高三数学(理人教版)二轮复习高考小题标准练:(九) Word版含解析
高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)
第2讲椭圆、双曲线、抛物线考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大.圆锥曲线的定义、标准方程与几何性质|x|≤a,|y|≤b |x|≥a x≥0热点一 圆锥曲线的定义与标准方程例1 若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( )A .30°B .60°C .120°D .150°(2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-12的一个焦点重合,且在抛物线上有一动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y .根据抛物线的定义可知m =|PF |-1,设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |.易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4|5-1=5-1.思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图.(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x答案 (1)D (2)C解析 (1)∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20. ∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知,|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠A 1AF =60°. 连接A 1F ,则△A 1AF 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则|NF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.热点二 圆锥曲线的几何性质例2 (1)已知离心率为e 的双曲线和离心率为22的椭圆有相同的焦点F 1,F 2,P 是两曲线的一个公共点,若∠F 1PF 2=π3,则e 等于( )A.52 B.52 C.62D .3 (2)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1思维启迪 (1)在△F 1F 2P 中利用余弦定理列方程,然后利用定义和已知条件消元;(2)可设点P 坐标为(a 2c ,y ),考察y 存在的条件.答案 (1)C (2)D解析 (1)设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,焦距为2c ,|PF 1|=m ,|PF 2|=n ,且不妨设m >n ,由m +n =2a 1,m -n =2a 2得m =a 1+a 2,n =a 1-a 2. 又∠F 1PF 2=π3,∴4c 2=m 2+n 2-mn =a 21+3a 22,∴a 21c 2+3a 22c 2=4,即1(22)2+3e 2=4,解得e =62,故选C. (2)设P ⎝⎛⎭⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y 2, 当2QF k 存在时,则1F P k =cy a 2+c 2,2QF k =cyb 2-2c 2, 由12F P QF k k ⋅=-1,得 y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当2QF k 不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1, 即所求的椭圆离心率的取值范围是⎣⎡⎭⎫33,1.思维升华 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3 C. 2 D. 3(2)(2014·课标全国Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3m D .3m 答案 (1)C (2)A解析 (1)设OF 的中点为C ,则 AO →+AF →=2AC →,由题意得, 2AC →·OF →=0,∴AC ⊥OF ,∴AO =AF , 又∠OAF =90°,∴∠AOF =45°, 即双曲线的渐近线的倾斜角为45°, ∴ba =tan 45°=1, 则双曲线的离心率e =1+(ba)2=2,故选C.(2)双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±33m x =±m mx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +31+m= 3.故选A.热点三 直线与圆锥曲线例3 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知AB →=613BC →.(1)求椭圆的离心率;(2)设动直线y =kx +m 与椭圆有且只有一个公共点P ,且与直线x =4相交于点Q ,若x 轴上存在一定点M (1,0),使得PM ⊥QM ,求椭圆的方程.思维启迪 (1)根据AB →=613BC →和点B 在椭圆上列关于a 、b 的方程;(2)联立直线y =kx +m 与椭圆方程,利用Δ=0,PM →·QM →=0求解.解 (1)∵A (-a,0),设直线方程为y =2(x +a ),B (x 1,y 1), 令x =0,则y =2a ,∴C (0,2a ), ∴AB →=(x 1+a ,y 1),BC →=(-x 1,2a -y 1),∵AB →=613BC →,∴x 1+a =613(-x 1),y 1=613(2a -y 1),整理得x 1=-1319a ,y 1=1219a ,∵点B 在椭圆上,∴(1319)2+(1219)2·a 2b 2=1,∴b 2a 2=34,∴a 2-c 2a 2=34,即1-e 2=34,∴e =12.(2)∵b 2a 2=34,可设b 2=3t ,a 2=4t ,∴椭圆的方程为3x 2+4y 2-12t =0,由⎩⎪⎨⎪⎧3x 2+4y 2-12t =0y =kx +m ,得 (3+4k 2)x 2+8kmx +4m 2-12t =0,∵动直线y =kx +m 与椭圆有且只有一个公共点P , ∴Δ=0,即64k 2m 2-4(3+4k 2)(4m 2-12t )=0, 整理得m 2=3t +4k 2t ,设P (x 1,y 1)则有x 1=-8km 2(3+4k 2)=-4km 3+4k 2, y 1=kx 1+m =3m 3+4k 2,∴P (-4km 3+4k 2,3m3+4k 2), 又M (1,0),Q (4,4k +m ),∵x 轴上存在一定点M (1,0),使得PM ⊥QM ,∴(1+4km 3+4k 2,-3m3+4k 2)·(-3,-(4k +m ))=0恒成立, 整理得3+4k 2=m 2.∴3+4k 2=3t +4k 2t 恒成立,故t =1. ∴椭圆的方程为x 24+y 23=1.