Phase structure and microwave dielectric properties of Zr(Zn1_3Nb2_3)(x)Ti2-xO6 ceramics
2021考研华中科技大学901半导体物理真题完美回忆版
2021考研华中科技大学901半导体物理真题完美回忆版华中科技大学2021考研901半导体物理真题一.名词解释4*5’1.共计化运动2.自旋半导体3半导体的霍尔效应4.半导体的塞贝克效应二.填空题10题每题两觑每空一分(都就是书上原话,但两个觑就是半导体器件的科学知识)1.回旋共振一般是在(低温)下进行,回旋频率等于(共振频率)。
2.硅锗就是(金刚石)型晶格结构,砷化镓就是(闪锌矿)型晶格结构3.杂质分为间隙式和(替位)式。
缺陷分为(点)缺陷,线缺陷,面缺陷4.散射非为(电离杂质散射)和(晶格振动散射)。
5.(迁移率)就是载流子(电子和空穴)在单位电场促进作用下的平均值漂移速度,(扩散系数)就是沿蔓延方向,在单位时间每单位浓度梯度的条件下,横向通过单位面积所蔓延某物质的质量或摩尔数。
6.异质结通过(导电类型)的不同分为同型异质结和异型异质结,又通过()分为ⅰ型和ⅱ型。
---(第二个空课本上没有,我也不知道填什么)7.频率对pn结性能存有非常大影响是因为pn砂藓(结电容),其中又分成(势垒电容)和扩散电容。
8.肖特基势垒二极管与pn结相比有更(大)的js,与更(低)的正向导通电压。
9.单异质结激光器有更()的禁带宽度,和更()的折射率。
---(这个真不会)10.mos型场效应管不需加电压就能形成沟道的是()型,需要加偏置电压才能形成沟道的是()型。
(这是半导体器件物理里面的知识,应该填增强型和耗尽型)三.作图题5*10’1.画出绝缘体,半导体,导体能带图,并作简要说明。
2.图画出来n型硅半导体电阻率与温度关系曲线,谢泽生详细表明。
3.金半接触的肖特基模型中n型阻挡层的形成条件是什么,画出其平衡能带图。
4.画出隧道pn结的伏安特性曲线,说明其负阻的原因。
5.图画出来p型半导体在理想mis结构下,少子反型状态能带图与电荷分布。
四.简答题3*10’1.表述无机中心与陷阱中心的联系与区别,详尽表明。
2.详尽表明pn结雪崩打穿与隧道打穿的打穿机理。
电介质物理与微波介质陶瓷的研究进展
电介质物理与微波介质陶瓷的研究进展Research Progress of Dielectric Physics and Microwave Dielectric Ceramics孙赫(天津大学,天津300072)Sun He(Tianjin University,Tianjin300072)摘要:介质陶瓷作为新兴的微波材料在应用中具有广阔的前景。
在这篇综述中探究了介质陶瓷结构的高质量因数和低热稳定介电常数。
在大量现有研究的基础上,分析电介质物理与微波介质陶瓷应用现状,对其结构特性进行了全面总结,微波介质陶瓷材料在未来应用中适合作为具有低损耗和可调介电常数的有效微波电介质。
关键词:微波介质陶瓷;电介质物理;介电常数;研究进展中图分类号:TQ174.75;TM28文献标识码:A文章编号:1003-0107(2021)04-0001-04Abstract:As a new microwave material,dielectric ceramics have broad prospects in application.In this review, the high quality factor and low thermal stability of the dielectric ceramic structure are explored.On the basis ofa large number of existing studies,the application status of dielectric physics and microwave dielectric ceramicsis analyzed,and its structural characteristics are comprehensively summarized.Microwave dielectric ceramic materials are suitable as effective microwaves dielectric with low loss and adjustable dielectric constant in future applications.Key words:microwave dielectric ceramics;dielectric physics;dielectric constant;research progressCLC number:TQ174.75;TM28Document code:A Article ID:1003-0107(2021)04-0001-040引言介质陶瓷即具有晶体化学性质、低介电损耗水平、并且在机械性能方面相对抗温度变化[1]。
十字形-维铁磁纳米结构中自旋波的动力学研究
十字形-维铁磁纳米结构中自旋波的动力学研究
自旋波是一种在铁磁材料中传播的磁激发,具有离散的能量和动量。
十字形-维铁磁纳米结构是一种具有十字形交叉结构的纳米磁体,它具有特殊的磁学行为和应用潜力。
在十字形-维铁磁纳米结构中研究自旋波的动力学可以通过多种实验和模拟方法来实现。
其中,动态磁力显微镜(MFM)是一种常用的实验手段,它可以通过在样品表面扫描探测自旋波的传播和耦合行为。
此外,通过谐振磁力光谱(FMR)和时间分辨磁光光谱(TRMOKE)等技术,也可以对自旋波的动力学特性进行研究。
在模拟方面,可以使用自旋动力学模拟方法,如蒙特卡洛法和微观动力学法等,来研究自旋波的动力学行为。
这些方法可以考虑晶格结构、相互作用强度和外部磁场等因素对自旋波的影响。
通过这些模拟方法,可以研究自旋波的传播速度、解析度和耦合行为等重要的动力学特性。
陈徐博士Carbon发表关于石墨烯太赫兹超材料器件的最新研究成果
陈徐博士Carbon发表关于石墨烯太赫兹超材料器件
的最新研究成果
近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员范文慧课题组,在太赫兹超材料功能器件方面的最新研究成果,以Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing为题,在线发表在Carbon上,论文第一作者为博士研究生陈徐。
论文提出并研究了一种利用石墨烯构建的三维太赫兹超材料结构,通过与太赫兹波的相互作用,可以实现多个等离子体共振模式激发;论文首次提出将这种具有多个等离子体共振模式的三维超材料结构应用于太赫兹传感,具有很高的传感灵敏度,可实现多频段太赫兹波超灵敏主动传感和多频带完美吸收功能,为太赫兹传感研究提供了一种创新方法。
太赫兹波主要指频率在0.1THz~10THz的电磁波,位于红外波与微波之间,处于宏观电子学与微观
光子学的过渡区域,具有很多独特特性,例如光子能量低、穿透性强、频谱覆盖有机分子和生物大分子的分子振动和转动能级等,有助于开发全新的光谱分析和无损检测技术,实现在材料特性检测、微电子测试、医学诊断、环境监控、化工和生物识别、军事国防等方面的应用。
然而,自然界的常规材料很难在太赫兹频段产生有效的电磁响应,在。
基于纳米冷阴极的新型微波器件研制及其器件物理研究
基于纳米冷阴极的新型微波器件研制及其
器件物理研究
基于纳米冷阴极的新型微波器件研制及其器件物理研究是一个具有重要意义的课题。
纳米冷阴极作为一种重要的微波发射材料,具有发射功率高、工作频率宽、稳定性好等优点,在微波电子学领域有着广泛的应用前景。
该项研究涉及到多个方面的内容:
1. 设备与工艺研发:需要开发新型的纳米制造设备和精密加工工艺,确保阴极材料的高质量制备和尺寸控制。
这可能包括使用电子束蒸发、分子束外延、脉冲激光沉积等纳米级薄膜生长技术。
2. 阴极结构设计:通过对冷阴极的结构进行优化设计,提高其发射效率和稳定性。
这可能涉及到的内容包括金属氧化物半导体多层膜结构、表面镀层、量子效应等。
3. 微波特性测试:对所研制的微波器件进行性能测试,评估其在不同工作条件下的稳定性和可靠性。
这可能需要建立精确的微波测量系统和模拟软件,以预测和修正实际应用中的性能表现。
4. 器件物理研究:通过理论和实验手段,深入研究冷阴极的工作原理和机制,理解影响其性能的关键因素。
