生活中的圆周运动专题2:竖直面内的圆周运动

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

一、两类模型——轻绳类和轻杆类1.轻绳类。

运动质点在一轻绳的作用下绕中心点作变速圆周运动。

由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。

所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。

2.轻杆类。

运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。

所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。

过最高点的最小向心加速度。

过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。

质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。

高中物理:物体在竖直面内的圆周运动

高中物理:物体在竖直面内的圆周运动

1、轻绳或细杆作用下物体在竖直面内的圆周运动(1)轻杆作用下的运动如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动,小球在最高点A时,若杆与小球m之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供:得=,由此可得小球在最高点时有以下几种情况:当=0时,杆对球的支持力F N = mg,此为过最高点的临界条件。

②当=时,,=0③当0<<时,m g>>0且仍为支持力,越大越小④当>时,>0,且为指向圆心的拉力,越大越大(2)细绳约束或圆轨道约束下的运动:如图所示为没有支撑的小球(细绳约束、外侧轨道约束下)在竖直平面内做圆周运动过最高点时的情况。

①当,即当==时,为小球恰好过最高点的临界速度。

②当<,即>=时(绳、轨道对小球还需产生拉力和压力),小球能过最高点③当>,即<=时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了圆周轨道。

竖直面内的圆周运动一般不是匀速圆周运动,而是变速圆周运动,此时由物体受到的合力沿半径方向的分力来提供向心力,一般只研究最高点和最低点,此情况下,经常出现临界状态,应注意:(1)绳模型:临界条件为物体在最高点时拉力为零(2)杆模型:临界条件为物体在最高点时速度为零例1、一根绳子系着一个盛水的杯子,演员抡起绳子,杯子就在竖直面内做圆周运动,到最高点时,杯口朝下,但杯中的水并不流出来,如图所示,为什么呢?解析:对杯中水,当=时,即=时,杯中水恰不流出,若转速增大,<时,>时,杯中水还有远离圆心的趋势,水当然不会流出,此时杯底对水有压力,即N+=,N=-;而如果>,<时,水会流出。

例2、如图所示,轻杆OA长l=0.5m,在A端固定一小球,小球质量m=0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为=0.4m/s,求在此位置时杆对小球的作用力。

(g取10 m/s 2)解法一:先判断小球在最高位置时,杆对小球有无作用力,若有作用力,判断作用力方向如何小球所需向心力==0.5×=0.16 N小球受重力=0.5×10=5 N重力大于所需向心力,所以杆对小球有竖直向上的作用力F,为支持力以竖直向下为正方向,对小球有-F=解得:F= 4.84 N解法二:设杆对小球有作用力F,并设它的方向竖直向下,对小球则有-F=F=-=-4.84 N“-”表示F方向与假设的方向相反,支持力方向向上。

2.3圆周运动实例分析(竖直面)

2.3圆周运动实例分析(竖直面)

F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力

生活中的圆周运动——竖直平面内的圆周运动实例分析

生活中的圆周运动——竖直平面内的圆周运动实例分析

感谢下载
5
汽车过桥问题 典型实例
感谢下载
6
标杆情景一
一、汽车匀速过凹形桥
自学指导一
1.圆周运动一定需要哪种力?这种力有何特点?
2.汽车的运动轨迹是什么?可视为哪种运动?
3.汽车在最低点受到哪些力作用?画出受力分析图。
4.在该点汽车所需向心力由哪些力提供?
5.向心力表达式该如何书写?
6.凹形桥对汽车支持力为多大?
=ห้องสมุดไป่ตู้
=
感谢下载

4
学习目标 1.通过回顾圆周运动向心力方向的特点,对汽车过凹形桥最 低点进行受力分析,学会找竖直平面内圆周运动最低点向 心力来源,并会对向心力进行列式。
2.通过对汽车过拱形桥最高点进行受力分析,类比竖直平面 内圆周运动最低点向心力来源情况,总结找竖直平面内圆 周运动最低点和最高点向心力来源的方法,并学会求解与 向心力有关的力。
生活中的圆周运动
——竖直平面内圆周运动实例分析
高一物理备课组 王坤
感谢下载
1
感谢下载
2
感谢下载
3
预习检测 1.轨迹是 圆 的运动叫作圆周运动。
2.做圆周运动的物体都必须有力来提 供 向心力 。
3.向心力就是指向圆心的合力,总是 指向 圆心 ,即总是与速度方向 垂直 。
4.向心力的大小
Fn= man =
轻绳系住小桶在竖直平面内做“水流星”表演。小桶
过最高点时速度为v,过最低点时速度为v '。求:
(1)过最低点时,轻绳的拉力?
(2)过最高点时,轻绳的拉力?
(3)过最高点时,桶底对水的压力?
(4)为使小桶通过最高点时水不流出,
小桶在最高点时的最小速度 ?

