b ==且2a 是11a b +和23b a -的等差中项,又是其等比中项.(I)求数列{}n a 和{}n b 的通项公式;(II)记21,21,2n n n n nn k a a c a b n k +⎧=-⎪=⎨⎪-=⎩,其中k ∈Z ,求数列{}n c 的前2n 项和2.n S21.(本小题满分15分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F A 是椭圆上位于第一象限内的点,直线12,AF AF 与椭圆C 分别交于B,C 两点,延长1CF 交椭圆C 于点D,连结BD.若椭圆C 的内接矩形面积的取值范围为(0,43],且11||||||8.AF CF AC ++=(I)求椭圆C 的标准方程及离心率e;(II)记直线AC 与直线BD 所成的角为θ,求sinθ的取值范围.22.(本小题满分15分) 已知函数f(x)=xlnx(x>0).(I)证明:21()1x xxe x x f x e ---≥+ (II)设函数()()1f xg x a x =-+的极小值点为0.x ①证明:014x >②若方程g(x)=a(a ∈R )有两个实数根1212,(),x x x x ≠证明:0012043.41x a x x x a x +<++<--。

浙江省宁波市2020届高三数学高考模拟试题 文 新人教A版

浙江省宁波市2020届高三数学高考模拟试题 文 新人教A版

宁波市2020年高考模拟试卷数学(文科)本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式 V Sh =,其中S 表示底面积,h 表示柱体的高.锥体的体积公式 13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高.球的表面积公式 24S R π=, 球的体积公式 343V R π=,其中R 表示球的半径.第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知全集R U =,集合2{|20}A x x x =->,{|1}B x x =>,则()U B A I ð等于(A) {|2x x >或0}x < (B) f (C) {|12}x x <≤ (D) {|12}x x ≤≤ (2) 设a ,b 是单位向量,则“a ·b =1”是“a =b ”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 (3)右图是某同学为求50个偶数:2,4,6,…,100的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是(A) 5050,x i x >= (B) 50100,x i x ≥=(C) 5050,x i x <= (D) 50100,xi x ≤=(4) 设直角△ABC 的三边分别为a ,b ,c ,其中c 为斜 边,直线ax +by +c =0与圆2222cos cos 1x y θθ⋅+⋅=, (θ为常数,(0,)2πθ∈)交于N M 、两点,则=MN(A) sinθ (B) 2sinθ (C) tanθ (D) 2tanθ (5) 若某多面体的三视图(单位: cm) 如图所示,(第3题图)则此多面体外接球的表面积是 (A) 4πcm 2 (B) 3π cm 2 (C) 2πcm 2 (D) πcm 2(6)设偶函数)sin()(ϕω+=x A x f (,0>A)0,0πϕω<<>的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则1()6f 的值为(A)43-(B) 14- (C) 12- (D) 43(7) 设m 、n 是两条不同的直线,α、β是两个不同的平面. 考察下列命题,其中真命题是 (A) βαβα⊥⇒⊥⊂⊥n m n m ,, (B) ββαβα⊥⇒⊥=⊥n n m m ,,I (C) n m ,,αβα⊥⊥∥βn m ⊥⇒ (D) α∥β,,α⊥m n ∥βn m ⊥⇒(8)设双曲线C :22221x y a b-=(a >0,b >0)的右焦点为F ,左,右顶点分别为A 1,A 2.过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,若P 恰好在以A 1A 2为直径的圆上,则双曲线C 的离心率为(A)(B) 2(C) (D) 3(9) 已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-+≤-+.01,033,032y y x y x 若目标函数y ax z +=仅在点)0,3(处取到最大值,则实数a 的取值范围为(A) )5,3( (B) ),21(+∞ (C) )2,1(- (D) )1,31((10) 设平面向量a =(x 1,y 1),b (x 2,y 2) ,定义运算⊙:a ⊙b =x 1y 2-y 1x 2 .已知平面向量a ,b ,c ,则下列说法错误的是(A) (a ⊙b )+(b ⊙a )=0 (B) 存在非零向量a ,b 同时满足a ⊙b =0且a •b =0 (C) (a +b )⊙c =(a ⊙c )+(b ⊙c ) (D) |a ⊙b |2= |a |2|b |2-|a •b |2(第6题图)(第12题图) 第II 卷(非选择题 共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上, 不能答在试题卷上.2.在答题纸上作图, 可先使用2B 铅笔, 确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题: 本大题共7小题,每小题4分,共28分. (11) 已知复数3i z =( i 为虚数单位),则=+zz 4 ▲ .(12) 某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40[)60,50,…,[]100,90后得到频率分布直方图,如图. 统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分是 ▲ . (13) 已知2cos()3cos()02x x ππ-+-=,则tan 2x = ▲ .(14) 已知函数()f x 是定义在R 上的奇函数,其最小正周期为4, 且(0,2)x ∈时,2()log (31),f x x =+则(2011)f = ▲ .(15) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.从袋中随机抽取一个球,其编号记为a ,然后从袋中余下的三个球中再随机抽取一个球,其编号记为b .则函数2()f x x ax b =++有零点的概率是 ▲ .(16) 若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP PF ⋅u u u r u u u r的最大值为 ▲ .(17) 数列{}n a 是等差数列,12619,1a a ==-,设16||n n n n A a a a ++=++⋅⋅⋅+,N n *∈.则n A 的最小值为 ▲ .(第22题图)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. (18)(本小题满分14分) 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且A c B b C a cos ,cos ,cos 成等差数列. (Ⅰ)求角B 的大小;(Ⅱ)若4=+c a ,求AC 边上中线长的最小值.(19)(本小题满分14分)已知数列{}n a 的前n 项和为n S , 31=a ,若数列{}1+n S 是公比为4的等比数列. (Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)设n n n n a n b λ⋅-+⋅=)1(4,*∈N n ,若数列{}n b 是递增数列,求实数λ的取值范围.(20)(本小题满分14分)如图,在四棱锥ABCD E -中,底面ABCD 为正方形, ⊥AE 平面CDE ,已知4,3==DE AE . (Ⅰ)若F 为DE 的中点,求证://BE 平面ACF ; (Ⅱ)求直线BE 与平面ABCD 所成角的正弦值.(21)(本小题满分15分)设函数x x a x a x f --+=23213)(,∈a R . (Ⅰ)当2-=a 时,求函数)(x f 的单调递减.区间; (Ⅱ)当1-≠a 时,求函数)(x f 的极小值.(22)(本小题满分15分)已知抛物线x y C 4:21=,圆1)1(:222=+-y x C ,过抛物线焦点的直线l 交1C 于D A ,两点,交2C 于C B ,两点,如图. (Ⅰ)求||||CD AB ⋅的值;(Ⅱ)是否存在直线l ,使23=+++OD OC OB OA k k k k ,且|||,||,|CD BC AB 依次成等差数列,若存在,求出所有满足条件的直线l ;若不存在,请说明理由.(第20题图)宁波市2020年高考模拟试卷数学(文科)答题卷一. 选择题(本大题共10小题,每小题5分,满分50在每小题给出的四个选项中只有一项是正确的.)二.填空题(本大题共4小题,每小题7分,满分28分.) 三. 解答题(本大题共5小题,满分72分.解题应写出文字说明,证明过程或演算步骤.)20.(本小题14分)得分评卷人Array(第20题)22.(本小题15分)得分评卷人(第22题)宁波市2020年高考模拟试卷数学(文科)参考答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数。