这可能涉及到量子隧穿、辐射复合、热电效应等领域内的知识。
5. 系统集成与应用探索:将纳米冷阴极与其他关键组件(如微波谐振器、功率放大器)进行集成,开发出高性能的微波器件,并探索其在通信、雷达、医疗诊断等领域的潜在应用。
总的来说,这项研究不仅有助于推动微波电子学的技术创新,也为其他相关领域提供了新的解决方案。
十字形-维铁磁纳米结构中自旋波的动力学研究
十字形-维铁磁纳米结构中自旋波的动力学研究
十字形-维铁磁纳米结构是近年来研究的热点之一,具有很好的应用
前景。
其中,自旋波的动力学行为是重要的研究内容之一。
首先,需要说明的是,自旋波是产生于铁磁性材料中的一种磁性激发,表示一种名为磁偏振量的矢量场的小幅振荡。
自旋波是一种具有波动性质
的自旋集体激发模式,能够在铁磁性材料中传递和传输磁矩。
对于十字形-维铁磁纳米结构,其自旋波的动力学行为与其他铁磁性
材料基本相同,但由于十字形-维铁磁纳米结构的几何形状不同,其自旋
波的传播和耗散行为则表现出明显的特征。
近几年的研究表明,十字形-维铁磁纳米结构中的自旋波具有非常低
的耗散率和非常高的波矢,因此可以用于高速磁信息传输等应用领域。
然而,由于其结构复杂性,目前对于自旋波在十字形-维铁磁纳米结构中的
行为和特性,还需要进一步的理论和实验研究。
博士考试大纲
华中科技大学博士研究生入学考试
《微纳制造技术》考试大纲
一、考试性质及对象
本考试是为电子封装技术专业招收博士生而设置,其评价标准是高等学校硕士毕业生能达到的及格或及格以上水平,考试对象为参加博士研究生入学考试的具有硕士学位的学生或具有同等学力的在职人员。
二、考试范围
应考范围:微电子制造科学原理与工程技术,集成电路制造所涉及的基本单项工艺,包括光刻、等离子体和反应离子刻蚀、离子注入、扩散、氧化、蒸发、气相外延生长、溅射和化学气相淀积,以及工艺集成与集成电路制造等。
三、评价目标
考查考生了解和掌握微纳制造的物理和化学原理、制造工艺与集成等。
四、考查要点
1.微纳制造概况
2.衬底
3.扩散
4.热氧化
5.离子注入
6.快速热处理
7.光学光刻
8.非光学光刻技术
9.真空科学与等离子体
10.物理淀积:蒸发和溅射
11.化学气相淀积
12.外延生长
13.工艺集成
14.集成电路制造。
物质介电特性对微波加热影响研究进展
第49卷第9期 当 代 化 工 Vol.49,No.9 2020年9月 Contemporary Chemical Industry September,2020基金项目: 中国石油化工集团公司科技项目,项目号:141903。
收稿日期: 2020-07-21物质介电特性对微波加热影响研究进展吴斯侃,宋永一,王鑫,张彪,赵丽萍,王博(中国石油化工股份有限公司 大连石油化工研究院,大连 116041)摘 要:微波作为一种重要的快速加热手段,近年来在化工行业领域得到广泛重视。
由于微波加热原理有别于传统加热具有特殊性,因此探究其影响因素对于改进微波加热工艺意义重大。
介电特性是分子中束缚电荷对外加电场的响应特性,对于微波加热影响十分关键。
纵观物质介电特性对微波加热影响的相关研究,分别从含水量、堆积密度等物性参数角度出发,探索并总结物质介电特性影响微波加热的核心关键点。
最后列举目前国内外基于介电特性所优化的微波加热工艺构想,为今后该技术在面向工业化应用的道路上拓宽新思路。
关 键 词:微波;热解;介电特性;含水量;堆积密度;优化中图分类号:TM 25 文献标识码: A 文章编号: 1671-0460(2020)09-1987-05Research Progress in Influence of Dielectric Propertiesof Materials on Microwave HeatingWU Si-kan, SONG Yong-yi, WANG Xin, ZHANG Biao, ZHAO Li-ping, WANG Bo(Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian 116041, China)Abstract : Microwave, as an important method of flash heating, has received extensive attention in the field of chemical industry in recent years. Because the principle of microwave heating is different from that of conventional heating, it is significant to explore its affecting factors to improve the heating process. Dielectric properties are the response characteristics of the bound charge to the applied electric field in the molecule. In this paper, the research on the influence of dielectric properties on microwave heating was summarized, and the key points from physical parameters were determined,such as moisture content and bulk density. Finally, optimization ideas of microwave heating based on dielectric properties was listed, which would broaden the way of industrial application in the future. Key words : Microwave; Pyrolysis; Dielectric properties; Moisture content; Bulk density; Optimization微波加热是一种可利用的高效清洁加热技术,由于其加热原理[1]不同于传统热传导,具有高效、快速、选择性强等特点,因此广泛应用于人们的生产生活中[2-4]。
二维wse2范德华异质结界面载流子调控及光电器件构筑
二维wse2范德华异质结界面载流子调控及光电器件构筑二维材料作为一种新型材料,在光电器件领域具有广泛的应用前景。
其中,二维WSe2作为一种典型的过渡金属二硫化物,具有优异的光电性能,被广泛用于光电器件的构筑中。
而在二维WSe2的构筑过程中,利用范德华异质结可以调控载流子的输运行为,进而优化器件性能。
本文将探讨二维WSe2范德华异质结界面载流子调控及光电器件构筑的相关内容。
首先,范德华异质结界面的构筑对于二维WSe2器件性能的影响至关重要。
范德华异质结界面可以有效调控二维材料的电荷转移和光电性能,通过异质结的形成,可以形成电子-空穴对的分离和集中,从而增强载流子的迁移性能。
此外,范德华异质结还可以有效调控二维材料的能带结构,进一步改善器件的光电性能。
因此,在构筑二维WSe2光电器件时,合理设计范德华异质结界面是至关重要的。
其次,范德华异质结界面的调控对于载流子的输运行为具有重要意义。
二维WSe2的电荷载流子主要为电子和空穴,而范德华异质结的形成可以有效调控电子和空穴的输运方向和速率。
通过调控异质结的形貌和结构,可以实现载流子的选择性传输,从而提高器件的响应速度和灵敏度。
因此,在二维WSe2器件的构筑过程中,范德华异质结界面的调控对于提高器件的性能至关重要。
最后,二维WSe2光电器件的构筑需要综合考虑载流子的输运行为和光电性能。
在构筑器件的过程中,需要通过合理设计范德华异质结界面,实现载流子的有效调控,从而优化器件的性能。
此外,还需要充分利用二维WSe2材料的优异光电性能,结合范德华异质结的调控,构筑高性能的光电器件。
通过综合考虑二维WSe2的载流子调控和光电性能,可以实现光电器件的高性能构筑。
综上所述,二维WSe2范德华异质结界面载流子调控及光电器件构筑是一个具有重要意义的研究课题。
通过合理设计范德华异质结界面,可以有效调控二维WSe2的载流子输运行为,优化器件的性能。