思维升华 待定系数法是求圆锥曲线方程的基本方法;解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点(1,22),右焦点为F 2.设A ,B 是C 上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q 两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.解 (1)因为焦距为2,所以a 2-b 2=1.因为椭圆C 过点(1,22), 所以1a 2+12b 2=1.故a 2=2,b 2=1.所以椭圆C 的方程为x 22+y 2=1.(2)由题意,当直线AB 垂直于x 轴时,直线AB 的方程为x =-12,此时P (-2,0),Q (2,0), 得F 2P →·F 2Q →=-1.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M (-12,m )(m ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 212+y 21=1,x222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0,则-1+4mk =0,故4mk =1.此时,直线PQ 的斜率为k 1=-4m , 直线PQ 的方程为y -m =-4m (x +12).即y =-4mx -m .联立⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1消去y , 整理得(32m 2+1)x 2+16m 2x +2m 2-2=0. 设P (x 3,y 3),Q (x 4,y 4)所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1.于是F 2P →·F 2Q →=(x 3-1)(x 4-1)+y 3y 4=x 3x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1 =(4m 2-1)(-16m 2)32m 2+1+(1+16m 2)(2m 2-2)32m 2+1+1+m 2 =19m 2-132m 2+1. 由于M (-12,m )在椭圆的内部,故0<m 2<78,令t =32m 2+1,1<t <29,则F 2P →·F 2Q →=1932-5132t.又1<t <29,所以-1<F 2P →·F 2Q →<125232.综上,F 2P →·F 2Q →的取值范围为[-1,125232).1.对涉及圆锥曲线上点到焦点距离或焦点弦的问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2.椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3.求双曲线、椭圆的离心率的方法:(1)直接求出a ,c ,计算e =ca ;(2)根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5.抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24;(2)|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1|F A |+1|FB |为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.真题感悟1.(2014·湖北)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433B.233C .3D .2答案 A解析 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2, 由(2c )2=r 21+r 22-2r 1r 2cos π3, 得4c 2=r 21+r 22-r 1r 2.由⎩⎪⎨⎪⎧ r 1+r 2=2a 1,r 1-r 2=2a 2得⎩⎪⎨⎪⎧r 1=a 1+a 2,r 2=a 1-a 2,∴1e 1+1e 2=a 1+a 2c =r 1c. 令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+(r 2r 1)2-r 2r 1=4(r 2r 1-12)2+34,当r 2r 1=12时,m max =163, ∴(r 1c )max =433, 即1e 1+1e 2的最大值为433. 2.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限, 所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8), 所以直线BF 的斜率为43.押题精练1.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是_____________.答案264解析 如图所示,设双曲线的右焦点为H ,连接PH , 由题意可知|OE |=a4,由OE →=12(OF →+OP →),可知E 为FP 的中点.由双曲线的性质,可知O 为FH 的中点, 所以OE ∥PH ,且|OE |=12|PH |,故|PH |=2|OE |=a2.由双曲线的定义,可知|PF |-|PH |=2a (P 在双曲线的右支上), 所以|PF |=2a +|PH |=5a 2. 因为直线l 与圆相切,所以PF ⊥OE .又OE ∥PH ,所以PF ⊥PH .在△PFH 中,|FH |2=|PH |2+|PF |2, 即(2c )2=(a 2)2+(5a2)2,整理得c a =264,即e =264.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,O为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明:直线OP 的斜率k 满足|k |> 3. (1)解 设点P 的坐标为(x 0,y 0),y 0≠0.由题意,有x 20a 2+y 20b2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP · k BP =-12,可得x 20=a 2-2y 20, 代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)证明 方法一 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2,② 由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2, 代入②,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.方法二 依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b2=1. 因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.③ 由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2. 代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3, 所以|k |> 3.