2021高中物理人教版必修二课件:第五章专题2 竖直面内的圆周运动

2021高中物理人教版必修二课件:第五章专题2 竖直面内的圆周运动

00专题2ꢀ竖直面内的圆周运动题型1ꢀ竖直面内圆周运动过桥模型的应用1.[广东佛山一中2018高一下期中]实验室模拟拱形桥来研究汽车通过桥的最高点时对桥的压力.在较大的平整木板上相隔一定的距离两端各钉4个钉子,将三合板弯曲成拱桥形两端卡入钉内,三合板上表面事先铺上一层牛仔布以增大摩擦,这样玩具车就可以在桥面上跑起来了.把这套系统放在电子秤上,关于电子秤的示数,下列说法正确的是ꢀ(ꢀꢀDꢀ)A.玩具车静止在拱桥顶端时比运动经过顶端时的示数小一些B.玩具车运动通过拱桥顶端时对桥压力不可能为零C.玩具车运动通过拱桥顶端时处于超重状态D.玩具车运动通过拱桥顶端时速度越大(未离开拱桥),示数越小解析玩具车静止在拱桥顶端时对拱桥压力等于玩具车的重力,当玩具车以一定的速度通过拱桥顶端时,合力提供向心力,根据牛顿第二定律得ꢀꢀ,解得ꢀꢀꢀ,所以玩具车运动通过拱桥顶端时电子秤示数比静止ꢀ通过拱桥顶端时,此时N=0,故B错误.玩具车运动通过在拱桥顶端时的示数小,故A错误.当玩具车以ꢀ知,速度越大,支持力N越小,则示拱桥顶端时,加速度方向向下,处于失重状态,故C错误.根据ꢀ数越小,故D正确.2.ꢀ如图所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端系一个质量为m的小球,当汽车以某一不为零的速率在水平地面上匀速行驶时弹簧长度为L;当汽车以同一速率匀速率通过一个桥面为圆弧形凸形桥的最高点时,1弹簧竖直且长度为L,下列说法正确的是(ꢀꢀ)ꢀB2A.L=LꢀꢀꢀB.L>LꢀꢀC.Lꢀ<LꢀD.三种情况均有可能121ꢀ212ꢀ解析当汽车在水平地面上匀速行驶时,设弹簧原长为L0,劲度系数为k.根据平衡条件得当汽车以同一速率匀速率通过一个桥面为圆弧形凸形桥的最高点时,由牛顿第二定律得比较可得L>L,故A、C、D错误,B正确.12题型2ꢀꢀ竖直面内圆周运动绳模型的应用3.(多选)如图所示,用长为L的细绳拴着质量为m的小球在竖直面内做圆周运动,则下列说法中正确的是(ꢀCꢀD) A.小球在最高点时的向心力一定等于重力B.小球在最高点时绳子的拉力不可能为零C.若小球刚好能在竖直面内做圆周运动,则其在最高点的速率为D.小球过最低点时绳子的拉力一定大于小球的重力解析小球在圆周最高点时,向心力可能等于重力,也可能等于重力与绳子的拉力之和,取决于小球在最高点的瞬时速度的大小,故A错误;小球在圆周最高点时,满足一定的条件时绳子的拉力可以为零,故B错误;小球刚好能在竖直面内做圆周运动,则在最高点,重力提供向心力,v=ꢀ,故C正确;小球在圆周最低点时,具有竖直向上的向心加速度,处于超重状态,绳子的拉力一定大于小球的重力,故D正确.4.[黑龙江哈尔滨第六中学2019高一下月考](多选)如图甲所示,一长为R 的轻绳,一端穿在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是(ꢀC ꢀD )A .利用该装置可以得出重力加速度,且g =B .绳长不变,用质量较大的球做实验,得到的图线斜率更大C .绳长不变,用质量较小的球做实验,得到的图线斜率更大D .绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标a 的位置不变解析当F =0时,v 2=a ,则有ꢀꢀ,故A 错误;在最高点,根据牛顿第二定律得ꢀꢀ,绳长不变时,小球质量越小,斜率越大,故B 错误,ꢀ可知图线与纵轴的交点坐标a 的位置与质量无关,ꢀ,图线的斜率ꢀC 正确;根据ꢀꢀ故D 正确.题型3ꢀ竖直面内有约束的圆周运动杆模型的应用5.[河南商丘九校2018高一下期中]如图所示,长度为0.5ꢀm的轻质细杆OA,A端固定一质量为3ꢀkg的小球,以O点为圆心,在竖直平面内做圆周运动,若小球通过最高点时的速度为2ꢀm/s,取g=10ꢀm/s2,则此时轻杆OA受到小球的作用力为(ꢀꢀ)BA.6ꢀN的拉力ꢀꢀB.6ꢀN的压力C.54ꢀN的拉力ꢀꢀD.54N的压力解析小球运动到最高点时受到重力与轻杆的弹力,假设轻杆对小球的弹力方向向上为F,此时小球受N到的合力提供向心力,有ꢀꢀ说明轻杆对小球提供向上的支持力,根据牛顿第三定律可知,轻杆OA受到小球向下的压力,大小为6ꢀN,故选项B正确.ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ6.[黑龙江哈师大附中2019高一下月考]如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧管壁半径为R,小球半径为r,则下列说法正确的是(ꢀꢀ)CA.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力B.小球在水平线ab以上的管道中运动时,内侧管壁对小球一定有作用力C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球通过最高点时的最小速度v min=解析小球在水平线ab以上管道运动时,由于沿半径方向的合力提供小球做圆周运动的向心力,可能外侧管壁对小球有作用力,也可能内侧管壁对小球有作用力,故A、B错误;小球在水平线ab以下管道运动时,由于沿半径方向的合力提供小球做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,故C正确;在最高点,由于外侧管壁或内侧管壁都可以对小球产生弹力作用,故小球通过最高点时的最小速度为0,故D错误.7.(多选)长为L的轻杆,一端固定一个小球A,另一端固定在光滑的水平轴上,轻杆绕水平轴转动,使小球BCA在竖直面内做圆周运动,小球A在最高点的速度为v,下列叙述中正确的是(ꢀꢀ)A.v的极小值为B.v由零逐渐增大时,小球所需要的向心力也逐渐增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由ꢀ逐渐减小时,杆对小球的弹力逐渐减小解析小球在最高点的最小速度为零,此时重力大小等于杆的支持力,故A错误.