两个计数原理,排列与组合,二项式定理知识点
35:排列组合和二项式定理高三复习数学知识点总结(全)
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合二项式定理
排列组合二项式定理知识要点【考点梳理】一、考试内容1.分类计数原理与分步计数原理。
2.排列、排列数公式。
3.组合、组合数公式。
4.组合数的两个性质。
5.二项式定理,二项式展开的性质。
二、考试要求1.掌握分类计数原理及分步计数原理,并能用这两个原理分析和解决一些简单的问题。
2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它解决一些简单的问题。
3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
三、考点简析1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类。
(2)分步计数原理中的分步。
正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系m n A =)!(!m n n -=n ·(n-1)…(n-m+1) (3)全排列列:n n A =n!(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=7204.组合(1)组合的定义,排列与组合的区别(2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n (3)组合数的性质①C n m =C n n-m②r n r n r n C C C 11+-=+ ③rC n r =n ·C n-1r-1④C n0+C n1+…+C n n=2n⑤C n0-C n1+…+(-1)n C n n=0即C n0+C n2+C n4+…=C n1+C n3+…=2n-15.二项式定理(1)二项式展开公式(a+b)n=C n0a n+C n1a n-1b+…+C n k a n-k b k+…+C n n b n(2)通项公式:二项式展开式中第k+1项的通项公式是T k+1=C n k a n-k b k6.二项式的应用(1)求某些多项式系数的和。
(2)证明一些简单的组合恒等式。
排列组合二项式定理知识点
排列组合二项定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:1掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.2理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.4掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..的排列...重复..元素从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m 个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例如:n 件物品放入m个抽屉中,不限放法,共有多少种不同放法解:n m种二、排列.1. ⑴对排列定义的理解.定义:从n个不同的元素中任取mm≤n个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出mm≤n 个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑷排列数公式:注意:!)!1(!n n n n -+=⋅ 规定0 = 1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取mm≤n 个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--==⑶两个公式:①;mn nm n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n利用!1)!1(1!1n n n n --=- ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法即用m n m n m n C C C 11+-=+递推如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2=四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A An ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A An n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n nA A. 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少mm n m n m n A A 1+---⋅插空法,当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有mm A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法解法一:逐步插空法m+1m+2…n = n/ m;解法二:比例分配法mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法有3!224=C 平均分组就用不着管组与组之间的顺序问题了又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少!2/102022818C C C P =注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法有m m m m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故2,x 是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式如图所示故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用na a a , (21)ia 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为2x 41-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在或不固定在某一位置上,共有多少种排法固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A 一类是不取出特殊元素a,有mn A 1-,一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的 ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列或组合,规定某r 个元素都包含在内 ;先C 后A 策略,排列k k r k r n r r A C C --;组合r k r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列或组合,规定某r 个元素都不包含在内;先C 后A 策略,排列k k k r n A C -;组合k r n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列或组合,规定每个排列或组合都只包含某r 个元素中的s 个元素;先C 后A 策略,排列kk sk r n sr A C C --;组合sk r n sr C C --.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略处理排列组合综合性问题一般是先选元素,后排列;④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /其中A 为非均匀不编号分组中分法数.如果再有K 组均匀分组应再除以k k A .例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种.若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为m mr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅ ④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1m n C A =21m m -n C …k m )m ...m (m -n 1-k 21C +++例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n rn n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T r rn r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2nn C 最大;II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:附:一般来说b a by ax n ,()(+为常数在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值的办法来求解. ⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有rC 的项r r n rnC b a C -+)(,另一方面在rn b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!. 2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分nn n n n aC a C a C +++ 3322很小,可以忽略不计;类似地,有na a n -≈-1)1(但使用这两个公式时应注意a 的条件,以及对计算精确度的要求.高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:1了解随机事件的发生存在着规律性和随机事件概率的意义.2了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率;3了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4会计算事件在n 次独立重复试验中恰好发生κ次的概率.。