(推荐时间:60分钟)一、选择题1.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 答案 D解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b 2=1的离心率为( ) A .2或233B.6或233 C .2或 3 D.3或 6 答案 A解析 由题意,可知双曲线x 2a 2-y 2b 2=1的渐近线的倾斜角为30°或60°,则b a =33或 3. 则e =c a =c 2a 2= 1+(b a )2=233或2. 故选A. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 答案 B解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.故选B. 4.已知椭圆y 2a 2+x 2b2=1 (a >b >0),A (4,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC →=0,|OB →-OC →|=2|BC →-BA →|,则其焦距为( ) A.463B.433C.863D.233 答案 C解析 由题意,可知|OC →|=|OB →|=12|BC →|,且a =4, 又|OB →-OC →|=2|BC →-BA →|,所以,|BC →|=2|AC →|.故|OC →|=|AC →|.又AC →·BC →=0,所以AC →⊥BC →.故△OAC 为等腰直角三角形,|OC →|=|AC →|=2 2.不妨设点C 在第一象限,则点C 的坐标为(2,2),代入椭圆的方程,得2242+22b 2=1,解得b 2=163. 所以c 2=a 2-b 2=42-163=323,c =463. 故其焦距为2c =863. 5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0), 因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程,化简得4y 2-123y -9=0,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. 方法二 联立方程得x 2-212x +916=0, 故x A +x B =212. 根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94. 6.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且 PF →1·PF →2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12] B .[12,22] C .(22,1) D .[12,1) 答案 B解析 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12, 所以12≤e ≤22.故选B. 二、填空题7.(2014·北京)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案 x 23-y 212=1 y =±2x 解析 设双曲线C 的方程为y 24-x 2=λ, 将点(2,2)代入上式,得λ=-3,∴C 的方程为x 23-y 212=1, 其渐近线方程为y =±2x .8.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.答案 2解析 由抛物线的定义可得|MQ |=|MF |,F (p 2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p 4, 解得p =2,故答案为 2.9.抛物线C 的顶点在原点,焦点F 与双曲线x 23-y 26=1的右焦点重合,过点P (2,0)且斜率为1的直线l 与抛物线C 交于A ,B 两点,则弦AB 的中点到抛物线准线的距离为________. 答案 11解析 因为双曲线x 23-y 26=1的右焦点坐标是(3,0). 所以p 2=3,所以p =6. 即抛物线的标准方程为y 2=12x .设过点P (2,0)且斜率为1的直线l 的方程为y =x -2,联立y 2=12x 消去y 可得x 2-16x +4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16,所以弦AB 的中点到抛物线准线的距离为x 1+x 2+p 2=16+62=11.故填11. 10.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若|OA |= b ,则该双曲线的离心率为_______. 答案 2解析 延长F 2A 交PF 1于B 点,则|PB |=|PF 2|,依题意可得|BF 1|=|PF 1|-|PF 2|=2a .又因为点A 是BF 2的中点.所以得到|OA |=12|BF 1|,所以b =a . 所以c =2a .所以离心率为 2.三、解答题11.已知曲线C 上的动点P (x ,y )满足到定点A (-1,0)的距离与到定点B (1,0)的距离之比为 2.(1)求曲线C 的方程;(2)过点M (1,2)的直线l 与曲线C 交于两点M 、N ,若|MN |=4,求直线l 的方程.解 (1)由题意得|P A |=2|PB | 故(x +1)2+y 2=2(x -1)2+y 2化简得:x 2+y 2-6x +1=0(或(x -3)2+y 2=8)即为所求.(2)当直线l 的斜率不存在时,直线l 的方程为x =1.将x =1代入方程x 2+y 2-6x +1=0得y =±2,所以|MN |=4,满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -k +2,由圆心到直线的距离d =2=|3k -k +2|1+k 2, 解得k =0,此时直线l 的方程为y =2.综上所述,满足题意的直线l 的方程为x =1或y =2.12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程.解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,因为2|AB |=|AF 2|+|BF 2|,所以|AB |=43a . l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1, 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2].故43a =4ab 2a 2+b2,得a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1.13.(2013·北京)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点. (1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0) ∴线段OB 的垂直平分线x =1.在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32. ∴|AC |=|y A -y C |= 3.∴菱形的面积S =12|OB |·|AC |=12×2×3= 3. (2)假设四边形OABC 为菱形.∵点B 不是W 的顶点,且直线AC 不过原点,∴可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2, ∵M 为AC 和OB 交点,∴k OB =-14k. 又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.∴OABC 不是菱形,这与假设矛盾.综上,四边形OABC 不是菱形.。
