A Compact Microstrip Quad-Channel Diplexer With High-Selectivity and High-Isolation Performances
Hayati_et_al-2013-Microwave_and_Optical_Technology_Letters

2.88GHz.For the lower mode with C¼0.6pF and the higher mode with C¼5pF,the effects of varying/on CP perform-ance are given in Figures4and5,respectively.The simulation results suggest that an axial ratio of less than2dB can be found when/ranges between10and25 for the lower mode and between12and16 for the higher mode.3.RECONFIGURABLE DESIGN AND EXPERIMENTAL RESULTSAn antenna prototype with electrically switching was realized using a varactor diode(BB837,Siemens Semiconductor Group).For the dc bias(V0)used for controlling the varactor, its positive is connected to the feed line through a RF choke, which is composed of a high-impedance meandered microstrip line and a grounded capacitor of1nF,and the negative is directly linked to the RF ground plane,as shown in Figure1. Figure6exhibits the experimental results when V0is switched between two different values.From the measured results,it can be seen that the frequency with minimum axial ratio is1.83 GHz for the case of V0¼28V and it is2.96GHz for the case of V0¼6V.The CP bandwidths,determined by3dB axial ra-tio,are2.7and3.3%at the lower and higher CP operating fre-quencies,respectively.In addition,Figure6also demonstrates that a return loss of less than10dB is achieved within the two CP bandwidths.Therefore,the antenna can perform the dual-frequency operation with a frequency ratio of about1.6through switching.The radiation patterns at1.83and2.96GHz are measured and their results are plotted in Figure7.Broadside radiation with good CP performance is observed for each operating fre-quency,and the polarization in the plane of z>0is left-handed. The peak gain at1.83GHz is about3.3dBic and it is merely 0.2dB lower than that at2.96GHz.4.CONCLUSIONA design for circularly polarized annular slot antennas with switchable frequency has been presented.Only one diode is required in the reconfigurable design.With controlling the dc bias of the diode,the antenna can perform dual-frequency opera-tion with a high frequency ratio.Moreover,the antenna at the two operating frequencies has almost the same radiation pattern, polarization performance,and peak gain.REFERENCES1.Y.K.Jung and B.Lee,Dual-band circularly polarized microstripRFID reader antenna using metamaterial branch-line coupler,IEEE Trans Antennas Propag60(2012),786–791.2.Nasimuddin,Z.N.Chen,and X.Qing,Dual-band circularly-polar-ized S-shaped slotted patch antenna with a small frequency ratio, IEEE Trans Antennas Propag58(2010),2112–2115.3.J.Y.Sze,C.I.G.Hsu,and J.J.Jiao,CPW-fed circular slot antennawith slit back-patch for2.4/5GHz dual-band operation,Electron Lett42(2006),563–564.4.Y.L.Zhao,Y.C.Jiao,G.Zhao,Z.B.Weng,and F.S.Zhang,Anovel polarization reconfigurable ring-slot antenna with frequency agility,Microwave Opt Technol Lett51(2009),540–543.5.N.Jin,F.Yang,and Y.Rahmat-Samii,A novel patch antenna withswitchable slot(PASS):dual-frequency operation with reversed cir-cular polarizations,IEEE Trans Antennas Propag54(2006), 1031–1034.6.T.Y.Lee and J.S.Row,Frequency reconfigurable circularly polar-ized slot antennas with wide tuning range,Microwave Opt Technol Lett53(2011),1501–1505.V C2013Wiley Periodicals,Inc.DESIGN OF BROADBAND AND HIGH-EFFICIENCY CLASS-E AMPLIFIER WITH pHEMT USING A NOVEL LOW-PASS MICROSTRIP RESONATOR CELLMohsen Hayati1,2and Ali Lotfi11Electrical Engineering Department,Faculty of Engineering,Razi University,Tagh-E-Bostan,Kermanshah-67149,Iran; Corresponding author:mohsen_hayati@2Computational Intelligence Research Centre,Razi University,Tagh-E-Bostan,Kermanshah-67149,IranReceived31August2012ABSTRACT:In this article,a high-efficient class-E amplifier design with low voltage and broadband characteristics using a novel Front Coupled Tapered Compact Microstrip Resonant Cell is presented.The proposed micorstrip resonator is used as the harmonic control network in order to suppress higher order harmonics,which obtained the optimized impedance matching for the fundamental and harmonics.The class-E amplifier is realized from0.7to1.8GHz,and obtained the power added efficiency of72.5–77.5%.The maximum value of Power added efficiency(PAE)is79.7%with11-dBm input power at1.5GHz. The designed class-E amplifier using the proposed harmonic control network gained15.34%increment in PAE,and25.6%reduction in the circuit size in comparison with the conventional class-E amplifier.The simulation and measurement results show the validity of the proposed design procedure of the broadband class-E amplifier using a novel microstrip resonator cell.V C2013Wiley Periodicals,Inc.Microwave Opt Technol Lett55:1118–1118,2013;View this article online at .DOI10.1002/mop.27490Key words:switch mode;class-E amplifier;tapered cell;microstrip resonant cell;high efficiency;power added efficiency;zero voltage switching;zero voltage derivative switching1.INTRODUCTIONThe modern wireless communication systems need to consume the power supply.The main factor in reducing the consumption of the power supply is designing a low-voltage and high-effi-ciency power amplifier[1].The switch mode power amplifier is an efficient way for solving the efficiency problem.The class-E power amplifier is a kind of the switch mode power amplifier that the transistor acts as a switch.The class-E power amplifier is tuned by a shunt capacitance.This type of the power amplifier obtained100%drain efficiency theoretically[2].The class-E amplifier’s response conditions are zero voltage switching (ZVS)and zero voltage derivative switching(ZVDS),which lead to zero power loss in the transistor.Therefore,a high-effi-ciency power amplifier is obtained[3].The shunt capacitance in the class-E power amplifier has a main roll for achieving the class-E conditions[4].The power loss in the lower frequency can be neglected,but by increasing the operation frequency,the power dissipation is increased and the ideal operation of the class-E power amplifier will be missed.The antiphase of the voltage and current wave-forms throughout the signal period,obtain the class-E power amplifier with the maximum efficiency[5].This purpose can be achieved using a wave shaping network.The conventional class-E power amplifier load resistance is very much lower than the transistor ON-resistance.This effect leads to efficiency degrada-tion and a narrowband load matching network[6].Furthermore, the transistor parasitic resistance for both the switch on-state and parasitic inductance leads to efficiency degradation in the radio frequency(RF)and microwave applications[7,8].The optimum operation of the class-E power amplifier and the solution to the mentioned drawbacks can be obtained using two main methods:namely active device selection and circuit configuration[9].The class-E amplifier has various configura-tions such as the cascade[10]and push–pull[11].The cascade class-E configurations can double the maximum permissible drain voltage,and the push–pull class-E configuration increases the output power and decrease the harmonic distortion with high efficiency.A new topology for the class-E amplifier is proposed as an inverse class-E amplifier,which has inductive reactance [12].The inverse class-E amplifier has higher load resistance and lower peak switch voltage in comparison with the class-E amplifier.Also,because of the abruption of the device output inductances,the value of the inductance in the load network is decreased.However,the inverse class-E amplifier can be used only for the small to medium power applications.Therefore,to solve this drawback,the power combining methods have been used[13].Although,this method results in obtaining the inverse class-E amplifier for higher power application,but the circuit configuration and the design procedure are complicated with the circuit size increment because of using two power amplifier circuits.The class-E power amplifier is a high-efficiency power am-plifier for the microwave application,which is implemented using the transmission line as the harmonic control network at the output of the amplifier circuit[14].Furthermore,instead of the RF choke(RFC)a section of the transmission line is used.The transmission line has been used in the class-E power amplifier using LDMOS[15],GaN HEMT[16–19],SiC MES-FET[20],and LDMOSFET[21]as the harmonic control net-work increasingly,because of the simplicity of its structure and high rejection of harmonics.Therefore,the class-E amplifier configuration and operation are the best candidates for the design of the amplifier for the modern microwave communica-tion systems[22,23].Consequently,designing of the load network as the harmonic control network for suppression of harmonics in order to obtain a high-efficiency power amplifier is the main challenge of the switch mode power amplifiers.The designing of the class-E power amplifiers using various microstrip structures has been proposed such as a defected ground structure[24],an asymmet-rical spur-line[25],and composite right/left-handed transmission lines[26].The narrowband load network and low efficiency remain as the main challenge to the class-E power amplifier using the conventional microstrip transmission line[27].A compact microstrip resonant cell(CMRC)is a one-dimen-sional photonic band gap incorporating the microstrip transmis-sion line,which is,first,proposed in[28].The CMRC structure exhibits high rejection of the harmonics with the compact circuit size in comparison with the conventional micorstrip transmission lines.Therefore,it is used for the linearization and efficiency in-crement of the microwave power amplifiers[29,30].The appli-cation of the conventional CMRC is limited to obtain a high-ef-ficiency switch mode amplifier,as a result of the high insertion loss in the passband and restricted stopband.The front coupled tapered CMRC(FCTCMRC)is proposed in[31]for the implan-tation of a low-passfilter with high and wide rejection in the stopband with the compact circuit size in comparison with the conventional CMRC.Therefore,it can be widely used for designing the high-efficiency and broadband switch mode power amplifier because of high and wide suppression of harmonics.In this article,the harmonic suppression of the class-E ampli-fier using a novel FCTCMRC as the harmonic controller net-work is explored.A class-E amplifier with higher efficiency at a wider bandwidth in comparison with the conventional amplifiers is achieved.The proposed class-E power amplifier is designed and simulated for a frequency of1.5GHz using the micorstrip resonator structure.The measurement results of the proposed power amplifier validate our design procedure and simulation results.2.CLASS-E AMPLIFIER FUNDAMENTAL AND DESIGN THEORY2.1.Class-E Amplifier OperationThe basic circuit configuration of the class-E amplifier and switch waveforms are shown in Figures1(a)and1(b),respec-tively.The class-E amplifier consists of the switch device,shunt capacitance,series-tuned load network L-C,and an ideal RFC. The switch-on duty ratio is assumed to be50%in designing the class-E amplifier.This value of the duty ratio leads to optimum operation of the class-E amplifier for obtaining high efficiency [32].For an ideal class-E operation,three requirements for the drain voltage and current should be met[2]:1.The rise of the voltage across the transistor at turn-offshould be delayed until the transistor is off.2.The drain voltage should be brought back to zero at thetime of the transistor turn-on.3.The slope of the drain voltage should be zero at the timeof the transistor turn-on.Therefore,the class-E power amplifier is constructed based on two conditions as ZVS and ZVDS.These conditions are as follows:v s hðÞjh¼p¼0;(1)dv s hðÞd hh¼p¼0;(2)where v s(y)is the switch voltage,and y¼x t.The quality fac-tor of the output series resonant circuit is assumed infinite. Therefore,the output current is sinusoidal asi oðhÞ¼I m sinðhþuÞ:(3)In the time interval0y<p,the switch device is in the on-state,therefore,using Kirchhoff’s current law at the switch,we havei sðhÞ¼I dc1þa sin hþuðÞðÞ:(4)This is the currentflow through the shunt capacitance in the switch-off state.Therefore,the voltage across the switchisFigure1(a)The basic circuit of the class-E amplifier.(b)The class-E switch voltage and current waveformv sðtÞ¼1C sZ ti sðt0Þdt0¼I dcx C s1þa cos x tþuðÞÀcos uðÞðÞ:(5)Applying the class-E ZVS and ZVDS conditions to Eqs.(4)and (5),the value of a and u can be obtained asa¼ffiffiffiffiffiffiffiffiffiffiffiffiffi1þp24r;(6)u¼ÀtanÀ12p8>:9>;:(7)The drain voltage waveform is shaped by the harmonics so that the drain voltage and the slope of the drain voltage is zero when the transistor is in the on-state.The reactance for all harmonics is negative and comparable in magnitude to the fundamental fre-quency load resistance.The ideal class-E amplifier requirements are difficult to meet.So,we often only tuned the second and third harmonics to get the suboptimum class-E power amplifier solution.The analysis is performed considering just the output network behavior,thus neglecting input signal required to oper-ate the active device as an ideal switch.The optimal fundamental load by the Fourier-series expan-sion analysis in[7]used for achieving the perfect class-E opera-tion can be determined asZ E;f0¼0:28x C Pe49 :(8)This impedance is inductive.On the other hand,for the ideal operation of the class-E power amplifier the impedances at the higher order harmonics are infiniteZ E;fn¼1;for n!2:(9)From(8)the nominal class-E amplifier shunt capacitance C is defined byC¼0:1836x0R:(10)In order to achieve the maximum operation frequency of the class-E amplifier,the device output capacitance should be equal to Eq.(10).The matching network for the class-E power ampli-fier using a low-pass Chebyshev-form impedance transformer is proposed in[7].Therefore,the synthesis of the load network is done using a short circuit,and open circuit stubs instead of lumped capacitors in the load network for unwanted harmonics.2.2.Design of a Class-E Amplifier Using a pHEMTAchieving the optimum load is the main factor to obtain high efficiency when designing the class-E power amplifier.On the other hand,the optimum load is varied with the operating fre-quency as in Eq.