在最高点,根据得,当v由零逐渐增大时,小球所需要的向心力也逐渐增大,故B正确.在最高点,当杆的作用力为零时,ꢀꢀꢀ,杆提供拉力,有ꢀꢀꢀ逐渐增大时,杆对小球的弹力也逐渐增大,故,当v由零逐渐增大到ꢀꢀꢀꢀꢀꢀꢀ时,杆对小球的C正确.当ꢀꢀꢀꢀꢀ时,杆提供支持力,有ꢀꢀꢀꢀꢀꢀ弹力逐渐减小,反之当v由逐渐减小时,杆对小球的弹力逐渐增大,故D错误.1.[河北邢台一中2019高一下月考]甲图是质量为m的小球,在竖直平面内绕O点做半径为R的圆周运动(OA为细绳).乙图是质量为m的小球,在竖直平面内绕O点做半径为R的圆周运动(OB为轻质杆).丙图是质量为m的小球,在半径为R的竖直光滑圆轨道内侧做圆周运动.丁图是质量为m的小球在竖直放置的半径为R的光滑圆形管道内做圆周运动.则下列说法正确的是(ꢁCꢁ)A.四个图中,小球通过最高点的最小速度都是ꢁv=B.四个图中,小球通过最高点的最小速度都是0C.在丁图中,小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D.在丁图中,小球在水平线ab以上管道中运动时,内侧管壁对小球一定有作用力解析甲、丙图中当重力恰好提供向心力时,小球的速度最小,有mg=mꢁ,所以小球通过最高点的最小速度为v=ꢁ,乙、丁图中由于杆或者内侧管壁可以对小球提供支持力,所以通过最高点的速度可以为零,故A、B错误;在丁图中,小球在水平线ab以下管道中运动时,小球的向心力由管壁的支持力和重力沿半径方向的分力的合力来提供,所以外侧管壁对小球一定有作用力,故C正确;小球在水平线ab以上管道中运动时,沿半径方向的合力提供向心力,由于小球速度大小未知,可能外侧管壁对小球有作用力,也可能内侧管壁对小球有作用力,故D错误.2.如图所示,长度均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A、B两点,A、B两点间的距离也为L.重力加速度大小为g.今使小球在竖直面内以AB为轴做圆周运动,若小球在最高点的速率为v时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v时,每根绳的拉力大小为(ꢀꢀ)A解析当小球到达最高点的速率为v时,有ꢀꢀ;当小球到达最高点的速率为2v时,有ꢀ,所以两绳拉力的合力F=3mg,由几何知识得ꢀꢀ,故A正确.3.(多选)如图所示,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道的竖直面做圆周运动,A、C为圆周的最高点和最低点,B、D与圆心O在同一水平线上.小滑块运动过程中,物体始终保持静止,关于物体对地面的压力N和地面对物体的摩擦力,下列说法正确的是(ꢀBꢀC)A.滑块运动到A点时,N>Mg,摩擦力方向向左B.滑块运动到B点时,N=Mg,摩擦力方向向右C.滑块运动到C点时,N>(M+m)g,物体与地面间无摩擦力D.滑块运动到D点时,N=(M+m)g,摩擦力方向向左解析小滑块在A点时,滑块对物体的作用力在竖直方向上,物体与滑块组成的系统在水平方向不受力的作用,所以没有摩擦力的作用,故A错误.小滑块在B点时,需要的向心力向右,所以物体对滑块有向右的支持力的作用,对物体受力分析可知,地面要对物体有向右的摩擦力的作用,在竖直方向上,小滑块与物体之间没有作用力,则物体受力平衡,所以物体对地面的压力N=Mg,故B正确.小滑块在C点时,滑块的向心力向上,所以滑块对物体的压力要大于滑块的重力,故物体受到的滑块的压力大于mg,则物体对地面的压力大于(M+m)g,在水平方向上,小滑块与物体之间没有作用力,则物体与地面间无摩擦力,故C正确.小滑块在D点和B点的受力情况类似,由B点的分析可知,物体对地面的压力N=Mg,故D错误.4.(多选)质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点.如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时木架停止转动,则(ꢀꢀ)BDA.绳a对小球的拉力不变ꢀꢀꢀB.绳a对小球的拉力增大C.小球一定前后摆动ꢀꢀꢀꢀꢀꢀꢀꢀD.小球可能在竖直面内做圆周运动解析绳b被烧断前,小球在竖直方向的加速度为零,a绳中张力大小等于重力大小,在绳b被烧断瞬间,a绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a的张力大于重力,即张力突然增大,故A错误,B正确;小球原来在水平面内做匀速圆周运动,绳b被烧断后,若角速度ω较小,小球原来的速度较小,小球在垂直于平面ABC的竖直面内摆动,若角速度ω较大,小球原来的速度较大,小球可能在垂直于平面ABC的竖直面内做圆周运动,故C错误,D正确.5.[重庆巴蜀中学2019高一下月考](多选)一竖直放置的光滑圆形轨道连同底座总质量为M,放在水平地面上,如图所示,一质量为m的小球沿此轨道做圆周运动.A、C两点分别是轨道的最高点和最低点.轨道的B、D两点与圆心等高.在小球运动过程中,轨道始终静止,重力加速度为g.则关于轨道底座对地面的压力N的大小及地面对轨道底座的摩擦力方向,下列说法不正确的是(ꢀABꢀD)A.小球运动到A点时,N>Mg,摩擦力方向向左B.小球运动到B点时,N=Mg+mg,摩擦力方向向右C.小球运动到C点时,N>Mg+mg,地面对轨道底座无摩擦力D.小球运动到D点时,N=Mg,摩擦力方向向右解析小球在A 点时,若v =ꢀ,则轨道对小球的作用力为零,有N =Mg ;若v>,则轨道对小球有向下的弹力,所以小球对轨道有向上的弹力,有N <Mg ;若v<ꢀꢀ,则轨道对小球有向上的弹力,所以小球对轨道有向下的弹力,有N >Mg.在这三种情况下,轨道底座在水平方向上均没有运动趋势,不受摩擦力,故A 错误.小球在B 点时,根据ꢀ故B 错误.