09年中考数学反比例一次函数复习

合集下载

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。

一次函数反比例知识点

一次函数反比例知识点

一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。

注:变量还分为自变量和因变量。

2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。

3.函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法.a、用数学式子表示函数的方法叫做表达式法(解析式法)。

b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。

c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。

5.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠0 。

(2)对实际问题中的函数关系,要使实际问题有意义。

注意可能含有隐含非负或大于0的条件。

6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1:列表(表中给出一些自变量的值及其对应的函数值);Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断y是不是x的函数的题型A、给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。

B、给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。

二、正比例函数1.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,•其中k叫做比例系数。

一次函数与反比例涵数的专题复习

一次函数与反比例涵数的专题复习

一次函数与反比例函数专题复习第一部分 知识梳理考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征(1) 点P(x,y)在第一象限0,0>>⇔y x(2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数(2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数(3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等(2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 (3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考数学复习课一次函数与反比例函数综合

中考数学复习课一次函数与反比例函数综合

反比例函数与一次函数综合复习课一、知识梳理:1、反比例函数:2、一次函数:3、求交点坐标:(1)联立解析式,得方程组(2)解方程组,(3)得交点坐标。

4、确定函数解析式:(1)一般设问形式:给出一次函数与反比例函数图像上的两个交点,期中一个交点A 的坐标已知,灵一个交点B 的坐标只给出 或治给出纵坐标值。

(2)确定解析式的一般步骤:a.求反比例函数;b.确定另一个交点;c.确定一次函数;d.作答5、一、知识回顾 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数xy 6-=的图象一定经过点(-2,________). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是________. 4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________. 二、学习新知:1.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).2.已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =31. (1)求反比例函数的解析式:(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围; (3)当△OCD 的面积等于2S时,试判断过A 、B 两点的抛物线在x 轴上截得的线段能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 三、感受中考第4题20.(本题满分9分)(2009年)如图,已知反比例函数y = mx的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B . (1)求这两个函数的解析式; (2)求点B 的坐标. 23、(本题满分9分)(2008年)如图所示,一次函数y x m =+和反比例函数1(1)m y m x+=≠-的图象在第一象限内的交点为(,3)P a . ⑴求a 的值及这两个函数的解析式;⑵根据图象,直接写出在第一象限内,使反 比例函数的值大于一次函数的值的x 的取值范围.20.(本题满分8分)(2010年)已知点P (1,2)在反比例函数y =xk(0≠k )的图象上.(1)当x 2-=时,求y 的值;(2)当1<x <4时,求y 的取值范围.(2011年)20、如图所示,反比例函数y=的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m ). (1)求m 的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长. 五、课后练习1.若正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A 、B 两点,其中点A 的坐标为(32,3),则k 1k 2=____________.2、已知反比例函数ky x=的图象与直线y =2x 和y =x +1的图象过同一点,则k = . 3、如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的方程kx+b=2x的解为( )A .x l =1,x 2= 2 ;B .x l = -2,x 2= -1 ;C .x l =1,x 2= -2D .x l =2,x 2= -14、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A .x <-1B .x >2C .-1<x <0,或x >2D .x <-1,或0<x <25、已知120k k <<,则函数1y k x =和2ky x=的图象大致是( )xxxx(D )(,3)P aOxy第4题6、.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过A (-2,1),则m =__,n =___. 7、.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为________. 8、已知y =(a -1)x a 是反比例函数,则它的图象在( ). (A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限9、观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 10、.函数xy 2=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿y 轴向上平移2个单位,所得直线与函数xy 2=的图象的交点共有________个.11、如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围. 12、已知一次函数x y 2=的图象与反比例函数xky =的图象交于M 、N 两点,且52=MN .(l )求反比例函数的解析式;(2)若抛物线c bx ax y ++=2经过M 、N 两点,证明:这条抛物线与x 轴一定有两个交点; (3)设(2)中的抛物线与x 轴的两个交点为A 、B (点A 在点B 左侧),与y 轴交于点C ,连结AC 、BC.若3tan tan =∠+∠CBA CAB ,求抛物线的解析式.。