2020年浙江省宁波市中考数学模拟考试试卷A卷附解析

2020年浙江省宁波市中考数学模拟考试试卷A卷附解析

2020年浙江省宁波市中考数学模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 给出下列式子:① cos450>sin600;②sin780>cos780;③sin300>tan450;④ sin250=cos650,其中正确的是 ( )A .①③B .②④C .①④D .③④2.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-, 3.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( )A .43y x x =-+B .34y x x -=+C .233y x x =--D .248y x x =-+4.下列四边形中既是轴对称图形,又是中心对称图形的是( )A .梯形B .等腰梯形C .平行四边形D .矩形 5.将一元二次方程(1)(22)2x x -+=-化为一般形式是( ) A .22410x x +-=B .22410x x -+=C .2230x x -=D .220x = 6.已知在△ABC 和△DFE 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A .AB=DE ,AC=DFB .AC=EF,BC=DFC .AB=DE ,BC=FED .∠C=∠F ,BC=FE7.4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情( )A .可能发生B .不可能发生C .很可能发生D .必然发生8.钟表上l2时l5分时,时针与分针的夹角为( )A .90°B 82.5°C .67.5°D .60°9.方程16(1)13x --=去括号后,得( ) A .6221x -+= B .6226x -+= C .1613x --= D .621x --=10.以x=-3为解的方程是()A.3x-7=2 B.5x-2=-x C.6x+8=-26 D.x+7=4x+1611.两个数的差为负数,这两个数()A.都是负数B.一个是正数,一个是负数C.减数大于被减数D.减数小于被减数12.用最小的正整数、最小的质数、最小的非负数和最小的合数组成的四位数中,最大的一个是()A.4210 B.4310 C.3210 D.432113.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE的度数为()A.60︒B.67.5︒C.72︒D.75︒二、填空题14.在一个不透明的袋子中装有 2 个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机模出一球,则两次都摸到红球的概率是.15.二次函数y=x2-2x-3与x轴两交点之间的距离为.16.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标.17.如图,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB 沿y轴翻折,点A落在点C处,那么点C的横坐标是.18.在△ABC 中,AB = AC ,∠A 的外角等于 150°,则∠B 的外角等于 . 19.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为 16 cm ,则 BC 的长为 .20.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .21.已知∠α=23°38′,则∠α的余角的度数是 .22.1-(+2)的相反数是 .三、解答题23.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测 旗杆 AB 的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m ,小明的影长为1.2m ,请你帮小明计算出旗杆的长.24.如图所示,已知:AB 是⊙O 的直径,BC 是⊙O 的切线,切点为 B ,OC 平行于弦AD. 求证:DC 是⊙O 的切线.25.为减少环境污染,自 2008年 6 月 1 日起,全国的商品零售场所开始实行“塑料购 物袋有偿使用制度”(以下简称“限塑令”). 某班同学于 6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表(1)补全图①,“限塑令”实施前,如果每天约有 2000人次到该超市购物. 根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图②,并根据统计图和统计表说明...........,购物时怎样选用购物袋,塑料购物袋使用后 怎样处理,能对环境保护带来积极的影响.26. 如图,在△ABC 中,∠A= 90°,AB=24cm ,AC=16 cm ,现有动点 P 从点B 出 发,沿射线BA 方向运动,动点Q 从点C 出发,沿射线CA 方向运动,已知点 P 的速度是4 cm/s ,点 Q 的速度是 2cm/s ,它们同时出发,问:经过几秒,△APQ 的面积是△ABC 面积的一半?图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种 购物袋的人数分布统计图 其它 % 46% 24%27.说出下列命题的题设和结论,并指出它是真命题还是假命题:(1)系数相同的单项式是同类项;(2)有两个角和一条边对应相等的两个三角形全等;(3)同旁内角相等.28.如图,直角梯形ABCD,AD∥BC,∠ADC=135°,DC=82,以D为圆心,以8个单位长为半径作⊙D,试判断BC与⊙D的位置关系?29.下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.30.在如图所示的数轴上表示数-3、0、52、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.A4.D5.D6.B7.D8.B9.B10.D11.C12.A13.B二、填空题14.42515.416.(1)图略;(2)A′(2,3),B′(3,1),C′(-1,-2) 17.-218.105°19.6cm20.-221.66°22′22.1三、解答题23.(1)必须测出旅杆的影长 AC 和小明的影长DF.(2) ∵EF∥BC,DE∥AB,∴△ABC∽△DEF,∴AB DEAC DF=,∵4 1.6161.23AB⨯==m∴旗杆高为163m.24.连结 OD,∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD,∵OA=OD,∴∠A=∠AD0,∴∠DOC=∠BOC,∵OD= OB , OC=OC,∴△DOC≌△BOC又∵BC 是⊙O切线,∴∠0DC=∠0BC=90°,∴CD 是⊙O的切线.25.(1)补图略,6000个 (2)图②中,使用收费塑料购物袋的人数所占百分比为 25%;例如:由图②和统计表可知,购物时应尽量使用自备和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献26.2 s或 12 s27.(1)题设:单项式的系数相同;结论:它们是同类项,是假命题;(2)题设:两个三角形的两个角和一条边对应相等;结论:这两个三角形全等,是假命题;(3)题设:两个角是同旁内角;结论:这两个角相等,是假命题28.解:作DE⊥BC于E∵AD∥BC,∴∠ADC+∠C=180°,又∠ADC=135°,∴∠C=45°,∴△DEC为等腰直角三角形.82,∴DE=8,∴DE=r,因此BC与⊙D相∵CD=切.29.略30.在数轴上表示如图所示.各数的大小关系为53012-<-<<。