在未来的研究中,需要进一步探索范德华异质结的调控机制,提高器件的性能和稳定性,推动二维材料在光电器件领域的应用。
二维材料异质结热电器件及其制备方法
一、引言1.1 二维材料异质结热电器件的概念和意义1.2 本文所涉及的二维材料和热电效应基础知识二、二维材料异质结热电器件的研究现状2.1 传统热电材料的挑战和限制2.2 二维材料在热电领域的兴起2.3 二维材料异质结在热电器件中的应用前景三、二维材料异质结热电器件的设计与制备方法3.1 二维材料异质结热电器件的设计原则3.2 制备方法一:化学气相沉积(CVD)3.3 制备方法二:机械剥离法3.4 制备方法三:原子层沉积法(ALD)四、二维材料异质结热电器件的性能优化与调控4.1 优化异质结界面的工程设计4.2 杂质控制与缺陷工程4.3 界面调控与界面工程五、结论与展望5.1 二维材料异质结热电器件的发展前景5.2 面临的挑战与需进一步研究的方向随着现代科技的高速发展,人们对新一代高效、环保的能源转换技术和器件的需求日益迫切。
热电材料及其应用是当前能源科学和技术领域的研究热点之一,而二维材料异质结热电器件的研究则成为了各国科研人员争相投入研究的领域。
1.1 二维材料异质结热电器件的概念和意义二维材料是指厚度仅为原子层或分子层厚度的材料,具有独特的电子结构和优异的物理、化学性质。
而二维材料异质结热电器件即将这些优异的特性与热电效应相结合,实现能量的直接转换,具有巨大的应用潜力。
将二维材料的热电效应应用于发电系统中,可以有效利用废热资源,提高能源利用率。
研究二维材料异质结热电器件具有重要的科学意义和应用价值。
1.2 本文所涉及的二维材料和热电效应基础知识本文所涉及的二维材料包括石墨烯、硫化钼等常见的二维材料,以及它们的异质结组合。
本文还会涉及一些热电效应的基础知识,如Seebeck效应、Peltier效应等。
2.1 传统热电材料的挑战和限制传统热电材料往往存在着热导率高、电导率低的矛盾,限制了其整体的热电性能。
寻求新型热电材料材料成为了当前研究的重点。
2.2 二维材料在热电领域的兴起二维材料具有优异的电子输运性能和热导率,同时又具有较大的柔韧性和表面积,这使得其在热电领域显示出了巨大的潜力。
《2024年单层α-GeTe金属—氧化物—半导体场效应晶体管电子输运性质的研究》范文
《单层α-GeTe金属—氧化物—半导体场效应晶体管电子输运性质的研究》篇一单层α-GeTe金属-氧化物-半导体场效应晶体管电子输运性质的研究一、引言随着纳米科技和微电子技术的快速发展,场效应晶体管(FETs)在电子器件领域的应用日益广泛。
单层α-GeTe作为一种新型的二维材料,因其具有优异的电学和光电性能,成为科研工作者研究的热点。
本研究主要关注单层α-GeTe金属-氧化物-半导体(MOS)场效应晶体管的电子输运性质,旨在揭示其电子传输机制和性能特点,为开发高性能的电子器件提供理论支持。
二、单层α-GeTe材料概述单层α-GeTe是一种具有独特结构的二维材料,其层状结构使得电子在传输过程中受到的散射较小,具有较高的载流子迁移率。
此外,单层α-GeTe还具有较高的电子亲和能和较大的能隙,使得其在光电器件和电子器件中具有潜在的应用价值。
三、实验方法与模型构建本研究采用第一性原理计算方法和基于密度泛函理论(DFT)的模拟方法,构建了单层α-GeTe金属-氧化物-半导体场效应晶体管的模型。
通过优化晶体管的结构参数和电子能带结构,分析其电子输运性质。
四、电子输运性质分析1. 载流子传输:在单层α-GeTe MOS FET中,载流子主要通过半导体层进行传输。
由于材料的高迁移率和较小的散射,使得载流子在传输过程中具有较高的速度和较低的能量损失。
2. 栅极调控:通过施加栅极电压,可以有效地调控半导体层的电导率。
当栅极电压增大时,半导体层中的载流子密度增加,从而提高晶体管的导电性能。
3. 界面效应:金属与氧化物之间的界面性质对电子输运具有重要影响。
界面的能级匹配和散射程度直接影响载流子的传输效率和速度。
因此,优化界面性质是提高单层α-GeTe MOS FET性能的关键。
4. 温度依赖性:随着温度的升高,晶格振动增强,导致载流子散射增加,从而影响电子输运性能。
因此,研究温度对单层α-GeTe MOS FET电子输运性质的影响具有重要意义。
细胞膜仿生铁-硅纳米颗粒用于增强声动力癌症治疗
细胞膜仿生铁-硅纳米颗粒用于增强声动力癌症治疗摘要:近年来,癌症治疗已经成为许多研究人员所关注的焦点。
科学家们一直在寻找新的治疗方法,以期提高癌症治疗的效果。
细胞膜仿生铁-硅纳米颗粒作为一种新型的治疗方法,受到了众多研究人员的关注。
本文旨在探寻细胞膜仿生铁-硅纳米颗粒的治疗机制及其在增强声动力癌症治疗中的应用。
关键词:细胞膜仿生铁-硅纳米颗粒、癌症治疗、声动力治疗、治疗机制、临床应用随着科技的不断发展,人们对癌症治疗效果的期望也越来越高。
声动力治疗作为一种新型的癌症治疗方法,其利用声波和化疗药物合作,使药物在细胞内得以快速渗透和吸收。
而细胞膜仿生铁-硅纳米颗粒则成为了这项技术的重要支撑。
细胞膜仿生铁-硅纳米颗粒作为一种新型的药物载体,其表面可覆盖人体细胞的膜,从而在治疗过程中模拟人体自然状态,与细胞表面形成较强的黏附力,能够将药物高效稳定地释放在细胞内,提高药物在体内的生物利用度,加强对癌细胞的打击效果。
此外,细胞膜仿生铁-硅纳米颗粒具有高度的生物相容性和生物降解性,可以降低药物在人体内的副作用,对治疗患者的健康和安全具有极大的帮助。
而细胞膜仿生铁-硅纳米颗粒的临床应用也在不断地拓展。
通过声动力治疗手段,将细胞膜仿生铁-硅纳米颗粒与肿瘤靶向治疗相结合,可以在药物的作用下,直接杀死癌细胞。
同时,在治疗中可以根据患者的情况进行调整,减少对患者的副作用,提高治疗效果。
细胞膜仿生铁-硅纳米颗粒的成熟与发展,为声动力癌症治疗带来了希望。
继续研究和探索这一新型药物载体的性质和特征,对于提高癌症治疗效果、降低药物副作用有着非常重要的意义。
总之,细胞膜仿生铁-硅纳米颗粒以其独特的优势,在癌症治疗领域引起了广泛的关注。
在未来的研究中,我们希望能够通过不断地探索和创新,将其最大限度地应用到临床治疗中,为患者带来更多的福音。
细胞膜仿生铁-硅纳米颗粒作为一种新型的药物载体,在癌症治疗领域具有广阔的应用前景。
其主要具有以下优势:1. 高效稳定的药物释放能力:细胞膜仿生铁-硅纳米颗粒表面可覆盖人体细胞的膜,与细胞表面形成较强的黏附力,从而可以将药物高效稳定地释放在细胞内,提高药物在体内的生物利用度,加强对癌细胞的打击效果。
集成惯性聚焦结构的介电泳微流控芯片的粒子连续分离
集成惯性聚焦结构的介电泳微流控芯片的粒子连续分离曾一笑;方明;樊磊;吴菲;谭秋林;孙东【摘要】A dielectrophoresis microfluidic chip with inertial focusing structure was designed and fabricated to realize the continuous separation of particles with different dielectric properties. The dielectrophoresis microfluidic chip was fabricated by MEMS:a pair of trapezoidal structures is provided at the inlet side walls of the channels to allow the passing particles to be focused by inertial lift forces on either side of the channel. At the bottom of the channel,a set of tilted interdigitated electrodes with an included angle of 90 ° were etched to produce a non-uniform electric field. By using the force of the dielectrophoretic force and the fluid drag force,the different particles on both sides of the channel are deflected into