(8).Therefore,designing of the load network, which can operate in the wide frequency range,is needed for designing the class-E power amplifier with the optimum condi-tions.The maximum operation frequency of the class-E power amplifier is restricted by the shunt capacitance.The shunt capac-itance consists of the transistor output capacitance and the exter-nal capacitance.Thus,the optimum operating frequency of the class-E power amplifier is achieved by selecting a transistor with lower output capacitance.On the other hand,the power loss is caused by ON-resistance of the transistor[33].Therefore, the active device with lower ON-resistance is preferred for designing the high-efficiency class-E power amplifier.We selected an ATF-34143pHEMT because of its lower ON-resist-ance and lower shunt parasitic capacitance,which provides lower power dissipation and optimum operation frequency using external capacitance,respectively.The circuit topology of the conventional class-E amplifier is shown in Figure2(a).It is designed using the design procedure,which is presented in[2, 3].The value of elements for an ideal class-E power amplifier is tabulated in Table1.In the design of the class-E power ampli-fier,it is assumed that the value of the DC-feed is infinitive,but in real implementation this value isfinite,and we used the half wavelength microstrip transmission line for the DC-feed.In the conventional class-E amplifier,using lumped elements, the second harmonic is located within the pass band.Therefore, the bandwidth is limited to one octave.In order to solve this drawback,one way is designing a multiple matching network for various bands and using switching element.This way leads to complexity of the amplifier circuit and degradation of the efficiency.The use of the micorstrip transmission line is a low-cost and simple way for designing the class-E amplifier with wide band and high-efficiency characteristics.We used the design proce-dure in Section2.1and designed the matching network for the amplifier as shown in Figure2(b).The values of the transmis-sion lines dimensions are given in Table2.The class-E ampli-fier is designed on RT/Duroid5880,a substrate with dielectric constant of2.2,height of15l l,and loss tangent of0.0009.Figure2Idealized class-E power amplifier:(a)lumped elements and(b)transmission lineTABLE1Element Design for the Nominal Class-E AmplifierC i1(pF)C i2(pF)C o1(pF)C o2(pF)C e(pF)C g1(pF)C g2(pF)C d1(pF)C d2(pF)L i1(nH)L o1(nH)L o2(nH) Theoretical10010010010 4.2221000.50.2312 4.7 3.33.FRONT COUPLED TAPERED CMRC CHARACTERISTICSA novel FCTCMRC is proposed in [31],for the first time,which is used to synthesize a low-pass filter with high and wide rejec-tion in the stopband.This microstrip structure exhibits bandstop characteristics and slow wave effects,which are used in the stopband extension and the circuit size reduction,respectively.The schematic and equivalent circuit of the resonator is shown in Figures 3(a)and 3(b),respectively.The proposed FCTCMRC has symmetrical topology.Therefore,the even–odd mode [34]can be used to simplify the analysis as shown in Figures 3(c)and 3(d).Consequently,theresonant condition for the odd-mode in Figure 3(c)is obtained by equating the input admittance Y o in of the proposed resonator to zero yields:Z 112x C 1ÀZ 1tan h 1 ÀZ 2tan h 2Z 1þtan h 12x C 1¼0:(11)Using the similar procedure,the even-mode resonant frequencies areobtained by equating the even admittance Y e in to zero as follows:Z 2tan h 1þZ 1tan h 2¼0:(12)The transmission zeros of the equivalent circuit for the proposed FCTCMRC,which is shown in Figure 3(a),is obtained whenY o in ¼Y ein asZ 2sin 2h 2þZ 1sin 2h 1¼cos 2h 1x C 1:(13)Therefore,the resonator characteristics for tuning transmission zeroes in the stopband can be achieved by the length and width of the tapered cells as shown in Figures 4(a)and 4(b).The pro-posed structure is optimized by an EM-simulator (ADS).The obtained dimensions are as follows:L t1¼2:58;L 2¼1:94;L 3¼2:7;W t1¼2:71;W t2¼5:6;W 1¼0:1;W 2¼0:56;L 3¼0:75;L f ¼2:36;W f ¼0:25all are in millimeter ðmm Þ:TABLE 2The Value of the Conventional Transmission Line for the class-E AmplifierTL 1TL 2TL b1TL 3TL 4TL 5TL b2Width (mm) 4.730.940.620.71 1.24 4.210.72Length (mm) 6.319.7262.3137.2318.4264.3Figure 3(a)Schematic of the proposed resonator.(b)Equivalent cir-cuit.(c)Odd-mode.(d)EvenmodeFigure 4(a)Changing of the transmission zeros with the width of tapered cell W t1.(b)Changing of the transmission zeros with the length of tapered cell L t .(c)Simulation and measurement results of the proposed harmonic control network.(d)Simulation input impedance of the FCTCMRCThe proposed FCTCMRC is fabricated,and the measurement is performed using an Agilent N5230A Network Analyzer.The simulation and measurement results of the proposed FCTCMRC are shown in Figure 4(c).As it is shown,it has an attenuation level À43and À33.1dB at 3.0and 4.5GHz,respectively.Therefore,the high suppression for the second and third har-monics is obtained.The insertion loss from DC to 2.39GHz is lower than À0.1dB.The simulation of the input impedance of the proposed CMRC for the fundamental and harmonics is shown in Figure 4(d).As it is observed,the harmonic impedan-ces are relatively open in comparison with the fundamental im-pedance.Consequently,it can be used as the matching network with high performance and low circuit complexity.4.CIRCUIT DESIGN AND IMPLEMENTATIONThe highly efficient and compact size class-E amplifier is designed and implemented for a 1.5-GHz band using an ATF-34143pHEMT.The proposed circuit is simulated using an Agi-lent’s Advanced Design System (ADS),and fabricated on an RT/Duroid 5880substrate.The active device is biased at V d ¼3V and V g ¼À0.7V.The FCTCMRC is used as the harmonic control network (HCN)at the output of the active device.The proposed HCN absorbed the parasitic reactance and capacitance of the active device.Therefore,it does not need to any lumped elements in series or parallel with the transistor to compensate the parasitic elements.The circuit schematic diagram of the designed class-E amplifier is shown in Figure 5(a).Moreover,the photograph of the fabricated circuit is shown in Figure 5(b).The RFC is realized using the microstrip transmission line (TLb2)with the quarter wavelength at a frequency of 1.5GHz.The input matching elements consist of two series and parallel open stubs.The dimensions of the tapered cells and transmission lines in the HCN are tuned in order to optimize harmonic termi-nation in the implemented amplifier circuit.The design and implementation of the output matching networks using the FCTCMRC as low-pass topology has been done from 0.7to 1.8GHz.The voltage and current waveforms of the designed class-E amplifier are shown in Figure 5(c).The switch is open for the time interval,0.2–0.4ns and the current through it is near zero.The switch is closed during the time interval 0.6–0.8ns,and the voltage across it is near to zero.The class-E ZVS and ZVDS conditions in the switch turn-off state are obtained.Therefore,the high-efficiency class-E amplifier is achieved.The input signal is generated using an Agilent E4433B signal generator,and the measurement is done by an E4440A PSA se-ries spectrum analyzer.The simulated and measured output power and gain for P in ¼11dBm (input power)are shown in Figure 6(a).The maximum output power at 1.5GHz with P in ¼11dBm is 25.3dBm,and the related gain is 14.3dB.The con-ventional class-E amplifier without CMRC has an output power of 18.5dBm and gain of 7.5dB.The class-E amplifier using CMRC has 36.7%output power improvement in comparison with the one without CMRC.The simulation and measurement results for the PAE at P in ¼11dBm (input power)is shown as a function of the operating frequency in Figure 6(b).The highest value of PAE at a fre-quency of 1.5GHz was 79.7%.The value of the PAE is 69.1%for the conventional class-E amplifier without CMRC.There-fore,the proposed class-E amplifier using the novel CMRC has 15.34%PAE improvement in comparison with the one without CMRC.The output power of the conventional class-E amplifier is decreased as the operating frequency is increased.As shown in Figure 6(a),this decrement is considerable when the operating frequency is more than 1.2GHz.Therefore,the conventional class-E amplifier has a drawback for the broadband applications.The designed class-E amplifier has 25.6%circuit size reduction in comparison with the conventional class-E amplifier.5.CONCLUSIONThe class-E amplifier with high efficiency and broadband char-acteristics has been designed and implemented.A novel and simple load-matching technique for the low-voltage microwave class-E amplifier using a front-coupled taperedcompactFigure 5The pHEMT class-E amplifier.(a)Circuit configuration.(b)A photograph of fabricated amplifier.(c)Simulated switch voltage and current waveforms.[Color figure can be viewed in the online issue,which is available at ]microcstrip resonant cell has been presented.The proposed am-plifier achieved an output power of 25.3dBm,a power added efficiency of 79.7%,and a gain of 7.5dB at input power of 11dBm.It has high-efficiency performance over a significant band-width form 0.7to 1.8GHz (88%).The proposed compact micro-strip resonant cell as the harmonic control network exhibited 15.34%improvement in PAE and 25.6%reduction in the circuit size in comparison with the conventional class-E amplifier.The extremely low insertion loss at the fundamental frequency and size reduction characteristics can be used in the design of the class-E amplifier with higher output power and smaller size,which are required in the broadband application.REFERENCES1.S.C.Cripps,Advanced techniques in RF power amplifiers design,Artech House,Norwood,MA,2002.2.N.O.Sokal and A.D.Sokal,Class E—A new class of high-effi-ciency tuned single-ended switching power amplifiers,IEEE J Sol-id-State Circuits 10(1975),168–176.3.F.H.Raab,Idealized operation of the class E tuned power ampli-fier,IEEE Trans Circuits Syst 25(1977),725–735.4.R.E.Zulinski and J.W.Steadman,Class E power amplifiers and frequency multipliers with finite DC-feed inductance,IEEE Trans Circuits Syst 34(1987),1074–1087.5.R.Negra,F.M.Ghannouchi,and W.Bachtold,Study and design optimization of multi-harmonic transmission-line load networks for class-E and class-F K-band MMIC power amplifiers,IEEE Trans Microwave Theory Tech 55(2007),1390–1397.6.K.L.R.Mertens and M.S.J.Steyaert,A 700-MHz 1-W fully differ-ential CMOS class-E power amplifier,IEEE J Solid-State Circuits 37(2002),137–141.7.T.B.Mader and Z.B.Popovic,The transmission line high-effi-ciency class-E amplifier,IEEE Microwave Guided Wave Lett 5(1995),290–292.8.T.Suetsugu and M.K.Kazimierczuk,Design procedure for lossless voltage-clamped class E amplifier with a transformer and a diode,IEEE Trans Power Electron 20(2005),56–64.9.H.J €a ger,A.V.Grebennikov,E.P.Heaney,and R.Weigel,Broad-band high-efficiency monolithic In-GaP/GaAs HBT power ampli-fiers for wireless applications,Int J RF Microwave Comput Aided Eng 13(2003),496–510.10.A.Mazzanti,rcher,R.Brama,and F.Svelto,Analysis of reli-ability and power efficiency in cascode class-E PAs,IEEE J Solid--State Circuits 41(2006),1222–1229.11.S.C.Wong and C.K.Tse,Design of symmetrical class-E poweramplifiers for very low harmonic-content applications,IEEE Trans Circuits Syst I,Reg Papers 52(2005),1684–1690.12.T.Mury and V.F.Fusco,Inverse class-E amplifier with transmis-sion line harmonic suppression,IEEE Trans Circuits Syst I,Reg.Papers 54(2007),1555–1561.13.T.Mury and V.F.Fusco,Power combining techniques into unbal-anced loads for class-e and inverse class-e amplifiers,IET Micro-wave Antennas Propag 2(2008),529–537.14.A.J.Wilkinson and J.K.A.Everard,Transmission-line load-networktopology for class-E power amplifiers,IEEE Trans Microwave Theory Tech 49(2001),1202–1210.15.J.Lee,S.Kim,J.Nam,J.Kim,I.Kim,and B.Kim,Highly effi-cient LDMOS power amplifier based on class-E topology,Micro-wave Optical Technol Lett 48(2006),789–791.16.Y.-S.Lee and Y.-H.Jeong,A high-efficiency class-E GaN HEMTpower amplifier for WCDMA applications,IEEE Microwave Wire-less Compon Lett 17(2007),622–624.17.H.G.Bae,R.Negra,S.Boumaiza,and F.M.Ghannouchi,High-ef-ficiency GaN class-E power amplifier with compact harmonic-sup-pression network,Proc 37th Europ Microwave Conf,2007,pp.1093–1096.18.Y.-S.Lee,M.-W.Lee,and Y.-H.Jeong,A 1-GHz GaN HEMTbased class-E power amplifier with 80%efficiency,Microwave Opt Technol Lett 50(2008),2989–2992.19.Y.-S.Lee,M.-W.Lee,and Y.-H.Jeong,A 40-W balanced GaNHEMT class-E power amplifier with 71%efficiency for WCDMA base station,Microwave Opt Technol Lett 51(2009),842–845.20.Y.S.Lee and Y.H.Jeong,A high-efficiency class-E power ampli-fier using SiC MESFET,Microwave Opt Technol Lett 49(2007),1447–1449.21.J.-H.Van,M.-S.Kim,S.-C.Jung,H.-C.Park,G.Ahn,C.-S.Park,B.-S.Kim,and Y.Yang,A high-frequency and high-power quasi-class-E amplifier design using a finite bias feed inductor,Micro-wave Opt Technol Lett 49(2007),1114–1118.22.R.Beltran,F.H.Raab,and A.Velazquez,High-efficiency out phas-ing transmitter using class-E power amplifiers and asymmetric combining,Microwave Opt Technol Lett 51(2009),2959–2963.23.C.Park,Y.Kim,H.Kim,and S.Hong,Fully integrated 1.9-GHzCMOS power amplifier for polar transmitter applications,Micro-wave Opt Technol Lett 48(2006),2053–2056.24.Y.C.Jeong,S.-G.Jeong,J.S.Lim,and S.W.Nam,A new methodto suppress harmonics using k /4bias line combined by defected ground structure in power amplifiers,IEEE Microwave Wireless Compon Lett 13(2003),538–540.25.L.Wang,W.Chen,P.Wang,X.Xue,J.Dong,and Z.Feng,Design of asymmetrical spur-line filter for a high power sic MES-FET class-E power amplifier,Microwave Opt Technol Lett 52(2010),1650–1652.26.M.Thian and V.Fusco,Design strategies for dual-band class-Epower amplifier using composite right/left-handed transmission lines,Microwave Opt Technol Lett 49(2007),2784–2788.27.Y.Qin,S.Gao,A.Sambell,and E.Korolkiewicz,Design of low-cost broadband class-e power amplifier using low-voltage supply,Microwave Opt Technol Lett 44(2005),103–106.28.Q.Xue,K.M.Shum,and C.H.Chan,Novel 1-D microstrip PBGcells,IEEE Microwave Wireless Comp Lett 10(2000),403–405.29.T.Yin,Q.Xue,and C.H.Chan,Amplifier linearization using com-pact microstrip resonant cell-theory and experiment,IEEE Trans Microwave Theory Tech 52(2004),927–934.Figure 6Comparison of the conventional amplifier simulation with the simulated and measured results of the proposed amplifier.(a)Output power and gain.(b)Power added efficiency (PAE %)。
ATE Corporation AS-05 Antenna Set 30 MHz to 18 GHz