2020届中职数学对口升学复习第十部分《排列组合二项式定理》基础知识点归纳及山西历年真题汇编
n( ( ( 第十部分排列组合二项式定理【知识点 1】两个计数原理1.分类计数原理:完成一件事有 n 类办法,在第 1 类办法中有 m 1 种不同方法,在第 2 类办法中有 m 2 种不同方法...... ,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N=m 1+m 2+...+m n 种不同的方法 .(加法原理)2.分步计数原理:完成一件事需要分为 n 个步骤,做第 1 步有 m 1 种不同方法,做第 2 步有 m 2 种不同的方法 ... 做第 n 步有 m n 种没同的方法,那么完成这件事共有 N=m 1 ⨯ m 2 ⨯ ... ⨯ m n 种不同的方法 .(乘法原理)【知识点 2】排列与排列数1.排列的定义(1)元素:问题中所选取的对象.(2)排列:从 n 个不同元素中,任取 m (m ≤ n ) 个元素,按时一定的顺序排成一列,叫作从 n 个不同元素中取出 m 个元素的一个排列.(3)选排列:如果 m<n ,这样的排列叫作选排列. (4)全排列:如果 m=n ,这样的排列叫作全排列.2.排列数:从 n 个不同元素中取出 m (m ≤ n ) 个元素的所有排列的个数,叫作从n 个不同元素中取出 m 个元素的排列数,记作 A m .【注意】:排列是结果,排列数是排列的个数。
【知识点 3】排列数公式1.选排列计数公式:A m = n g n- 1)g n - 2)g ⋅⋅⋅ g n - m + 1),其中m , n ∈ N *,且m ≤ n (m 个元素相乘) n2.全排列计数公式:A n = n ⨯ (n - 1)⨯ (n - 2)g ⋅⋅⋅ g 3 ⨯ 2 ⨯1 = n !n自然数1~n的连乘积叫作n的阶乘,用n!表示,即A n=n!.n【注意】:①0!=1;②A0=1;A1=n;A n=n!;n n n【知识点4】组合及组合数的定义1.组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合.【注意】:排列与顺序有关,而组合与顺序无关;2.组合数的定义:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫作从n个不同元素中取出m个元素的组合数,用符号C m表示.n【注意】:组合是把取出的元素合并成一组;组合数是所有不同组合的个数,它是一个数.【知识点5】组合数的计数公式与性质1.组合数公式:C m= n A mnA mm=n(n-1)(n-2)⋅⋅⋅(n-m+1)m!(n,m∈N*,且m≤n);C m=nn!m!(n-m)!【注意】:C0=C n=1;C1=n .n n n2.组合数性质:(1)C m=C n-m(2)C m=C m+C m-1.n n n+1n n【知识点6】二项式定理1.二项式定理:一般地,(a+b)n=C0a n b0+C1a n-1b1+⋅⋅⋅+C m a n-m b m+⋅⋅⋅+C n a0b n(n∈N*)n n n n这个公式所表示的规律叫作二项式定理.右边的多项式叫作(a+b)n的二项展开式,其中Cm(m=0,1,2,⋅⋅⋅,n)叫作二项式系n数;式中的Cm a n-m b m 叫作二项式的通项.n2.二项展开式的通项公式:Tm+1 3.二项展开式的性质:(1)展开式共有n+1项;=C m a n-m b m.(二项展开式的第m+1项) n(2)a的指数从n逐渐减到0,b的指数从0逐渐增到n,展开式中的每一项a和b的指数和都为n(3)二项式系数依次为C0,C1,⋅⋅⋅C n,第r项与倒数第r项的系数相等;n n n(4)若二项式的幂指数是偶数2n,那么二项式展开式有(2n+1)项(奇数项),且中间一项的二项式系数最大,如果二项式的幂指数是奇数2n-1,那么展开式有2n项(偶数项),且中间两项的二项式系数相等且最大。
高中数学排列组合与二项式定理知识
高中数学排列组合与二项式定理知识
排列组合与二项式定理是高中数学的一个重要学习内容。
知识点你都掌握了吗?下面是店铺为你整理的高中数学排列组合与二项式定理知识,一起来看看吧。
高中数学排列组合知识
高中数学二项式定理知识
高中数学排列组合与二项式定理解题技巧
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.。
计数原理及二项式定理概念公式总结
计数原理及二项式定理概念公式总结排列组合及二项式定理概念及公式总结1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有N=m 1+m 2+……+m n2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示(2)排列数公式:)1()2)(1(+---=m n n n n A mn或m nA )!(!m n n -=()n m N m n ≤∈*,,nnA =!n =()1231- n n =n(n-1)! 规定 0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且(3)组合数的性质:① m n n m n C C -=.规定:10=n C ;②m n C 1+=m n C +1-m n C . ③0132nn nn n n C C C C ++++= ④n C C n n n ==-11 ⑤1=n n C6.二项式定理及其特例:(1)二项式定理()()*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n110展开式共有n+1项,其中各项的系数{}()n k C kn ,,2,1,0 ∈叫做二项式系数。
高中数学排列组合及二项式定理知识点
高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。
(n-m+1)=n。
注意:①全排列:Ann。
②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。
第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。
第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。
组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。
排列组合二项式定理和概率
补 右图是我国古代的“杨辉三角形”,按其数字
构成规律,图中第八行所有 中应填数字的和
等于( B ). (09年)
1
A. 96 B.128 C. 256 D.312
11 121 13 31
解 n7
146 41 1 5 10 10 5 1
27 128
1 6 15 20 15 6 1
补 求 (x 1 )9 的展开式中 x3 的系数。
★ 3. 排列数公式
n! n (n 1) (n 2) 21
Pnm n (n 1) (n 2) (n m 1)
▽
Pnm
n! (n m)!
特别: Pnn n!
例 P130 1098 720.
补 由 0,1, 2, 9 可组成多少个8位数的电话号码?108.
例 5个男生和2个女生站成一排照相。
(1)共有多少种排法? (2)男生甲必须站在左端或右端,且2个女生必须相邻,
有多少种排法?
(3)男生甲必须站在中间,且2个女生必须相邻,
有多少种排法?
解 (1) P77 7! 5040
(2)
(P63 例2)
先安排甲 P21 P55 2 480
(3)
在第 n 类办法中有 mn种不同的方法。
则完成这件事共有:
m1 m2 mn 种不同的方法。
2. 分步计数原理(乘法原理)
若完成一件事需要分成 n 个步骤。
做第一步有 m1 种不同的方法; 做第二步有 m2 种不同的方法;
做第 n 步有mn 种不同的方法。
则完成这件事共有:
m1 m2 mn 种不同的方法。
(a0 a2 a4 )2 (a1 a3 )2 (2 3)4 (2 3)4
计数原理与概率各考点