高三数学二轮复习解三角形练习含试题答案
解三角形[明考情]高考中主要考查正弦定理、余弦定理在解三角形中的应用.求三角形的面积问题一般在解答题的17题位置. [知考向]1.利用正弦、余弦定理解三角形.2.三角形的面积.3.解三角形的综合问题.考点一 利用正弦、余弦定理解三角形方法技巧 (1)公式法解三角形:直接利用正弦定理或余弦定理,其实质是将几何问题转化为代数问题,适用于求三角形的边或角.(2)边角互化法解三角形:合理转化已知条件中的边角关系,适用于已知条件是边角混和式的解三角形问题.1.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =bsin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc=-55ac ac=-55. (2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255.2.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan∠PBA .解 (1)由已知得∠PBC =60°,∠PBA =30°.在△PBA 中,由余弦定理,得PA 2=3+14-2×3×12cos 30°=74,∴PA =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α,故tan α=34,即tan∠PBA =34. 3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1a +c =3a +b +c. (1)求角A 的大小;(2)若c b =12+3,a =15,求b 的值.解 (1)由题意,可得a +b +c a +b +a +b +c a +c =3,即c a +b +ba +c=1, 整理得b 2+c 2-a 2=bc ,由余弦定理知,cos A =b 2+c 2-a 22bc =12,因为0<A <π,所以A =π3.(2)根据正弦定理,得cb =sin C sin B =sin (A +B )sin B =sin A cos B +cos A sin B sin B =sin Atan B+cos A =32tan B +12=12+3, 解得tan B =12,所以sin B =55.由正弦定理得,b =a sin Bsin A=15×5532=2.4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B . 在△ABC 中,sin A ≠0, 即得tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵sin C =2sin A ,由正弦定理得c =2a , 由余弦定理b 2=a 2+c 2-2ac cos B , 即9=a 2+4a 2-2a ·2a cos π3,解得a =3,∴c =2a =2 3. 考点二 三角形的面积方法技巧 三角形面积的求解策略(1)若所求面积的图形为不规则图形,可通过作辅助线或其他途径构造三角形,转化为三角形的面积.(2)若所给条件为边角关系,则运用正弦、余弦定理求出其两边及其夹角,再利用三角形面积公式求解.5.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cosA )=c .(1)求角C 的大小;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .因为0<C <π,所以cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25,可得a +b =5.所以△ABC 的周长为5+7.6.在△ABC 中,已知C =π6,向量m =(sin A ,1),n =(1,cos B ),且m ⊥n .(1)求A 的大小;(2)若点D 在边BC 上,且3BD →=BC →,AD =13,求△ABC 的面积. 解 (1)由题意知m ·n =sin A +cos B =0,又C =π6,A +B +C =π,所以sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0. 所以sin A -32cos A +12sin A =0,即sin ⎝⎛⎭⎪⎫A -π6=0.又0<A <5π6,所以A -π6∈⎝ ⎛⎭⎪⎫-π6,2π3,所以A -π6=0,即A =π6.(2)设|BD →|=x ,由3BD →=BC →,得|BC →|=3x , 由(1)知,A =C =π6,所以|BA →|=3x ,B =2π3.在△ABD 中,由余弦定理,得(13)2=(3x )2+x 2-2·3x ·x cos 2π3,解得x =1,所以AB =BC =3,所以S △ABC =12BA ·BC ·sin B =12·3·3·sin 2π3=934.7.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B 的值;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去)或cos B =1517.故cos B =1517.(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6, 得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.8.(2017·延边州一模)已知函数f (x )=sin 2ωx -sin 2⎝⎛⎭⎪⎫ωx -π6⎝ ⎛⎭⎪⎫x ∈R ,ω为常数且12<ω<1,函数f (x )的图象关于直线x =π对称. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,f ⎝ ⎛⎭⎪⎫35A =14,求△ABC 面积的最大值.解 (1)f (x )=12-12cos 2ωx -⎣⎢⎡⎦⎥⎤12-12cos ⎝ ⎛⎭⎪⎫2ωx -π3=12cos ⎝ ⎛⎭⎪⎫2ωx -π3-12cos 2ωx =-14cos 2ωx +34sin 2ωx =12sin ⎝ ⎛⎭⎪⎫2ωx -π6.令2ωx -π6=π2+k π,解得x =π3ω+k π2ω,k ∈Z .∴f (x )的对称轴为x =π3ω+k π2ω,k ∈Z .令π3ω+k π2ω=π, 解得ω=2+3k6,k ∈Z .∵12<ω<1, ∴当k =1时,ω=56,∴f (x )=12sin ⎝ ⎛⎭⎪⎫53x -π6.∴f (x )的最小正周期T =2π53=6π5.(2)∵f ⎝ ⎛⎭⎪⎫35A =12sin ⎝⎛⎭⎪⎫A -π6=14,∴sin ⎝⎛⎭⎪⎫A -π6=12.∴A =π3.由余弦定理得,cos A =b 2+c 2-a 22bc =b 2+c 2-12bc =12,∴b 2+c 2=bc +1≥2bc , ∴bc ≤1.