1、初中数学中考知识点复习之一次函数、反比例、二次函数知识点归纳

1、初中数学中考知识点复习之一次函数、反比例、二次函数知识点归纳

函数1、函数:x 是自变量,y 是因变量,y 是x 的函数,函数用坐标表示(x,y ),横为x ,纵为y ,.2、反比例()1,,,0k y xy k y kx k x-=== ,一次函数y=kx+b ,3、二次函数()0,2≠++=a c bx ax y ,x 的最高次数为2;其中a 为二次项系数,b 为一次项系数,c 为常数项;4、求关系式(表达式,解析式):1)未知函数;即找等量关系,列关于x 与y 的方程; 2)已知函数;设、代、计、所以 5、作图三步骤:列表(x 任意给,y 由x 求出),描点(横为x ,纵为y ),连线(一次函数,正比例为直线,反比例双曲线,二次函数抛物线);6、函数图像性质,画出草图(抛物线): 顶点式:()()0,2≠+-=a k h x a y一般式得();0,44222≠-+⎪⎭⎫ ⎝⎛+=a ab ac a b x a y ab ac k a b h 44;22-=-=[1]顶点坐标(h , k );性质:当a>0,x=h ,有最低点为最小值k ,即y=k ; 当a<0,x=h ,有最高点为最大值k ,即y=k ; [2]对称轴:直线x=h ;(直线x=0为y 轴)当a>0,对称轴左边即x<h,递减,x ↑y ↓;对称轴右边即x>h, 递增,x ↑y ↑;当a<0,对称轴左边即x<h,递增,x ↑y ↑;对称轴右边即x>h, 递减,x ↑y ↓; [3]开口方向当a>0,开口向上;当a<0,开口向下;当a 越小,则开口越大;当a 越大,则开口越小; [4]x 轴、y 轴的交点坐标当交点在x 轴,即y=0,求出x;当交点在y 轴,即x=0,求y ,即(0,c);[5]八大要素:a 由开口决定;c 由y 轴交点上方、下方决定;对称轴左侧ab 同号,对称轴右侧ab 异号,当x=1,y=a+b+c ;当x=-1,y=a-b+c ;当x=2,y=4a+2b+c ;当x=-2,y=4a-2b+c ;2a+b 由-2a/b 与1比较,2a-b 由-2a/b 与-1比较;[6]对称轴(中点); 长度公式7、图像移动(h,k>0);方法:利用找顶点坐标移动;坐标移动规则:向上y 加,向下y 减,向左x 减,向右x 加;8、例题:用配方法求三要素:y =-2x 2-3x +5 1⎪⎭⎫⎝⎛--==+=84943435,;顶点坐标:直线开口:向下;对称轴:x y9、用公式法(24;24b ac b x h y k a a -==-==)求三要素 10、求关系式三种(设、代、计、所以) [1]顶点式:设()2y a x h k =-+,顶点为(h,k );[2]一般式2y ax bx c =++,三点代入,有一点为(0,c ) [3]两点式12()()y a x x x x =--,12(,0)(,0)x x 和为x 轴交点;11、二次函数与一元二次方程[1]函数与x 轴两个交点,即方程两个不等的解则2=40b ac ∆-f[2] 函数与x 轴一个交点,即方程两个相等的解则2=40b ac ∆-=[3] 函数与x 轴没有交点,即方程无解则2=40b ac ∆-p 12、应用1:最大利润和最大面积、动点:利润公式:单利润=单售价-单进价;总利润=单利润×数量化为顶点式:()()0,2≠+-=a k h x a y当;2a b h x -==时,有最大(小)值 ab ac k y 442-==13、应用2:拱桥、隧道求关系式一般用顶点式设()2y a x h k =-+,顶点为(h,k ); 要找出x 轴,y 轴,坐标(x ,y )横为x ,纵为y ;122x x x +=B AAB x x =-。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

2009年中考第一轮复习第七讲:函数、一次函数和反比例函数教案

2009年中考第一轮复习第七讲:函数、一次函数和反比例函数教案

2009年中考复习之函数、一次函数、反比例函数【课标要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想.⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系.⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单的实际问题. 【知识回顾】1、 知识脉络(教材相应章节重要内容的结构与联系)2、考点详解(教材相应章节重要内容整理)1、平面直角坐标系:平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标。

在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来。

2、函数的概念:设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量。

3、自变量的取值范围:对于实际问题,自变量取值必须使实际问题有意义。

对于纯数学问题,自变量取值应保证数学式子有意义。

4、正比例函数: 如果y=kx(k 是常数,k ≠0),那么,y 叫做x 的正比例函数.5、正比例函数y=kx 的图象:过(0,0),(1,K )两点的一条直线.6、正比例函数y=kx 的性质(1)当k>0时,y 随x 的增大而增大(2)当k<0时,y 随x 的增大而减小 7、反比例函数及性质(1)当k>0时,在每个象限内分别是y随x的增大而减小;(2)当k<0时,在每个象限内分别是y随x的增大而增大.8、一次函数如果y=kx+b(k,b是+常数,k≠0),那么y叫做x的一次函数.9、一次函数y=kx+b的图象10、一次函数y=kx+b的性质(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.3、典例剖析考点预测一:函数自变量和函数值的取值范围(以选择、填空出现)例1(2008年江苏省苏州市)函数12yx=+中,自变量x的取值范围是()A.x≠0 B.x≠1 C.x≠-2 D.x≠-1【分析】分式的分母不能为零得出x+2≠0.【解】由题意得x+2≠0,得x≠-2.【答案】C【说明】解决此类问题的关键含有自变量的式有意义.考点预测二:平面直角坐标系的特点(以选择、填空形式出现)例2(2008年山东省菏泽市)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )A.-1<m<3 B.m>3 C.m<-1 D.m>-1【分析】根据平面直角坐标系各象限的特点列出一元一次不等式.【解】由题意得,3010mm-<⎧⎨+>⎩解之得:-1<m<3.【答案】A【说明】解决本题的关键是掌握平面直角坐标系的特点.考点预测三:认识函数的图象(以选择、填空题的形式出现)例3(2008黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()【分析】这是时间与速度的一个关系图象,当换车头时,速度为0,而且换车头时要有时间间隔,所以答案为D.【解】D.【说明】解决本题的关键是掌握横轴与纵轴各表示的量及量与量的关系.考点预测四:一次函数、正比例函数和反比例函数的性质(选择题或填空题)例4(2008年江苏省南通市)一次函数y=(2n-6)x+5中,y随x的增大而减小,则m的取值范围是________.【分析】根据一次函数的性质当k<0时,y随x的增大而减小,所以2m-6<0.【解】由题意得,2m-6<0,解之得m<3.【答案】m<3.例5(2008年广东茂名市)已知反比例函数y=xa(a≠0)的图象,在每一象限内,y的值随x值的增大而减少,则一次函数y=-ax+a的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数的性质可知,a>0.【解】因为反比例函数的图象,在每一象限内,y的值随x值的增大而减少,所以a>0,-a<0,所以一次函数-ax+a经过第一、二、四象限,不经过第三象限。