计数原理与概率[考情分析] 1.主要考查两个计数原理、排列、组合的简单应用,时常与概率相结合,以选择题、填空题为主.2.二项式定理主要考查通项公式、二项式系数等知识,近几年也与函数、不等式、数列交汇考查.3.概率重点考查古典概型、条件概率的基本应用.考点一排列与组合问题核心提炼解决排列、组合问题的一般过程(1)认真审题,弄清楚要做什么事情;(2)要做的事情是需要分步还是分类,还是分步分类同时进行,确定分多少步及多少类;(3)确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少元素.例1(1)甲、乙、丙、丁四名交通志愿者申请在国庆期间到A,B,C三个路口协助交警值勤,他们申请值勤路口的意向如下表:交通路口 A B C志愿者甲、乙、丙、丁甲、乙、丙丙、丁这4名志愿者的申请被批准,且值勤安排也符合他们的意向,若要求A,B,C三个路口都要有志愿者值勤,则不同的安排方法有()A.14种B.11种C.8种D.5种答案 B解析由题意得,以C路口为分类标准:C路口值勤分得人数情况有2种,两个人或一个人,若C路口值勤分得人数为2,丙、丁在C路口,那么甲、乙只能在A,B路口值勤,此时有两种安排方法.若C路口值勤分得人数为1,丙或丁在C路口,具体情况如下.丙在C路口:A(丁)B(甲乙)C(丙);A(甲丁)B(乙)C(丙);A(乙丁)B(甲)C(丙).丁在C路口:A(甲乙)B(丙)C(丁);A(丙)B(甲乙)C(丁);A(甲丙)B(乙)C(丁);A(乙)B(甲丙)C(丁);A(乙丙)B(甲)C(丁);A(甲)B(乙丙)C(丁).所以一共有2+3+6=11(种)安排方法.(2)(2022·衡阳模拟)2022年2月4日,中国北京第24届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时,创意新颖,惊艳了全球观众,某中学为了弘扬我国二十四节气文化,特制作出“立春”、“惊蛰”、“清明”、“立夏”、“芒种”、“小暑”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“惊蛰”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式有多少种?()A.192 B.240 C.120 D.288答案 A解析由题意得,只考虑“立春”和“惊蛰”时,利用捆绑法得到A22A55=240(种),当“立春”和“惊蛰”相邻,且“清明”与“惊蛰”也相邻时,有2种排法,即“惊蛰”在中间,“立春”“清明”分布两侧,此时再用捆绑法,将三者捆在一起,即2A44=48(种),所以最终满足题意的排法为240-48=192(种).规律方法排列、组合问题的求解方法与技巧(1)合理分类与准确分步;(2)排列、组合混合问题要先选后排;(3)特殊元素优先安排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题除法处理;(7)“小集团”排列问题先整体后局部;(8)正难则反,等价转化.跟踪演练1(1)2021年1月18号,国家航天局探月与航天工程中心表示,中国首辆火星车全球征名活动已经完成了初次评审.评审委员会遴选出弘毅、麒麟、哪吒、赤兔、祝融、求索、风火轮、追梦、天行、星火共10个名称,将其作为中国首辆火星车的命名范围.某同学为了研究这些初选名称的涵义,计划从中选3个名称依次进行分析,其中有1个是祝融,其余2个从剩下的9个名称中随机选取,则祝融不是第3个被分析的情况有()A.144种B.336种C .672种D .1 008种答案 A解析 选取的3个名称中含有祝融的共有C 29种不同的情况.分析选取的3个名称的不同情况有A 33种,其中祝融是第3个被分析的情况有A 22种,故祝融不是第3个被分析的情况有C 29(A 33-A 22)=144(种).(2)(2022·广东联考)现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪馆、国家速滑馆、首钢滑雪大跳台三个场馆参加活动,要求每个场馆都有人去,且这四人都在这三个场馆,则甲和乙都没被安排去首钢滑雪大跳台的种数为( ) A .12 B .14 C .16 D .18 答案 B解析 因为甲和乙都没去首钢滑雪大跳台,则安排方法分两类:若有两个人去首钢滑雪大跳台,则肯定是丙、丁,即甲、乙分别去国家高山滑雪馆与国家速滑馆, 有A 22=2(种);若有一个人去首钢滑雪大跳台,从丙、丁中选,有C 12=2(种),然后剩下的一个人和甲、乙被安排去国家高山滑雪馆与国家速滑馆,有C 23A 22=6(种),则共有2×6=12(种).综上,甲和乙都没被安排去首钢滑雪大跳台的种数为12+2=14.考点二 二项式定理核心提炼1.求二项展开式中特定项或项的系数问题的思路 (1)利用通项公式将T k +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出k . (3)代回通项公式即得所求.2.对于两个因式的积的特定项问题,一般对某个因式用通项公式,再结合因式相乘,分类讨论求解.例2 (1)(2022·新高考全国Ⅰ)⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________(用数字作答). 答案 -28解析 (x +y )8展开式的通项T k +1=C k 8x 8-k y k ,k =0,1,…,7,8.令k =6,得T 6+1=C 68x 2y 6;令k =5,得T 5+1=C 58x 3y 5,所以⎝⎛⎭⎫1-y x (x +y )8的展开式中x 2y 6的系数为C 68-C 58=-28. (2)已知⎝⎛⎭⎫x +ax 4n 的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为________,展开式中的常数项为________. 答案 1 45解析 因为⎝⎛⎭⎫x +ax 4n 的展开式的所有项的二项式系数之和为2n ,且奇数项和偶数项的二项式系数之和相等,所以2n -1=512,解得n =10, 所以展开式中第四项T 4=C 310x 7⎝⎛⎭⎫a x 43, 所以C 310a 3=120,解得a =1,所以⎝⎛⎭⎫x +1x 410的展开式的通项为 T k +1=C k 10x 10-k ⎝⎛⎭⎫1x 4k =C k 10x 10-5k , 令10-5k =0,解得k =2, 所以展开式中的常数项为C 210=45.易错提醒 二项式(a +b )n 的通项公式T k +1=C k n an -k b k (k =0,1,2,…,n ),它表示的是二项式的展开式的第k +1项,而不是第k 项;其中C k n 是二项式展开式的第k +1项的二项式系数,而二项式的展开式的第k +1项的系数是字母幂前的常数,要区分二项式系数与系数. 跟踪演练2 (1)(2022·淄博模拟)若(1-x )8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6等于( ) A .-448 B .-112 C .112 D .448答案 C解析 (1-x )8=(x -1)8=[(1+x )-2]8 =a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,a 6=C 28×(-2)2=112.(2)(多选)已知(1-2x )2 023=a 0+a 1x +a 2x 2+…+a 2 023x 2 023,则( ) A .展开式中各项系数和为1B .展开式中所有项的二项式系数和为22 023C .a 1+a 2+a 3+…+a 2 023=-2D .a 0+a 12+a 222+…+a 2 02322 023=0答案 BCD解析 令x =1得a 0+a 1+…+a 2 023=-1, ∴A 错误;二项式系数和为C 02 023+C 12 023+…+C 2 0232 023=22 023, B 正确;令x =0得a 0=1,∴a 1+a 2+…+a 2 023=-2,∴C 正确;令x =12有a 0+a 12+a 222+…+a 2 02322 023=0,∴D 正确.考点三 概率核心提炼1.古典概型的概率公式 P (A )=事件A 包含的样本点数试验的样本点总数.2.条件概率公式设A ,B 为两个随机事件,且P (A )>0, 则P (B |A )=P (AB )P (A ).3.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ).例3 (1)(2022·新高考全国Ⅰ)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A.16 B.13 C.12 D.23 答案 D解析 从7个整数中随机取2个不同的数,共有C 27=21(种)取法,取得的2个数互质的情况有{2,3},{2,5},{2,7},{3,4},{3,5},{3,7},{3,8},{4,5},{4,7},{5,6},{5,7},{5,8},{6,7},{7,8},共14种,根据古典概型的概率公式,得这2个数互质的概率为1421=23.(2)(多选)(2022·临沂模拟)甲和乙两个箱子中各有质地均匀的9个球,其中甲箱中有4个红球,2个白球,3个黑球,乙箱中有4个红球,3个白球,2个黑球,先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示从甲箱中取出的球是红球、白球、黑球的事件,再从乙箱中随机取出一球,以B 表示取出的球是红球的事件,则( ) A .A 1,A 2,A 3两两互斥 B .P (B |A 2)=25C .P (B )=12D .B 与A 1相互独立 答案 AB解析 A 1,A 2,A 3中任何两个事件都不可能同时发生,因此它们两两互斥,A 正确; P (B |A 2)=P (BA 2)P (A 2)=29×41029=25,B 正确;P (A 1)=49,P (B )=P (A 1)·P (B |A 1)+P (A 2)·P (B |A 2)+P (A 3)·P (B |A 3) =49×510+29×410+39×410=49,C 错误; 又P (A 1B )=49×510=29,P (A 1)P (B )=49×49=1681,∴P (A 1B )≠P (A 1)·P (B )∴A 1与B 不相互独立,D 错误.