∴S △ABC =12bc sin A =34bc ≤34,∴△ABC 面积的最大值是34. 考点三 解三角形的综合问题方法技巧 (1)题中的关系式可以先利用三角变换进行化简.(2)和三角形有关的最值问题,可以转化为三角函数的最值问题,要注意其中角的取值. (3)和平面几何有关的问题,不仅要利用三角函数和正弦、余弦定理,还要和三角形、平行四边形的一些性质结合起来.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解 (1)在△ABC 中,因为a >b , 所以由sin B =35,得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =bsin B , 得sin A =a sin Bb =31313. 所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.所以sin ⎝⎛⎭⎪⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226.10.△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,1+tan A tan B =2c3b .(1)求角A 的大小;(2)若△ABC 为锐角三角形,求函数y =2sin 2B -2sin B cosC 的取值范围.解 (1)因为1+tan A tan B =2c 3b ,所以由正弦定理,得1+sin A cos B cos A sin B =sin (A +B )cos A sin B =2sin C3sin B .因为A +B +C =π,所以sin(A +B )=sin C ,所以sin C cos A sin B =2sin C3sin B ,因为sin C ≠0,sin B ≠0,所以cos A =32,故A =π6. (2)因为A +B +C =π,A =π6,所以B +C =5π6. 所以y =2sin 2B -2sin B cosC =1-cos 2B -2sin B cos ⎝ ⎛⎭⎪⎫5π6-B=1-cos 2B +3sin B cos B -sin 2B =1-cos 2B +32sin 2B -12+12cos 2B =12+32sin 2B -12cos 2B =sin ⎝ ⎛⎭⎪⎫2B -π6+12.又△ABC 为锐角三角形,所以π3<B <π2⇒π2<2B -π6<5π6,所以y =sin ⎝⎛⎭⎪⎫2B -π6+12∈⎝ ⎛⎭⎪⎫1,32.故函数y =2sin 2B -2sin B cosC 的取值范围是⎝ ⎛⎭⎪⎫1,32.11.(2017·咸阳二模)设函数f (x )=sin x cos x -sin 2⎝ ⎛⎭⎪⎫x -π4(x ∈R ), (1)求函数f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫C 2=0,c =2,求△ABC 面积的最大值.解 (1)函数f (x )=sin x cos x -sin 2⎝⎛⎭⎪⎫x -π4(x ∈R ).化简可得f (x )=12sin 2x -12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x -12. 令2k π-π2≤2x ≤2k π+π2(k ∈Z ),则k π-π4≤x ≤k π+π4(k ∈Z ),即f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),则k π+π4≤x ≤k π+3π4(k ∈Z ),即f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫C 2=0,得sin C =12, 又因为△ABC 是锐角三角形, 所以C =π6.由余弦定理得c 2=a 2+b 2-2ab cos C ,将c =2,C =π6代入得4=a 2+b 2-3ab ,由基本不等式得a 2+b 2=4+3ab ≥2ab ,即ab ≤4(2+3), 所以S △ABC =12ab sin C ≤12·4(2+3)·12=2+3,即△ABC 面积的最大值为2+ 3.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2a -c ,cos C ),n =(b ,cos B ),m ∥n .(1)求角B 的大小;(2)若b =1,当△ABC 的面积取得最大值时,求△ABC 内切圆的半径.解 (1)由已知可得(2a -c )cos B =b cos C ,结合正弦定理可得(2sin A -sin C )cos B =sinB cosC ,即2sin A cos B =sin(B +C ),又sin A =sin(B +C )>0,所以cos B =12,所以B =π3.(2)由(1)得B =π3,又b =1,在△ABC 中,b 2=a 2+c 2-2ac cos B ,所以12=a 2+c 2-ac ,即1+3ac =(a +c )2.又(a +c )2≥4ac ,所以1+3ac ≥4ac , 即ac ≤1,当且仅当a =c =1时取等号.从而S △ABC =12ac sin B =34ac ≤34,当且仅当a =c =1时,S △ABC 取得最大值34.设△ABC 内切圆的半径为r ,由S △ABC =12(a +b +c )r ,得r =36.例 (12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n . (1)求角B 的大小;(2)设BC 的中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. 审题路线图向量m ∥n ―→边角关系式――――→利用正弦定理转化△ABC 三边关系式――――→余弦定理求得角B ――――→引进变量(设角θ)用θ表示a +2c (目标函数)―→辅助角公式求最值―→求S △ABC 规范解答·评分标准 解 (1)因为m ∥n ,所以(a +b )(sin A -sin B )-c (sin A -sin C )=0,………………………………………………………………………………………………1分 由正弦定理,可得(a +b )(a -b )-c (a -c )=0,即a 2+c 2-b 2=ac . ……………………3分由余弦定理可知,cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.…………5分(2)设∠BAD =θ,则在△BAD 中,由B =π3可知,θ∈⎝ ⎛⎭⎪⎫0,2π3.由正弦定理及AD =3,有BDsin θ=ABsin ⎝ ⎛⎭⎪⎫2π3-θ=3sinπ3=2,所以BD =2sin θ,AB =2sin ⎝⎛⎭⎪⎫2π3-θ=3cos θ+sin θ,所以a =2BD =4sin θ,c =AB =3cos θ+sin θ,………………………………………8分 从而a +2c =23cos θ+6sin θ=43sin ⎝ ⎛⎭⎪⎫θ+π6.由θ∈⎝⎛⎭⎪⎫0,2π3可知,θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当θ+π6=π2,即当θ=π3时,a +2c 取得最大值4 3 (11)分此时a =23,c =3,所以S △ABC =12ac sin B =332.