浙江省宁波市2020届高三数学高考模拟题文新人教A版

浙江省宁波市2020届高三数学高考模拟题文新人教A版

宁波市2020年高考模拟试卷数学(文科)本卷分和非两部分.全卷共4,部分 1至2,非部分3至4.分150分,考120分.考生按定用笔将全部的答案涂、写在答上.参照公式:柱体的体积公式V Sh ,此中S 表示底面积,h 表示柱体的高. 锥体的体积公式 V 1Sh ,此中S 表示锥体的底面积,h 表示锥体的高.3球的表面积公式S 4R 2,球的体积公式V 4 R 3,此中R 表示球的半径.3第Ⅰ卷(选择题共50分)一、:本大共10小,每小5分,共50分.在每小出的四此中,只有一是切合目要求的.(1) 已知全集U R,会合A {x|x 22x 0} ,B {x|x1} ,(e U A)I B 等于(A) {x|x2或x 0}(B)f (C){x|1 x 2} (D){x|1 x2}(2) a ,b 是位向量,“a·b=1”是“a=b”的开始(A) 充足而不用要条件 (B) 必需而不充足条件(C) 充足必需条件 (D) 既不充足也不用要条件x=0,i=1(3)右是某同学求50个偶数:2,4,6,⋯,100的均匀数而的程序框的部分内容, 在程序框中是的空白判断框和理框中填入的内容挨次是否(A) i 50,x x (B) i 50,xx x=x +2i50 100(C ) i 50,x x (D) i 50,x x i=i +1出x50 100束直角△ABC 的三分a ,b ,c ,此中c 斜,直ax+by+c=0与cos 2x 2 cos 2y 2(第3)1,(常数,(0, ))交于M 、N 两点,MN2(A)sin θ(B)2sin θ(C)tan θ(D)2tan θ(5)若某多面体的三(位:cm)如所示,111则此多面体外接球的表面积是(A)4 cm 2(B)3 cm 2(C) 2 cm 2(D)cm 2(6)设偶函数f(x)Asin(x)(A0,0,0)的部分图象以下图,△KLM 为等腰直角三角形,∠KML=90°,1KL =1,则f()的值为 yxOK L3 11 3 (A)(B)(C)(D)M4424(第6题图)(7) 设m 、n 是两条不一样的直线, 、是两个不一样的平面 .观察以下命题,此中真命题是(A) m ,n ,m n(B) ,m,m n n(C),m,n ∥m n(D)∥,m,n ∥mnx 2y 2 (a >0,b >0)的右焦点为F ,左,右极点分别为A 1,A 2.过(8)设双曲线C :2b 21aF 且与双曲线C 的一条渐近线平行的直线 l 与另一条渐近线订交于P ,若P 恰幸亏以A 1A 2为直径的圆上,则双曲线 C 的离心率为 (A)2(B)2(C)3(D)3x 2y 3 0,(9)已知变量x,y 知足拘束条件x 3y 3 0,若目标函数zax y 仅在点y 1 0.(3,0)处取到最大值,则实数a 的取值范围为(A) (3,5)(B)(1, )(C) ( 1,2)(D)(1,1)23设平面向量a=(x 1,y 1),b(x 2,y 2),定义运算⊙:a ⊙b=x 1y 2-y 1x 2.已知平面向量a ,b ,c ,则以下说法错误的选项是(A) (a ⊙b)+(b ⊙a)=0(B) 存在非零向量a ,b 同时知足a ⊙b=0且a?b=0(C) (a+b)⊙c=(a ⊙c)+(b ⊙c)(D) |a ⊙b|2=|a|2|b|2-|a?b|2第I I 卷(非选择题共100分)注意事:1.用黑色笔迹的字笔或笔将答案写在答上,不可以答在卷上.2.在答上作 ,可先使用2B笔,确立后必使用黑色笔迹的字笔或笔描黑.二、填空:本大共 7小,每小4分,共28分.4(11)已知复数z3 i(i虚数位),zz.(12)某校从参加考的学生中随机抽取60名学生,将其数学成(均整数)分红六段40,50 50,60,⋯,90,100后获得率散布直方,如.方法中,同一数据常用区的中点作代表,察形的信息,据此估本次考的均匀分是▲.(13)已知2cos(x)3cos(x)0,tan2x▲.(第12)2(14)已知函数f(x)是定在R上的奇函数,其最小正周期4,且x(0,2),f(x)log2(3x1),则f(2011)▲.(15)一个袋中装有四个形状大小完整同样的球,球的号分1,2,3,4.从袋中随机抽取一个球,其号a,而后从袋中余下的三个球中再随机抽取一个球,其号b.函数f(x)x2axb有零点的概率是▲.(16)若点O和点F分x2y21的中心和右焦点,点P上的随意一点,2uuur uuurOP PF的最大▲.(17)数列a n是等差数列,a119,a261,A n|a n a n1a n6|,nN.A n的最小▲.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.(18)(本小题满分14分)在ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.(Ⅰ)求角B的大小;(Ⅱ)若ac4,求AC边上中线长的最小值.(19)(本小题满分14分)已知数列a n的前n项和为S n,a13,若数列S n1是公比为4的等比数列.(Ⅰ)求数列a n的通项公式a n;(Ⅱ)设b n n4n(1)n a n,n N,若数列b n是递加数列,务实数的取值范围.(20)(本小题满分14分)如图,在四棱锥E ABCD中,底面ABCD为正方形,AE平面CDE,已知AE3,DE4.(Ⅰ)若F为DE的中点,求证:BE//平面ACF;(Ⅱ)求直线BE与平面ABCD所成角的正弦值.(21)(本小题满分15分)设函数f(x)a x31a x2x,a R.32(Ⅰ)当(Ⅱ)当2时,求函数f(x)a1时,求函数f(x)的单一递减.区间;(第20题图)的极小值.(22)(本小题满分15分)已知抛物线C1:y24x,圆C2:(x1)2y21,过抛物线焦点的直线l交C1于A,D两点,交C2于B,C两点,如图.(Ⅰ)求|AB||CD|的值;(Ⅱ)能否存在直线l,使k OA k OB kOCkOD32,且|AB|,|BC|,|CD|挨次成等差数列,若存在,求出全部知足条件的直线l;若不存在,请说明原因.(第22题图)宁波市2020年高考模拟试卷数学(文科)答题卷大题一二三总分号小题1~1011~171819202122号得分一.选择题(本大题共10小题,每题5分,满分50分,得分评卷人在每题给出的四个选项中只有一项为哪一项正确的.)题号12345678910答案二.填空题(本大题共4小题,每题7分,满分28分.)得分评卷人11.12.13.14.15.16.17.三.解答题(本大题共5小题,满分72分.解题应写出文字说明,证明过程或演算步骤.)18.(本小题14分)得分评卷人(第20题)(第22题)宁波市2020年高考模拟试卷数学(文科)参照答案及评分标准明:一、本解答出了一种或几种解法供参照,假如考生的解法与本解答不一样,可依据的主要考内容制相的分.二、算,当考生的答在某一步出,假如后部分的解答未改的内容与度,可影响的程度决定后部分的分,但不得超部分正确解答得分数的一半;假如后部分的解答有重的,就不再分.三、解答右端所注分数,表示考生正确做到一步得的累加分数.四、只整数分数。