(3)(2022·益阳调研)甲、乙、丙、丁4名棋手进行象棋比赛,赛程如框图所示,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“胜者i ”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为23,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )A.827B.1627C.3281D.4081 答案 D解析 甲获得冠军,则甲参加的比赛结果有三种情况:1胜3胜6胜;1胜3负5胜6胜;1负4胜5胜6胜.所以甲获得冠军的概率为⎝⎛⎭⎫233+2×⎝⎛⎭⎫233×13=4081. 规律方法 求概率的方法与技巧 (1)古典概型用古典概型概率公式求解. (2)条件概率用条件概率公式及全概率公式求解.(3)根据事件间关系,利用概率的加法、乘法公式及对应事件的概率公式求解.跟踪演练3 (1)某市在文明城市建设中,鼓励市民“读书好,好读书,读好书”.在各阅览室设立茶座,让人们在休闲中阅读有用有益图书.某阅览室为了提高阅读率,对于周末前来阅读的前三名阅读者各赠送一本图书,阅读者从四种不同的书籍中随意挑选一本,则他们有且仅有2名阅读者挑选同一种书的概率为( ) A.13 B.49 C.34 D.916 答案 D解析 三人挑选四种书,每人有4种选法, 共有43=64种方法,恰有2人选同一种书的方法有C 23C 14C 13种,即36种方法,故恰有2人选同一种书的概率P =3664=916.(2)(多选)一次“智力测试”活动,在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,测试时从备选的10道题中随机抽出3题由甲、乙分别作答,至少答对2题者被评为“智答能手”.设甲被评为“智答能手”为事件A ,乙被评为“智答能手”为事件B ,若P (B |A )=P (B ),则下列结论正确的是( ) A .P (A |B )=P (A ) B .P (B |A )=115C .甲、乙至多有一人评为“智答能手”的概率为1645D .甲、乙至少有一人评为“智答能手”的概率为4445答案 ABD解析 由题意,可得P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415,由P (B |A )=P (AB )P (A )=P (B ),所以P (AB )=P (A )P (B ),事件A ,B 相互独立,所以P (A |B )=P (AB )P (B )=P (A )P (B )P (B )=P (A ),故A 正确;P (B |A )=P (B )=1415,由条件概率的性质得P (B |A )=1-P (B |A )=1-1415=115,故B 正确;因为事件A ,B 相互独立,所以A 与B ,A 与B ,A 与B 也都相互独立.甲、乙都被评为“智答能手”的概率P (AB )=P (A )P (B )=23×1415=2845,所以甲、乙至多有一人被评为“智答能手”的概率为1-P (AB )=1-2845=1745,故C 错误;甲、乙都没有被评为“智答能手”的概率P (A B )=P (A )·P (B )=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-1415=13×115=145, 所以甲、乙至少有一人被评为“智答能手”的概率为1-P (A B )=1-145=4445,故D 正确.专题强化练一、单项选择题1.(2022·福州质检)⎝⎛⎭⎫3x -1x 6展开式中的常数项为( ) A .-540 B .-15 C .15 D .135答案 D解析 二项式⎝⎛⎭⎫3x -1x 6展开式的通项公式为 T k +1=C k 6(3x )6-k ·⎝⎛⎭⎫-1x k=(-1)k·36-k C k 6·362k x-,k ≤6,k ∈N ,由6-32k =0,解得k =4,则T 5=(-1)4×32×C 46=135, 所以⎝⎛⎭⎫3x -1x 6展开式中的常数项为135. 2.(2022·荆州联考)某人民医院召开抗疫总结表彰大会,有7名先进个人受到表彰,其中有一对夫妻.现要选3人上台报告事迹,要求夫妻两人中至少有1人报告,若夫妻同时被选,则两人的报告顺序需要相邻,这样不同的报告方案共有( ) A .80种 B .120种 C .130种 D .140种答案 D解析 若夫妻中只选一人,则有C 12C 25A 33=120(种)不同的方案;若夫妻二人全选,且两人报告顺序相邻,则有C 15A 22A 22=20种不同的方案,故总计有140种不同的方案.3.(2022·惠州模拟)(a -x )(2+x )6的展开式中x 5的系数是12,则实数a 的值为( ) A .4 B .5 C .6 D .7 答案 C解析 利用二项式定理展开得(a -x )(2+x )6=(a -x )(C 0626+C 1625x +C 2624x 2+C 3623x 3+C 4622x 4+C 562x 5+C 66x 6), 则x 5的系数为a C 562-C 4622=12,∴a =6.4.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( ) A.114 B.37 C.47 D.34 答案 C解析 从4双不同尺码的鞋子中随机抽取3只的方法为C 38,这3只鞋子中任意两只都不成双,选取的方法为C 34×23, 所以所求概率为P =C 34×23C 38=47. 5.长时间玩手机可能影响视力,据调查,某校学生大约40%的人近视,而该校大约有20%的学生每天玩手机超过1 h ,这些人的近视率约为50%.现从每天玩手机不超过1 h 的学生中任意调查一名学生,则他近视的概率为( ) A.25 B.38 C.58 D.34答案 B解析 令A 1=“玩手机时间超过1 h 的学生”, A 2=“玩手机时间不超过1 h 的学生”, B =“任意调查一人,此人近视”, 则Ω=A 1∪A 2,且A 1,A 2互斥, P (A 1)=0.2,P (A 2)=0.8,P (B |A 1)=0.5, P (B )=0.4, 依题意,P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2) =0.2×0.5+0.8×P (B |A 2)=0.4, 解得P (B |A 2)=38,所以所求的概率为38.6.为响应国家鼓励青年创业的号召,小王开了两家店铺,每个店铺招收了两名员工,若某节假日每位员工休假的概率均为13,且是否休假互不影响,若一家店铺的员工全部休假,而另一家店铺无人休假,则从无人休假的店铺调剂1人到员工全部休假的店铺,使得该店铺能够正常营业,否则该店就停业.则两家店铺该节假日都能正常营业的概率为( ) A.19 B.49 C.59 D.89答案 D解析 设两家店铺不能都正常营业为事件A , 由题意可知有4人休假的概率为⎝⎛⎭⎫134=181, 有3人休假的概率为C 34⎝⎛⎭⎫133⎝⎛⎭⎫231=881,所以两家店铺不能都正常营业的概率为P (A )=181+881=19,所以两家店铺该节假日都能正常营业的概率为1-P (A )=89.7.(2022·锦州模拟)定义:两个正整数a ,b ,若它们除以正整数m 所得的余数相等,则称a ,b 对于模m 同余,记作a =b (mod m ),比如:26=16(mod 10).已知n =C 010+C 110·8+C 210·82+…+C 1010·810,满足n =p (mod 7),则p 可以是( ) A .23 B .31 C .32 D .19答案 A解析 因为n =C 010+C 110·8+C 210·82+…+C 1010·810=(1+8)10=(7+2)10, 也即n =C 010·710+C 110·79·2+…+C 910·7·29+C 1010·210, 故n 除以7的余数即为C 1010·210=1 024除以7的余数,1 024除以7的余数为2,结合选项知23除以7的余数也为2,满足题意,其它选项都不满足题意.8.“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .C 23+C 24+C 25+…+C 210=165B .在第2 022行中第1 011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于第9行的第8个数D .第34行中第15个数与第16个数之比为2∶3答案 C解析 由C m -1n +C m n =C m n +1可得 C 23+C 24+C 25+…+C 210=C 23+C 33+C 24+C 25+…+C 210-1=C 34+C 24+C 25+…+C 210-1 =C 311-1=11×10×93×2×1-1=164,故A 错误; 第2 022行中第1 011个数为C 1 0102 022<C 1 0112 022,故B 错误;C 66+C 67+C 68=C 77+C 67+C 68=C 78+C 68=C 79, 故C 正确;第34行中第15个数与第16个数之比为C 1434∶C 1534=34×33×…×2114×13×…×1:34×33×…×2015×14×13×…×1=15∶20=3∶4,故D 错误.二、多项选择题9.