………………………………………………………………………………………………12分 构建答题模板[第一步] 找条件:分析寻找三角形中的边角关系.[第二步] 巧转化:根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化. [第三步] 得结论:利用三角恒等变换进行变形,得出结论. [第四步] 再反思:审视转化过程的合理性.1.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan Acos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. (1)证明 由题意知,2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B.化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B ,因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A 为锐角,向量m =(2sin A ,-3),n =⎝⎛⎭⎪⎫cos 2A ,2cos 2A 2-1,且m ∥n .(1)求A 的大小;(2)如果a =2,求△ABC 面积的最大值.解 (1)由m ∥n ,可得2sin A ·⎝ ⎛⎭⎪⎫2cos 2A 2-1+3cos 2A =0,即2sin A ·cos A +3cos 2A =0,所以sin 2A =-3cos 2A ,即tan 2A =- 3.因为A 为锐角,故0°<2A <180°,所以2A =120°,A =60°.(2)如果a =2,在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,可得4=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤4,所以S =12bc sin A ≤12×4×32=3, 故△ABC 面积的最大值为 3.3.在海岸A 处,发现北偏东45°方向距A 为3-1海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)解 设缉私船追上走私船所需时间为t 小时,如图所示,则CD =103t 海里,BD =10t 海里.在△ABC 中,因为AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°, 根据余弦定理,可得BC =(3-1)2+22-2·2·(3-1)cos 120°=6(海里). 根据正弦定理,可得sin∠ABC =AC ·sin 120°BC =2·326=22. 所以∠ABC =45°,易知CB 方向与正北方向垂直,从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得sin∠BCD =BD ·sin∠CBD CD =10t ·sin 120°103t=12, 所以∠BCD =30°,∠BDC =30°, 所以DB =BC =6海里.则有10t =6,t =610≈0.245(小时)=14.7(分钟).故缉私船沿北偏东60°方向,最快需约14.7分钟才能追上走私船.4.(2017·济南一模)已知f (x )=23sin x cos x -cos(π+2x ).(1)求f (x )的单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,c =3,a +b =23,求△ABC 的面积.解 (1)f (x )=23sin x cos x -cos(π+2x ).化简可得f (x )=3sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z . ∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)由(1)可知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵f (C )=1,即2sin ⎝⎛⎭⎪⎫2C +π6=1, 0<C <π,可得2C +π6=5π6,∴C =π3. 由a +b =23,可得a 2+b 2=12-2ab . ∵c =3,根据余弦定理cos C =a 2+b 2-c 22ab, 可得12-2ab -c 22ab =12,解得ab =3. 故△ABC 的面积S =12ab sin C =12×3×32=334. 5.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎪⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22, 所以A =π4或A =3π4,因为b >a ,所以A =π4, f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12. 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12, 所以32-1≤f (x )+4cos ⎝⎛⎭⎪⎫2A +π6≤2-12. 所以所求取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.。
高三数学二轮复习讲练测第1讲 集合及集合思想应用(讲+练)(原卷及答案)(新高考专用)(学生专用)
高三二轮复习讲练测第1讲集合及集合思想应用目录讲高考 (2)题型全归纳 (2)【题型一】集合中元素表示 (2)【题型二】集合元素个数 (3)【题型三】知识点交汇处的集合元素个数 (3)【题型四】由元素个数求参 (4)【题型五】子集关系求参 (5)【题型六】集合运算1:交集运算求参 (5)【题型七】集合运算2:并集运算求参 (6)【题型八】集合运算3:补集运算求参 (7)【题型九】应用韦恩图求解 (8)【题型十】集合中的新定义 (15)专题训练 (10)讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}- 2.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤3.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<4.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,45.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么E F 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫ ⎪⎝⎭7.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34π B .π C .2π D .3π题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( )(1){}∅(2){}{}∅(3)∅(4){}{},∅∅A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M NB .M NC .M N ⊆D .M N1.