小球运动到C 点时,根据ꢀ压力大小大于mg ,则底座对地面的压力N >mg +Mg ,底座在水平方向上没有运动趋势,不受摩擦力,故C 正确.小球运动到D 点时,根据ꢀꢀꢀꢀꢀ,轨道对小球有向左的弹力,则小球对轨道有向右的弹力,轨道底座所受的摩擦力方向向左,压力N =Mg ,故D 错误.本题选错误的,故选A 、B 、D.知,轨道对小球有向右的弹力,则小球对轨道有向左的弹力,底座受到向右的摩擦力,压力N =Mg ,ꢀꢀ知,轨道对小球有向上的支持力,则小球对轨道有向下的压力,6.[黑龙江大庆实验中学2019高一下月考](多选)如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图像如图乙所示.则(ꢀꢀ)ꢀCDA.小球的质量为B.当地的重力加速度大小为C.v2=c时,小球对杆的弹力方向向上D.v2=2b时,小球受到的弹力与重力大小相等解析=b,则有由题图乙知,小球在最高点时,若v=0,则F=mg=a;若F=0,则v2故A、B错误.当v<b时,杆对小球弹力方向向上,当v>b时,杆对小球弹力方向向下,所以当v=c时,杆对小222=2b时,有ꢀꢀ球弹力方向向下,小球对杆的弹力方向向上,故C正确.vꢀꢀ解得F=mg,即小球受到的弹2力与重力大小相等,故D正确.7.[湖北孝感高级中学2018高一上期末](多选)如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力,则球B在最高点时(ꢀꢀ)ACA.球B的速度大小为B.球A的速度大小为C.水平转轴对杆的作用力为1.5mgD.水平转轴对杆的作用力为2.5mg解析球B运动到最高点时,杆对球B恰好无作用力,即重力恰好提供向心力,有mg=mꢀꢀ,解得v=,故A正确;由于A、B两球的角速度相等,则球A的速度大小v′=ꢀꢀ,故B错误;球B到最高点时,杆对球B恰好无作用力,此时A球受到的重力和拉力的合力提供向心力,有F-mg=mꢀꢀꢀ,解得F=1.5mg,转轴对杆的作用力大小等于小球对杆的作用力大小,即等于杆对小球的作用力大小,故C正确,D错误.8.[黑龙江哈尔滨第六中学2018高一下期中](多选)如图所示,轻绳一端固定在O点,另一端固定一质量为m的小球,现在最低点A点给小球一水平向右的初速度,使小球在竖直平面内做半径为R的圆周运动.小球在运动过程中始终受到一竖直向上的恒力F作用,不计一切阻力.下列说法正确的是(ꢀꢀ)A CA.若F=mg,则小球做的是匀速圆周运动B.若F<mg,则小球在最高点B点的最小速度为C.若F<mg,则小球在最高点B点的最小速度为D.若F>mg,则小球在最高点B点的最小速度为解析当F=mg时,恒力F和重力平衡,绳对球的作用力提供小球做圆周运动的向心力,故小球在绳的作用力下做匀速圆周运动,故A正确;若F<mg时,F和mg的合力mg-F为等效重力,等效重力加速度ꢀꢀ此时球能过最高点时的临界速度ꢀꢀ故B错误,C正确;当F>mg时,小球的等效重力为F-mg,此时等效重力方向竖直向上,故最高点B在等效重力方向为等效最低点,所以小球在B点的最小速度为ꢀꢀꢀ故D错误.9.[吉林延边敦化中学2018期末]如图甲所示,陀螺可在圆轨道外侧旋转而不脱落,好像轨道对它施加了魔法一样,这被称为“魔力陀螺”.它可等效为一质点在圆轨道外侧运动的模型,如图乙所示.在竖直平面内固定的强磁性圆轨道半径为R,A、B两点分别为轨道的最高点与最低点.质点沿轨道外侧做完整的圆周运动,受到的圆轨道的强磁性引力始终指向圆心O且大小恒为F,当质点以速率v=ꢀ通过A点时,对轨道的压力为其重力的7倍,不计摩擦和空气阻力,重力加速度为g.(1)求质点的质量;(2)若磁性引力大小恒为2F,为确保质点做完整的圆周运动,求质点通过B点的最大速率.答案与解析(1)质点在最高点A点时,根据牛顿第二定律有ꢀ(2)质点在最低点B点时,根据牛顿第二定律有ꢀꢀꢀ根据牛顿第三定律有F=F′=7mg,联立得A Aꢀ当F B=0时,质点的速率最大,有ꢀꢀ联立得10.[河北冀州中学2019高一下月考]如图所示,一质量为m=0.5ꢀkg的小球,用长为0.4ꢀm的轻绳拴着在竖直平面内做圆周运动.g取10ꢀꢀm/s2,则:(1)小球要做完整的圆周运动,在最高点的速度至少为多大?(2)当小球在最高点的速度为4ꢀm/s时,轻绳拉力为多大?(3)若轻绳能承受的最大张力为45ꢀN,小球的速度不能超过多大?答案与解析(1)小球在最高点,对小球受力分析如图甲所示,由牛顿第二定律得ꢀꢀꢀ由于轻绳对小球只能提供指向圆心的拉力,F不可能取负值,即F≥0②,联立①②得ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ,代入数值得v≥2ꢀm/s,所以,小球要做完整的圆周1运动,在最高点的速度至少为2ꢀm/s.(2)将v2=4ꢀm/s代入①得,F=15ꢀN.(3)由分析可知,小球在最低点时轻绳张力最大,对小球受力分析如图乙所示,由牛顿第二定律得ꢀꢀꢀ将F′=45ꢀN代入③得v3=4m/s,即小球的速度不能超过4ꢀm/s.11.如图所示,轻杆长2l,中点装在水平轴O点,两端分别固定着小球A和B,A球质量为m,B球质量为2m,两者一起在竖直面内绕O轴做圆周运动.(1)若A球在最高点时,杆A端恰好不受力,求此时O轴的受力大小和方向;(2)若B球到最高点时的速度等于第(1)小题中A球到达最高点时的速度,则B球运动到最高点时,O轴的受力大小和方向又如何?(3)在杆的转速逐渐变化的过程中,能否出现O轴不受力的情况?若不能,请说明理由;若能,则求出此时A、B球的速度大小.答案(1)4mg,方向竖直向下ꢀ(2)2mg,方向竖直向下ꢀ(3)见解析解析(1)A在最高点时,对A有ꢀ为4mg,方向竖直向下.对B有ꢀꢀ,可得TOB=4mg,所以O轴所受力的大小(2)B在最高点时,假设杆对B的作用力竖直向下,则对B有ꢀ所以O轴所受力的大小为2mg,方向竖直向下.ꢀ,可得T′OA=2mg,(3)要使O轴不受力,根据B的质量大于A的质量分析可知B球应在最高点且杆对B的作用力竖直向下.对B有ꢀꢀ,对A有ꢀꢀ若O轴不受力,则有T=T,可得12。