2020年浙江省宁波市中考数学全真模拟考试试卷B卷附解析

2020年浙江省宁波市中考数学全真模拟考试试卷B卷附解析

2020年浙江省宁波市中考数学全真模拟考试试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,为了确定一条小河的宽度BC ,可在点C 左侧的岸边选择一点A ,使得AC ⊥BC ,若测得AC=a ,∠CAB=θ,则BC=( ) A .asinθB .acos θC .atan θD .θtan a2.如图,点P 是半径为5的⊙O 内一点,且OP=3,在过点P 的所有⊙O 的弦中,弦长为整数的弦的条数为 ( ) A .2B .3C .4D .53.如图,△OAP 、△ABQ 是等腰直角三角形,点P 、Q 在函数y=4x(x>0)•的图象上,直角顶点A 、B 均在x 轴上,则点B 的坐标为( ) A .(2+1,0) B .(5+1,0) C .(3,0) D .(5-1,0)4.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的 ( )A .南偏西50°方向B .南偏西40°方向C .北偏东50°方向D .北偏东40°方向5.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率为 ( ) A .43 B .32 C .21 D .41 6.如图,△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,如果AC=3 cm ,那么AE+DE 的值为( ) A .2cmB .3cmC .5cmD .4cm7.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于( ) A .50° B .40° C .25° D .20° 8.把0.000295用科学计数法表示并保留两个有效数字的结果是( )A .43.010-⨯B .53010-⨯C .42.910-⨯D .53.010-⨯9.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( ) A .1,0 B .0,-1C .2,1D .2,-310.如图是气象工作者绘制的某地元旦这一天的气温变化图,某同学根据该图给出了下列四个结论:①零点时的气温是+2℃;②4点时气温最低,l4点时气温最高;③气温为0。

备战2020中考宁波市中考模拟考试数学试题含答案【含多套模拟】

备战2020中考宁波市中考模拟考试数学试题含答案【含多套模拟】

重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、填空题(每小题5分,共60分)1.现在爸爸的年龄是儿子的7倍,5年后爸爸的年龄将是儿子的4倍,则儿子现在的年龄是岁.2.若与互为相反数,则a2+b2=.3.若不等式组无解,则m的取值范围是.4.如图,函数y=ax2﹣bx+c的图象过点(﹣1,0),则的值为.5.在半径为1的⊙O中,弦AB、AC分别是、,则∠BAC的度数为.6.在Rt△ABC中,∠A=90°,tan B=3tan C,则sin B=.7.如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=.8.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC=;若S△AOD=1,则梯形ABCD的面积为.9.如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+PR的值为.10.(2+1)(22+1)(24+1)(28+1)…(22048+1)+1的末位数字为.11.一行数从左到右一共2000个,任意相邻三个数的和都是96,第一个数是25,第9个数是2x,第2000个数是x+5,那么x的值是.12.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.有一个底面周长为4πcm的圆柱体,斜着截去一段后,剩下的几何体如图所示,求该剩下几何体的体积(结果保留π)14.计算:+++…+.参考答案一、填空题(每小题5分,共60分)1.【解答】解:设儿子现在的年龄是x岁,则爸爸的年龄是7x岁,由题意得:4(x+5)=7x+5,解得:x=5,.故答案为:5.2.【解答】解:根据题意得:,解得:.则a2+b2=16+1=17.故答案是:17.3.【解答】解:∵不等式组无解,∴m+1≤2m﹣1,∴m≥2.故答案为m≥2.4.【解答】解:∵函数y=ax2﹣bx+c的图象过点(﹣1,0),即x=﹣1时,y=0,∴a+b+c=0,∴b+c=﹣a,c+a=﹣b,a+b=﹣c,∴原式=++=﹣1﹣1﹣1=﹣3.故答案为﹣3.5.【解答】解:作OM⊥AB,ON⊥AC;由垂径定理,可得AM=,AN=,∵弦AB、AC分别是、,∴AM=,AN=;∵半径为1∴OA=1;∵=∴∠OAM=45°;同理,∵=,∴∠OAN=30°;∴∠BAC=∠OAM+∠OAN或∠OAM﹣∠OAN∴∠BAC=75°或15°.6.