以下四个写法中:① {}00,1,2∈;②{}1,2∅⊆;③{}{}0,1,2,3=2,3,0,1;④A A ⋂∅=,正确的个数有( )A .1个B .2个C .3个D .4个2.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤3.若{}21,3,a a ∈,则a 的可能取值有( ) A .0B .0,1C .0,3D .0,1,3【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .9例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______.【练题型】1.若集合{}2N log 3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .62.已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为 A .3B .4C .6D .93.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为 A .1个B .2个C .3个D .4个【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有A .4个B .6个C .8个D .10个例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .41.设集合{2,1,0,1,2}A =--,{1,0,1}B =-,22(,)1,,43x y C x y x A y B ⎧⎫⎪⎪=+≤∈∈⎨⎬⎪⎪⎩⎭,则集合C 中元素的个数为( )A .11B .9C .6D .42.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .303.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=A .50B .100C .150D .200【题型四】由元素个数求参【讲题型】例题1.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( )A .4B .2C .0D .0或4例题2.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则A .8k >B .8k ≥C .16k >D .16k ≥1.已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( )A .0B .0或2-C .0或2D .2 2..已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( )A .77n =B .49n ≤C .64n =D .81n ≥3.如果集合{}2210A x ax x =++=中只有一个元素,则a 的值是( ) A .0B .0或1C .1D .不能确定【题型五】子集关系求参【讲题型】例题1.已知集合{}(){}1,0A B x x x a ==-<,若A B ⊆,则a 的取值范围是( ) A .(),1-∞ B .()1,+∞ C .(),2-∞ D .()2,+∞ 例题2.已知集合{}2230A x x x =--<,非空集合{}21B x a x a =-<<+,B A ⊆,则实数a 的取值范围为( ).A .(],2-∞B .1,22⎛⎤ ⎥⎝⎦C .(),2-∞D .1,22⎛⎫ ⎪⎝⎭1.若集合{}|2135A x a x a =+≤≤-,{}|516B x x =≤≤,则能使A B ⊆成立的所有a 组成的集合为( )A .{}|27a a ≤≤B .{}|67a a ≤≤C .{}7|a a ≤D .∅2. {}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<3.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,【题型六】集合运算1:交集运算求参【讲题型】例题1.已知集合(){},0A x y x ay a =+-=,()(){},2310B x y ax a y =++-=.若A B =∅,则实数=a ( )A .3B .1-C .3或1-D .3-或1例题2.已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( )A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--1.已知集合{}12A x x =<<,集合{B x y =,若A B A =,则m 的取值范围是( )A .(]0,1B .(]1,4C .[)1,+∞D .[)4,+∞2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .43.已知集合(){}22240,(1)2101x A x B x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( )A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞D .[)2,+∞ 【题型七】集合运算2:并集运算求参【讲题型】例题1..已知{|A x y =,{}2|220B x x ax a =-++≤,若A B A ⋃=,那么实数a的取值范围是( )A .(12)-,B .182,7⎡⎤⎢⎥⎣⎦C .181,7⎛⎫- ⎪⎝⎭D .181,7⎛⎤- ⎥⎝⎦例题2.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x ≥a ﹣1},若A ∪B=R ,则a 的取值范围为( )A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)【练题型】1.设集合{}2|(3)30A x x a x a =-++=,{}2|540B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为( ) A .{0} B .{03},C .{013,4},, D .{13,4},2.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( ) A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦3.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( ) A .-2 B .-1C .0D .1【题型八】集合运算3:补集运算求参【讲题型】例题1.已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.例题2..已知集合1121A x R x ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()R A B =∅,则实数a 的取值范围是 A .[)1,+∞ B .[)0,+∞C .()0,∞+D .()1,+∞【讲技巧】补集运算:1.符号语言:∁U A ={x |x ∈U ,且x ∉A }.2.图形语言:【练题型】1.