微专题:竖直面内的圆周运动

微专题:竖直面内的圆周运动

专题 竖直面内的圆周运动[学习目标] 1.了解竖直面内圆周运动的两种基本模型.2.掌握轻绳(或轻杆)约束下圆周运动的两个特殊点的相关分析.3.学会分析圆周运动问题的一般方法.一、竖直面内圆周运动的轻绳(过山车)模型如图1所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.图1(1)最低点运动学方程:F T1-mg =m v 12L所以F T1=mg +m v 12L(2)最高点运动学方程:F T2+mg =m v 22L所以F T2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由F T2+mg =m v 22L 可知,当F T2=0时,v 2最小,最小速度为v 2=gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点.例1 一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图2所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm.(g 取10 m/s 2)图2(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字) (2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小. 答案 (1)2.24 m/s (2)4 N解析 (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小. 此时有:mg =m v 02l,则所求的最小速率为:v 0=gl ≈2.24 m/s.(2)此时桶底对水有一向下的压力,设为F N ,则由牛顿第二定律有:F N +mg =m v 2l ,代入数据可得:F N =4 N.由牛顿第三定律,水对桶底的压力大小:F N ′=4 N. 【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型 二、竖直面内圆周运动的轻杆(管)模型如图3所示,细杆上固定的小球和管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.图3(1)最高点的最小速度由于杆和管在最高处能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力F N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F随v 增大而增大.②v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L.③0<v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F 随v的增大而减小.例2 长L =0.5 m 的轻杆,其一端连接着一个零件A ,A 的质量m =2 kg.现让A 在竖直平面内绕O 点做匀速圆周运动,如图4所示.在A 通过最高点时,求下列两种情况下A 对杆的作用力大小(g =10 m/s 2).图4(1)A 的速率为1 m/s ; (2)A 的速率为4 m/s. 答案 (1)16 N (2)44 N解析 以A 为研究对象,设其受到杆的拉力为F , 则有mg +F =m v 2L.(1)代入数据v 1=1 m/s ,可得F =m (v 12L -g )=2×(120.5-10) N =-16 N ,即A 受到杆的支持力为16 N.根据牛顿第三定律可得A 对杆的作用力为压力,大小为16 N.(2)代入数据v 2=4 m/s ,可得F ′=m (v 22L -g )=2×(420.5-10) N =44 N ,即A 受到杆的拉力为44 N.根据牛顿第三定律可得A 对杆的作用力为拉力,大小为44 N. 【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型例3 (多选)如图5所示,半径为L 的圆管轨道(圆管内径远小于轨道半径)竖直放置,管内壁光滑,管内有一个小球(小球直径略小于管内径)可沿管转动,设小球经过最高点P 时的速度为v ,则( )图5A.v 的最小值为gLB.v 若增大,球所需的向心力也增大C.当v 由gL 逐渐减小时,轨道对球的弹力也减小D.当v 由gL 逐渐增大时,轨道对球的弹力也增大 答案 BD解析 由于小球在圆管中运动,在最高点速度可为零,A 错误;根据向心力公式有F n =m v 2L ,v 若增大,球所需的向心力一定增大,B 正确;因为圆管既可提供向上的支持力也可提供向下的压力,当v =gL 时,圆管受力为零,故v 由gL 逐渐减小时,轨道对球的弹力增大,C错误;v由gL逐渐增大时,轨道对球的弹力也增大,D正确.【考点】竖直面内的圆周运动分析【题点】竖直面内的“杆”模型1.(轻绳作用下物体的运动)杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图6所示,若“水流星”通过最高点时的速率为4 m/s,则下列说法正确的是(g=10 m/s2)()图6A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5 N答案 B解析“水流星”在最高点的临界速度v=gL=4 m/s,由此知绳的拉力恰为零,且水恰不流出,故选B.【考点】竖直面内的圆周运动分析【题点】竖直面内的“绳”模型2.(轨道约束下小球的运动)(多选)如图7所示,质量为m的小球在竖直平面内的光滑圆环内侧做圆周运动.圆环半径为R,小球经过圆环内侧最高点时刚好不脱离圆环,则其通过最高点时下列表述正确的是()图7A.小球对圆环的压力大小等于mgB.重力mg充当小球做圆周运动所需的向心力C.小球的线速度大小等于gRD.小球的向心加速度大小等于g答案 BCD解析 因为小球经过圆环内侧最高点时刚好不脱离圆环,故在最高点时小球对圆环的压力为零,选项A 错误;此时小球只受重力作用,即重力mg 充当小球做圆周运动所需的向心力,满足mg =m v 2R =ma ,即v =gR ,a =g ,选项B 、C 、D 正确.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型3.(球在管形轨道中的运动)(多选)如图8所示,小球m 在竖直放置的光滑的圆形管道内做圆周运动,下列说法正确的是( )图8A.小球通过最高点时的最小速度是RgB.小球通过最高点时的最小速度为零C.小球在水平线ab 以下的管道中运动时外侧管壁对小球一定无作用力D.小球在水平线ab 以下的管道中运动时外侧管壁对小球一定有作用力 答案 BD解析 小球通过最高点的最小速度为0,圆形管外侧、内侧都可以对小球提供弹力,小球在水平线ab 以下时,必须有指向圆心的力提供向心力,即外侧管壁对小球一定有作用力,故B 、D 正确.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型4.(轻杆作用下小球的运动)如图9所示,质量为m 的小球固定在杆的一端,在竖直面内绕杆的另一端O 做圆周运动.当小球运动到最高点时,瞬时速度为v =12Lg ,L 是球心到O 点的距离,则球对杆的作用力是( )图9A.12mg 的拉力 B.12mg 的压力C.零D.32mg 的压力 答案 B解析 当重力完全充当向心力时,球对杆的作用力为零,所以mg =m v ′2L ,解得:v ′=gL ,而12gL <gL ,故杆对球是支持力,即mg -F N =m v 2L ,解得F N =12mg ,由牛顿第三定律,球对杆是压力,故选B.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型考点一 轻绳(过山车)模型1.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度v 0,使小球在竖直平面内做圆周运动,并且刚好能过最高点.则下列说法中正确的是( )A.小球过最高点时速度为零B.小球过最高点时速度大小为gLC.小球开始运动时绳对小球的拉力为m v 02LD.小球过最高点时绳对小球的拉力为mg 答案 B【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型2.如图1所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R ,人体重为mg ,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )图1A.0B.gRC.2gRD.3gR 答案 C解析 由题意知F +mg =2mg =m v 2R,故速度大小v =2gR ,C 正确.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型3.某飞行员的质量为m ,驾驶飞机在竖直面内以速度v 做匀速圆周运动,圆的半径为R ,在圆周的最高点和最低点比较,飞行员对座椅的压力在最低点比最高点大(设飞行员始终垂直于座椅的表面)( ) A.mg B.2mg C.mg +m v 2RD.2m v 2R答案 B解析 在最高点有:F 1+mg =m v 2R ,解得:F 1=m v 2R -mg ;在最低点有:F 2-mg =m v 2R ,解得:F 2=mg +m v 2R .所以F 2-F 1=2mg ,B 正确.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型4.在游乐园乘坐如图2所示的过山车时,质量为m 的人随车在竖直平面内沿圆周轨道运动,下列说法正确的是( )图2A.车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去B.人在最高点时对座位仍可能产生压力,但压力一定小于mgC.人在最高点和最低点时的向心加速度大小相等D.人在最低点时对座位的压力大于mg 答案 D解析 过山车上人经最高点及最低点时,受力如图,在最高点,由mg +F N =m v 12R ,可得:F N =m (v 12R -g )①在最低点,由F N ′-mg =m v 22R ,可得:F N ′=m (v 22R+g )②由支持力(等于压力)表达式分析知:当v 1较大时,在最高点无保险带也不会掉下,且还可能会对座位有压力,大小因v 1而定,所以A 、B 错误.最高点、最低点两处向心力大小不等,向心加速度大小也不等(变速率),所以C 错误.由②式知最低点F N ′>mg ,根据牛顿第三定律得D 正确.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型 考点二 杆(管道)模型5.长度为1 m 的轻杆OA 的A 端有一质量为2 kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图3所示,小球通过最高点时的速度为3 m/s ,g 取10 m/s 2,则此时小球将( )图3A.受到18 N 的拉力B.受到38 N 的支持力C.受到2 N 的拉力D.受到2 N 的支持力 答案 D解析 设此时轻杆拉力大小为F ,根据向心力公式有F +mg =m v 2r ,代入数值可得F =-2 N ,表示小球受到2 N 的支持力,选项D 正确. 【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型6.(多选)如图4所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R .现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,则下列说法中正确的是( )图4A.若v 0=gR ,则小球对管内壁无压力B.若v 0>gR ,则小球对管内上壁有压力C.若0 <v 0<gR ,则小球对管内下壁有压力D.不论v 0多大,小球对管内下壁都有压力 答案 ABC解析 在最高点,只有重力提供向心力时,由mg =m v 02R ,解得v 0=gR ,因此小球对管内壁无压力,选项A 正确.若v 0>gR ,则有mg +F N =m v 02R ,表明小球对管内上壁有压力,选项B 正确.若0<v 0<gR ,则有mg -F N =m v 02R ,表明小球对管内下壁有压力,选项C 正确.综上分析,选项D 错误.【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型7.如图5所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,则( )图5A.若盒子在最高点时,盒子与小球之间恰好无作用力,则该盒子做匀速圆周运动的周期为2πR gB.若盒子以周期πRg做匀速圆周运动,则当盒子运动到图示球心与O 点位于同一水平面位置时,小球对盒子左侧面的力为4mg C.若盒子以角速度2gR做匀速圆周运动,则当盒子运动到最高点时,小球对盒子下面的力为3mgD.盒子从最低点向最高点做匀速圆周运动的过程中,球处于超重状态;当盒子从最高点向最低点做匀速圆周运动的过程中,球处于失重状态 答案 A解析 由mg =m 4π2T2R 可得,盒子运动周期T =2πR g ,A 正确.由F N1=m 4π2T 12R ,T 1=πRg,得F N1=4mg ,由牛顿第三定律可知,小球对盒子右侧面的力为4mg ,B 错误.由F N2+mg =mω2R 得,小球以ω=2gR做匀速圆周运动时,在最高点小球对盒子上面的力为3mg ,C 错误.盒子由最低点向最高点运动的过程中,小球的加速度先斜向上,后斜向下,故小球先超重后失重,D 错误.【考点】竖直面内的圆周运动分析【题点】竖直面内的“杆”模型8.(多选)如图6甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图象如图乙所示.则( )图6A.小球的质量为aRbB.当地的重力加速度大小为RbC.v 2=c 时,小球对杆的弹力方向向上D.v 2=2b 时,小球受到的弹力与重力大小相等 答案 ACD解析 当小球受到的弹力F 方向向下时,F +mg =m v 2R ,解得F =mR v 2-mg ,当弹力F 方向向上时,mg -F =m v 2R ,解得F =mg -m v 2R ,对比F -v 2图象可知,b =gR ,a =mg ,联立解得g=b R ,m =aRb ,A 正确,B 错误.v 2=c 时,小球受到的弹力方向向下,则小球对杆的弹力方向向上,C 正确.v 2=2b 时,小球受到的弹力与重力大小相等,D 正确. 【考点】竖直面内的圆周运动分析 【题点】竖直面内的“杆”模型。