Main Features•30 MHz to 18 GHz frequency range •Excellent Antenna Factor•Tripod adapter for easy vertical-horizontal polarization change •Individual calibration•Robust, rustproof aluminium construction •LightweightAS-05 is a compact size broadband Antenna System composed of a BC-01 Biconical Dipole, LP-04 Log Periodic Dipole Array and DR-01 Double Ridged horn Antenna designed for radiated emissions and immunity testing. It can be used in conjunction with any receiver or spectrum analyzer.Its ideal companion is the EMI Receiver Unit 9060 and 9180 that can be easily mounted on the antenna mast (*).(*)The direct connection between antenna and PMM Receiver Unit eliminates additional sources of uncertainties due to coaxial cable attenuation and scattering. For further information please consult our brochure “Fully CISPR-Compliant Digital EMC/EMI receivers 10 Hz to 18 GHz”.Antenna Set 30 MHz to 18 GHzProvided by: (800)404-ATECAdvanced Test Equipment Rentals®Ordering Information:AS-05 antenna set 30 MHz to 18 GHz with individual calibration reports.AS-05/TC antenna set 30 MHz to 18 GHz with typical calibration reports.Includes: BC-01 biconical antenna; LP-04 Log-periodic antenna; DR-01Double-rideged antenna; TR-01 wooden tripod; RF cable, 6 GHz, N(m)-N(m), 5 m; Soft carrying case; Rigid carrying case (for DR-01), Operating manual; Calibration reports*.* Individual calibration reports are provided with AS-05.AS-05/TC does not include individual calibration but typical antenna factor.Optional accessories:Additional TR-01 Wooden tripod extensible 60 - 180 cm with antenna mounting adapter for fast horizontal to vertical polaritazion changing. Additional RF cable, 3 GHz, N(m)-N(m), 5 m.Sales Office:Via Leonardo da Vinci, 21/2320090 Segrate (Milano) - ITALY Phone: +39 02 2699871Fax: +39 02 26998700Headquarter:Via Benessea, 29/B17035 Cisano sul Neva (SV) - ITALY Phone: +39 0182 58641Fax: +39 0182 586400E-Mail:**************************Internet: www.narda-sts.itRelated ProductsReceiversAntennasCalibrations service• 7010/00: EMI receiver 150 kHz to 1 GHz • 7010/01: EMI receiver 9 kHz to 1 GHz • 7010/03: EMI receiver 9 kHz to 3 GHz • 9010: EMI receiver 10 Hz to 30 MHz • 9010F: EMI receiver 10 Hz to 30 MHz• 9010/03P: EMI receiver 10 Hz to 300 MHz • 9010/30P: EMI receiver 10 Hz to 3 GHz • 9010/60P: EMI receiver 10 Hz to 6 GHz • 9030: EMI Receiver 30 MHz to 3 GHz • 9060: EMI Receiver 30 MHz to 6 GHz •FR-4003: Field Receiver 9 kHz to 30 MHz• LP-02: Log Periodic Antenna 200 MHz to 3 GHz • LP-03: Log Periodic Antenna 800 MHz to 6 GHz • TR-01: Antenna Tripod• VDH-01: Van der Hoofden test-head 20 kHz to 10 MHz • Antenna Set AS-02 (BC01+LP02+TR01)• Antenna Set AS-03 (BC01+LP02+LP03+TR01) • Antenna Set AS-04 (BC01+LP04+TR01)• RA01: Rod Antenna 9 kHz to 30 MHz• RA01-HV: Rod Antenna 150 kHz to 30 MHz •RA01-MIL: Rod Antenna 9 kHz to 30 MHz• Ansi 63,5 Antenna Factor • SAE ARP 958-D• Free-Space Antenna FactorSPECIFICATIONSFrequency range GainAntenna factor Max input power Connector Dimensions (L x H x W)Weight Colour Impedance ConstructionBC-0130 to 200 MHz -15 +2 dBi typical 8 to 14 dB/m typical 100 W N-female 65 x 65 x 137 cm1,8 kg RAL 703550 Ω nominal AluminiumA S 05-F E N -60801 - S p e c i fi c a t i o n s s u b j e c t t o c h a n g e s w i t h o u t p r i o r n o t i c eAS-05Antenna set 30 MHz to 18 GHzLP-04200 MHz to 6 GHz 6 dBi typical 12 to 40 dB/m typical100 W N-female 78 x 10 x 75 cm 1,1 kg RAL 703550 Ω nominal AluminiumDR-016 to 18 GHz 9 to 16 dBi typical 36 to 41 dB/m typical 150 W N-female 55 x 44 x 177 mm 0,25 kg RAL 703550 Ω nominal AluminiumBC-01 - Antenna Factor 106141822A F (d B /m )3090150210MHz MHz MHz MHz LP-04 - Antenna Factor 155253545A F (d B /m )1356GHzGHz GHz GHz DR-01 - Antenna Factor3634384042A F (d B /m )6101418GHzGHz GHz GHz。
默克密理博Microcon横膜超滤管

Microcon® 超滤管
值得信赖的DNA/蛋白样品制备的经典工具
Microcon® 为横膜式超滤管,没有死体积,用于大分子样品的浓缩、除盐、换液都非常高 效方便;实际应用中还常用于大分子与其它分子的分离,比如蛋白酶切后的处理及药物结 合率分析等等。这种小管可在几乎所有1.5mL离心机中使用。 Ultracel® 超低结合膜对于蛋白 及其它成分都表现出极低的非特异性结合,连同医药级O型圈封闭设计,确保更少的样品 丢失,更稳定的数据结果,使 Microcon® 成为最好的样品制备工具。
更小截留分子量产品请垂询
包装 100 100 100
目录号 MRCPRT010 MRCF0R030 MRCF0R100
最便捷的蛋白制备工具:
• 行业金标:Amicon® Ultra超滤管 • 一体化纯化超滤新工具:Amicon® Pro • 温和透析、复性:D-tubeTM 透析管 • 不同操作通量、体积样品处理的灵活选择
• 即使是稀释溶液,样品回收率也大于95% • 反转离心设计,方便在浓缩产物体积极小时提高回收率 • 便于在标准的微管中存放浓缩样品和滤过样品 • 浓缩倍数达到100X
Microcon® DNA Fast Flow 超滤管专门设计用于从 含有SDS的溶液中浓缩和回收基因组DNA。反转回收 使样品量极小时可保证DNA理想的得率,浓缩倍数 可以达到20X。
广州
广州市黄埔大道西638号 富力科讯大厦803A室 邮编:510627 电话:020-37883048 传真:020-37883072
资料编号:BI2013002 PSP/V01 亚太区技术服务中心:asiatechserv@
成都
成都市芷泉街229号 东方广场C座11楼7号 邮编:610060 电话:028-85288550 传真:028-85288553
低频活动漂浮潜水船声探测系统(LFATS)说明书