【解答】解:∵Rt△ABC中,∠A=90°,∴∠B+∠C=90°,∴tan C=,∵tan B=3tan C,∴tan B=3,解得tan B=,∴∠B=60,∴sin B=sin60°=.故答案为:.7.【解答】解:∵∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠CED=90°,∴∠BAE=∠CED,∴△ABE∽△ECD,∴=,设BE=x,∵BE:EC=1:4,∴EC=4x,∴AB•CD=x•4x,∴AB=CD=2x,∴AB:BC=2x:5x=2:5.故答案为2:5.8.【解答】解:(1)∵△AOD和△DOC中AO和CO边上的高相等,S△AOD:S△ACD=1:3,∴,∵AD∥BC,∴△ADO∽△CBO,∴,∴S△AOD:S△BOC=1:4,(2)∵S△AOD:S△ACD=1:3,∴AO:OC=1:2,∴S△AOD:S△BOC=1:4;若S△AOD=1,则S△ACD=3,S△BOC=4,∵AD∥BC,∴S△ABC=S△BDC,∵S△AOB=S△ABC﹣S△BOC,S△DOC=S△BDC﹣S△BOC,∴S△AOB=S△DOC=2,∴梯形ABCD的面积=1+4+2+2=9.故答案为:1:4;9.9.【解答】解:根据题意,连接BP,过E作EF⊥BC于F,∵S△BPC+S△BPE=S△BEC∴=BC•EF,∵BE=BC=1,∴PQ+PR=EF,∵四边形ABCD是正方形,∴∠DBC=45°,∵在Rt△BEF中,∠EBF=45°,BE=1,sin45°=,∴=,∴EF=,即PQ+PR=.∴PQ+PR的值为.故答案为:.10.【解答】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(22048+1)+1,=(22﹣1)(22+1)(24+1)(28+1)…(22048+1)+1,=(24﹣1)(24+1)(28+1)…(22048+1)+1,=(28﹣1)(28+1)…(22048+1)+1,=(216﹣1)(216+1)…(22048+1)+1,…=(22048﹣1)(22048+1)+1,=24096﹣1+1=24096,因为24096的末位数字是6,所以原式末位数字是6.故答案为:6.11.【解答】解:∵第1个数是25,任意相邻三个数的和都是96,∴第4个数与第1个数相同,是25,同理,第7个数与第4个数相同,是25,即第1、4、7…个数字相同,同理可得,第2、5、8…个数字相同,第3、6、9…个数相同,所以第9个数与第3个数相同,是2x,∵2000÷3=666…2,∴第2000个数与第2个数相同,∵相邻三个数的和是96,∴25+x+5+2x=96,解得x=22.故答案为:22.12.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,P A,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,P A=P A′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴P A+PB=P A′+PB=A′B=.故答案为:.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.【解答】解:两个几何体的体积和为:π×()2×(6+4)=40πcm3.一个几何体的体积为×40πcm3=20πcm3,即剩下几何体的体积20πcm3.14.【解答】解:∵=(﹣),∴原式=(﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.中学数学二模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数(k>0)的图象上,∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k,∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF=1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k=﹣k2+1;②当k=2时,由(1)知,△OEF不存在;③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD 为矩形.∵PF⊥PE,∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE=•k﹣﹣(k2﹣k+1)﹣=k2﹣1;(3)当k>0时,存在点E使△OEF的面积为△PEF面积的2倍.理由如下:①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=,S△OEF=﹣k2+1,则×2=﹣k2+1,解得,k=2(舍去),或k=;②由(1)知,k=2时,△OEF与△PEF不存在;③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1,则2(﹣k2+k﹣1)=k2﹣1,解得k=(不合题意,舍去),或k=2(不合题意,舍去),则E点坐标为:(3,2).中学数学二模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()。