(2022·山东省实验中学诊断)已知(a +b )n 的展开式中第五项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10答案 ABC解析 若展开式中只有第五项的二项式系数最大,则n 2+1=5,解得n =8;若展开式中第四项和第五项的二项式系数最大,则n +32=5,解得n =7;若展开式中第五项和第六项的二项式系数最大,则n +12=5,解得n =9. 10.(2022·湖南师大附中模拟)抛掷一红一绿两枚质地均匀的骰子,用x 表示红色骰子的点数,y 表示绿色骰子的点数,设事件A =“x +y =7”,事件B =“xy 为奇数”,事件C =“x >3”,则下列结论正确的是( )A .A 与B 互斥B .A 与B 对立C .P (B |C )=13D .A 与C 相互独立答案 AD解析 事件A 包含的基本事件为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6种,所以P (A )=66×6=16, 事件B 包含的基本事件为(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9种,则P (B )=96×6=14, 所以A 与B 互斥但不对立,故A 正确,B 错误;事件C 包含的基本事件数为3×6=18,则P (C )=186×6=12, P (BC )=36×6=112, 所以P (B |C )=P (BC )P (C )=16,故C 错误; 因为P (AC )=36×6=112, P (A )·P (C )=16×12=112, 则P (AC )=P (A )·P (C ),所以A 与C 相互独立,故D 正确.11.(2022·襄阳模拟)A ,B ,C ,D ,E 五个人并排站在一起,则下列说法正确的有( )A .若A ,B 两人站在一起,则共有24种排法B .若A ,B 不相邻,则共有72种排法C .若A 在B 左边,则共有60种排法D .若A 不站在最左边,B 不站在最右边,则共有78种排法答案 BCD解析 对于A ,先将A ,B 排列,再看成一个元素,和剩余的3人,一共4个元素进行全排列,由分步乘法计数原理可知,共有A 22A 44=48(种),所以A 不正确;对于B ,先将A ,B 之外的3人全排列,产生4个空,再将A ,B 两元素插空,所以共有A 33A 24=72(种),所以B 正确;对于C,5人全排列,而其中A 在B 的左边和A 在B 的右边是等可能的,所以A 在B 的左边的排法有12A 55=60(种),所以C 正确; 对于D ,对A 分两种情况:一是若A 站在最右边,则剩下的4人全排列有A 44种,另一个是A 不站在最左边也不站在最右边,则A 从中间的3个位置中任选1个,然后B 从除最右边的3个位置中任选1个,最后剩下3人全排列即可,由分类加法计数原理可知,共有A 44+A 13A 13A 33=78(种),所以D 正确.12.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C )B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=12答案 ABD解析 由已知得P (A )=24×24+24×24=12, P (B )=P (C )=24=12, 所以P (A )=P (B )=P (C ),则A 中结论正确;P (AB )=24×24=14, P (AC )=14,P (BC )=14, 所以P (BC )=P (AC )=P (AB ),则B 中结论正确;事件A ,B ,C 不相互独立,故P (ABC )=18错误,即C 中结论错误; P (B |A )=P (AB )P (A )=1412=12,则D 中结论正确. 三、填空题13.(2022·益阳调研)为迎接新年到来,某中学“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱委员会要在已经排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为________.答案 90解析 总共10个节目排顺序,先把老师的节目排好,剩下的8个学生的节目按原来的顺序即可,故共有A 210=90种不同的排法.14.(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.答案 635解析 从正方体的8个顶点中任选4个,取法有C 48=70(种).其中4个点共面有以下两种情况:(1)所取的4个点为正方体同一个面上的4个顶点,如图1,有6种取法;(2)所取的4个点为正方体同一个对角面上的4个顶点,如图2,也有6种取法. 故4个点在同一个平面共有6+6=12(种)情况.所以所取的4个点在同一个平面的概率P =1270=635. 15.(2022·滨州模拟)(x +y -z )6的展开式中xy 2z 3的系数是________.答案 -60解析 依题意xy 2z 3的系数为C 16C 35(-1)3=-60.16.(2022·广州模拟)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,共移动6次,则事件“质点位于-2的位置”的概率为__________.答案 1564解析 由图可知,若想通过6次移动最终停在-2的位置上,则必然需要向右移动2次且向左移动4次,记向右移动一次为R ,向左移动一次为L ,则该题可转化为RRLLLL 六个字母排序的问题,故落在-2上的排法种数为A 66A 22A 44=15,所以移动结果的总数为26=64,所有落在-2上的概率为P =1564.。
排列组合与二项式定理知识点
排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。
排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。
全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。
高中数学排列组合知识讲解
模块九 排列与组合、二项式定理第一部分:排列、组合 一。
计数原理加法计数原理:如果完成一件事情可以分为m 类,每一类的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1+N 2+N 3+…..+N m 种方法。
(又称分类计数原理)乘法计数原理:如果完成一件事情须分为m 步,每一步的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1⨯N 2⨯N 3⨯…..⨯N m 种方法。
(又称分类计数原理) 分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。
正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成. 二。
排列数、组合数的定义①排列数:从n 个元素中取出m 个排成一列(即排入m 个位置),共有mn A 种排法。
A m n =n (n -1)(n -2)…(n -m +1).特别的:!n A nn = ②组合数:从n 个元素中取出m 个形成一个组合,共有mn C 种取法。
C m n =!)!(!m m n n -特别地:1,10==nn n C C组合数的两个性质: (1)C m n =C mn n-; (2)C m n 1+=C m n +C 1-m n. 三。
解决排列、组合问题的四大原则及基本方法1. 特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置.范例甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( ) A.90种 B.89种 C.60种 D.59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C. 评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑. 2.先取后排原则该原则充分体现了mmmn m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ). A.12种 B.24种 C.36种 D.48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.3.正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( ) A.12694C CB.12699C CC.3310094C C -D.3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C.如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B:12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复.评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则. 4.策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.①相邻问题捆绑法(整体法),不相邻问题插空法人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合与二项式定理
B. 24种 D. 36种
解析:因为恰有2人选修课程甲,共有C2 4 6 种结果,所以余下的两个人各有两种选法, 共有2 2 4种结果,根据分步计数原理知共 有6 4 24种结果.