LOW-FREQUENCY ACTIVE TOWED SONAR (LFATS)LFATS is a full-feature, long-range,low-frequency variable depth sonarDeveloped for active sonar operation against modern dieselelectric submarines, LFATS has demonstrated consistent detection performance in shallow and deep water. LFATS also provides a passive mode and includes a full set of passive tools and features.COMPACT SIZELFATS is a small, lightweight, air-transportable, ruggedized system designed specifically for easy installation on small vessels. CONFIGURABLELFATS can operate in a stand-alone configuration or be easily integrated into the ship’s combat system.TACTICAL BISTATIC AND MULTISTATIC CAPABILITYA robust infrastructure permits interoperability with the HELRAS helicopter dipping sonar and all key sonobuoys.HIGHLY MANEUVERABLEOwn-ship noise reduction processing algorithms, coupled with compact twin line receivers, enable short-scope towing for efficient maneuvering, fast deployment and unencumbered operation in shallow water.COMPACT WINCH AND HANDLING SYSTEMAn ultrastable structure assures safe, reliable operation in heavy seas and permits manual or console-controlled deployment, retrieval and depth-keeping. FULL 360° COVERAGEA dual parallel array configuration and advanced signal processing achieve instantaneous, unambiguous left/right target discrimination.SPACE-SAVING TRANSMITTERTOW-BODY CONFIGURATIONInnovative technology achievesomnidirectional, large aperture acousticperformance in a compact, sleek tow-body assembly.REVERBERATION SUPRESSIONThe unique transmitter design enablesforward, aft, port and starboarddirectional transmission. This capabilitydiverts energy concentration away fromshorelines and landmasses, minimizingreverb and optimizing target detection.SONAR PERFORMANCE PREDICTIONA key ingredient to mission planning,LFATS computes and displays systemdetection capability based on modeled ormeasured environmental data.Key Features>Wide-area search>Target detection, localization andclassification>T racking and attack>Embedded trainingSonar Processing>Active processing: State-of-the-art signal processing offers acomprehensive range of single- andmulti-pulse, FM and CW processingfor detection and tracking. Targetdetection, localization andclassification>P assive processing: LFATS featuresfull 100-to-2,000 Hz continuouswideband coverage. Broadband,DEMON and narrowband analyzers,torpedo alert and extendedtracking functions constitute asuite of passive tools to track andanalyze targets.>Playback mode: Playback isseamlessly integrated intopassive and active operation,enabling postanalysis of pre-recorded mission data and is a keycomponent to operator training.>Built-in test: Power-up, continuousbackground and operator-initiatedtest modes combine to boostsystem availability and accelerateoperational readiness.UNIQUE EXTENSION/RETRACTIONMECHANISM TRANSFORMS COMPACTTOW-BODY CONFIGURATION TO ALARGE-APERTURE MULTIDIRECTIONALTRANSMITTERDISPLAYS AND OPERATOR INTERFACES>State-of-the-art workstation-based operator machineinterface: Trackball, point-and-click control, pull-down menu function and parameter selection allows easy access to key information. >Displays: A strategic balance of multifunction displays,built on a modern OpenGL framework, offer flexible search, classification and geographic formats. Ground-stabilized, high-resolution color monitors capture details in the real-time processed sonar data. > B uilt-in operator aids: To simplify operation, LFATS provides recommended mode/parameter settings, automated range-of-day estimation and data history recall. >COTS hardware: LFATS incorporates a modular, expandable open architecture to accommodate future technology.L3Harrissellsht_LFATS© 2022 L3Harris Technologies, Inc. | 09/2022NON-EXPORT CONTROLLED - These item(s)/data have been reviewed in accordance with the InternationalTraffic in Arms Regulations (ITAR), 22 CFR part 120.33, and the Export Administration Regulations (EAR), 15 CFR 734(3)(b)(3), and may be released without export restrictions.L3Harris Technologies is an agile global aerospace and defense technology innovator, delivering end-to-endsolutions that meet customers’ mission-critical needs. The company provides advanced defense and commercial technologies across air, land, sea, space and cyber domains.t 818 367 0111 | f 818 364 2491 *******************WINCH AND HANDLINGSYSTEMSHIP ELECTRONICSTOWED SUBSYSTEMSONAR OPERATORCONSOLETRANSMIT POWERAMPLIFIER 1025 W. NASA Boulevard Melbourne, FL 32919SPECIFICATIONSOperating Modes Active, passive, test, playback, multi-staticSource Level 219 dB Omnidirectional, 222 dB Sector Steered Projector Elements 16 in 4 stavesTransmission Omnidirectional or by sector Operating Depth 15-to-300 m Survival Speed 30 knotsSize Winch & Handling Subsystem:180 in. x 138 in. x 84 in.(4.5 m x 3.5 m x 2.2 m)Sonar Operator Console:60 in. x 26 in. x 68 in.(1.52 m x 0.66 m x 1.73 m)Transmit Power Amplifier:42 in. x 28 in. x 68 in.(1.07 m x 0.71 m x 1.73 m)Weight Winch & Handling: 3,954 kg (8,717 lb.)Towed Subsystem: 678 kg (1,495 lb.)Ship Electronics: 928 kg (2,045 lb.)Platforms Frigates, corvettes, small patrol boats Receive ArrayConfiguration: Twin-lineNumber of channels: 48 per lineLength: 26.5 m (86.9 ft.)Array directivity: >18 dB @ 1,380 HzLFATS PROCESSINGActiveActive Band 1,200-to-1,00 HzProcessing CW, FM, wavetrain, multi-pulse matched filtering Pulse Lengths Range-dependent, .039 to 10 sec. max.FM Bandwidth 50, 100 and 300 HzTracking 20 auto and operator-initiated Displays PPI, bearing range, Doppler range, FM A-scan, geographic overlayRange Scale5, 10, 20, 40, and 80 kyd PassivePassive Band Continuous 100-to-2,000 HzProcessing Broadband, narrowband, ALI, DEMON and tracking Displays BTR, BFI, NALI, DEMON and LOFAR Tracking 20 auto and operator-initiatedCommonOwn-ship noise reduction, doppler nullification, directional audio。
小米公司英文版本介绍

Xiaomi: Always believe that something wonderful is about to happen.
The “MI” in our logo is short for Mobile Internet. But it also has other meanings, one of which is “Mission Impossible” because upon establishing Xiaomi, there were many obstacles to overcome and many critics thought what we e impossible at that time.
Mi TV. Top of its class.
At the the top of its class, this 47”, 3D smart TV integrates
both the Mi Box and quad-core Android game box into a slim
display.
I have a dream
Xiaomi was founded in 2010 by serial entrepreneur Lei Jun, who believed that high-quality technology doesn't need to cost a fortune. At Xiaomi, we've brought together smart people from Microsoft, Google, Kingsoft, Motorola, Yahoo and other IT companies from around the world to bring that vision to life.
惠普开发出超小无线芯片商用前景广阔

惠普开发出超小无线芯片商用前景广阔
佚名
【期刊名称】《《世界电子元器件》》
【年(卷),期】2006(000)008
【摘要】惠普开发出一款米粒大小的无线芯片,这款名为“MemorySpot”的芯片包含有存储器、调制解调器、天线和微处理器,可谓麻雀虽小却五脏具全。
据悉这款芯片可存储100页文本信息并可进行无线数据交换。
【总页数】1页(P16)
【正文语种】中文
【中图分类】TP332
【相关文献】
1.惠普开发出米粒大小无线芯片 [J],
2.小蚯蚓大产业开发前景广阔 [J], 无
3.惠普科技为中国石油提供解决方案——中国惠普有限公司副总裁、商用产品事业部总经理杨诺础江汉油田勘探开发研究院计算机中心总工程师罗忠辉访谈 [J],
4.惠普科技为中国石油提供解决方案——中国惠普有限公司副总裁、商用产品事业部总经理杨诺础江汉油田勘探开发研究院计算机中心总工程师罗忠辉访谈 [J], 杨扬
5.小蚯蚓大产业开发前景广阔 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
AXIS P3719-PLE 网络摄像头:15 MP 多方向摄像头,四个矫正焦距的 Quad HD

AXIS P3719-PLE Network Camera15MP multidirectional camera with IR for360°coverageAXIS P3719-PLE Network Camera is a compact15-megapixel camera with four varifocal lenses(4x Quad HD)enabling overview and detailed surveillance.With one IP address and one network cable,the four-cameras-in-one unit provides a flexible,cost-effective solution for multidirectional surveillance.360°IR illumination and WDR provides excellent video quality in any light conditions.Each camera head can be individually positioned(pan,tilt,roll,and twist)along a circular track.Remote zoom and focus makes it easy to install and the clear cover,with no sharp edges,ensures undistorted views in all directions.The camera has an integrated weathershield.>15MP,360°coverage with one IP address>360°IR illumination>Compact,flexible and discreet>Remote zoom and focus>ZipstreamDatasheetAXIS P3719-PLE Network Camera CameraImage sensor4x1/2.5”progressive scan RGB CMOSLens Varifocal,3–6mm,F1.8–2.64x1440p capture mode:Horizontal field of view:101°–49°Vertical field of view:54°–29°Diagonal field of view:116°–58°Motorized focus,motorized zoomDay and night Automatically removable infrared-cut filterMinimum illumination Color:0.20lux at50IRE F1.8B/W:0.04lux at50IRE F1.8,0lux with IR illumination onShutter speed1/66500s to1/5s with50/60HzCamera angleadjustmentPan±90°,tilt+25to+95°,rotation–5to+95°,twist±20°System on chip(SoC)Model S5Memory2048MB RAM,512MB FlashVideoVideo compression H.264(MPEG-4Part10/AVC)Main and High Profiles H.265(MPEG-H Part2)Resolution4x2560x1440(4x Quad HD)to4x640x360Frame rate Up to25/30fps(50/60Hz)Video streaming Multiple,individually configurable streams in H.264and H.265Axis Zipstream technology in H.264and H.265Controllable frame rate and bandwidthVBR/ABR/MBR H.264Image settings Saturation,contrast,brightness,sharpness,WDR,white balance, exposure control,rotation:0°,90°,180°,270°including CorridorFormat,dynamic text and image overlay,polygon privacy mask,compressionAudioAudio input/output Two-way audio connectivity via optional AXIS T61Audio and I/O Interfaces with portcast technologyA30W midspan or higher between AXIS T61Audio and I/O Interfaces and AXIS P3719-PLE is required.NetworkIP address One IP address for all channelsNetwork protocols IPv4,IPv6USGv6,ICMPv4/ICMPv6,HTTP,HTTP/2,HTTPS,TLS,QoS Layer3DiffServ,FTP,CIFS/SMB,SMTP,mDNS(Bonjour),UPnP TM, SNMP v1/v2c/v3(MIB-II),DNS/DNSv6,DDNS,NTP,NTS,RTSP, RTP,SRTP/RTSPS,SFTP,TCP,UDP,IGMPv1/v2/v3,RTCP,ICMP, DHCPv4/v6,ARP,SSH,LLDP,CDP,MQTT v3.1.1,Secure syslog (RFC3164/5424,UDP/TCP/TLS),Link-Local address(ZeroConf)System integrationApplication Programming Interface Open API for software integration,including VAPIX®and AXIS Camera Application Platform;specifications at One-click cloud connectionONVIF®Profile G,ONVIF®Profile M,ONVIF®Profile S and ONVIF®Profile T,specification at Event triggers Detectors,hardware,input signal,storage,system,time,analytics,edge storage eventsMQTT subscribeEvent actions Day/night vision mode,overlay text,record video,send images, send notification,send SNMP trap,send video clip,status LEDFile upload:FTP,HTTP,HTTPS,network share,SFTP and emailNotification:email,HTTP,HTTPS,TCP and SNMP trapMQTT publishData streaming Event dataBuilt-ininstallation aidsPixel counter,remote focus,remote zoomAnalyticsApplications IncludedAXIS Motion Guard,AXIS Fence Guard,AXIS Loitering GuardAXIS Video Motion Detection,active tampering alarmSupport for AXIS Camera Application Platform enablinginstallation of third-party applications,see /acap CybersecurityEdge security Software:Signed firmware,brute force delay protection,digest authentication,password protectionNetwork security IEEE802.1X(EAP-TLS),HTTPS/HSTS,TLS v1.2/v1.3,Network Time Security(NTS),X.509Certificate PKI,IP address filtering Documentation AXIS OS Hardening GuideAxis Vulnerability Management PolicyAxis Security Development ModelAXIS OS Software Bill of Material(SBOM)To download documents,go to /support/cybersecu-rity/resourcesTo read more about Axis cybersecurity support,go to/cybersecurityGeneralCasing IP66-,IP67-,NEMA4X-rated,IK09impact-resistant,aluminium and plastic casing with polycarbonate hard-coated dome,sunshield(PC/ASA)Color:white NCS S1002-BFor repainting instructions of casing and impact on warranty,contact your Axis partner.Mounting Mounting bracket with junction box holes(double gang box,single gang box,4”octagon junction box and4”square junctionbox)½”(M20)conduit side entry¾”(M25)conduit adapter includedSustainability PVC freePower Power over Ethernet(PoE)IEEE802.3at Type2Class4IR illumination on:class4,typical16.3W,max25.5WIR illumination off:class3,typical10.7W,max25.5W Connectors Shielded RJ4510BASE-T/100BASE-TX/1000BASE-T PoEAudio and I/O connectivity via AXIS T61Audio and I/O Interfaceswith portcast technology.IR illumination Four individually controllable IR with power-efficient,long-life850nm IR LEDsRange of reach15m(50ft)or more depending on the scene Storage Support for microSD/microSDHC/microSDXC cardDual SD cardsSupport for SD card encryption(AES-XTS-Plain64256bit)Support for recording to network-attached storage(NAS)For SD card and NAS recommendations see Operatingconditions-30°C to50°C(-22°F to122°F)Humidity10–100%RH(condensing)Maximum temperature according to NEMA TS2(2.2.7):74°C(165°F)Storageconditions-40°C to65°C(-40°F to149°F)Approvals EMCEN55032Class A,EN50121-4,IEC62236-4,EN61000-3-2,EN61000-3-3,EN55024,EN61000-6-1,EN61000-6-2,FCC Part15Subpart B Class A,ICES-003Class A,VCCI Class A,RCM AS/NZS CISPR32Class ASafetyIEC/EN/UL62368-1,IEC/EN/UL60950-22,IS13252,IEC62471EnvironmentIEC60068-2-1,IEC60068-2-2,IEC60068-2-6,IEC60068-2-14,IEC60068-2-27,IEC60068-2-78,IEC/EN60529IP66/67,IEC/EN62262IK09,NEMA250Type4X,NEMA TS2(2.2.7-2.2.9)NetworkNIST SP500-267Dimensions Height:91.5mm(3.6in)ø255mm(10.04in)Weight 2.0kg(4.4lb)IncludedaccessoriesRJ45mounting tool,screw bit TR20,Installation guide,Windows®decoder1-user licenseOptionalaccessoriesAXIS T94N01D Pendant KitAXIS T94N01L Recessed MountAxis mounts and cabinetsFor more accessories,see Video management software AXIS Companion,AXIS Camera Station,video managementsoftware from Axis’Application Development Partners availableon /vmsLanguages English,Simplified Chinese,Traditional Chinese,Dutch,Czech,Swedish,Finnish,Turkish,Thai,Vietnamese,French,German,Italian,Japanese,Korean,Polish,Portuguese,Russian,SpanishWarranty5-year warranty,see /warranty©2018-2023Axis Communications AB.AXIS COMMUNICATIONS,AXIS,ARTPEC and VAPIX are registered trademarks ofAxis AB in various jurisdictions.All other trademarks are the property of their respective owners.We reserve the right tointroduce modifications without notice.T10134016/EN/M31.2/2310。
小米公司英文版本介绍