宁波市一般高中保送生考试例卷

宁波市一般高中保送生考试例卷

睛,颜色深褐,但有点蓝褐和黄褐的斑点,色彩经常改变。
瞻性,对于当前文化工作而言,可谓空谷传音。....
A.米开朗琪罗小人国国王托尔斯泰尼摩船长
D.虽然我和路遥相识很早,但真正理解他后,我感受到他内心汹涌澎
B.小人国国王托尔斯泰尼摩船长米开朗琪罗
湃的激情和对文学近乎顶礼膜拜的虔诚。....
C.米开朗琪罗尼摩船长托尔斯泰小人国国王
肢十分均匀,举止文静,看法庄严。
〔《曾国藩家书》〕
〔2〕他脸又长又厚又粗犷,头发很短,向前盖着,使额头显低,两
〔1〕凡有所见所闻〔2〕而不行不一窥数君子之门径
第2页共5页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
〔3〕余随时谕答〔4〕随时禀知
全然的把握,所以,谈论意图是不切实际的,有时往往是一种解读者的自
诚然,我们在解读经典的过程中最担忧的就是失去自我。但我们不妨 在作品中探寻到的创作意图。
首先追问:什么是“我〞?这个困难的问题,落实到经典阅读层面,就会
〔三〕语言运用〔共 6 分〕
引出这样一种解释学逆境:从文本中获得的结论,到底有多少属于本人的.
8.阅读“中国人每天睡多久〞和“平均睡眠时长〞两幅图,回答以
行为的一种正当的选择。
C.万里江山知何处?回首对床夜语。〔张元翰《贺新郎》〕
C.在解读文本的过程中,阅读者从文本中获得的一些解读结论,有些
D.山光悦鸟性,潭影空人心。〔常建《题破山寺后禅院》〕
其实是违反了意图的主观的想法。
7.阅读下面文段,选出不符合文意的一项是〔 〕
D.只要我们摆低姿态,用敬重的心态面对经典作家和作品,我们就能
B.虽然电影《贵族大盗》剧情差强人意,令人绝望,但德普叔在造型 得稍开了些,那双阴郁神
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市2020年普通高中保送生模拟测试数学试卷一、选择题(每小题5分,共25分)(共5题;共25分)1.设a,b为整数,方程的一根是,则的值为()A. 2B. 0C. -2D. -12.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=40°,则∠CAD的度数是()A. 50°B. 80°C. 90°D. 70°3.已知△ABC的三边长为8,12,18,又知△A1B1C1也有一边长为12,且与△ABC相似而不全等,则这样的△A1B1C1的个数为()A. 0B. 1C. 2D. 34.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数的图象上,则a的值为()A. B. -1 C. D.5.如图,圆内接四边形ABCD中,∠A、∠D的角平分线交于点E,过点E作线段MN∥BC,与AB,CD分别交于点M,N,则总有MN等于().A. BM+DNB. AM+CNC. BM+CND. AM+DN二、填空题(每小题5分,共20分)(共4题;共20分)6.若关于x的不等式|x+a|<b的解集为2<x<4,则ab的值是________。