专题 生活中的圆周运动、水平面内和竖直面内的圆周运动 高一物理 (人教版2019)(解析版)

专题 生活中的圆周运动、水平面内和竖直面内的圆周运动 高一物理 (人教版2019)(解析版)

专题06 生活中的圆周运动、水平面内和竖直面内的圆周运动一、火车、自行车、汽车转弯问题1.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。

弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。

当火车以规定速度通过弯道时,内低外高的轨道均不受挤压,则下列说法正确的是( )A .当火车以规定速度转弯时,火车受重力、支持力、向心力B .若要降低火车转弯时的规定速度,可减小火车的质量C .若要增加火车转弯时的规定速度,可适当增大弯道的坡度D .当火车的速度大于规定速度时,火车将挤压内轨 【答案】C【解析】A. 当火车以规定速度转弯时,火车受重力、支持力作用,二者的合力提供向心力,故A 错误;B.合力提供向心力,即2tan v mg m rθ=则tan v gr θ故B 错误;C.根据公式tan v gr θ=θ增大时,规定速度也增大,故C 正确;D.当火车的速度大于规定速度时,则受到外轨弹力与重力和支持力的合力一起提供向心力,使火车继续做圆周运动,所以火车将挤压外轨,故D 错误。

故选C 。

2.列车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R ,两铁轨之间的距离为d ,内外轨的高度差为h ,铁轨平面和水平面间的夹角为α(α很小,可近似认为tan sin αα≈),下列说法正确的是()A.列车转弯时受到重力、支持力和向心力的作用B.列车过转弯处的速度gRh vd =C.列车过转弯处的速度gRh vd <D.若减小α角,可提高列车安全过转弯处的速度【答案】B【解析】A.列车转弯时受到重力、支持力,重力和支持力的合力提供向心力,A错误;B.当重力和支持力的合力提供向心力时,则2tanv hm mg mgR dα==解得gRhvd=不会挤压内轨和外轨,B正确;C.列车过转弯处的速度gRhvd<转弯所需的合力tanF mgα<故此时列车内轨受挤压,C错误;D.若要提高列车速度,则列车所需的向心力增大,故需要增大α,D错误。

高中物理生活中的圆周运动专题讲解

高中物理生活中的圆周运动专题讲解

生活中的圆周运动要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释:1、水平面上的匀速圆周运动,静摩擦力的大小和方向物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。

这个静摩擦力的大小2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。

当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。

临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。

此时物体的角速度rgμω=(μ为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。

2、水平面上的变速圆周运动中的静摩擦力的大小和方向无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。

如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图)【典型例题】类型一、生活中的水平圆周运动 例1(多选)、(2015 安阳二模)如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )A .B 的向心力是A 的向心力的2倍B .盘对B 的摩擦力是B 对A 的摩擦力的2倍C .A 、B 都有沿半径向外滑动的趋势D .若B 先滑动,则B 对A 的动摩擦因数A μ小于盘对B 的动摩擦因数B μ 【答案】BC【解析】因为A 、B 两物体的角速度大小相等,根据2n F mr ω=,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等;对A 、B 整体分析,22B f mr ω=,对A 分析,有2A f mr ω=,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,则B 正确;A 所受的摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对AB 整体分析,222B B mg mr μω=,解得:B B grμω=,对A 分析,2A A mg mr μω=,解得A A grμω=,因为B 先滑动,可知B 先到达临界角速度,可知B 的临界角速度较小,即B A μμ<,故D 错误。