Li Wanqiang,the former design director of Kingsoft
Liu De,the former director of the university of Beijing science and technology
Huang Jiangji,the former director of engineering development of Microsoft China academy
Innovation made compact Mi 4i's premium ultra-compact unibody design is innovative in every way. It is wrapped in an integrated anti-fingerprint soft touch matte cover and fits an impressive 3120mAh battery within a slender frame. Technology breakthroughs in the motherboard, display and battery are condensed into a mere 130g. It is the epitomy of design and innovation, combined.
Edgeport USB-到-串行转换器说明说明书

Edgeport USB-to-serial converters offer instant I/O expansion for peripheral device connectivity. An out-of-the-box (external) alternative to PCI cards, Edgeport makes iteasy to add serial, USB or parallel ports to a PC, server or thin client in minutes – without opening the chassis, reconfiguring or rebooting the system. EdgeUSB technology, shipping with Edgeport since 1998, adds Plug-and-Play USB compatibility to Windows ®NT and Windows NT Embedded systems – an industry first.Edgeport is available in multiple configurations for maximum flexibility and scalability.Choose from compact form factors for space-prohibitive applications; single port “bump-in-the-cable” solutions for notebook expansion; software-selectable MEI(EIA-232/422/485 multi-electrical interface) versions to connect any type of serial device to one box; metal enclosures for rugged applications; and DB-9, DB-25 or RJ-45 connectors to meet cabling requirements. Accessories include Edgeport/E USB Ethernet adapter, rack mount kits, PCI to USB 1.1 card and USB cables.Feature-rich design, reliability and unmatched operating system support make Edgeport USB-to-serial converters ideal for any mission-critical enterprise application. Integrators and end users around the globe rely on Edgeport for peripheral device connectivity in retail stations, self check-out systems, emergency vehicles, kiosks, ATMs and more.Inside Out Networks, a Digi International company, is the leader in enterprise USB connectivity. Digi International, the leader inConnectware, makes device networking easy by developing products and technologies that are cost-effective and easy to use. With over 20 million ports shipped worldwide, Digi has been offering the highest levels of performance, flexibility, and quality since 1985.Product Data SheetOverviewEdgeport offers an easy out-of-the-box solution for I/O expansion and is available in a wide variety of configurations for maximum flexibility and scalability.Features/Benefits12 or 16 serial ports to a PC, thin client or server in minutes >Unmatched operating system support includes Windows NT 4.0, CE, 2000, XP and more >Multi-interface, softwareselectable MEI, USB PowerPlus , industrial, compact and metal versions >Lower total cost of ownership with external, user-installable solution >Ideal for point-of-sale, mobile computing, industrialautomation, medical and moreC V ou c h a r de rB a r -c o d e n e r Edgeport®USB-to-Serial Converters•USB 1.0 and 1.1 compatible;backwards compatibility for 2.0•USB-IF certified•Plug-and-Play•Baud rate:to 230Kbps per serialport simultaneously•Automatic port reacquisition•COM port assignmentsmaintained across reboots•Full hardware and softwareflow control•Tri-state LED displays devicestatus and COM port activity•No additional IRQ or memoryaddress requirements•Low power consumption•Rack mountable•Hot-swappable•One-meter USB cable included(unless otherwise specified)•Bulk packaging and customizedcabling options•Multiple versions available formaximum flexibility andscalabilityEdgeport Serial•One,two,four,eight,12 or16 EIA-232 serial ports•DB-9,DB-25,RJ-45 connectors•Versions with onboard USB hub(four ports)Edgeport Compact•Two versions with DB-9connectors-Two EIA-232 serial ports-Two EIA-232 serial,twoUSB ports•Captive two-meter cable forsecure connection in ruggedenvironments like mobilecomputing•Smaller form factor and lowercost per port than standardEdgeportEdgeport Industrial•One,two,four or eight serialports with DB-9 connectors•EIA-232,-422 and -422/485•Software selectableEIA-232/422/485 MEIEdgeport Metal•Two or four serial ports withDB-9 connectors•Aluminum chassis•Designed for rugged environmentslike emergency vehicles andrestaurant kitchens•Rack mount brackets for addedsecurityEdgeport Multi-Interface•Two versions with DB-9 connectors-Two EIA-232 serial;1 parallelprinter port-Four USB,two EIA-232 serial,1parallel printer port•Ideal for workstations orthin clientsEdgeport USB Plus•Four powered USB,two EIA-232serial ports with DB-9 connectors•Connect standard USB,poweredUSB and legacy serial devices toone box•Cable locking mechanisms ensuresecure connection forperipheral devices•Part of Digi’s USB Plus Series(visit Web site for moreinformation)Edgeport/E USB EthernetAdapter•USB to RJ-45•Add a PC or laptop to a 10/100Base-T Ethernet in minutes•Data transfer rates up to 10Mpbs•Bus-poweredF E A T U R E SFeatures/Specifications• Ambient temperature:32º F to 131º F (0º C to 55º C)• Relative humidity:0% to 95% (non-condensing)E N V I R O N M E N T A L•FCC Part 15,Class B•CE•EN55022•EN55024•EN60950•UL 1950•CSA 2.2 No.950•IEC-950R E G U L A T O R YA P P R O V A L S•External power supply notrequired for versions without USBports (USB-powered)•Versions with USB ports(Edgeport/421,416,412,42+)ship with plug-mounted powersupply:120/230VAC 60/50Hz at5Vdc @3Amps maxP O W E RR E Q U I R E M E N T S•Windows®XP,Windows XP Embedded•Windows NT®4.0,Windows NT Embedded•Windows CE•Windows 2000•Windows Me•Windows 98/SE•Windows 95•Windows Server™2003•Linux•Sun Solaris (SPARC)O P E R A T I N G S Y S T E M Sd ge por t/Ve r aR uNDimensionsEdgeport/E, 1, 1i,•Length: 3.15 in (8.0 cm)•Width: 1.75 in (4.4cm)•Height:0.80 in (2.03 cm)•Weight: 1.6 oz (45.36 g)Edgeport/2c, 22c•Length: 2.38 in (6.04 cm)•Width: 4.94 in (12.55cm)•Height: 1.0 in (2.54 cm)•Weight: 5.0 oz (141.75 g)Edgeport/2, 2i, 2+2i, 21,4, 4i, 4s MEI, 421, 8r•Length:4.35 in (11.05 cm)•Width:7.2 in (18.29cm)•Height: 1.03 in (2.61 cm)•Weight:10.0 oz (311.0 g)Edgeport/4/DB-25, 42+, 8, 8i•Length:4.35 in (11.05 cm)•Width:7.2 in (18.29cm)•Height: 1.75 in (4.45 cm)•Weight:16.0 oz (453.59 g)Edgeport/2m, 4m•Length: 4.35 in (11.05cm)•Width:7.2 in (18.29cm)•Height: 1.03 in (2.61 cm)•Weight:10.0 oz (311.0 g)Edgeport/412, 412/DB-25,416, 416/DB-25, 8/DB-25•Length: 5.0* in (12.7cm)•Width:17.0** in (43.118cm)•Height: 1.8 in (4.53 cm)•Weight:41.3 oz (1170.84 g)*8.63 in (21.92 cm) with optionalmounted power supply tray** 19.0 in (48.26 cm) withoptional rack mount earsr e di t Ca r dR ea de re c ei p tP r in t ero ne yD i sp en se re po si t or yApplications•Retail/Point-of-Sale•Mobile computing•Medical•Financial•Hospitality•Industrial AutomationModelNorth America International Edgeport Serial Edgeport/1 (1 serial DB-9)301-1001-11301-1001-11Edgeport/1 25-Unit Bulk Pack (25 ea.301-1001-11)301-1001-21301-1001-21 Edgeport/1 100-Bulk Pack (100 ea.301-1001-11)301-1001-22301-1001-22 Edgeport/1 Captive Cable (1 serial DB-9,attached 2m USB cable)301-1001-15301-1001-15Edgeport/2 (2 serial DB-9)301-1000-02301-1000-02Edgeport/4 (4 serial DB-9)301-1000-04301-1000-04Edgeport/4/DB-25 (4 serial DB-25)301-1016-01301-1016-01Edgeport/412 (4 USB,12 serial DB-9)301-1004-12301-2004-12Edgeport/412/DB-25 (4 USB,12 serial DB-25)301-1016-12301-2016-12Edgeport/416 (4 USB,16 serial DB-9)301-1000-10301-2000-10 Edgeport/416/DB-25 (4 USB,16 serial DB-9)301-1016-16301-2016-16Edgeport/8 (8 serial DB-9)301-1002-08301-1002-08Edgeport/8/DB-25 (8 serial DB-25)301-1016-08301-1016-08Edgeport/8r (8 serial RJ-45)301-1002-14301-1002-14Edgeport CompactEdgeport/2c (2 serial DB-9,captive 2m USB cable)301-1003-10301-1003-10Edgeport/22c (2 serial DB-9,2 USB,captive 2m USB cable)301-1003-30301-1003-30Edgeport IndustrialEdgeport/1i (1 EIA-422/485 serial DB-9)301-1001-31301-1001-31Edgeport/2i (2 EIA-422/485 serial DB-9)301-1000-12301-1000-12Edgeport/2+2i (2 EIA-232 serial,2 EIA-422 serial DB-9)301-1022-04301-1022-04Edgeport/4i (4 EIA-422 serial DB-9)301-1000-24301-1000-24Edgeport/8i (8 EIA-422 serial DB-9)301-1000-28301-1000-28 Edgeport/4s MEI (4 EIA-232/422/485 software selectable)301-1000-94301-1000-94Edgeport MetalEdgeport/2m (2 serial DB-9,metal chassis)301-1000-80301-1000-80Edgeport/4m (4 serial DB-9,metal chassis)301-1000-81301-1000-81Edgeport Multi-Interface Edgeport/21 (2 serial DB-9,1 parallel)301-1000-21301-1000-21Edgeport/421 (4 USB,2 serial DB-9,1 parallel)301-1004-21301-2004-21Edgeport USB PlusEdgeport/42+ (4 powered USB,2 serial DB-9)301-1001-42301-2001-42AccessoriesEdgeport/E (USB Ethernet adapter)301-1050-01301-1050-01USB 1.1 Upgrade Kit (PCI to USB 1.1 card)301-1101-01301-1101-011-Meter USB Cable (A to B USB cable,3.3 ft)301-9000-01301-9000-012-Meter USB Cable (A to B USB cable,6.6 ft)301-9000-07301-9000-073-Meter USB Cable (A to B USB cable,9.8 ft)301-9000-06301-9000-064-Meter USB Cable (A to B USB cable,13 ft)301-9000-10301-9000-105-Meter USB Cable (A to B USB cable,16.4 ft)301-9000-02301-9000-02USB Repeater/Extender Cable A to A extender,16.4 ft)301-9002-01301-9002-01USB to Parallel Printer Cable (1.8 m,6 ft)301-9006-01301-9006-01Rack Mount Kit (19”shelf)301-9001-01301-9001-01Small Shelf Mount Bracket (mounts Edgeport/4-sized boxes to wall or shelf)301-9003-01301-9003-01Large Shelf Mount Bracket (mounts Edgeport/8-sized boxes to wall or shelf)301-9004-01301-9004-01Serial ports are EIA-232 unless otherwise specified.Bulk packs include one copy of software and documentation with limited use reproduction license.M O D E L......................P A R T N U M B E R SFeatures/SpecificationsDigi Internationa l11001 Bren Road E.Minnetonka,MN 55343 USA PH:877-912-3444952-912-3444FX:952-912-4952Email:*************Digi Internationa l GmbH J oseph-von-Fraunhofer Str.23D-44227 Dortmund GermanyPH:+49-231-9747-0 FX:+49-231-9747-111www.digi.deDigi Internationa l (HK)LimitedSuite 1703-05,17/F.,K Wah Centre 191 Java RoadNorth Point,Hong Kong PH:+852-2833-1008FX:+Inside Out Networks7004 Bee Caves Road Building 3,Suite 200Austin,TX 78746 USA PH:512-306-0600FX:512-306-0694Email:*******************91001226A2/604© 2003-2004 Digi International, Inc.Digi, Digi International, the Digi logo, the Digi Connectware logo, Inside Out Networks, the Inside Out Networks logo, Edgeport, and Watchport are either trademarks or registered trademarks of Digi International, Inc. in the United States and other countries worldwide. Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.D I G I SE R V I C EA N DS U P P O R TYou can purchase with confidence knowing that Digi is here to support you with expert technical support and a strong five-year warranty.Connectware ™®。
MATRIX 120