中考数学专题复习反比例函数专题基础知识部分复习

中考数学专题复习反比例函数专题基础知识部分复习

中考数学专题复习之反比例函数一、知识点1.反比例函数的概念反比例函数y=k x 中的k x 是一个分式,自变量x ≠0,函数与x 轴、y 轴无交点,y=kx也可写成y=kx -1(k ≠0),注意自变量x 的指数为-1, 在解决有关自变量指数问题时应特别注意系数k ≠0这一限制条件. 2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,应从1或-1开始对称取点. 3.反比例函数y=kx中k 的意义 注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │. ◆考点链接1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,则称y 是x 的反比例函数. 2. 反比例函数的图象和性质二、例题讲解例1.(2009年湖南娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,则这些同学所制作的矩形长y (cm )与宽k 的符号k >0k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大而oy xy xox (cm )之间的函数关系的图象大致是 ( )例2(2009年新疆)若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系是____________.(不考虑x 的取值范围)例3(2009年内蒙古包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号).三、专项练习(中考真题)一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>yO x AC B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 5.(2010四川凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4DBAyxOC9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 110.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )xyBA oA.-5B.-10C.5D.1011.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) OxyA3(第9题)yy 1=x y 2=4xx 第11题图A .0B .1C .2D .314.(2010福建福州)已知反比例函数的图象y =kx 过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C的双曲线ky x= 交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值( )A . 等于2B .等于34C .等于245D .无法确定16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是(第6题图)A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-219.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 22.(2010江苏常州)函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是A .B .C .D .25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是( ).xyO第8题图A .2或-2B .22或-22 C .22D .226.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )A .增大B .减小C.不变 D.先增大后减小 28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且AO=2,则k 的值为A.22B.1C. 2D.229.(2010山东泰安)函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=kx的图象上的是( )A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( ) (A )2<k (B )3≤k (C )3>k(D ).3≥k二、填空题1.(2010安徽蚌埠二中)已知点(1,3)在函数)0(>=x xky 的图像上。

人教版初三数学下册一次函数与反比例函数的综合复习

人教版初三数学下册一次函数与反比例函数的综合复习

一次函数与反比例函数的综合复习教学目标:通过复习反比例函数和一次函数的概念,性质和图象,使学生对反比例函数和一次函数有个整体认识,并掌握他们的联系和区别。

1..掌握关于反比例函数和一次函数的图像问题 2.掌握关于反比例函数和一次函数的交点问题 3.掌握一次函数与反比例函数的大小比较4.掌握一次函数与反比例函数所围成的三角形面积计算一、知识点梳理:1. 形如 的函数是一次函数。

它的图像是 ,它与x 轴交点为 ,它与y 轴交点为 ,当 时,即成为正比例函数。

正比例函数的图像是一条经过 点的 ,2.一次函数图像的性质是由 的符号决定。

k > 0,y 随x 的增大而增大; k < 0,y 随x 的增大而减小。

b > 0,图像与y 轴交点在正半轴上; b < 0,图像与y 轴交点在负半轴上;3.形如的函数是反比例函数。

反比例函数的其他表示形式: ,其图像是当 时,图像在 象限,在每个象限内,y 随x 的增大而当 时,图像在 象限,在每个象限内,y 随x 的增大而 3.反比例函数k 的意义设P (m ,n )是双曲线y=(k ≠0)上任意一点,过点P 作x 轴和y 轴的垂线,垂足分别为A 和B ,则||||||.OAPB S OA AP m n k =⋅=∙=矩形则 111||||||222OAP S OA AP m n k ∆=⋅⋅=∙=考点一:一次函数与反比例函数的图像问题:1.已知a<0,则函数y=ax,y=a/x图象大致是()2. 函数y=k/x与y=kx+k在同一坐标系内的图象大致是( )中考回顾考点二:一次函数与反比例函数的解析式和交点问题:例2.(2013•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(=x考点三:一次函数与反比例函数的大小比较例3、(2014•广安)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()2随堂练习1.点(-1,y 1),(2,y 2),(3,y 3)均在函数6y x=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 3<y 1C .y 1<y 2<y 3D .y 1<y 3<y 2 . 2.一次函数y 1=kx+b (k ≠0)与反比例函数y 2=mx(m ≠0),在同一直角坐标系中的图象如图所示,若y 1>y 2,则x 的取值范围是( )A .-2<x <0或x >1.B .x <-2或0<x <1C .x >1D .-2<x <1考点四:一次函数与反比例函数图象所涉及的常见面积计算问题:例4.(2012广安)如图9,已知双曲线y=k /x 和直线y=mx+n 交于点A 和B ,B 点的坐标是(2,-3),AC 垂直y 轴于点C ,AC=3/2。