竖直平面内圆周运动的脱轨问题

竖直平面内圆周运动的脱轨问题

竖直平面内圆周运动的脱轨问题在日常生活中,我们经常看到一些游乐园中的过山车或者摩天轮等设施,它们都是以圆周运动为基础的。

然而,有时候我们会想,如果竖直平面内的圆周运动速度过快会发生什么呢?是否会发生脱轨的现象呢?我们来了解一下什么是圆周运动。

圆周运动是指物体沿着一个圆形轨道运动的过程。

在竖直平面内的圆周运动中,物体沿着一个半径固定的圆圈做匀速运动。

当物体保持一定的速度和半径时,它将始终受到一个向心力的作用,使其保持在圆周运动中。

那么,如果圆周运动的速度过快,物体是否会脱离轨道呢?答案是肯定的。

当物体的速度超过一定的临界值时,它将无法保持在圆周运动中,发生脱轨现象。

为了更好地理解这个问题,我们可以通过一个简单的例子来说明。

假设有一辆小汽车在一个竖直平面内的圆形赛道上进行运动。

当小汽车的速度逐渐增大时,它会受到向心力的作用而向内偏转,保持在圆形赛道上。

然而,当小汽车的速度超过一定的临界值时,向心力无法提供足够的向心加速度,小汽车将无法保持在圆形赛道上,发生脱轨现象。

那么,如何计算圆周运动的临界速度呢?在竖直平面内的圆周运动中,向心力由重力提供。

因此,我们可以根据向心力与重力的平衡关系来计算临界速度。

向心力由以下公式给出:F = m * a = m * v^2 / r,其中m为物体的质量,v为物体的速度,r为圆形赛道的半径。

重力由以下公式给出:F = m * g,其中m为物体的质量,g为重力加速度。

当物体处于脱轨状态时,向心力无法提供足够的向心加速度,即向心力小于重力。

因此,我们可以得到以下关系:m * v^2 / r < m * g。

通过整理上述不等式,我们可以得到圆周运动的临界速度公式:v < √(g * r)。

这个公式告诉我们,当圆周运动的速度小于√(g * r)时,物体可以保持在圆周运动中;当速度大于√(g * r)时,物体将发生脱轨现象。

在这个公式中,g为重力加速度,r为圆形赛道的半径。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

高一物理必修件专题竖直面内的圆周运动

高一物理必修件专题竖直面内的圆周运动

单位时间内质点沿圆周运动的弧长, 用v表示。
v = ωr,其中r为质点到圆心的距离。
角速度定义
单位时间内质点绕圆心转过的角度, 用ω表示。
向心加速度与向心力关系
1 2
向心加速度定义
质点做匀速圆周运动时,指向圆心的加速度,用 a_n表示。
向心力定义
使质点产生向心加速度的力,用F_n表示。
3
向心加速度与向心力关系
05
实验:研究竖直面内圆周运动规律
实验目的和原理介绍
实验目的
通过观察和测量竖直面内圆周运动的物体,探究其运动规律,加深对圆周运动 的理解。
原理介绍
竖直面内的圆周运动是一种常见的运动形式,其运动规律遵循牛顿第二定律和 向心力公式。通过测量物体的速度、半径和周期等物理量,可以研究圆周运动 的加速度、向心力和角速度等特性。
3
与电磁学的联系
在电磁学中,带电粒子在磁场中的运动 轨迹也可能是圆周。因此,可以将竖直 面内的圆周运动与带电粒子在磁场中的 运动进行联系和比较。
解决实际问题时如何应用所学知识
分析物体的受力情况
在解决竖直面内的圆周运动问题时,首先需要分析物体的受力情况,确定物体所受的力以 及这些力对物体运动的影响。
为了防止汽车飘离桥面,需要限制汽车过桥时的速度,同时增加桥面的宽度和强度 ,提高桥面的稳定性和安全性。
汽车过桥时还需要注意桥面的起伏和坡度变化,以及桥面的摩擦系数等因素对行车 安全的影响。
火车转弯时轨道设计原理
火车转弯时,需要克服向心力的作用 ,使火车沿着弯道行驶。为了提供足 够的向心力,轨道设计时需要采用一 定的超高和曲线半径。
质点在以某点为圆心、半径为$r$ 的圆周上运动时,其轨迹称为圆 周,这种运动叫做圆周运动。

竖直平面内的圆周运动速度变化

竖直平面内的圆周运动速度变化

竖直平面内的圆周运动速度变化1. 引言大家好!今天我们来聊聊一个有趣的话题,那就是竖直平面内的圆周运动。

听起来好像有点复杂,但其实就是我们在生活中经常遇到的那些事情,比如过山车、旋转木马,甚至是我们小时候玩的“转转乐”。

相信我,别跑,咱们慢慢聊,这里面可有不少好玩的知识等着你呢!2. 圆周运动的基本概念2.1 什么是圆周运动?首先,咱得弄明白什么叫圆周运动。

简单说,就是物体沿着一个圆形轨迹转动的运动方式。

就像咱们在广场上转圈,转得头晕脑胀,但还是不想停下来。

圆周运动在咱们的生活中无处不在,就像空气一样,虽然看不见,但却无时无刻不在影响着我们。

2.2 速度的变化说到圆周运动,咱得提到一个关键词,那就是“速度”。

在圆周运动中,速度可不是什么固定不变的东西。

咱常说“人无千日好,花无百日红”,同样,在转动的过程中,速度也是忽高忽低的。

比如,过山车在下坡的时候,速度就像开了挂一样,而在上坡时,又慢得像蜗牛,真是让人心情大起大落,刺激得不行。

3. 竖直平面内的速度变化3.1 高点与低点的对比想象一下,你坐在过山车的高点,周围一片风景如画,心里还想着“哇,这儿真不错!”可是,下一秒,过山车开始下滑,那速度就上来了,瞬间感觉像是被风吹到了天上去,真是心惊肉跳。

这里的秘密在于重力。

重力就像是一个不太好相处的朋友,给你推了一把,让你突然加速。

在高点时,速度慢,重力的拉力小,而在低点时,速度快,重力的作用显得尤为明显,真是让人叫绝的物理现象!3.2 动能与势能的转化再说说动能和势能。

动能就是你跑得快时的感觉,而势能就像你站在高处,准备跳下去的那种忐忑。

过山车上升时,势能增加,动能减少;而当它下滑时,势能减少,动能增加,完美的循环!这就好比咱们的人生,有时候得攒点势能,才能在关键时刻大放异彩。

4. 生活中的应用4.1 趣味的应用你知道吗,很多运动员在比赛时都在利用这种速度变化。

比如说,跳水运动员在跳跃前要先蓄势待发,等到一跃而下的时候,速度瞬间提升,那才叫一个帅气。

球—绳模型(学生版)--竖直面内三种圆周运动模型

球—绳模型(学生版)--竖直面内三种圆周运动模型

竖直面内三种圆周运动模型精讲精练模型球-绳模型【知识点精讲】球-绳模型实例球与绳连接在竖直面内圆周运动球沿竖直面圆周内轨道运动图示最高点无支撑最高点无支撑最高点受力特征重力、弹力,弹力方向向下或等于零重力、弹力,弹力方向向下、等于零或向上受力示意图力学特征mg+F N=mv2r临界特征F N=0,v min=gr过最高点条件v≥gr速度和弹力关系讨论分析①恰好过最高点时,v=gr,mg=mv2r,F N=0,绳、轨道对球无弹力②能过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N③不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动【方法归纳】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型物体过最高点的临界条件不同.(2)确定临界点:抓住球-绳模型中球恰好能过最高点时v=gR的临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.【针对性训练】1(2018•高考全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A 点相切。