different channels at different angles so as to realize the separation. Saccharo-myces cells and polystyrene beads were used as experimental samples. The effects of flow rate and AC voltage on the separation were analyzed. The optimal conditions for the separation of the two were determined and the separation was carried out. Experimental results show that the yeast cell is discharged along the channel center at the angle be-tween the electrode and the electrode. Polystyrene beads are discharged along the side of the channel. A sample so-lution with a conductivity of 20 μS/cm was injected into the channel at a flow rate of 5μL/min. Applying 6 Vp-p, 10 kHz sine signal. The average separation efficiency reached 92.8%and the purity reached 90.7%.%设计并制造了一种带有惯性聚焦结构的介电泳微流控芯片,以实现不同介电性质的粒子连续分离.采用MEMS工艺制作了介电泳微流控芯片:通道入口侧壁设置一对梯形结构使经过的粒子受惯性升力的作用聚焦到通道两侧;通道底部光刻一组夹角为90°的倾斜叉指电极产生非均匀电场,利用介电泳力和流体曳力的合力使通道两侧不同的粒子发生角度不同的偏转进入不同通道,从而实现分离.将酵母菌细胞和聚苯乙烯小球作为实验样本,分析了流速和交流电压对分离的影响,确定了二者分离的最优条件并进行分离.实验结果表明,将电导率为20μS/cm的样本溶液以5μL/min的流速注入到通道中,施加6 Vp-p、10 kHz的正弦信号,酵母菌细胞沿电极运动至夹角处后沿通道中心排出,聚苯乙烯小球沿通道两侧排出,成功实现分离,平均分离效率达92.8%、平均分离纯度达90.7%.【期刊名称】《传感技术学报》【年(卷),期】2017(030)005【总页数】7页(P667-673)【关键词】介电电泳;惯性聚焦;微流控芯片;连续分离【作者】曾一笑;方明;樊磊;吴菲;谭秋林;孙东【作者单位】中北大学电子测试技术重点实验室,太原030051;仪器科学与动态测试教育部重点实验室,太原030051;中北大学电子测试技术重点实验室,太原030051;中北大学电子测试技术重点实验室,太原030051;仪器科学与动态测试教育部重点实验室,太原030051;中北大学电子测试技术重点实验室,太原030051;仪器科学与动态测试教育部重点实验室,太原030051;中北大学电子测试技术重点实验室,太原030051;仪器科学与动态测试教育部重点实验室,太原030051;中北大学电子测试技术重点实验室,太原030051;仪器科学与动态测试教育部重点实验室,太原030051【正文语种】中文【中图分类】O652随着微制造技术的发展,应用于生物学的集成流体、电场以及光学元件的芯片发展迅速[1-3]。
科学家“弹出式”制备微纳米半导体器件
科学家“弹出式”制备微纳米半导体器件
佚名
【期刊名称】《硅酸盐通报》
【年(卷),期】2015(34)1
【摘要】见过一打开便有小房子或城堡立起来的那种立体书吧。
受这种儿童玩具书的启发,中国、美国、韩国研究人员开发出一种特别简单的"弹出式"三维成型技术,可制备现有3D打印技术无法实现的微纳米半导体器件。
这项成果发表在新一期美国《科学》杂志上。
研究负责人之一、美国西北大学研究助理教授张一慧对新华社记者说,这种技术被称为“屈曲引导的三维成型技术”,相比现有3D打印技术有多种优势,“它不能完全取代现有3D打印技术,但可作为一个非常重要的补充”。
【总页数】1页(P285-285)
【关键词】半导体器件;微纳米;研究负责人;玩具书;助理教授;张一;美国西北大学;伊利诺伊大学;中国浙江;声子晶体
【正文语种】中文
【中图分类】TP31
【相关文献】
1.“弹出式”技术可制备微纳米半导体器件 [J], ;
2.“弹出式”三维成型技术可制造微纳米半导体器件/中科院开发出超高热导率石墨烯-聚合物复合材料/超材料研究获重大突破可同时增强和捕捉光/中科院制备出新型形状记忆高分子材料 [J],
3.“弹出式”技术可制备微纳米半导体器件 [J], ;
4.“弹出式”三维成型技术可制造微纳米半导体器件 [J],
5.适用于高性能大面积电子器件的液相制备2D半导体纳米片 [J], 李巧红(编译)因版权原因,仅展示原文概要,查看原文内容请购买。
用于核聚变的自由电子微波激射器
用于核聚变的自由电子微波激射器
杨震华
【期刊名称】《强激光技术进展》
【年(卷),期】1994(000)005
【总页数】5页(P1-5)
【作者】杨震华
【作者单位】无
【正文语种】中文
【中图分类】TN248
【相关文献】
1.从雷达到微波激射器:P.M.艾伦的演进、创新经济理论应用于技术发展轨道的一项分析性研究 [J], 李冬生
2.自由电子激光器用于固体激光器泵清静夜为惯性聚变能驱动器 [J], Imasa.,K;陈敏
3.用于聚变的自由电子微波激射振荡器的性能预测 [J], Capla.,M;肖体乔
4.用于自由电子激光器(FEL)的混合型波荡器研制 [J], 黎维华;邓德荣;王远;余虹
5.X射线自由电子激光器可引发核聚变 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Phase structure and microwave dielectric properties of Zr(Zn 1/3Nb 2/3)x Ti 22x O 6(0.2£x £0.8)ceramicsBin Tang •Shengquan Yu •Hetuo Chen •Shuren Zhang •Xiaohua ZhouReceived:30August 2012/Accepted:20October 2012/Published online:1November 2012ÓSpringer Science+Business Media New York 2012Abstract The phase structure,morphology and micro-wave dielectric properties of Zr(Zn 1/3Nb 2/3)x Ti 2-x O 6(0.2B x B 0.8)ceramics were investigated as a function of the amount of (Zn 1/3Nb 2/3)4?substitution by the solid-state reaction technique.X-ray diffraction analysis showed the co-existence of the solid solution ZrTiO 4(x =0.2)or ZrTi 2O 6(x =0.4–0.5)as the main phase and TiO 2as the second phase,and the single-phase region for substituted ZrTi 2O 6was obtained with x C 0.5.As increasing x from 0.2to 0.8,the grain growth was promoted,moreover the dielectric constant e r and the temperature coefficient of resonant frequency s f dropped from 53.8to 39.2and from ?106.2to -25.5ppm/°C