MATRIX 120™APPLICATION• Electronics: Track and trace PCB board manufacturing• Factory Automation: Print & Apply – label verification• Factory Automation: Food & Beverage – traceability• OEM: Kiosks: ticketing machine• Healthcare: Clinical Lab – vials identification • Chemical and biomedical analysis machineHIGHLIGHTS• Ultra compact dimensions for easy integration • WVGA – 1.2 MP and wide angle models• Smart user selectable focus for high application flexibility• Digimarc Barcode reading technology for added value decoding applications • Embedded Ethernet connectivity• Serial and USB options on the same model • ESD versions for electronic applications• Polarized Version for 90° mounting and reflecting surfaces• Models equipped with shorter output cables (100mm of length) for easier integration in OEM machines • Top industrial grade: IP65; operating temperatures: 0-45 ºC / 32 – 133 ºF • DL.CODE software configurator for outstanding ease of setup• Xpress, Datalogic’s ‘Green Spot’ technology and intuitive HMI for top ease of useThe Matrix 120 is the smallest ultra-compact industrial 2D imager range in the market to fit any integration space and the smallest compact 2D imager with embedded Ethernet connectivity.The Matrix 120 is available in different models, including a WVGA sensor for standard applications or a 1.2 MP sensor for high resolution bar codes. Moreover, a wide angle version makes the Matrix 120 the perfect solution for proximity reading.The Matrix 120 with the red light model is the first stationaryindustrial scanner in the market able to read Digimarc Barcode for added value decoding applications.The Matrix 120 features the top industrial grade parts in its class (IP65 and 0-45 ºC / 32 – 133 ºF), with ESD safe models for applications in the electronic industry and a glass-free reading window, suitable for the Food and Beverage environment.Sulfur gas protection allows the use of Matrix 120 in tires applications through rough manufacturing, final finishing and inspection stations.As part of the full Matrix series, the Matrix 120 leads the market for customer ease of use because of DL.CODE™ configuration software, X-Press™ button and intuitive HMI.The Matrix 120 is the entry level model of the best-in-class Matrix family of high performance industrial 2D imagers.The Matrix 120 is the perfect solution when small dimension, simple integration and performance are the key drivers. The Matrix 120 models with shorter output cables (only 100 mm of length) allow an easier integration in OEM machines, making this product ideal for customers belonging to Chemical/Biomedical Industry and Print & Apply applications. Additionally, this imager is perfect for entry level applications in the Factory Automation arena: Electronics, Packaging and Food/Beverage.MATRIX 120™TECHNICAL DATAOPTICAL FEATURESSensor CMOS sensor with Global Shutter/WVGA - 752x480 pxCMOS sensor with Global Shutter/1.2 MP - 1280x960 pxFrame Rate up to 57 full-frame/s (WVGA model) , up to 36 full-frame/s(1.2 MP model)Illumination White Internal IlluminatorFocusing System Manual adjustment in three precalibrated positions(45, 70, 125mm - WVGA ; 45, 80, 125mm - 1.2 MP)DATALOGIC PRODUCT OFFERINGSafety Light Safety Laser Laser Marking Mobile ComputersVision SensorsHand Held MODELSCODE 937800000937800001937800002937800003937800004937800005。
pro series PRO70 卡迪奥德制式耳朵麦克风特点说明书

pro seriesPRO 70Cardioid Condenser Lavalier MicrophoneFeatures• Clip-on lavalier mic provides articulate, full-sounding voice pickup • Also excels as an instrument mic, especially for pickup of acoustic guitar with included AT8444 instrument adapter• Cardioid polar pattern reduces pickup of sounds from the sides and rear, improving isolation of desired sound source• Offers the convenience of battery or phantom power operation • Rugged design and construction for reliable performance• Switchable 80 Hz high-pass filter minimizes pickup of undesired low-frequency soundsDescriptionThe PRO70 is a miniature clip-on/lavalier condenser microphone with a cardioid polar pattern. It is designed for quality sound reinforcement, professional recording, television and other demanding sound pickup applications.The microphone is intended to be worn on the clothing or used as an instrument mic for excellent yet unobtrusive sound pickup. The wide-range capability of the microphone ensures clean, accurate reproduction with high intelligibility for speakers and presenters as well as forinstrument pickup. Its small size makes it ideal for use in applications where minimum visibility is required.The microphone requires 11V to 52V phantom power or a 1.5V AA battery for operation. A battery need not be in place for phantom power operation.The microphone’s cardioid polar pattern provides a 120° angle of acceptance.The microphone includes a 1.8 m (6') permanently attached miniature cable. Its free end connects to the provided AT8531 power module via a TA3F-type connector. The output of the power module is a 3-pin XLRM-type connector.A 3-position switch in the power module permits choice of off, on/flat response or on/low-roll-off (via integral 80 Hz high-pass filter). The roll-off position reduces the pickup of low-frequency ambient noise.The microphone comes equipped with a power module, a clothing clip, an instrument adapter, a windscreen, a battery and a soft protective pouch.Operation and MaintenanceThe PRO70 requires 11V to 52V phantom power or a 1.5V AA battery for operation. A battery need not be in place for phantom power operation.To install the battery, remove the cap from the top of the power module. Insert a fresh 1.5V AA battery (“+” end toward the cap release button), then reassemble the power module. For longest battery life, the switch should remain off except when the microphone is in use. Alkalinebatteries are recommended for longest life. Remove the battery during long-term storage.Output is low impedance (Lo-Z) balanced. The signal appears across Pins 2 and 3; Pin 1 is ground (shield). Output phase is “Pin 2 hot”—positive acoustic pressure produces positive voltage at Pin 2.To avoid phase cancellation and poor sound, all mic cables must be wired consistently: Pin 1-to-Pin 1, etc.A 3-position switch in the power module permits choice of off, on/flat response, or on/low-roll-off (via integral 80 Hz high-pass filter). The roll-off position reduces the microphones sensitivity to popping in close vocal use. It also reduces the pickup of low-frequency ambient noise (such as traffic, air-handling systems, etc.), room reverberation and mechanically coupled vibrations. To engage the filter, slide the switch toward the“bent” line. To turn the microphone on without engaging the filter, slide the switch toward the flat line.For use as a lavalier, attach the microphone about six inches below the chin. Anticipate movements that may cause the microphone to rub against or be covered by clothing, and position the microphone to avoid it.Avoid leaving the microphone in the open sun or in areas wheretemperatures exceed 110° F (43° C) for extended periods. Extremely high humidity should also be avoided.Architect’s and Engineer’s SpecificationsThe microphone shall be a fixed charge condenser. It shall have a cardioid polar pattern and a frequency response of 100 Hz to 14,000 Hz. The microphone shall operate from an external 11V to 52V DC phantom power source or, alternatively, from a 1.5V AA/UM3 battery. It shall be capable of handling sound input levels up to 123 dB (phantom and battery) with a dynamic range of 96 dB (phantom and battery). Nominal open-circuit output voltage shall be 5.6 mV (phantom) and (battery) at 1 V , 1 Pascal. Output shall be low impedance balanced (200 ohms—phantom and battery).The microphone shall have a 1.8 m (6') permanently attached miniature cable connected to the power module. The power module shall house the battery, and shall contain a switch that permits choice of off, on/flat response or on/low-roll-off (80 Hz). The output of the power module shall be a 3-pin XLRM-type connector.The microphone shall be 25.0 mm (0.98") long and have a diameter of 10.2 mm (0.40"). Weight shall be 8 grams (0.3 oz). The microphone shall include a power module, a clothing clip, a windscreen, a battery, an instrument adapter and a protective carrying case. Finish shall be low-reflectance black.The Audio-Technica PRO70 is specified.Audio-Technica Corporation ©2017 Audio-Technica0001-0330-01PRO 70SpecificationsLEGEND 200 Hz 1 kHz 5 kHz 8 kHzSCALE IS 5 DECIBELS PER DIVISION240˚180˚210˚270˚300˚330˚0˚150˚120˚90˚30˚60˚12" or more on axis LEGENDFrequency in HertzR e s p o n s e i n d BRoll-offfrequency response: 100–14,000 Hzpolar patternFixed-charge back plate, permanently polarized condenser Cardioid100-14,000 Hz80 Hz, 12 dB/octavePhantom: –45 dB (5.6 mV) re 1V at 1 Pa Battery: –45 dB (5.6 mV) re 1V at 1 Pa Phantom: 200 ohms Battery: 200 ohmsPhantom: 123 dB SPL, 1 kHz at 1% T.H.D. Battery: 123 dB SPL, 1 kHz at 1% T.H.D. Phantom: 96 dB, 1 kHz at Max SPL Battery: 96 dB, 1 kHz at Max SPL 67 dB, 1 kHz at 1 Pa 11-52V DC, 2 mA typical 1.5V AA/UM30.4 mA / 1200 hours typical (alkaline)Off, on-flat, on-roll-off Microphone: 0.3 oz (8 g) Power module: 4.7 oz (134 g) Microphone: 25.0 mm (0.98") long,10.2 mm (0.40") diameterPower module: 83.0 mm (3.27") H x 63.0 mm (2.48") W x 22.0 mm (0.87") D Power module: Integral 3-pin XLRM-type Integral 6' (1.8 m), permanently attached between microphone and power module M1ElementPolar pattern Frequency response Low frequency roll-off Open circuit sensitivityImpedanceMaximum input sound level Dynamic range (typical) Signal-to-noise ratio 1Phantom power requirementsBattery typeBattery current / lifeSwitch WeightDimensionsOutput connectorCableAudio-Technica case style。
sandybridge

sandybridgeSandy Bridge: A Breakthrough in Processor TechnologyIntroductionSandy Bridge is a significant milestone in the evolution of processor technology, developed by Intel Corporation. Launched in 2011, this microarchitecture design revolutionized the market by introducing several groundbreaking features and advancements. This document aims to explore the Sandy Bridge architecture, outline its key components, discuss its advantages, and analyze its impact on the computing industry.Overview of Sandy Bridge ArchitectureThe Sandy Bridge architecture represents the second generation of Intel's Core processors. It succeeded the Nehalem microarchitecture and offered several improvements, including increased performance, enhanced power management, and improved graphics capabilities.Key Components of Sandy Bridge1. CPU Cores: Sandy Bridge processors featured up to four CPU cores, each capable of processing multiple threads simultaneously with Intel's Hyper-Threading technology. This allowed for greater efficiency in multitasking and improved overall performance.2. Integrated GPU: Sandy Bridge marked the first time that Intel integrated a graphics processing unit (GPU) directly onto the CPU die. The GPU provided a significant boost in graphics performance, enabling smooth playback of high-definition videos, improved gaming capabilities, and better visual effects.3. Ring Bus: Sandy Bridge introduced a new communication architecture called the Ring Bus. It replaced the traditional Front Side Bus (FSB) used in previous processor generations. The Ring Bus improved data transfer speeds between the cores, cache, GPU, and other components, resulting in faster and more efficient data processing.4. Smart Cache: Sandy Bridge processors featured an upgraded Smart Cache system that improved memory access and reduced latency. The Smart Cache dynamically allocatedresources to the CPU cores as needed, resulting in improved performance and efficiency.Advantages of Sandy Bridge1. Increased Performance: Sandy Bridge offered significant performance improvements over its predecessor, Nehalem. The combination of more CPU cores, Hyper-Threading technology, and a higher clock speed resulted in faster and more responsive computing experiences.2. Enhanced Graphics: The integrated GPU in Sandy Bridge processors delivered superior graphics performance, reducing the need for a separate graphics card in most everyday computing tasks. This resulted in cost savings for consumers and improved energy efficiency.3. Power Efficiency: Sandy Bridge processors introduced several power management features, including the ability to dynamically adjust clock speeds and voltages based on workload demands. This feature, known as Intel Turbo Boost, helped optimize performance while conserving power, making Sandy Bridge processors more energy-efficient.4. Greater Overclocking Potential: Sandy Bridge processors were well-regarded by PC enthusiasts and overclockers due to their high overclocking potential. The architecture's improved power management and thermal design enabled users to push their CPUs to higher clock speeds without compromising stability.Impact on the Computing IndustryThe launch of Sandy Bridge had a profound impact on the computing industry. Its improved performance, energy efficiency, and integrated graphics capabilities made it an attractive option for both mainstream users and professionals alike. Sandy Bridge CPUs powered a wide range of devices, from desktop computers and laptops to servers and workstations.Additionally, the integrated GPU capabilities of Sandy Bridge processors played a crucial role in improving the overall visual experience for users. Graphics-intensive tasks such as gaming and video editing became more accessible to a broader audience, as dedicated graphics cards were no longer a necessity for many applications.Sandy Bridge's success also prompted competing companies to invest in their own integrated graphics solutions, leading to significant advancements in GPU technology across the industry.ConclusionSandy Bridge represents a major breakthrough in processor technology, introducing several key advancements that revolutionized the computing industry. Its improved performance, energy efficiency, and integrated graphics capabilities set a new standard for processors, making it a popular choice for consumers and professionals alike. As Intel continues to innovate, Sandy Bridge remains a significant milestone in the evolution of CPU design and a testament to the ongoing quest for faster and more efficient computing.。
minicircuits