2.(2011 重庆卷) 1 2x 的展开式中x 4的系数是
6
_________ .
r r 解析:展开式的通项为Tr 1 2r C6 x. 4 令r 4得展开式中x 4的系数是24 C6 240.
4 得常数1 1 C8 70; 4
当第一个括号中取2x 2时,则第二个括号必取
5
1 x2
5 项,由通项易知当r 5时,取得常数2 1 C8
112,所以展开式中常数项为 112 70 42.
【思维启迪】本题主要考查二项式定理的通项 公式及分类讨论的思想方法.解答两个因式 积的展开式问题主要有两种途径:
究;
6 近似计算:构造二项式,展开后根据精确度的要
求分析应取前几项,从哪项开始去掉后面的所有项.
拍卖预展 龙威
1.(2 011 全国大纲卷)4位同学每人从甲、乙、丙3 门课程中选修1门,则恰有2人选修课程甲的不同 选法共有 A. 12种 C. 30种
专题三
排列、组合、二项式 定理、概率与统计
1.计数原理 分类计数原理:完成一件事,有n类办法,在第1类办 法中有m1种不同的方法,在第2类办法中有m2种不同 的方法, ,在第n类办法中有mn种不同的方法,那么 完成这件事共有N m1 m2 mn种不同的方法. 分步计数原理:完成一件事,需要n个步骤,做 第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有 N m1 m2 mn种不同的方法.
排列组合二项式定理
3 C 3 C 3 C 3C 1024
4 6 10 3 7 10 2 8 10 9 10
⑶求证: 3 2
n
n 1
(n 2)(n N , n 2)
例、 从6个学校中选出30名学生参加数学竞赛,每 校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不同盒子(盒 子不能空的)有几种放法?这类问题可用“隔板法”处 5 理. C29 4095 解:采用“隔板法” 得:
混合问题,先“组”后“排”
例:对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5 次测试是次品。故有: 3C 1 A4 576 种可能。 C
1.3:二项式定理
奇数项二项式系数和 偶数项二项式系数和: C C C C C C 2
0 n 2 n 4 n 1 n 3 n 5 n n 1
赋值法
x 2 5 1.求: ( ) 的有理项 2 x
4 3 2 ( 2.化简:x 1) 4( x 1) 6( x 1) 4( x 1) 1
A 6(种)
3 3
涂色问题
例3:如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
若用2色、4色、5色 等,结果又怎样呢?
1.3:二项式定理
1、二项定理: 一般地,对于n N*有
高中数学排列组合与二项式定理知识点总结
排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点
排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。
排列与组合的计数原理与二项式定理
排列与组合的计数原理与二项式定理排列与组合是数学中常见的计数问题,它们在各个领域都有广泛的应用。
通过排列与组合的计数原理以及二项式定理,我们可以解决许多与数量有关的问题。
本文将详细介绍排列与组合的计数原理和二项式定理,并探讨它们的应用。
一、排列与组合的计数原理排列是指从一组对象中选取若干个对象按照一定的顺序进行排列的方式。
组合是指从一组对象中选取若干个对象不考虑顺序的方式。
在排列与组合的计数过程中,我们需要明确几个概念:元素个数、选取个数、顺序。
1.1. 排列计数原理排列计数原理适用于需要考虑顺序的情况。
当从n个元素中选取k 个元素进行排列时,排列的总数可以表示为P(n,k)。
其中,P(n,k)的计算公式为:P(n,k) = n! / (n-k)!其中,"!"表示阶乘,即将一个数与它前面所有的正整数相乘。
通过排列计数原理,我们可以计算出一系列排列问题的解答。
1.2. 组合计数原理组合计数原理适用于不考虑顺序的情况。
当从n个元素中选取k个元素进行组合时,组合的总数可以表示为C(n,k)。
其中,C(n,k)的计算公式为:C(n,k) = n! / (k! * (n-k)!)通过组合计数原理,我们可以解决一些需要从一组元素中选取若干个元素进行组合的问题。
二、二项式定理二项式定理是代数学中重要的定理之一。
它可以将任意的幂展开成一系列二项式的和。
二项式的一般形式为(x+y)^n,其中x和y为变量,n为非负整数。
根据二项式定理,展开式可以表示为:(x+y)^n = C(n,0) * x^n * y^0 + C(n,1) * x^(n-1) * y^1 + C(n,2) * x^(n-2) * y^2 + ... + C(n,n) * x^0 * y^n其中,C(n,k)为组合计数原理中的组合数。
二项式定理在代数、概率、统计等领域都有广泛的应用。
通过二项式定理,我们可以计算多项式的展开结果,进而解决一些复杂的代数问题。
高三数学考点-两个计数原理、排列与组合
第十章计数原理、概率、随机变量及其分布1.计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(4)会用二项式定理解决与二项展开式有关的简单问题.2.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.3.概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.(2)了解超几何分布,并能进行简单应用.(3)了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型及二项分布,并能解决一些简单问题.(4)理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.10.1两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理的区别分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法______________,用其中______________都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法______________,只有______________才算做完这件事.4.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.5.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n=n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.6.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n+1=____________+____________.自查自纠1.m1+m2+…+m n2.m1×m2×…×m n3.相互独立任何一种方法互相依存各个步骤都完成4.(1)不重不漏(2)步骤完整相互独立5.(1)一定的顺序(2)所有不同排列A m n(3)n(n-1)(n-2)…(n-m+1)m≤n(4)排列n!n!(n-m)!16.(1)合成一组(2)所有不同组合C m n(3)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!(4)①C n -mn ②C m n C m -1n(2016·郑州模拟)某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为( )A .8B .15C .125D .243 解:由分步计数原理知所求为3×5=15.故选B.某校学生会由高一年级3人,高二年级3人,高三年级4人组成,现要选择不同年级的两名成员参加市里组织的活动,则共有选法( )A .27种B .33种C .36种D .81种解:由两个计数原理知,所求为3×3+3×4+3×4=33(种).故选B.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60 D .72解:由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13种方法,再将剩下的四个数字排列有A 44种方法,则满足条件的五位数有C 13A 44=72个.故选D.(2017河南五校质量监测改编)6名同学排成一排照相,甲不站两端,则不同的站法有________种.解:所求为A 14A 55=480种.故填480.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有____________种.解:按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).故填48.类型一 分类与分步的区别与联系甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1)若借一本书,则有多少种不同的借法? (2)若每科各借一本,则有多少种不同的借法? (3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.【点拨】仔细区分是“分类”还是“分步”是运用两个原理的关键.两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成n 个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的50位观众的来信,甲箱中有30封,乙箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱剩下来信中各确定一名幸运观众,有多少种不同结果?解:①幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众,根据分步计数原理有30×29×20=17 400种结果.②幸运之星在乙箱中抽取,有20×19×30=11 400种结果. 根据分类计数原理共有不同结果17 400+11 400=28 800(种).类型二 排列数与组合数公式(1)解方程3A x 8=4A x -19;(2)解方程C x +1x +3=C x -1x +1+C x x +1+C x -2x +2.解:(1)利用3A x 8=38!(8-x )!,4A x -19=49!(9-x +1)!, 得到3×8!(8-x )!=4×9!(10-x )!.利用(10-x )!=(10-x )(9-x )(8-x )!,将上式化简后得到(10-x )(9-x )=4×3. 再化简得到x 2-19x +78=0.解方程得x 1=6,x 2=13.由于A x 8和A x -19有意义,所以x 满足x ≤8和x -1≤9.于是将x 2=13舍去,原方程的解是x =6.(2)由组合数的性质可得C x -1x +1+C x x +1+C x -2x +2=C 2x +1+C 1x +1+C 4x +2=C 2x +2+C 4x +2, 又C x +1x +3=C 2x +3,且C 2x +3=C 2x +2+C 1x +2, 即C 1x +2+C 2x +2=C 2x +2+C 4x +2.所以C 1x +2=C 4x +2,所以5=x +2,x =3.经检验知x =3符合题意且使得各式有意义,故原方程的解为x =3.【点拨】(1)应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.(2)应用组合数性质C m n +1=C m -1n+C m n 时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.(1)解方程:3A 3x =2A 2x +1+6A 2x ; (2)已知1C m 5-1C m 6=710C m 7,则C m8=____________. 解:(1)由3A 3x =2A 2x +1+6A 2x 得3x (x -1)(x -2)=2(x +1)x +6x (x -1), 由x ≠0整理得3x 2-17x +10=0.