初三一轮复习一次函数与反比例函数知识点

初三一轮复习一次函数与反比例函数知识点

知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标. 例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用y=k2x+b y=k1x+b9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断. k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可. 例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△OPE>S△AOC=S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,一次函数y x b =+的图像与反比例函数ky x=的图像交于(2,3)A ,(,2)B n -两点.(1)求一次函数与反比例函数的表达式.(2)过点B 作BC y ⊥轴,垂足为C ,连接AC ,求点B 的坐标,并直接写出ABC 的面积.2.如图,反比例函数8y x=-与一次函数2y x =-+的图像交于A B 、两点.求:(1)A B 、两点的坐标; (2)直接写出82x x-<-+的解集.3.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点()2A a -,,并且与x 轴相交于点B .(1)求反比例函数的表达式; (2)求AOB 的面积;(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.4.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点(2)A a -,,并且与x 轴相交于点B .(1)求a 的值;求反比例函数的表达式; (2)求AOB 的面积; (3)求不等式40kx x-+-<的解集(直接写出答案).5.在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.6.如图,一次函数26y x =-+的图象与x 轴、y 轴分别交于A 、B 两点且与反比例函数my x=(m 是不为0的常数)的图象在第二象限交于点C ,CD x ⊥轴,垂足为D ,若3BO DO =.(1)求m 的值;(2)求两个函数图象的另一个交点E 的坐标; (3)请观察图象,直接写出不等式26mx x-+≥的解集.7.如图,已知反比例函数11k y x=的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.8.如图,直线22y x =+与x 轴交于点C ,与y 轴交于点B ,在直线上取点()2,A a ,过点A 作反比例函数()0ky x x=>的图象.(1)求a 的值及反比例函数的表达式; (2)根据图象,直接写出满足22kx x>+在第一象限内x 的取值范围. (3)点Q 在x 轴负半轴上,满足BOA OAQ ∠=∠,求点Q 的坐标.9.如图,在平面直角坐标系中,点(3,5)A 与点C 关于原点O 对称,分别过点A 、C 作y 轴的平行线,与反比例函数(015)k y k x=<<的图象交于点B 、D ,连接AD 、BC ,AD 与x 轴交于点(2,0)E -.求(1)直线AD 的解析式及k 值; (2)直接写出阴影部分面积之和.10.如图,直线y kx b =+(,k b 为常数)与双曲线my x=(m 为常数)相交于()2,A a ,()1,2B -两点.(1)求直线y kx b=+的解析式;(2)在双曲线myx=上任取两点()11,M x y和()22,N x y,若12x x<,试确定1y和2y的大小关系,并写出判断过程11.如图,一次函数y kx b=+的图象与反比例函数myx=的图象相交于(1,)A n-和(2,1)B-两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求ABD△的面积;(3)观察图象直接写出不等式mkx b x>+的解集.12.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为()4,2,反比例函数ky x=的图象经过AB 的中点D ,且与BC 交于点E ,设直线DE 的解析式为y mx n =+,连接OD OE ,.(1)求反比例函数ky x=的表达式和点E 的坐标; (2)直接写出不等式kmx n x>+的解集; (3)点M 为y 轴正半轴上一点,若MBO △的面积等于ODE 的面积,求点M 的坐标;13.如图1,反比例函数ky x=与一次函数y x b =+的图象交于A B ,两点,已知()2,3B .(1)求反比例函数和一次函数的表达式;(2)一次函数y x b =+的图象与x 轴交于点C ,点D (未在图中画出)是反比例函数图象上的一个动点,若3OCDS=,求点D 的坐标:(3)若点M 是坐标轴上一点,点N 是平面内一点,是否存在点M N ,,使得四边形ABMN 是矩形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.14.综合与实践如图,一次函数133y x =+的图象与x 轴交于点A ,与y 轴交于点B ,把线段AB 绕点B 逆时针旋转90︒得到BC ,过点C 作CD y ⊥轴于点D ,反比例函数2ky x=的图象经过点C ,与直线AB 交于两点E 和F .(1)求反比例函数的解析式;(2)如图2,若点E 的横坐标是1,点F 的纵坐标是3-.△直接写出线段BE 和AF 的数量关系和当21y y >时,x 的取值范围; △连接CE 和CF ,求ECF △的面积;(3)当点M 在x 轴上运动,点N 在反比例函数2ky x=的图象上运动,以点A ,D ,M 和N 为顶点的四边形是平行四边形,直接写出点M 的坐标.15.如图1,在平面直角坐标系中,OABC 的一个顶点与坐标原点重合,OA 边落在x 轴上,且4OA =,22OC =和45COA ∠=︒.反比例函数()0,0ky k x x=>>的图象经过点C ,与AB 交于点D ,连接AC CD ,.(1)试求反比例函数的解析式;(2)求证:CD 平分ACB ∠;(3)如图2,连接OD ,在反比例函数图象上是否存在一点P ,使得12POC COD S S =?如果存在,请直接写出点P 的坐标.如果不存在,请说明理由.1.(1)1y x =+ 6y x =(2)1522.(1)A 点坐标为()2,4-,B 点坐标为()4,2-(2)<2x -或04x <<3.(1)12y x =-(2)12(3)2x <-或06x <<4.(1)6a =;12y x=-(2)12 (3)20x <<-或6x >5.(1)110k = 22k =6.(1)20-(2)()5,4-(3)2x ≤-或 05x <≤7.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.8.(1)6a =,反比例函数解析式为()120y x x=>; (2)02x <<(3)()2.5,0Q -9.(1)2y x =+,3(2)1210.(1)1y x =-+;(2)当M N 、在双曲线的同一支上时,12y y <;当M N 、在双曲线的不同的一支上时12y y >.11.(1)2y x =- 1y x =-+ (2)ABD △的面积为3(3)10x -<<或2x >12.(1)4y x= ()41, (2)02x <<和4x >(3)302M ⎛⎫ ⎪⎝⎭,13.(1)反比例函数和一次函数的表达式分别为:61y y x x==+, (2)()1,6D --或()1,6D(3)存在,其坐标分别为()()125,00,5M M ,14.(1)6y x= (2)△01x <<或<2x -;△15(3)(4,0)-或(4,0)或(2,0).15.(1)4y x= (2)存在,点P 的坐标为()5151-+,或()5151+-,。