7.如果函数y=b与函数的图象恰好有三个交点,则b=________。

8.如图,已知点(1,3)在函数的图象上。

正方形ABCD的边BC在x轴上,点E是对角线BD的中点,函数的图象又经过A、E两点,则点E的坐标为________。

9.如图,△ABC中,则△BED的最大面积为________.三、解答题(每小题15分,共30分)(共2题;共30分)10.如图所示,已知P(2,3)是反比例函数图象上的一点。

(1)求过点P且与双曲线只有一个公共点的一次函数解析式;(2)Q是第三象限内双曲线上一动点,过点Q的直线与双曲线只有一个公共点,且与x轴、y轴分别交于C、D两点,设(1)中求得的一直线与x轴、y轴分别交于A、B两点,试证:OC·OD=OA·OB;(3)由(2),试分析当四边形ABCD面积最小时的形状。

11.在平面直角坐标系xOy中,点A是x轴外一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”。

(1)若点A的坐标为(0,2),点P1(2,2)、P2(1,-4)、P3(- ,1)中,点A的“等距点”是________。

(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标。

(3)记函数的图像为L,⊙T的半径为2,圆心为T(0,t),若在L上存在点M,⊙T 上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围。

答案解析部分一、选择题(每小题5分,共25分)1.【答案】C【解析】【解答】解:∴∴∵a,b是整数,∴解之:a=2,b=-2∴原式=.故答案为:C【分析】将已知方程的根化简,再将其根代入方程求出a,b的值,然后将a,b的值代入代数式进行计算。

2.【答案】B【解析】【解答】解:如图∵AB=AC=AD∴点B、C、D在以点A为圆心,AB为半径的圆上,∵弧BC=弧BC,弧CD=弧CD∴∠CAD=2∠CBD,∠BAC=2∠BDC=40°,∴∠BDC=20°,∵∠CBD=2∠BDC=2×20°=40°∴∠CAD=2∠CBD=2×40°=80°.故答案为:B.【分析】由已知AB=AC=AD可证得点B、C、D在以点A为圆心,AB为半径的圆上,由圆周角定理可证得∠CAD=2∠CBD,∠BAC=2∠BDC,就可求出∠BDC,∠CBD的度数,从而可求出∠CAD的度数。

3.【答案】C【解析】【解答】解:∵△ABC的三边长为8,12,18,又知△A1B1C1也有一边长为12,且与△ABC相似而不全等,∴△A1B1C1中边长为12的一边与△ABC中边长为8的边为对应边或△A1B1C1中边长为12的一边与△ABC 中边长为18的边为对应边.∴这样的△A1B1C1有2个.故答案为:C.【分析】抓住已知条件中的△ABC与△A1B1C1不全等,就可得到△A1B1C1中边长为12的一边与△ABC中边长为8的边为对应边或△A1B1C1中边长为12的一边与△ABC中边长为18的边为对应边,即可得到满足条件的△A1B1C1的个数。

4.【答案】D【解析】【解答】解:过点B作BE⊥x轴于点E,连接OB,∵将正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∠AOB=45°∴∠BOE=75°-45°=30°,在Rt△AOB中∴OB=在Rt△BOE中,BE=OBsin∠BOE=sin30°=.OE=OBcos∠BOE=∴点B∴解之:a=.故答案为:D.【分析】过点B作BE⊥x轴于点E,连接OB,利用旋转的性质和正方形的性质可求出∠BOE的度数,在Rt△AOB中,利用解直角三角形求出OB的长,在Rt△BOE中,利用解直角三角形求出BE,OE的长,据此可求出点B的坐标,然后利用待定系数法可求出a的值。

5.【答案】D【解析】【解答】解:在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADN+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°−∠DAF−∠MND=180°−∠DEN−∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故答案为:D.【分析】在NM上截取NF=ND,连结DF,AF,利用等边对等角可得到∠NFD=∠NDF,再利用圆周角定理可证得∠ADN+∠B=180°,由此可推出∠AMN+∠ADN=180°,就可得到A,D,N,M四点共圆,利用角平分线的定义去证明∠DFN=∠DAE,因此可得到A,F,E,D四点共圆,就可推出∠DEN=∠DAF,∠AFM=∠ADE,然后证明∠MAF=∠AFM,可得到MA=MF,据此可推出MN=AM+DN。

二、填空题(每小题5分,共20分)6.【答案】-3【解析】【解答】解:∵关于x的不等式|x+a|<b的解集为2<x<4,∴-b<x+a<b∴-b-a<x<b-a∴解之:∴ab=-3×1=-3.故答案为:-3.【分析】利用已知条件可知-b-a<x<b-a,再根据不等式的解集建立关于a,b的方程组,解方程组求出a,b的值,然后求出ab的值。