respectively,and the Q 9f values increased from 33,200to 43,200GHz.Ceramics with good microwave dielectric properties:e r =41.7,Q 9f =42,100GHz and s f =-15.5ppm/°C was obtained at x =0.6.1IntroductionWith the operating frequency of wireless communication expanding to microwave frequency,dielectric ceramics have been widely used in microwave components such as resona-tors,duplexers and so on.It is because these ceramics have excellent microwave dielectric properties:high dielectric constant (e r ),high quality factor (Q 9f)and near-zerotemperature coefficient of resonant frequency (s f )[1].The applications of such functional ceramics have realized the miniaturization and the cost reduction of microwave equip-ments.In particular,the high dielectric constant ensures the miniaturization because of the physical length of a dielectricresonator in proportion to1=ffiffiffiffie r p ,and the high quality factor is good for microwave selectivity.The near-zero temperature coefficient of resonant frequency means the high temperature stability of the equipments.Kinds of ceramics materials were reported to be suitable for such applications,for example Mg(Z r0.05Ti 0.95)O 3–SrTiO 3,Ba 2Ti 9O 20,BaO(Zn l/3Ta 2/3)O 3,(Zr 0.8Sn 0.2)TiO 4,BaO–Nd 2O 3–TiO 2[2–6].Zirconium titanate based ceramics,showing the high dielectric constant,high Q 9f value and unique compo-sition dependence of the temperature coefficient of reso-nant frequencies,have been researched extensively [5].(Zr 0.8Sn 0.2)TiO 4ceramics is a typical representative and has been widely used as dielectric resonators,but its sin-tering temperature about 1,600°C is very high ,so it is difficult to obtain its dense microstructure by the solid-phase reaction technique without sintering aids such as ZnO,NiO,CuO,V 2O 5and Bi 2O 3[7,8].On the other hand,to substitute Zr 4?ions or Ti 4?ions in ZrTiO 4by other ions could also affect the densification process and microwave dielectric properties,for example one-third of Zn 2?ions and two-thirds of Nb 5?or Ta 5?ions could co-substitute Zr 4?ions in ZrTiO 4crystal structure [9,10].Zr 1-x (Zn 1/3Ta 2/3)x TiO 4ceramics was sintered well at 1,300°C and had good microwave dielectric properties with e r =42.5,Q 9f =40,200GHz and s f =?l.1ppm/°C at x =0.3[9].Moreover,RiaziKhoei et al.[11]studied (1-x)ZrTi 2O 6–xZnNb 2O 6ceramics and the single-phase region for solid solution ZrTiO 4was formed because (Zn 1/3Nb 2/3)4?randomly occupied both of Zr 4?and Ti 4?ions sites.And inB.Tang ÁS.Yu (&)ÁH.Chen ÁS.Zhang ÁX.ZhouState Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,Chinae-mail:yu.s.quan@;yyuu@ B.Tange-mail:tangbin@J Mater Sci:Mater Electron (2013)24:1475–1479DOI 10.1007/s10854-012-0955-7the research of Mn-modified(1-x)ZrTi2O6–xZnNb2O6 ceramics,(Zn1/3Nb2/3)4?was found to preferentially substituted the sites of Ti4?ions in ZrTi2O6crystal struc-ture,and then the sites of Zr4?ions[12].In this work, Zr(Zn1/3Nb2/3)x Ti2-x O6ceramics was prepared for further studying the homogeneity range of the substitution of(Zn1/ 3Nb2/3)4?for Ti4?ions sites in ZrTi2O6crystal structure. The microwave dielectric properties of Zr(Zn1/3Nb2/ 3)x Ti2-x O6ceramics were also carefully investigated.2ExperimentalThe samples used in this study were prepared by the con-ventional solid-state reaction technique.For the synthesis of Zr(Zn1/3Nb2/3)x Ti2-x O6(0.2B x B0.8)powders,ZrO2, ZnO,Nb2O5and TiO2of[99%purity were mixed and ball-milled in a nylon jar with zirconia balls and deionized water for10h,and after drying these powders were cal-cined at1,150°C for3h.Then the calcined powders were