初三数学一次函数与反比例函数专题复习

初三数学一次函数与反比例函数专题复习

初三中考复习——函数专题一次函数与反比例函数【知识要点】:1.定义:若两个变量的关系可以表示成的形式,则称是的一次函数。

(为自变量, 为因变量).★中考考点:①.②.自变量和因变量例1.已知是一次函数,那么m=___________例2.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.在这个表格中,________________是自变量,____________是因变量,之间的关系是_________________.2.坐标系:①.象限点的特征:例1.点,在第______象限例2. 点在第_______象限。

②.点到坐标轴的距离点P(m,n)到x轴的距离为; 到y轴的距离为;到原点的距离为例1.已知A(-1,-1),B(1,1),点A到X轴的距离为_______,点B到Y轴的距离为_______,AB两点间的距离为_______.例2.已知,到X轴的距离为3,则A点坐标为_________.③.点关于对称轴的对称点点P(a,b)关于原点的对称点是(-a,-b),关于x轴的对称点是(a,-b),关于y轴的对称点是(-a,b).例1.点A(-2,3)关于X轴的对称点为________,关于Y轴的对称点为_______,关于原点的对称点为__________例2.点A(-2,-3)与点B关于Y轴对称,点B坐标为____________④.象限角平分线上点的特征第一、三象限角平分线上的点的横、纵坐标相等,其方程为:;第二、四象限角平分线上的点的横、纵坐标互为相反数,其方程为:例1.已知A的坐标分别为(-2,0),点P在直线上,如果△ABP为直角三角形,这样的P点的坐标共有___________个。

3.正比例函数与反比例函数图像与性质:1.正比例函数的定义:当一次函数的时,就得到函数( 是常数,≠0)叫正比例函数;2.正比例函数的图像:正比例函数y=kx的图像是经过原点和(1,k)两点的—条直线;3.反比例函数的定义:一般地,如果两个变量x、y之间关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。

一次函数和反比例函数的重点知识复习及练习(精讲精练)

一次函数和反比例函数的重点知识复习及练习(精讲精练)

一次函数和反比例函数的复习及练习一、函数的定义如果两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,那么y 就是x 的函数,x 叫自变量,y 叫因变量。

练习:1、n 边形的内角和S 与边数n 的函数关系为 ,其中 是常量, 是变量, 自变量的取值范围是 ; 2、小华以每分钟x 字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( )(A)x=y300(B) y=x 300(C) x+y=300 (D) y=xx -3003、右图给出了变量x 与y 之间的函数的是 ( )4、下列式子中,y 不是x 的函数的是( ) A 、2x y = B 、xy 1=C 、0=+x yD 、x y =25、甲乙两地相距30千米,某人骑车以每小时10千米的速度从甲地前往乙地,写出此人距离乙地的路程s (千米)与骑车时间t (小时)之间的函数关系式是 ,自变量的取值范围是 。

二、自变量的取值范围①函数关系式是整式的,自变量取全体实数;②函数关系式是分式的,分母不等于0; ③函数关系式是二次根式的,被开方数大于或等于0;(注意:若上述情况同时出现,则要同时满足条件;实际问题中要考虑使实际问题有意义。

) 练习:1、写出下列函数中自变量x 的取值范围: (1)y =275+x ; (2)y =843+x ; (3)y =2、下列函数中,自变量x 的取值范围是x ≥2的是( )A..C .D .3、一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .则y 和x 间的关系式为 ,自变量x 的取值范围是 4、函数11+=x y 中,自变量x 的取值范围是___________;函数y 的取值范围是___________。

三、点的坐标 1、平面直角坐标系2、点的坐标P (x ,y ),x 表示点的横坐标,即过点P 作x 轴的垂线,垂足所对应的数;y 表示点的纵坐标,即过点P 作y 轴的垂线,垂足所对应的数。

09年全国各地中考试题分类汇编——反比例函数

09年全国各地中考试题分类汇编——反比例函数

09年各地中考数学试题汇编——反比例函数1、(09福建漳州)矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )2、(09甘肃兰州)如图,在直角坐标系中,点A 是x轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小3、(09湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是: ( )4、(09广东深圳)如图,反比例函数4y x =-的图象与直线13y x=-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) C .4 D .25、(09广西南宁)在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .26、(09广西贵港)如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y =2x(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大B .逐渐减小C .不变D .先增大后减小7、(09广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数x k y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y8、(09浙江丽水)如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x x yB .)0(5>=x xyC . )0(6>-=x x yD .)0(6>=x xy9、(09山东青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω10、(09山东泰安)如图,双曲线)0(>k xky =经过矩形QABC的边BC 的中点E ,交AB 于点D 。