BC为圆弧轨道的直径。

O为圆心,OA和OB之间的夹角为α,sinα=35,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。

重力加速度大小为g。

求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间。

2(12分)(2020新高考冲刺仿真模拟)某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0m的光滑圆形竖直轨道OAO′运动,玩具小车与水平面PB的阻力为其自身重力的0.5倍(g取10m/s2),PB=16.0m,O为PB中点.B点右侧是一个高h=1.25m,宽L= 2.0m的壕沟.求:(1)要使小车恰好能越过圆形轨道的最高点A,小车在O点受到轨道弹力的大小;(2)要求小车能安全越过A点,并从B点平抛后越过壕沟,则弹簧的弹性势能至少为多少?(3)若在弹性限度内,弹簧的最大弹性势能E pm=40J,以O点为坐标原点,OB为x轴,从O到B方向为正方向,在图乙坐标上画出小车能进入圆形轨道且不脱离轨道情况下,弹簧弹性势能E p与小车停止位置坐标x关系图.3(2024年5月四川宜宾质检)如图所示,在距地面上方h的光滑水平台面上,质量为m=4kg的物块左侧压缩一个轻质弹簧,弹簧与物块未拴接。

竖直面内的圆周运动模型

竖直面内的圆周运动模型

竖直面内的圆周运动模型
圆周运动是一种常见的物理运动,也是许多物理运动中最重要的基础组成之一。

它出
现在自然界中的各个角落,给人们惊喜和鼓舞,引发科学家们深远的思考。

本文中,我们
将讨论竖直面内的圆周运动模型。

竖直面内的圆周运动是指空间坐标内的跟踪运动,它满足物体存在平方摩擦力(当它
的线速度与圆心的位置有关时)的要求。

在这种情况下,可以用以下方程来描述物体在竖直面上的圆周运动:
其中F是重力力,m是物体的质量,ω是角速度,θ是指定的时刻的角度,t是时间,a0是速度的初始值,∆t是时间间隔,R是圆的半径。

平方摩擦力的方程为:
其中μ是空气阻力系数,v是物体的速度,∆v是物体速度变化的量。

由于圆周运动中存在着速度,加速度和受力等变量,所以可以将其表示成动量方程:
根据以上方程,可以得出物体在竖直面内的圆周运动的具体运动轨迹,即:
从上面的计算公式可以看出,竖直面内的圆周运动模型是一个复杂的数学模型,其中
包括外力矩、时间等因素,它可以用来描述物体在单位机械作用下的数量运动规律,同时
还涉及到空气阻力和摩擦力等概念。

总而言之,竖直面内的圆周运动模型是一种综合的物理运动模型。

它可以满足大多数
物理实验的要求,并且可以用来更好地揭示物体在空间中的动态变化规律。

它也将为人类
在研究物理运动规律中提供更多新的思路。

竖直面内的圆周运动

竖直面内的圆周运动

竖直面内的圆周运动1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.2.竖直平面内圆周运动的两种模型特点及求解方法最高点无支撑最高点有支撑例1 小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图11所示.将两球由静止释放.在各自轨迹的最低点( )图1A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度①P 球的质量大于Q 球的质量;②由静止释放;③在各自轨迹的最低点.答案 C解析 小球从水平位置摆动至最低点,由动能定理得,mgL =12m v 2,解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,L P <L Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;由a n =v 2L=2g 可知,两球的向心加速度相等,选项D 错误.例2 如图2所示,一质量为m =0.5 kg 的小球,用长为0.4 m 的轻绳拴着在竖直平面内做圆周运动.g 取10 m/s 2,求:图2(1)小球要做完整的圆周运动,在最高点的速度至少为多大? (2)当小球在最高点的速度为4 m/s 时,轻绳拉力多大?(3)若轻绳能承受的最大张力为45 N ,小球的速度不能超过多大?①轻绳拴着在竖直平面内做圆周运动;②小球要做完整的圆周运动;③最大张力为45 N.答案 (1)2 m/s (2)15 N (3)4 2 m/s解析 (1)在最高点,对小球受力分析如图甲,由牛顿第二定律得mg +F 1=m v 2R ①由于轻绳对小球只能提供指向圆心的拉力,即F 1不可能取负值, 亦即F 1≥0②联立①②得v ≥gR , 代入数值得v ≥2 m/s所以,小球要做完整的圆周运动,在最高点的速度至少为2 m/s. (2)将v 2=4 m/s 代入①得,F 2=15 N.(3)由分析可知,小球在最低点张力最大,对小球受力分析如图乙,由牛顿第二定律得 F 3-mg =m v 23R③将F 3=45 N 代入③得v 3=4 2 m/s 即小球的速度不能超过4 2 m/s.。

竖直平面内的圆周运动与临界问题 (2)

竖直平面内的圆周运动与临界问题 (2)

力提供向心力
mg m v2 v gL 10 0.9 3m / s
L
(3)当球在最高点的速度为v1=6m/s时,设杆对球的作用力为F1 取竖直向下为正,则有
F mg m v2
1
l
F1
v2 m
l
mg
6N
F
mg
杆对球的作用力为竖直向下6N
O
当球在最高点的速度为v2=1.5m/s时,设杆对球的作 用力为F2仍取竖直向下为正,则有
T=0
mg m v2 r
v gr
N=0
v2 mg m
r
v gr
V>0 F向>0 F向=FT+mg 或F向=mg-Fn
V>0 F向>0 F向=FT+mg 或F向=mg-Fn
在最高点时速 度应不小于
gr
在最高点时速 度应不小于
gr
在最高点速度 应大于0
在最高点速度 应大于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的N临界条件也不N 同。
1如图所示,细杆的一端与一小球相连,可
绕过O点的水平轴自由转动.现给小球一初速
度,使它做圆周运动,图中a、b分别表示小
球轨道的最低点和最高点.则杆对球的作用
力可能是(AB )
b
A. a处为拉力,b处为拉力
B. a处为拉力,b处为推力
C. a处为推力,b处为拉力
O
D. a处为推力,b处为推力
a
实例二:杆模型 2如图所示,质量m=0.2kg的小球固定在长为L =0.9m的轻杆的一端,杆可绕O点的水平轴在 竖直平面内转动,g=10m/s2,求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档