re-milled for5h with0.3wt%ter,with6wt% PVA as binder,thefine powders were pressed into cylin-drical samples with15mm in diameter and7mm in thickness under a pressure of20MPa.At last,these sam-ples were sintered at1,260°C for6h in air.The bulk densities of the sintered samples were measured by the Archimedes method.The phase composition was identified by X-ray diffraction(XRD)using Cu K a radiation (Phlips x’pert Pro MPD).Microstructure observation was conducted on the surface of samples by using scanning electron microscopy(SEM,FEI Inspect F).The dielectric characteristics at microwave frequencies were measured by the Hakki–Coleman dielectric resonator method in the TE011 mode using a network analyzer(Agilent Technologies E5071C)[13].The s f values were determined from the dif-ference between the resonant frequencies obtained at25and85°C using the equation:s f¼ðf t2Àf t1Þ=ðf t1Âðt2Àt1ÞÞ,where f t1and f t2are the resonant frequencies at t1=25°Cand t2=85°C,respectively.3Results and discussionFigure1shows the XRD patterns of Zr(Zn1/3Nb2/ 3)x Ti2-x O6(0.2B x B0.8)ceramics with0.3wt% MnCO3sintered at1,260°C for6h in air.For the sample with x=0.2,the main phase was indexed to ZrTiO4in an orthorhombic a-PbO2structure[14],and a significant amount of the rutile type TiO2phase was also observed, which was left from the raw materials.As increasing x further to0.4,the remaining TiO2phase gradually decreased,and the desired single phase region for the solid solution ZrTi2O6was developed when the value of x was in the range from0.5to0.8.The solid solution Zr(Zn1/3Nb2/ 3)x Ti2-x O6was only formed in the samples with high ZnNb2O6content,which should be attributed to that the activation energy for the formation of the solid solution was decreased when the content of ZnNb2O6was increased due to its relatively low sintering temperature about 1,150°C.Table1displays the lattice parameters and unit cell volume of the solid solution ZrTi2O6phase in the samples with x=0.4–0.8.The lattice parameters for a-axis,b-axis and c-axis were all increased with increasing the content of ZnNb2O6,especially for the b-axis,its increase was more noticeable,and thus the unit cell volume was also increased.The reason for this should be the substitution of(Zn1/3Nb2/3)4?(the average r6=0.673A˚, Fig.1The XRD patterns of Zr(Zn1/3Nb2/3)x Ti2-x O6(0.2B x B0.8) ceramics with0.3wt%MnCO3sintered at1,260°C for6h in air Table1The lattice parameters and unit cell volume of the solid solution ZrTi2O6phase in Zr(Zn1/3Nb2/3)x Ti2-x O6(0.4B x B0.8) ceramics with0.3wt%MnCO3sintered at1,260°C for6h in air Sample Lattice parameters Unit cell volume(A˚3) a-axis(A˚)b-axis(A˚)c-axis(A˚)x=0.4 4.7379 5.5119 5.0138130.93x=0.5 4.7445 5.5288 5.0246131.80x=0.6 4.7506 5.5419 5.0276132.36x=0.7 4.7577 5.5506 5.0347132.96x=0.8 4.7605 5.5612 5.0386133.39the superscript number is the coordination number)for Ti4?ions(r6=0.605A˚)in ZrTi2O6crystal structure.And no evidence implied that(Zn1/3Nb2/3)4?would occupy the sites of Zr4?.To investigate the relationship between the composi-tional ratio and the microstructure,the SEM photographs of Zr(Zn1/3Nb2/3)x Ti2-x O6(0.2B x B0.8)ceramics with0.3wt%MnCO3sintered at1,260°C for6h in air with(a)x=0.2,(b)x=0.4,(c)x=0.6and(d)x=0.8are shown in Fig.2.With increasing the content of ZnNb2O6, there was a noticeable change that the grain growth was promoted strongly.And the average grain size was approximately increased from about2l m to6l m.In addition,with the grain growth,the pores,observed in the sample with x=0.2,were quickly eliminated in the sample with