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。

2009年中考第一轮复习第七讲:函数、一次函数和反比例函数跟踪训练

2009年中考第一轮复习第七讲:函数、一次函数和反比例函数跟踪训练

一元一次不等式(组)一、填空题:1.函数y =x 的取值范围是 .2.(2008年江苏省无锡市)函数21y x =-中自变量x 的取值范围是;函数y =中自变量x 的取值范围是 .3.将点A(0)绕着原点顺时针方向旋转45°角得到点B ,则点B 的坐标是________. 4.己知反比例函数xm y 1-= (x >0),在每个象限内y 随x 的增大而增大,则m 的取值范围是 .5.一次函数(26)5y m x =-+中,y 随x 的增大而减小,则m 的取值范围是________.6.(2008海南)反比例函数ky x=的图象经过点(-2,1),则k 的值为 .7.如图,l 1反映了某公司的销售收入与销量的关系,l 2 反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须____.8.(2008年广安)在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 . 9.(2008年江苏省苏州市)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元.8 10.(2008湖北荆州)如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为_________________________.二、选择题:11.(2008的自变量x 的取值范围在数轴上可表示为( )12.(2008湖北仙桃等) 如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从A .B .C .D .点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是( )13.一次函数y=-x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 14.已知正比例函数y=kx(k ≠0)的图像过第二、四象限,则( ) A.y 随x 的增大而减小 B.y 随x 的增大而增大C.当x<0时,y 随x 的增大而增大;当x>0时,y 随x 的增大而减小D.不论x 如何变化,y 不变15.(2008湖北仙桃) 对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是( ) A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上 C. 它的图象是中心对称图形D. y 随x 的增大而增大16.(2008年江苏省南通市)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=⎧⎨--=⎩ B .2103210x y x y --=⎧⎨--=⎩ C .2103250x y x y --=⎧⎨+-=⎩ D .20210x y x y +-=⎧⎨--=⎩123-1O123-1xy P(1,1)17.(2008湖北恩施)一次函数y1=x-1与反比例函数y2=x2的图像交于点A(2,1),B(-1,-2),则使y1>y2的x的取值范围是( )A. x>2B. x>2 或-1<x<0C. -1<x<2D. x>2 或x<-118.在同一直角坐标系中,函数y =kx -k 与k y x=(k ≠0)的图像大致是( )三、解答题ABDCA BC DE.F.P .·19. (2008广东)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.20. (2008四川达州)平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C ,四边形ABOC 的周长为8.求直线l 的解析式.21. 如图,已知反比例函数xk y 1=的图象与一次函数b x k y +=2的图象交于A 、B 两点,)2,1(),,2(--B n A .(1)求反比例函数和一次函数的关系式;(2)在直线AB 上是否存在一点P ,使APO ∆∽AOB ∆,若存在,求P 点坐标;若不存在,请说明理由.22.如图,L 1、L 2 分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样. (1)根据图像分别求出L 1、L 2的函数关系式;3(0)x x>(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).23.(2008泰州市)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)答案:一、填空题1.x ≥12. 1x ≠,2x ≥3. (4,-4)4.m<15. m <36.-27. 大于48. y=2x+39.8 10. 3,(2,32) 二、选择题答案分别为:BBAADDBD 三、解答题 19.解:由题意得,45,14.2y x y x =-+⎧⎪⎨=-⎪⎩ 解得,2,3.x y =⎧⎨=-⎩ ∴ 直线1l 和直线2l 的交点坐标是(2,-3).交点(2,-3)落在平面直角坐标系的第四象限上. 20. 解:设A 点的坐标为(x,y ),由题意得2x+2y=8,整理得y= 4-x 即A 的坐标为(x,4-x ),把A 点代入3(0)y x x=>中,解得x=1或x=3 由此得到A 点的坐标是(1,3)或(3,1)又由题意可设定直线l 的解析式为y=x+b (b≥0) 把(1,3)点代入y=x+b ,解得 b =2把(3,1)点代入y=x+b ,解得 b=-2,不合要求,舍去 所以直线l 的解析式为y=x+2 21. 解:(1) ∵双曲线xk y 1=过点)2,1(-- ∴2)2(11=-⨯-=k ∵双曲线xy 2=过点),2(n ∴1=n由直线b x k y +=2过点B A ,得⎩⎨⎧-=+-=+21222b k b k ,解得⎩⎨⎧-==112b k ∴反比例函数关系式为xy 2=,一次函数关系式为1-=x y .(2)存在符合条件的点P ,)61,67(P .理由如下:∵APO ∆∽AOB ∆∴AB AOAO AP =∴6252352===AB AO AP ,如右图,设直线AB 与x 轴、y 轴分别相交于点C 、D ,过P 点作x PE ⊥轴于点E ,连接OP ,则2===DB CD AC ,故626252=-=-=AP AC PC ,再由︒=∠45ACE 得612262=⨯==PE CE ,从而67=+=CE OC OE ,因此,点P 的坐标为)61,67(P .22. (1)设直线L 1的解析式为y 1=k 1x+2,由图像得17=500k 1+2,解得k 1=0.03.∴y 1=0.03x+2(0≤x ≤2 000). 设直线L 2的解析式为y 2=k 2x+20,由图像得26=500k2+20,解得k 2=0.012, y=0.012x+20(0≤x ≤2 000). (2)当y 1=y 2时,两种灯的费用相等. 0.03x+2=0.012x+20,解得x=1 000.∴当照明时间为1 000小时时,两种灯的费用相等. (3)节能灯使用2 000小时,白炽灯使用500小时. 23.(1)1.9(2) 设直线EF 的解析式为 y 乙=kx+b∵点E(1.25,0)、点F (7.25,480)均在直线EF 上∴⎩⎨⎧=+=+.48025.7025.1b k b k 解得⎩⎨⎧-==.100,80b k ∴直线EF 的解析式是y 乙=80X-100∵点C 在直线EF 上,且点C 的横坐标为6, ∴点C 的纵坐标为80×6—100=380 ∴点C 的坐标是(6,380)设直线BD 的解析式为y 甲 = mx+n∵点C (6,380)、点D (7,480)在直线BD 上 ∴⎩⎨⎧=+=+.4807,3806n m n m解得⎩⎨⎧-==.220,100n m ∴BD 的解析式是y 甲=100X -220∵B 点在直线BD 上且点B 的横坐标为4.9,代入y 甲得B (4.9,270) ∴甲组在排除故障时,距出发点的路程是270千米。