7.【答案】-6或【解析】【解答】解:当x≥1时,∴y=x2-3(x-1)-4x-3=x2-7x=当x=1时,y=-6∴此函数图像的一个交点为(1,-6)顶点坐标为;当x<1时,y==x2-3(1-x)-4x-3=x2-x-6=∴顶点坐标为∴当b=-6和b=时,两图像恰好有三个交点.故答案为:-6或.【分析】分情况讨论:当x≥1时可得到函数解析式,将函数解析式转化为顶点式,同时求出x=1时y的值;当x<1时,可得到函数解析式,将函数解析式转化为顶点式,根据题意可得到符合题意的b的值。

8.【答案】【解析】【解答】解:∵点(1,3)在函数的图象上,∴k=1×3=3.∴函数解析式为;设点A(m>0)∵正方形ABCD,∴BC=AB=,AE=CE过点E作EF⊥x轴于点F,∵AB∥EF∴点F是BC的中点,∴∴OF=∴点E将点E的代入函数解析式得解之:(不符合题意,舍去).∴∴∴点故答案为:.【分析】过点E作EF⊥x轴于点F, 利用待定系数法求出函数解析式,利用函数解析式设点A(m >0),利用正方形的性质用含m的代数式表示出EF,OF的长,由此可得到点E的坐标,然后将点E的坐标代入函数解析式,建立关于m的方程,解方程求出符合题意的m的值,然后代入计算可得到点E的坐标。

9.【答案】【解析】【解答】解:∵∴∴S△ABE=2y;∴S△ADE=2xy,∵S△BDE=S△ABE-S△ADE=2y-2xy=2y(1-x)∵∴y=∴S△BDE==∴当x=时,△BDE的最大面积为.故答案为:.【分析】利用三角形的面积公式及已知条件可得到S△ABE=2y,S△ADE=2xy,再根据S△BDE=S△ABE-S△ADE,结合已知可建立S△BDE与x的函数解析式,然后将函数解析式转化为顶点式,然后利用二次函数的性质可求解。

三、解答题(每小题15分,共30分)10.【答案】(1)解:∵P(2,3)是反比例函数图象上的一点,∴k=2×3=6∴此反比例函数解析式为;∵直线x=2与直线y=3与反比例函数图像只有一个交点,符合题意,设过点P的直线的解析式为y=ax+b,∴2a+b=3b=3-2a,∴y=ax+3-2a,∵∴ax2+(3-2a)x-6=0,∵两函数图像只有一个公共点,∴b2-4ac=0(3-2a)2+24a=0解之:∴3-2a=6∴一次函数解析式为(2)解:∵过Q的直线与∴,∴△=0,∴,又∵OA·OB=24,∴OA·OB=OC·OD(3)解:.而= .∴当时,。

此时【解析】【分析】(1)利用待定系数法求出反比例函数解析式,设过点P的直线的解析式为y=ax+b,将点P的坐标代入可得到b=3-2a,由此可得函数解析式y=ax+3-2a,再将两函数联立方程组,然后根据两函数图像只有一个公共点可知ax2+(3-2a)x-6=0有两个相等的实数根,由此建立关于a的方程,解方程求出a的值,即可得到函数解析式。

(2)根据两函数图像只有一个公共点,可得出OC·OD的值,从而可求出OC·OD的值,再求出OA·OB的值,即可证得结论。

(3)利用点的坐标可得到四边形ABCD的面积,由此可得到m与n的关系式,再建立S与n的函数解析式,利用二次函数的性质,可得到四边形ABCD的最小面积为48时的n,m的值,由此可求出OC,OD的长,利用菱形的判定定理可得到四边形ABCD的形状。

11.【答案】(1)P1、P3(2)点A的坐标为(5,5)或(-3,5)(3)【解析】【解答】解:(1)∵点A(0,2)到x轴的距离为2,点P1(2,2)、P2(1,-4)、P3(- ,1)∴AP1=|0-2|=2,∴点A的“等距点”是P1、P3;(2)如图,∵点M(1,2)和点N(1,8)是点A的两个“等距点”,∴AM=AN,∴点A在线段MN的垂直平分线上,设MN与其垂直平分线交于点B,点A的坐标为(m,n),∵点M(1,2),点N(1,8),∴MN的中点B的坐标为(1,5),∵AB∥x轴∴点A(m,5)∴点A到x轴的距离为5AM=AN=5,∴BM=NB=(8-2)÷2=3,∴m=1−4=−3或m=1+4=5,∴点A的坐标为(−3,5)或(5,5).(3)如图,∵函数的图像为L,点M在L上,∴设点M∵点T(0,t)∴MD=,∵MD=MN∴即∵关于a的一元二次方程有解,∴b2-4ac≥0∴整理得:t2-2t-8≤0解之:-2≤t≤4,当t=2时,a2=0,∴t≠2∴-2<t≤4,【分析】(1)由点A的坐标可得到点A到x轴的距离,再利用两点之间的距离公式分别求出AP1,AP2,AP3的长,然后根据“等距点”的定义可求解。

相关文档
最新文档