x=0.4.Generally,the pure Zr–Ti based ceramics were difficult to be densified below1,600°C. However,Zr(Zn1/3Nb2/3)x Ti2-x O6ceramics with x=0.4–0.8could be sintered well at1,260°C and all of these samples showed compact microstructure with crystal grains in dense contact.It was because ZnNb2O6lowered the sintering temperature and improved the densification via the liquid-phase mechanism[15].And the reason for the grain growth was also because of this.Figure3a shows the apparent densities of Zr(Zn1/3Nb2/ 3)x Ti2-x O6(0.2B x B0.8)ceramics with0.3wt% MnCO3sintered at1,260°C for6h in air.When the value of x was increased from0.2to0.5,the densities increased noticeably from4.68to4.97g/cm3,which was mainly attributed to the change in the molar mass of the starting formulation.Moreover,the elimination of pores and the grain growth could also promote the increase of density. When the value of x was increased further to0.8,the densities started to become saturated and showed the maximum apparent density5.00g/cm3with x=0.6.And there was a slight drop of the densities,which might be caused by the abnormal grain growth.The dielectric constant of Zr(Zn1/3Nb2/3)x Ti2-x O6 (0.2B x B0.8)ceramics with0.3wt%MnCO3sintered at 1,260°C for6h in air is shown in Fig.3b.The change of the dielectric constant displayed an opposite changing trend compared to the change of the apparent densities,and the dielectric constant showed a continuous downtrend from53.8to39.2.Therefore,it could be inferred that the change of the dielectric constant was determined not by the densities as usual,but mainly by the gradual decrease of the second phase TiO2with a high e r[100[16]and the more and more substitution of the composite ions(Zn1/ Fig.2The SEM photographs of Zr(Zn1/3Nb2/3)x Ti2-x O6(0.2B x B0.8)ceramics with0.3wt%MnCO3sintered at1,260°C for6h in air with a x=0.2,b x=0.4,c x=0.6and d x=0.83Nb 2/3)4?in ZrTi 2O 6crystal structure.Zhang et al.[17]had suggested that (Zn 1/3Nb 2/3)4?substituted for Ti 4?ions in Ba 3Ti 4-x (Zn 1/3Nb 2/3)x Nb 4O 21ceramics caused the decrease of dielectric constant because the covalency of Zn–O and Nb–O has more stronger covalency bond than that of Ti–O bonds in the AO 6octahedra.Hence,it is not hard to understand why the dielectric constant dropped continuously in the single phase region with x C 0.5.For the Q 9f values of Zr(Zn 1/3Nb 2/3)x Ti 2-x O 6(0.2B x B 0.8)ceramics with 0.3wt%MnCO 3sintered at 1,260°C for 6h in air as shown in Fig.3c,the increase of the Q 9f values was divided into two stages:the first stage for a rapid increase (x =0.2–0.5)corresponding to the two phase region and the second stage for a slow increase (x =0.5–0.8)corresponding to the single phase region.As we know,besides that the lattice vibration modes cause the main microwave dielectric loss,the additional phases,the poros-ity,the crystal defects and the average grain size contribute to the microwave dielectric loss.For the first stage,the rapid increase of the Q 9f values from 33,200to 40,900GHz was due to the decrease of the second phase TiO 2and the improvement of the microstructure,for example,the elimi-nation of pores and the moderate grain growth.For the sec-ond stage,the increase of the Q 9f values from 40,900to 43,200GHz was attributed to the strengthening of covalency bonds caused by the substitution of the composite ions (Zn 1/3Nb 2/3)4?into ZrTi 2O 6crystal structure as mentioned above.Figure 3d shows the temperature coefficient of resonant frequency of Zr(Zn 1/3Nb 2/3)x Ti 2-x O 6(0.2B x B 0.8)ceramics with 0.3wt%MnCO 3sintered at 1,260°C for 6hin air.The