中考数学 一次函数与反比例函数专项复习

中考数学 一次函数与反比例函数专项复习

中考数学一次函数与反比例函数专项复习【回顾与思考】一次函数0,0,y y xk y x⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k0)概念正比例函数y=kx(k0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k反比例函数⎧⎪⎨⎪⎩概念图像与性质应用【例题经典】一、理解一次函数的概念和性质例1、若一次函数y=2x222m m--+m-2的图象经过第一、二、三象限,求m的值.二、用待定系数法确定一次函数表达式及其应用例2、鞋子的“鞋码”和鞋长(cm)存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:鞋长16 19 24 27鞋码22 28 38 44(1)分析上表,(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?三、建立函数模型解决实际问题例3、某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?四、理解反比例函数的意义例4、若函数y=(m2-1)x235m m+-为反比例函数,则m=________.五、会灵活运用反比例函数图象和性质解题例5、已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=•的图象上的三点,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y2<y1 B.y1<y2<y3 C.y2<y1<y3 D.y2<y3<y1例6、如图,一次函数y=kx+b的图象与反比例函数y=mx图象交于A(-2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.基础训练1.下列各点中,在函数y=2x-7的图象上的是()A.(2,3) B.(3,1) C.(0,-7) D.(-1,9)2.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<2(第2题) (第3题) (第6题)3.如图,直线y=kx+b与x轴交于点(-4,0),则y>0时,x的取值范围是()A.x>-4 B.x>0 C.x<-4 D.x<04.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限5.点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2 B.y1>y2>0 C.y1<y2 D.y1=y26.函数y1=x+1与y2=ax+b的图象如图所示,•这两个函数的交点在y轴上,那么y1、y2的值都大于零的x的取值范围是_______.7.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是________.8.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.(第7题) (第10题) (第11题)9.若双曲线y=6x经过点A(m,3),则m的值为()A.2 B.-2 C.3 D.-310.如图,过原点的一条直线与反比例函数y=kx(k<0)的图像分别交于A、B两点,若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)11.如图,双曲线y=8x的一个分支为()A.① B.② C.③ D.④12.函数y=kx(k≠0)的图象如图所示,那么函数y=kx-k•的图象大致是()13.已知点P是反比例函数y=kx(k≠0)的图像上任一点,过P•点分别作x轴,轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k的值为()A.2 B.-2 C.±2 D.414.如图,梯形AOBC的顶点A、C在反比例函数图象上,OA∥BC,上底边OA在直线y=x 上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.3 C.3-1 D.3+1(第14题) (第16题) (第17题)能力提升15.经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.16.如图是一次函数y1=kx+b和反比例函数y2=mx的图象,观察图象写出y1>y2时,x•的取值范围__________.17.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-203,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是_________.18.某校科技小组进行野外考察,途中遇到一片十几米宽的料泥地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,•其图象如下图所示.(1)请直接写出一函数表达式和自变量取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板的面积至少要多大?19.甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考数学复习 反比例、一次函数〖知识点〗 正比例函数及其图象、一次函数及其图象、反比例函数及其图象〖大纲要求〗1.理解正比例函数、一次函数、反比例函数的概念; 2.理解正比例函数、一次函数、反比例函数的性质; 3.会画出它们的图象;4.会用待定系数法求正比例、反比例函数、一次函数的解析式内容分析 1、一次函数(1)一次函数及其图象如果y=kx+b (K ,b 是常数,K ≠0),那么,Y 叫做X 的一次函数. 特别地,如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数 一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线 (2)一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小.2、反比例函数 (1) 反比例函数及其图象 如果)0,(≠=k k xky 是常数,那么,y 是x 的反比例函数. 反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象 (2)反比例函数的性质当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大.3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式 〖考查重点与常见题型〗1. 考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中 2. 综合考查正比例、反比例、一次函数的图象,习题的特点是在同一直角坐标系内考查两个函数的图象,试题类型为选择题3. 用待定系数法求正比例,反比例,一次函数的解析式,有关习题出现的频率很高,类型有中档解答题和选拔性的综合题4. 利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点. 考查题型1.