解得x =5或23(舍去).即原方程的解为x =5.(2)由已知得m 的取值范围为{m |0≤m ≤5,m ≤Z },m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.故填28.类型三 排列的基本问题5名男生、2名女生站成一排照相: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少种不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:A 22A 55=240(种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生:A 25A 55=2 400(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A 66A 22=1 440(种); (4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:A 55A 26=3 600(种); (5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的:A 57=2 520(种); (6)采用排除法,在七个人的全排列中,去掉女生甲在左端的A 66 个,再去掉女生乙在右端的A 66个,但女生甲在左端同时女生乙在右端的A 55 种排除了两次,要找回来一次.有A 77-2A 66+A 55=3 720(种).【点拨】(1)有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑整体内容排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.(2)解题的基本思路通常有正向思考和逆向思考两种.正向思考时,通过分步、分类设法将问题分解;逆向思考时,从问题的反面入手,然后“去伪存真”.3名女生和5名男生排成一排. (1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法? (5)其中甲不站左端,乙不站右端,有多少种排法?解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生又有A 33种排法,因此共有A 66·A 33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A 55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法. (3)法一(位置分析法) 因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法) 从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法. (4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面各占其中的12,所以符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任意一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).法二(特殊位置法) 先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).法三(间接法) 8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).类型四 组合的基本问题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有1名女生; (2)两队长当选; (3)至少有1名队长当选; (4)至多有2名女生当选; (5)既要有队长,又要有女生当选.解:(1)1名女生,4名男生,故共有C 15·C 48=350(种).(2)将两队长作为一类,其他11个作为一类,故共有C 22·C 311=165(种). (3)至少有1名队长当选含有两类:只有1名队长和2名队长.故共有:C 12·C 411+C 22·C 311=825(种). 或采用间接法:C 513-C 511=825(种).(4)至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:有C412种选法;第二类女队长不当选:有C14·C37+C24·C27+C34·C17+C44种选法.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).【点拨】①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如对(3),先选1名队长,再从剩下的人中选4人得C12·C412≠825,请同学们自己找错因.从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任.解:(1)只要从其余的10人中再选3人即可,有C310=120(种).(2)5个人全部从另外10人中选,总的选法有C510=252(种).(3)直接法,分两类:A,B一人当选,有C12C410=420(种).A,B都不当选,有C510=252(种).所以总的选法有420+252=672(种).间接法:从12人中选5人的选法总数中减去从不含A,B的10人中选3人(即A,B都当选)的选法总数,得到总的选法有C512-C310=672(种).(4)直接法,分四步:选2名女生,有C25C37=10×35=350(种);选3名女生,有C35C27=210(种);选4名女生,有C45C17=35(种);选5名女生,有C55=1(种).所以总的选法有350+210+35+1=596(种).间接法:从12人中选5人的选法总数中减去不选女生与只选一名女生的选法数之和,即满足条件的选法有C512-(C57+C15C47)=596(种).(5)分三步:选1男1女分别担任体育委员、文娱委员的方法有C17C15=35(种);再选出2男1女,补足5人的方法有C26C14=60(种);最后为第二步选出的3人分派工作,有A33=6(种)方法.所以总的选法有35×60×6=12 600(种).类型五分堆与分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本. 解:(1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法. 故共有C 16C 25C 33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种). (3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种). (5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种). (7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置堆数的阶乘.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再分配;②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.(1)6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有____________种不同的分派方法.解:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.故填90.(2)(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有____________种.解:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组分到3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.故填36.(3)(2015·江西模拟改编)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有____________种不同的分法.解:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.6名教师分组共有C 16C 25C 33=60种取法.再把这3组教师分配到3所中学,有A 33=6种分法, 因此共有60×6=360种不同的分法.故填360.类型六 数字排列问题用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? 解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,千位从1,3,4,5中选定一个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个; 第三类:4在个位时,与第二类同理,也有A 14·A 24个. 由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2)先排0,2,4,再让1,3,5插空,总的排法共A 33·A 34=144(种),其中0在排头,将1,3,5插在后三个空的排法共A 22·A 33=12(种),此时构不成六位数, 故总的六位数的个数为A 33·A 34-A 22·A 33=144-12=132(种). 【点拨】本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.(2015·山西模拟改编)用五个数字0,1,2,3,4组成没有重复数字的自然数,问: (1)四位数有几个?(2)比3 000大的偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96个.(2)比3 000大的必是四位数或五位数. (Ⅰ)若是四位数,则首位数字必是3或4.①若4在首位,则个位数字必是0或2,有C 12A 23个数, ②若3在首位,则个位数字必是0或2或4,有C 13A 23个数,所以比3 000大的四位偶数有C12A23+C13A23=30个.(Ⅱ)若是五位数,则首位数字不能是0,个位数字必是0或2或4,①若0在个位,则有A44个;②若0不在个位,则有C12C13A33个数,所以比3 000大的五位偶数有A44+C12C13A33=60个.故比3 000大的偶数共有30+60=90个.1.解答计数应用问题的总体思路根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了,此外,还要掌握一些非常规计数方法,如:(1)枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;(2)转换法:转换问题的角度或转换成其他已知问题;(3)间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.2.排列与组合的区别与联系排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列问题的基本思路是“先选,后排”.3.解排列、组合题的基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.(3)复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.(4)相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.(5)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.(6)相同元素隔板法:将n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法,等价于种放法.