minicircuitsMinicircuits: An OverviewIntroductionMinicircuits is a leading global supplier of radio frequency (RF) and microwave components. For over 50 years, the company has been providing a wide range of products, including amplifiers, attenuators, mixers, switches, and more. With its commitment to quality and innovation, Minicircuits has established itself as a trusted brand in the RF and microwave industry. In this document, we will explore the company's history, product offerings, and its impact on various industries.Company HistoryMinicircuits was founded in 1969 by Harvey Kaylie, a visionary engineer and entrepreneur. The company initially focused on designing and manufacturing components for the test and measurement industry. Over the years, Minicircuits expanded its product portfolio and began catering to a broader customer base, including defense, aerospace,telecommunications, and medical industries. Today, the company has a global presence with offices and manufacturing facilities in various countries, including the United States, Europe, and Asia.Product OfferingsMinicircuits offers a comprehensive range of RF and microwave components, designed to meet the evolving needs of its customers. Some of the key product categories include:1. Amplifiers: Minicircuits offers a wide selection of amplifiers, ranging from low noise amplifiers (LNAs) to high power amplifiers (HPAs). These amplifiers are used in various applications, such as wireless communication systems, radar systems, and satellite communication.2. Attenuators: Attenuators are essential components in RF and microwave systems, used to reduce the signal power. Minicircuits provides attenuators with a wide range of attenuation levels and frequency ranges, allowing customers to find the perfect solution for their requirements.3. Mixers: Mixers are used to convert frequencies in RF and microwave systems. Minicircuits offers mixers with excellent linearity, low conversion loss, and high isolation, ensuring optimal performance in diverse applications.4. Switches: Switches play a crucial role in routing signals in RF and microwave systems. Minicircuits offers a variety of switches, including PIN diode switches, GaAs MMIC switches, and electromechanical switches, providing customers with flexibility and reliability.Furthermore, Minicircuits also offers other components, such as filters, couplers, synthesizers, and more, ensuring comprehensive solutions for RF and microwave applications.Industry ApplicationsMinicircuits' components find applications in a vast array of industries. Some of the key sectors include:1. Telecommunications: With the increasing demand for wireless connectivity, telecommunications companies rely on Minicircuits' components to ensure reliable communication systems. These components are used in cellular base stations,satellite communication systems, and microwave backhaul networks.2. Defense and Aerospace: The defense and aerospace industries require robust and high-performance RF and microwave components for radar systems, electronic warfare, and communication systems. Minicircuits' products meet the stringent requirements of these industries, ensuring optimal performance in critical applications.3. Medical: In the medical field, Minicircuits' components are used in equipment such as magnetic resonance imaging (MRI) systems, ultrasound machines, and patient monitoring systems. The high-quality and reliable performance of these components are crucial in ensuring accurate diagnosis and treatment.ConclusionMinicircuits has established itself as a leader in the RF and microwave component industry. With over five decades of experience, the company continues to innovate and provide high-quality solutions to its customers. From amplifiers to switches, Minicircuits offers a diverse product portfolio that caters to the needs of various industries, includingtelecommunications, defense, aerospace, and medical. As technology advances, Minicircuits will undoubtedly remain at the forefront of the RF and microwave industry, offering cutting-edge solutions to meet the ever-growing demands of its customers.。
树莓派Pico RP2040微控制器说明书

ColophonCopyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).Portions Copyright © 2019 Synopsys, Inc.All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 ARM Limited.All rights reserved. Used with permission.build-date: 2023-06-14build-version: a6fe703-cleanLegal disclaimer noticeTECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the RESOURCES or any products described in them at any time and without further notice.The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for their selection and use of the RESOURCES and any application of the products described in them. User agrees to indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the RESOURCES.RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, weapons systems or safety-critical applications (including life support systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High Risk Activities.Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does notexpressed in them.Table of contentsColophon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Legal disclaimer notice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.1. Why is the chip called RP2040?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3. The Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.4. Pinout Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.1. Pin Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.2. Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4.3. GPIO Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132. System Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1. Bus Fabric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.1. AHB-Lite Crossbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.2. Atomic Register Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.3. APB Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.4. Narrow IO Register Writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2. Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.2.1. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.2.2. Detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.3. Processor subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.1. SIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.2. Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602.3.3. Event Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612.3.4. Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612.4. Cortex-M0+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622.4.1. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632.4.2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642.4.3. Programmer’s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692.4.4. System control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742.4.5. NVIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742.4.6. MPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.4.7. Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.4.8. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.5. DMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.5.1. Configuring Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922.5.2. Starting Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942.5.3. Data Request (DREQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952.5.4. Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972.5.5. Additional Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972.5.6. Example Use Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982.5.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022.6. Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212.6.1. ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212.6.2. SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222.6.3. Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232.7. Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.8. Bootrom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.8.1. Processor Controlled Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312.8.2. Launching Code On Processor Core 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332.8.3. Bootrom Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342.8.4. USB Mass Storage Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452.8.5. USB PICOBOOT Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462.9. Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532.9.4. USB PHY Supply (USB_VDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532.9.5. ADC Supply (ADC_AVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542.9.6. Power Supply Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542.9.7. Power Supply Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 2.10. Core Supply Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572.10.1. Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572.10.2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1582.10.3. Output Voltage Select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592.10.4. Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592.10.5. Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592.10.6. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592.10.7. Detailed Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 2.11. Power Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1622.11.1. Top-level Clock Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1622.11.2. SLEEP State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632.11.3. DORMANT State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632.11.4. Memory Power Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632.11.5. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.12. Chip-Level Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652.12.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652.12.2. Power-on Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1662.12.3. Brown-out Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672.12.4. Supply Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1692.12.5. External Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1692.12.6. Rescue Debug Port Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1692.12.7. Source of Last Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1692.12.8. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2.13. Power-On State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1702.13.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1702.13.2. Power On Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1702.13.3. Register Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712.13.4. Interaction with Watchdog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712.13.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 2.14. Subsystem Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1742.14.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1742.14.2. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1752.14.3. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 2.15. Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802.15.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802.15.2. Clock sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1812.15.3. Clock Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1842.15.4. Frequency Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1882.15.5. Resus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1882.15.6. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1892.15.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2.16. Crystal Oscillator (XOSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2162.16.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2162.16.2. Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2162.16.3. Startup Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2172.16.4. XOSC Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2172.16.5. DORMANT mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2172.16.6. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2182.16.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 2.17. Ring Oscillator (ROSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2212.17.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2212.17.2. ROSC/XOSC trade-offs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2212.17.3. Modifying the frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2222.17.6. ROSC Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2222.17.7. DORMANT mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2232.17.8. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2232.18. PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2272.18.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2272.18.2. Calculating PLL parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.18.3. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2312.18.4. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2332.19. GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352.19.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352.19.2. Function Select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2362.19.3. Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2382.19.4. Pads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2392.19.5. Software Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2392.19.6. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2432.20. Sysinfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3032.20.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3032.20.2. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3032.21. Syscfg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3042.21.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3042.21.2. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3042.22. TBMAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3072.22.1. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3073. PIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3093.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3093.2. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3103.2.1. PIO Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3103.2.2. Control Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3113.2.3. Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3123.2.4. Stalling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3153.2.5. Pin Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3163.2.6. IRQ Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3163.2.7. Interactions Between State Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3163.3. PIO Assembler (pioasm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3173.3.1. Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3173.3.2. Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3183.3.3. Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3183.3.4. Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3183.3.5. Labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3183.3.6. Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3193.3.7. Pseudoinstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3193.4. Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3193.4.1. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3193.4.2. JMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3203.4.3. WAIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3213.4.4. IN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3223.4.5. OUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3233.4.6. PUSH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3243.4.7. PULL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3253.4.8. MOV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3263.4.9. IRQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3273.4.10. SET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3283.5. Functional Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3293.5.1. Side-set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3293.5.2. Program Wrapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3303.5.3. FIFO Joining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3323.5.4. Autopush and Autopull. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3333.5.5. Clock Dividers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337。
Agilent Microplate Seal Piercer 数据手册

Agilent Microplate Seal PiercerData SheetApplications1. Screening2. Applications that do not require tip washing between microplatesIntroductionThe Agilent Microplate Seal Piercer is a low cost automated microplate piercing station ideal for screening and compatible with a variety of seals and pin plates. As a complementary instrument to the Agilent PlateLoc Thermal Microplate Sealer, the Microplate Seal Piercer pierces a wide variety of seals on 96- or 384-well microplates in only four seconds of cycle time. Specially designed piercing pins guarantee a clean, controlled puncture on every micro-plate with a penetration depth of ≤ 4.5 mm, even with deep well microplates. Use station either as a stand-alone unit, or integrate into a robotic system through the ActiveX control and RS-232 serial port connection. Indicator lights on the machine alert the operator of the machine status (ready, busy, stop, low air pressure), and a microplate alignment sensor ensures that the microplate is correctly positioned in the microplate locator before actuation.A hardware interlock on the front door provides maximum safety to the operator. The pierc-ing head is easily removed for cleaning. Reconfiguration between formats is accomplished in seconds by changing the pierce head.Agilent Technologies shall not be liable for errors con-tained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.Information, descriptions, and specifications in this publication are subject to change without notice.© Agilent Technologies, Inc. 2010Published in the USA, October 7, 20105990-3486ENOperating ModesManual or automated microplate piercing using articulated arm robotsLabware Compatibility: All ANSI-compliant microplates in 96- and 384-well formats Compatible Seals : Pierceable Aluminum (06644-001), Clear Pierceable Thin Seal (17318-001). Details and specifications for Agilent heat seal can be found in the Agilent PlateLoc Thermal Microplate Sealer Consumables Selection Guide, Agilent publication 5990-3659EN (located in the PlateLoc product section of the Agilent website).SpecificationsElectrical: 110–240 VAC, 50-60 Hz, Operating AC Current 0.5A/120V or3A/240V (typical) Inrush Current 20A/120V or 40A/240V (typical)Operating Temperature: 4–40 °C Controller: Agilent VWorks Automation Control software, ActiveX control Interface: RS-232 serial port with DB9 connectorCertification: CE certified and built to meet UL standards Cycle Time: 4 secondsPiercing Force: 1000 pounds per plate Penetration Depth: Please see Pin Plates table below Dimensions Height: 36 cm [14 in]Width: 20 cm [8 in]Depth: 34 cm [13.5 in]Weight: 19 kg [42 lbs]Pin Plates 08541.00196-well 4.8 mm diameter 4.5 mm 96-well plate types502349.002384-well round 2 mm diameter 2.1 mm Single use storage tubes,round welled 384-well microplates 2 18331.001384-well square2.7 mm per side2.1 mmSquared-welled384-well small microplates3G5403AAgilent PlatePierceFeatures & Benefits• User Interface: Push-button operation for stand-alone applications or automated operation via host PC.• Piercing Head: Interchangeable 96- or 384-pin heads available with a variety of pin-plate designs (round and square pins).• Plate Accessibility: Hand loading via operator for manual operation or articu-lated-arm robot able to fully access plate stage for higher throughput applications.Additional Information(Download a PDF copy of the Pin Plate Selection Guide found in the Agilent SealPiercing Station product section of the website.)Pin Plates: 96- and 384-well compatible piercing heads available/lifesciences/automation。
SM5415 SM5455 压力传感器 使用指南说明书