若函数y =(m +1)xm 2+3m+1是反比例函数,则m 的值是()(A) m =-1(B )m =-2(C )m=2或m =1(D )m =-2或m =-12.已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且该函数的图象与x 轴的交点在原点的右侧,则m 的取值范围是( )(A )m>-2 (B )m<1 (C )-2<m<-1 (D )m<-23.函数y =kx 与y =kx +1(k ≠0)在同一坐标系内的图象大致为图中的( )4.已知一次函数的图象是一条直线,该直线经过(0,0),(2,-a),(a,-3)三点,且函数值随自变量x 值的增大而减小,则此函数的解析式 . 5.一次函数y =2x -3在y 轴上的截距是 6.对于函数y =-1x,当x>0时,y 随x 的增大而7.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是 8.若双曲线y =(m -1)x -1在第二、四象限,则m 的取值范围是 9.已知直线y =34x+b被两坐标轴截取的线段长为5,求此直线函数解析式.10.已知一次函数y =kx +2b+3的图象经过点(-1,-3),k是方程m2-3m=10的一个根,且Y 随x的增大而增大,求这个一次函数解析式. 考点训练:1. y= x 的图象是一条过原点及点(-3,3 2 )的直线2.一次函数y=kx+b 的图象经过P(1,0) 和Q(0,1)两点,则k= ,b= .3.正比例函数的图象与直线y= -23 x+4平行,则该正比例函数的解析式为 ,该正比例函数y 随x 的增大而 .4.已知y-2与x 成正比例,且x=2时,y=4,则y 与x 之间的函数关系是 ,若点(m,2m+7), 在这个函数的图象上,则m = 5. 函数y=(m-4)xm2-5m-5的图象是过一、三象限的一条直线,则 m =6.函数y=kx (k ≠0)的图象经过点( 2 ,3),则k= ,当x>0时,y 随着x 的增大而7.如果一次函数y=kx+b 和反比例函数y=kx 的图象都经过(-2,1)点,则b 的值是8.已知一次函数y=kx+b 的y 随x 的增大而减小,那么它的图象必经过 象限. 9.已知函数y= -2x-6.(1)求当x= -4时,y 的值,当y= -2时,x 的值.(2)画出函数图象;(3)求出函数图象与坐标轴的两个交点之间的距离; (4)如果y 的取值范围-4≤y ≤2,求x 的取值范围. 10.已知z 与y- 3 成正比例,x 与6z成反比例,(1)证明:y 是x 的一次函数;(2)如果这个一次函数的图象经过点(-2,3 3 ),并且与x 、y 轴分别交于A 、B 两点.求两 点的坐标.*11.已知函数y=k x 的图象上有一点P (m,n),且m,n关于t的方程t2-4at+4a2-6a-8=0的两个实数根,其中a是使方程有实数根的最小整数,求函数y=k x 的解析式, 解题指导1.函数y= - 32 x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 象限,y 随的增大而2.已知一次函数y= - 12 x+2,当x= 时,y=0;当x 时y>0; 当x 时y<0.3.若一次函数y 1=kx-b 图象经过第一、三、四象限,则一次函数y 2=bx+k 的图象经过第 象限.4.直线y 1=k 1x+b 1和直线y 2=k 2x+b 2相交于y 轴上同一点的条件是 ;这两直线平行的条件是5.过点(0,2)且与直线y= - x 平行的直线是 .6.y 与3x+2成正比例,比例系数是4,则y 与x 的函数关系式是 .7.等腰三角形的周长为30cm ,它的腰长为ycm 与底长xcm 的函数关系式是 .8.y= x -1的图象是一条过点(45 ,- 34 )的双曲线,在它的图象所在的每一个象限内,y 随x 的增大而 .9.把直线y=- 32 x -2向上平移2个单位,得到直线 ,把直线y=- 32 x -2向 平移个单位,得到直线y=- 32(x+4)10.写出满足下表的一个一次函数的关系式11.直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,求其解析式. 12.已知反比例函数y=kx(k>0)的图象上的一点P,它到原点O 的距离OP=2 5 ,PQ 垂直于y轴,垂足为Q.若△OPQ 的面积为4平方单位,求:(1)点P 的坐标;(2)这个反比例函数的解析式. 独立训练(一):1.函数y= - 2x 是 函数,这个函数的图象位于第 象限.2.对函数y= - 53x当x>0时,y 随x 的增大而 .3.反比例函数y=k x 的图象上有一点P ,它的横坐标m 与纵坐标n 是方程t 2-4t-2=0的两个根,则k=4.如图,P 为反比例函数y=kx 的图象上的点,过P 分别向x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2, 这个反比例函数解析式为 . 5.反比例函数y=(a-3)x2a -2a-4的函数值是4时,它的自变量x 的值是 .6.一次函数y=kx+b 与反比例函数y=2x 的图象的两个交点的横坐标为12 和 -1,则一次函数y=7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-12 x+3与y 轴的交点关于x 轴对称,那么一次函数的解析式是8.如图,在矩形ABCD 中,已知AB=2 3 ,BD=6,对角线AC 和BD 相交于O , 以O 为原点分别以平行于AB 和AD 的直线为轴和轴建立平面直角坐标 系,则对角线AC 和BD 的函数表达式分别为 . 9.求直线y=3x+10,y= -2x-5与y 轴所围成的三角形的面积.10.如图,一次函数y=k 1x+b 的图象过一、三、四象限,且与双曲线y=k 2x的图象交于A 、B 两点,与y 轴交于C 点,且A (x 1,y 1)是∠XOA 终边上一点.(1) tan ∠XOA=15 ,原点到A 点的距离为26 ,求A 点的坐标;(2)在(1)的条件下,若S △AOC =b 2-6,求一次函数的解析式. 独立训练(二):1. 如图,A 、B 是函数y=1x 的图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,△ABC 的面积S ,则( )(A )S=1 (B ) 1<S<2 (C ) S=2 (D ) S>22.函数y=k 1x+b(k 1b<0)与y=k 2x (k 2<0)在同一坐标系中的图象大致是( )3.在边长为 2 的正方形ABCD 的边BC 上,有一点P 从 B 点运动到C 点,设PB=x ,图形APCD 的面积为y ,写出y 与自变量x 的函数关系式,并且在直角坐标系中画出它的图象4.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,并且当x=1时,y=1,当x=3时,y=-17,求x=-1时,y 的值5.如图,在y= 8x (x>0)反比例函数的图象上有不重合的两点A 、B ,且A 点的纵坐标是2,B 点的横坐标为2,BB 1和AA 1都垂直于轴,垂足分别为B 1和A 1,(1)求A 点横坐标; (2)求S △1OBB (3)当OB=2 5 时,求S △OBA6.如图已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于C ,PA =6,PEF 是⊙O 的割线,设PE =x,PF =y ,弦CM ⊥AB 于D ,且AD :DB =1:2, 求y与x之间的函数关系式, 并求出自变量x取值范围.B。

相关文档
最新文档