s f values varied towards the negative direction from ?106.2ppm/°C (x =0.2)to 225.5ppm/°C (x =0.8).For the samples with x =0.2–0.5,their s f values were the mutual offset effect between the solid solution ZrTiO 4(x =0.2)or ZrTi 2O 6(x =0.4–0.5)and the second phase TiO 2,and the s f values declined quickly to 210.2ppm/°C (x =0.5)mainly because of the decrease of the second phase TiO 2with s f [?400ppm/°C [16].For the single phase region with x =0.5–0.8,the slow decrease of the s f values was related to the change of crystal structure of the solid solution ZrTi 2O 6caused by the more and more substitution of (Zn 1/3Nb 2/3)4?.As reported by Collar et al.[18],the octahedra tilting affected the s f value,and the s f value moved towards negative when the tilting increased.In the present single phase region,as the quantity of substitution of (Zn 1/3Nb 2/3)4?for Ti 4?increasing,the degree of tilting on oxygen octahedra was increased,and the structures of Zr(Zn 1/3Nb 2/3)x Ti 2-x O 6(x =0.5–0.8)ceramics turned to be more distorted.As a result,the s f values decreased with increasing x.At last,the microwave dielectric ceramics with the composition Zr(Zn 1/3Nb 2/3)0.6Ti 1.4O 6?0.3wt%MnCO 3was sintered well at 1,260°C for 6h in air and it had good microwave dielectric properties:e r =41.7,Q 9f =42,100GHz and s f =215.5ppm/°C.4ConclusionZr(Zn 1/3Nb 2/3)x Ti 22x O 6(0.2B x B 0.8)ceramics were prepared by the traditional ceramic technology.ThephaseFig.3The apparent densities and microwave dielectric properties of Zr(Zn 1/3Nb 2/3)x Ti 2-x O 6(0.2B x B 0.8)ceramics with 0.3wt%MnCO 3sintered at 1,260°C for 6h in airstructure,morphology and the microwave dielectric prop-erties of these ceramics were investigated as a function of the amount of(Zn1/3Nb2/3)4?substitution.X-ray diffraction analysis confirmed the co-existence of the solid solution ZrTiO4(x=0.2)or ZrTi2O6(x=0.4–0.5)as the main phase and TiO2as the second phase.The single-phase region for the substituted ZrTi2O6was obtained with x C0.5.As increasing x from0.2to0.8,the grain growth was promoted via the liquid-phase mechanism,moreover the dielectric constant e r and the temperature coefficient of resonant frequency s f dropped from53.8to39.2and from ?106.2to-25.5ppm/°C respectively,and the Q9f values increased from33,200to43,200GHz.Ceramics with good microwave dielectric properties:e r=41.7, Q9f=42,100GHz and s f=-15.5ppm/°C was obtained at x=0.6.References1.M.Kono,H.Takagi,T.Tatekawa,H.Tamura,J.Eur.Ceram.Soc.26,10–11(2006)2.H.T.Yu,J.L.Cheng,W.B.Zhang,J.S.Liu,G.L.Xu,J.Mater.Sci.:Mater.Electron.23,2(2012)3.L.W.Chu,G.H.Hsiue,Y.J.Chiang,K.S.Liu,I.N.Lin,J.Eur.Ceram.Soc.24,6(2004)4.S.Kawashima,M.Nishida,I.Ueda,H.Ouchi,J.Am.Ceram.Soc.66,6(1983)5.G.Wolfram,H.E.Go¨bel,Mater.Res.Bull.16,11(1981)6.Y.P.Fu,C.W.Liu,C.H.Lin,C.K.Hsieh,Ceram.Int.31,5(2005)7.N.Michiura,T.Tatekawa,Y.Higuchi,H.Tamura,J.Am.Ceram.Soc.78,3(1995)8.C.L.Huang,M.H.Weng,H.L.Chen,Mater.Chem.Phys.71,1(2001)9.W.S.Kim,J.H.Kim,J.H.Kim,K.H.Hur,J.Y.Lee,Mater.Chem.Phys.79,2–3(2003)10.W.S.Kim,J.K.Kim,J.H.Kim,K.H.Hur,J.Korean Ceram.Soc.40(4),346–349(2003)11.P.RiaziKhoei,F.Azough,R.Freer,J.Am.Ceram.Soc.89,1(2006)12.S.Q.Yu,B.Tang,S.R.Zhang,X.H.Zhou,J.Mater.Sci.:Mater.Electron.doi:10.1007/s10854-012-0772-z13.Hakki BW,Coleman PD(1960)IEEE Trans.Microw.TheoryTech.MTT814.A.E.McHale,R.S.Roth,J.Am.Ceram.Soc.62,1(1983)15.D.M.Iddles,A.J.Bell,A.J.Moulson,J.Mater.Sci.27,23(1992)16.D.W.Kim,J.H.Kim,J.R.Kim,K.S.Hong,Jpn.J.Appl.Phys.40,10(2001)17.Q.L.Zhang,D.Zou,H.Yang,J.Eur.Ceram.Soc.31,3(2011)18.E.L.Collar,I.M.Reaney,N.Setter,J.Appl.Phys.74,5(1993)。