SILICONMICROSTRUCTURESI N C O R P O R A T E DSM5415/SM5455Small Foot-print Pressure Sensor SIPRev 0.2 8_02• NEW S MALLER P ACKAGE P RESSURE S ENSOR • T RUE D IFFERENTIAL C ONFIGURATION• B ARBED C AP FOR S ECURE T UBING A TTACHMENT•S AME PERFORMACE C HARACTERISTICS AS T HE SM5410 AND SM5450 PRODUCTINCLUDING UNIQUE 0.15 PSI FULL -SCALE FOR VERY LOW PRESSURESDESCRIPTIONSilicon Microstructures, Inc. (SMI)introduces a small, Single-in-Line sensor package that provides for true differential applications where needed. Theperformance is identical to the SM5410 and SM5450 product but with a closed bridge (4-lead) configuration.The small size lends itself to differential applications. A new barbed cap allows for easy connection to plastic or silicone tubing.FEATURES• Full selection of pressure ranges (from 0-0.15 PSI FS to 0-100 PSI FS)• Same specification as the existing SM5300 and 5400 series • Easy to use 4-pin SIP• High performance, stable packaged silicon chip•Absolute, Gage and Differential pressure configurationsAPPLICATIONS• Medical equipment •Respiration • HVAC • Level detection • Flow measurement • Industrial controlAll dimensions in inches.Notice:Silicon Microstructures, Inc. reserves the right to make changes to the product contained in this publication. Silicon Microstructures, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies.Silicon Microstructures, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a life-support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.Example of How to Order:Pressure Ranges PSI5415PSI 545550050.150********.30003300300.8000860060 1.50015100100 3.00030SUNSTAR传感与控制/TEL:0755-********FAX:0755-********E-MAIL:**************SUNSTAR自动化/TEL:0755-********FAX:0755-********E-MAIL:**************SUNSTAR传感与控制/TEL:0755-********FAX:0755-********E-MAIL:**************SUNSTAR商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业,是专业高科技电子产品生产厂家,是具有10多年历史的专业电子元器件供应商,是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌IC芯片和電子元器件的连锁经营綜合性国际公司,专业经营进口、国产名厂名牌电子元件,型号、种类齐全。
MicroHAWKID–40 超级紧凑型高度说明书

MicroHAWK ®ID –40Ultra-CompactHeight: 25 mm (0.98")Width: 45 mm (1.77")Length: 45 mm (1.77")Specifications and OptionsDIMENSIONSHeight: 25 mm (0.98") Width: 45 mm (1.77") Length: 45 mm (1.77") Weight: 68 g (2.40 oz.)ENCLOSUREIP-65/67, AluminumENVIRONMENTALOperating Temperature: 0° to 45° C (32° to 113° F)Storage Temperature: -50° to 75° C (-58° to 167° F)Humidity: 5% to 95% (non-condensing)EMISSIONSEN 55022:2010 Class A LimitsELECTRICAL4.75-30 VDC, 200 mV p-p max ripple, 150 mA at 24 VDC (typ.)CONNECTORM12 12-Pin Power, M12 8-Pin EthernetPASSIVE POE24 Volt Passive Power over Ethernet, Type B. Requires passive PoE power supply.COMMUNICATIONRS-232, Ethernet TCP/IP, EtherNet/IP, PROFINET I/ODISCRETE I/O 3 in/3 out: Optoisolated Trigger andInput Common; New Master: Bi-directional, Optoisolated, 4.5-28 V rated (10 mA @ 28 VDC); Outputs (1, 2, 3): Bi-directional, Optoisolated, 1-28 V rated (I CE < 100 mA at 24 VDC, current limited by user)ILLUMINATIONHigh-Output LEDs: Inner: 4 Red (625 nm), 4 White; Outer: 8 Red, White, Blue or IR Operating Life: 50,000 hours @ 25° CINDICATORSTRIG , PASS, FAIL, MODE, LINK, PWR LEDs, 2 Target Pattern LEDs; 2 Good Read Green Flash LEDsCONNECTOR AM12 12-Pin Plug:SPEEDStandard (up to 10 FPS)High-Speed (Max. Sensor FPS)DECODERStandard (High-Contrast 1D)Plus (High-Contrast 1D/2D)X-Mode (Poor or Damaged 1D/2D + DPM)OPTICSStandard Density, High-Density, UHDSENSOR OPTIONSWVGA (Mono): CMOS 0.34 MP (752 x 480)SXGA (Mono): CMOS 1.2 MP (1280 x 960)QSXGA (Color): CMOS 5 MP (2592 x 1944)SHUTTERGlobal (WVGA, SXGA), Rolling (QSXGA)EXPOSURE TIME 50 - 100,000, Default: 2,500 μsFOCUSStandard, HD: Fixed (50-300 mm) or Autofocus UHD: Fixed (64 mm, 400 mm) or AutofocusFRAMES PER SECONDWVGA: Up to 60SXGA: Up to 42QSXGA: Up to 5SYMBOLOGIES2D: Data Matrix (ECC 0-200), QR Code, Micro QR Code, Aztec CodeStacked: PDF417, MicroPDF417, GS1 Databar (Composite and Stacked)Linear: Code 39, Code 128, BC412, Interleaved 2 of 5, UPC/EAN, Codabar, Code 93, Pharmacode, PLANET, POSTNET, Japanese Postal, Australia Post, Royal Mail, Intelligent Mail, KIXSAFETY AND QUALITY FCC, CE, UL, RoHS-Compliant QMS CERTIFICATION/qualityIntegrated LEDsWebLinkInterface Onboard©2018 Omron Microscan Systems, Inc. SP092D-EN-0518Specifications are subject to change. For complete technical information, please see the User Manual.Warranty – For current warranty information about this product, please visit /warranty.Note: Nominal dimensions in MM are shown.Typical tolerances apply.CONNECTOR BM12 8-Pin Socket:WVGA Sensor Fixed FocusSXGA Sensor Fixed FocusExample Read Range:Example Read Range:Example Read Range:UHD Fixed FocusNote: Minimum 1D element is typically 1/2 the size of minimum 2D element. Example: 10 mil 2D = 5 mil 1D.Omron Microscan and all product names and logos as noted are trademarks or registered trademarks of Omron Microscan Systems, Inc. All other trademarks are the property of their respective owners.Autofocus Read Ranges。
诺贝尔pmc 10mm 直径

诺贝尔Press to Mind Control (PMC) 10mm 直径诺贝尔Press to Mind Control (PMC)是一种先进并且激动人心的技术,它采用了新颖独特的方法来实现对大脑的控制。
其中,PMC 10mm 直径是该技术的一个重要组成部分。
这篇文章将为您介绍诺贝尔PMC 10mm 直径的相关信息和其在科技领域中的应用。
诺贝尔PMC 10mm 直径是一种微型电子设备,其直径为10mm。
它采用了独特的设计和先进的技术来实现对人类大脑的控制。
其为了达到这一目的,通过电磁波的传输来与大脑进行交流和干预。
诺贝尔PMC 10mm 直径的最大特点在于其微型化和便携性。
由于其体积小巧,可以轻松地与人类大脑建立连接,并且可以随意植入到头部的任何位置,使其几乎无法被察觉到。
这使得诺贝尔PMC 10mm 直径具备了出色的隐蔽性和潜在的应用前景。
诺贝尔PMC 10mm 直径的工作原理是通过电磁波与人类大脑进行互动。
电磁波是一种以电场和磁场为载体的能量形式,可以传递信息和信号。
通过对电磁波的调控,诺贝尔PMC 10mm 直径可以向大脑发送信息并接收大脑的反馈,从而实现对大脑的控制。
诺贝尔PMC 10mm 直径在科技领域有着广泛的应用前景。
首先,它可以应用于医疗领域,用于治疗各种与大脑相关的疾病。
通过对大脑进行精确的控制,可以更好地治疗患者,减轻病痛。
其次,诺贝尔PMC 10mm 直径也可以应用于军事领域。
它可以用来提高士兵的反应速度和执行效率,增强作战力量。
此外,还可以用于战争中的情报收集和战略决策。
除了医疗和军事领域,诺贝尔PMC 10mm 直径还可以在其他领域中得到应用。
例如,它可以用于市场营销中的消费者行为研究,通过对消费者大脑的控制来影响其购物决策。
此外,它还可以用于娱乐领域,创造出一种全新的虚拟现实体验。
尽管诺贝尔PMC 10mm 直径在科技领域中有着广泛的应用前景,但是也要注意其可能引发的伦理和隐私问题。
轻薄! 世界最薄的7倍光学变焦数码相机

轻薄!世界最薄的7倍光学变焦数码相机
无
【期刊名称】《科技新时代:下半月》
【年(卷),期】2007(000)003
【摘要】许多小巧的高性能数码相机都是以牺牲变焦能力来换取缩小尺寸,但720万像素的卡西欧EXILIM Hi-Zoom EX-V7解决了这个难题。
它配备了一个先进的潜望式7倍光学变焦镜头,而外型大家心目中的EXILIM系列一样,依然是时尚而小巧。
【总页数】1页(P23)
【作者】无
【作者单位】无
【正文语种】中文
【中图分类】TB852.1
【相关文献】
1.我轻薄我时尚——8款最新便携类轻薄数码相机横向评测 [J], 杨玥
2.日本推出11.3毫米世界最薄数码相机 [J], 国信
3.世界最薄的300万像素数码相机 [J],
4.柯达Z915 轻薄机身兼具10倍光学变焦、具有三种颜色选择 [J],
5.富士(Fujifilm)推出全世界最薄的@xia SlimShot数码相机 [J], 蓝天
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(BPF ),
coupled-resonator,
Fig. l. Coupling structures of the proposed quad-channel diplexer with an Nth-order Chebyshev bandpass response.
I. INTRODUCTION In multi-service and multi-band communication systems, diplexer is an important and essential component in the radio frequency (RF) front ends of both the receiver and transmitter. In general, diplexers require high compactness, low cost, high isolation, high selectivity, flexible channel frequencies, and ease to realize. With the rapid growth of modem communication systems, diplexers and multiplexers with multi-band operation are always necessary. Recently, several advanced techniques for the diplexer and multiplexer design have been widely studied [1]-[8]. In [1], diplexer based on the stepped-impedance coupled line resonator can offer a compact size and high isolation performance by equalizing velocities of the odd- and even mode waves in an inhomogeneous medium. In order to reduce circuit size, diplexers designed with the common-resonator technique are proposed [2], [3]. In [4], a compact diplexer is implemented by using slotline stepped-impedance resonators in the ground plane. In [5], a systematic design procedure for the matching circuits of triplexers is presented. In [6] and [7], a six-channel multiplexer composed of parallel-coupled bandpass filters and a quadplexer based on the tri-mode net type resonators have been developed to operate in multiple separated frequency bands. In [8], a quad-channel diplexer formed by two dual-band bandpass filters (BPFs) is proposed. However, these techniques mentioned above are difficult to further realize a diplexerlmultiplexer with higher frequency selectivity and more operating channels. In this work, an effective design method to realize compact, high-selectivity, and high-isolation quad-channel diplexers has been proposed. By introducing multiple coupling paths between input and output ports, the degrees of freedom in the design parameters at all channel passbands are, then, increased. Thus, the diplexer design can be easily extended to achieve better frequency selectivity with higher filter order. In addition, based on the common-resonator technique [9], the resonator number and/or circuit size can be reduced. Moreover, no extra matching network is needed for this design. For a demonstration, a quad-channel diplexer with third-order bandpass response has been designed and implemented to verify the proposed concept. II. DIPLEXER DESIGN Fig. 1 shows the proposed coupling scheme a quad-channel diplexer with an N-order Chebyshev bandpass response, where each node represents a resonator and the lines between nodes represent the direct coupling paths; S and L denote the input and output ports, respectively. As can be seen, the diplexer is formed by two dual-band filters (BPFs I and 11), where the BPF I operates atfOl andf02, i.e., the center frequencies of the channels 1 and 2, respectively and the BPF II operates at f03 and f04, i.e., the center frequencies of the channels 3 and 4, respectively. Here, the common-resonator technique in [9] is employed to design the two dual-band BPFs. For the BPF I design, the odd-number resonators with superscript I are designed to resonant simultaneously at fOl and f02; the even number resonators with superscript I and subscript x are designed to resonant at fOl while the other resonators with subscript yare designed to resonant atf02. Similarly, the same manner can be applied to the BPF II design. Note that since the four channels of the diplexer are designed to operate at different frequency bands, the loading effect between bands can be neglected. In other words, each channel can be designed individually to yield the desired passband before
0.11 10),
0.27 19
by
0.16 Jog (0.18 10
by
The measured results are in good agreement with the
simulated predictions, showing that an excellent isolation of better than 55 dB between channels is achieved. Index Terms - Bandpass filter coupling, diplexer, microstrip.
A Compact Microstrip Quad-Channel Diplexer With High-Selectivity
and High-Isolation Performances
Chi-Feng Chen, Cheng-Yu Lin, Bo-Hao Tseng, and Sheng-Fa Chang Department of Electrical Engineering, Tunghai University, Taichung, Taiwan 40704
978·1-4799-3869-8/14/$31.00 ®2014 IEEE
Z" f), Z2, 82 Z"来自Port Ie,