这是针对相同元素的将n个相同小球串成一串,从间隙里选m-1个结点,剪截成m段,共有C m-1n-1组合问题的一种方法.(7)定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.4.解组合问题时应注意(1)在解组合应用题时,常会遇到“至少”“至多”“含”等词,要仔细审题,理解其含义.(2)关于几何图形的组合题目,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者则即使两组元素个数相同,但因元素不同,仍然是可区分的.对于这类问题必须先分组后排列,若平均分m 组,则分法=取法m !.1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65 C.5×6×5×4×3×22D .6×5×4×3×2解:因为每位同学均有5种讲座可供选择,所以6位同学共有5×5×5×5×5×5=56种选法.故选A.2.A 32n =10A 3n ,n =( )A .1B .8C .9D .10解:原式等价于2n (2n -1)(2n -2)=10n (n -1)(n -2),n >3且n ∈N *,整理得n =8.故选B.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种解:从中选出2名男医生的选法有C 26=15种,从中选出1名女医生的选法有C 15=5种,所以不同的选法共有15×5=75种,故选C.4.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有C 24种方法,然后进行全排列A 33即可,由乘法原理,不同的安排方式共有C 24×A 33=36种方法.故选D.5.(2016·郑州二模)某校开设A 类选修课2门;B 类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有( )A .3种B .6种C .9种D .18种解:可分以下两种情况:①A 类选修课选1门,B 类选修课选2门,有C 12C 23种不同选法;②A 类选修课选2门,B 类选修课选1门,有C 22C 13种不同选法.所以根据分类加法计数原理知不同的选法共有:C 12C 23+C 22C 13=6+3=9(种).故选C.6.(2017·江西新余第一中学调研)西部某县将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( ) A .36种 B .68种 C .104种 D .110种解:分组的方案有3、4和2、5两类,第一类有(C 37-1)A 22=68(种);第二类有(C 27-C 23)A 22=36(种),所以共有68+36=104种不同的方案.故选C.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解:本题分两类:一类是一个数字是偶数,三个数字是奇数的四位数有C 14C 35A 44=960(个),二类是四个数字都是奇数的四位数有A 45=120(个),所以共有1 080个.故填1 080.8.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)解:第一步,选出4人,由于至少1名女生,故有C 48-C 46=55种不同的选法;第二步,从4人中选出队长,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列,组合,二项式定理一.两个基本计数原理㈠分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +++= 21种不同的方法.㈡分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有n m m m N ⨯⨯⨯= 21种不同的方法.㈢分类计数原理和分步计数原理的联系与区别:两个原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题.1.它们的共同点都是把一个事件分成若干个分事件来进行计算.2.只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步.利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步.★乘法原理:可.以有..重复..元素..的排列(“邮筒投信”问题) ★从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数为m·m·… m = m n ...1例将n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法?(解:n m 种).2例有5封不同的信,投入3个不同的信箱中,那么不同的投信方法总数为多少?(解:53种)三.排列与排列数(1)排列的概念:从n 个不同元素中,任取)(n m m ≤个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出)(n m m ≤个元素的一个排列.(2)排列数的定义:从n 个不同元素中,任取)(n m m ≤个元素的所有排列的个数叫做从n 个不同元素中取出)(n m m ≤个元素的排列数。
排列数用符号m n A 表示.(3)排列数公式()!(1)(2)(1)!m n n A n n n n m n m =---+=-(n m N m n ≤∈+,,) (4)全排列数公式!1.2.3)...2).(1.(n n n n A m n =--=(叫做n 的阶乘)规定:1)1!0=注意:1)!)!1(!n n n n -+=⋅ 2)111--++=⋅+=m n m n m n m m m n m n mA A CA A A 3)11--=m n m n nA A☆.含有可重元素......的排列问题: 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素k a a a ...,21 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n 例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n . 四.组合与组合数(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出)(n m m ≤个元素的一个组合.(2)组合数的定义:从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出)(n m m ≤个元素的组合数.组合数用符号mn C 表示.(3)组合数公式()(1)(2)(1)!!!!m mn n m m A n n n n m n C A m m n m ---+===-(n m N m n ≤∈+,,) 特别地1)10==nn n C C(4)组合数的性质:①,m n m n n C C -= ②11m m m n n n C C C -+=+有关是排列,如果与顺序无关即是组合.①解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.②要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数及组合数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.2.四字口诀:求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”3.对组合数性质的解释:①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,是一样多.就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有m n m n m n C C C 11+-=+.③常用的证明组合等式方法i.裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii.导数法; iii.数学归纳; iv.倒序求和法.v.递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi.构造二项式. 如:n n n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n nn n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= ④几个常用组合数公式n n n n n n C C C 2210=+++1121...++++++=+++m n m m n m m m m m m m C C C C C五.解决排列及组合问题的常见方法:另见资料★六.二项式定理及其应用:㈠二项式定理:011()n n n r n r r n n n n n n a b C a C ab C a b C b --+=+++++及其展开式叫做二项式定理。
其第1r +项为1r n r r r n T C a b -+=,其中(0,1,2,)r n C r n =叫做第1r +项的二项式系数.㈡二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .1.展开式具有以下特点:①项数:共有1+n 项;②系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③每一项的次数是一样的,即为n 次,展开式依a 的降幂排列,b 的升幂排列展开.2.二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T r r n r n r ∈≤≤=-+. 3.二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I.当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II.当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n n n n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小.........的项..时均可直接根据性质二求解.当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.4.如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为rq p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!. 5.二项式定理实质是公式222()2a b a ab b +=++、33223()33a b a a b ab b +=+++等的推广,它揭示了二项式的n 次幂的展开式在项数、系数、次数等方面的联系,特别是通项公式即展开式第1r +项1r n r r r n T C a b -+=,学习时注意其结构特征及,a b 的指数,n r 间的内在联系.因通项公式中含有a r+1、b、n、r、T 五个元素,故只需知其中的四个元素,可以求第五个元素. 6.对一般的系数和问题,可在二项式定理中令b x =,则二项式定理转化成函数()()n f x a x =+2012n n a a x a x a x =++++的形式,展开式的各项系数和便化归为求函数值的问题, 1)其各项系数和n a a a a ++++ (210)为(1)f , 2)奇数项系数和为(1)(1)2f f +-, 3)偶数项系数和为(1)(1)2f f --; 4)对于整除或求余数(余式)问题, 常需灵活配凑变形成利于问题解决的二项式的形式;5)对于组合数的求和或简单组合恒等式的证明问题, 应灵活运用构造法、赋值法、逆用二项展开式转化, 有时可能对n 的奇偶性讨论.㈢应用二项式定理对近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分n n n n n a C a C a C +++ 3322很小,可以忽略不计。