设全集{}1,2,3,4,5U =,集合{}21,1,4A a =-,{}2,3UA a =+,则a 的值为( )A .2±B .C .2-D .22.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1UA =,则a 的所有可能值形成的集合为( ) A .{}1- B .{}1 C .{}1,1-D .∅3.已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________湖北省荆州市沙市中学2022-2023学年高一上学期第一次月考数学试题【题型九】应用韦恩图求解【讲题型】例题1.全集U =R ,集合04xA xx ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞例题2.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1【练题型】1.若全集U =R ,集合(){}|lg 6A x y x ==-,{}|21xB x =>,则图中阴影部分表示的集合是( )A .()2,3B .(]1,0-C .[)0,6D .(],0-∞2.已知全集U R =,集合{}2313100M x x x =--<和{}2,N x x k k Z ==∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有交集运算韦恩图符号语言 Venn 图表示A ∩B ={x |x ∈A ,且x ∈B }补集运算韦恩图图形语言:A .1个B .2个C .3个D .无穷个3.已知集合{|{||1|2}M x y N x x ==+≤,且 M 、M 都是全集 I 的子集,则右图韦恩图中阴影部分表示的集合为A .{|1}x x ≤≤B .{|31}z z -≤≤C .{|3z z -≤<D .{|1x x <≤【题型十】集合中的新定义【讲题型】例题1定义运算.()(),()()()(),()()C A C B C A C B A B C B C A C A C B -⎧*=⎨-<⎩若{}()(){}221,2,20A B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =_______.例题2..对于集合M ,定义函数()1,1,M x Mf x x M -∈⎧=⎨∉⎩,对于两个集合,A B ,定义集合()(){}|1A B A B x f x f x *=⋅=-. 已知集合{}A x x =>,()(){}|330B x x x x =-+>,则A B *=__________.【练题型】1.设A 、B 、C 是集合,称(,,)A B C 为有序三元组,如果集合A 、B 、C 满足||A B =||||1B C C A ==,且A B C =∅,则称有序三元组(,,)A B C 为最小相交(其中||S 表示集合S 中的元素个数),如集合{1,2}A =,{2,3}B =,{3,1}C =就是最小相交有序三元组,则由集合{1,2,3,4,5,6}的子集构成的最小相交有序三元组的个数是________2..集合{}6666,11135,2333,10,99111,1,198,1000,0,M π=---有10个元素,设M 的所有非空子集为()1,2,,1023i M i =⋅⋅⋅,每一个i M 中所有元素乘积为()1,2,,1023i m i =⋅⋅⋅,则1231023m m m m +++⋅⋅⋅+=_____.3.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中:①{}0x x ∈≠Z ;②{},0x x x ∈≠R ;③1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;④,1n x x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______.专题训练一、单选题1.已知集合{}N 23A x x =∈-<<,则集合A 的所有非空真子集的个数是( ) A .6 B .7C .14D .152.设全集{0,1,2,3,4,5}U =,集合{0,1,2,3},{2,3,4,5}A B ==,则()UA B =( )A .{0}B .{0,1}C .{0,1,2,3}D .{0,1,2,3,4,5}3.如图,设U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合为( )A .()M P SB .()U M P S ⋂⋂C .()M P SD .()U M P S ⋂⋃4.设集合P ,Q 都是实数集R 的子集,且()RP Q =∅,则P Q =( )A .∅B .RC .QD .P5.设集合{}2,,0A a a =-,{}2,4B =,若{}4A B ⋂=,则实数a 的值为( )A .2±B .2或-4C .2D .-46.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .113a a ⎧⎫-≤<⎨⎬⎩⎭B .113a a ⎧⎫-≤≤⎨⎬⎩⎭C .{}10a a a <-≥或D .10013a a a ⎧⎫-≤<<<⎨⎬⎩⎭或7.用()C A 表非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩,若{}(){}21,20A B x x x ax ==++=∣,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .4 B .3 C .2 D .98.已知集合{}12A x x =->,集合{}10B x mx =+<,若A B A ⋃=,则m 的取值范围是( ) A .1,03⎡⎤-⎢⎥⎣⎦B .1,13⎡⎤-⎢⎥⎣⎦C .[0,1]D .1,0(0,1]3⎡⎫-⎪⎢⎣⎭二、填空题9.若集合{}3|1A x x =-≤<,{}|B x x a =≤,且{|1}A B x x ⋃=<,则实数a 的取值范围为_________.10.已知A ={a 1,a 2,a 3,a 4},B ={}222124a a a ,,且a 1<a 2<a 3<a 4,其中ai ∈Z (i =1,2,3,4),若A ∩B ={a 2,a 3},a 1+a 3=0,且A ∪B 的所有元素之和为56,求a 3+a 4=_____.11.已知集合B 和C ,使得{}1,2,3,4,5,6,7,8,9,10B C ⋃=,B C =∅,并且C 的元素乘积等于B 的元素和,写出所有满足条件的集合C =___________.12.已知集合M ={x ∈N |1≤x ≤21},集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M .集合Ai 中元素的最大值与最小值之和称为集合Ai 的特征数,记为Xi (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为___.答案讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D.2.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤< D .{}|02x x ≤≤【答案】B【分析】结合题意利用并集的定义计算即可.【详解】由题意可得:{}|12A B x x =-<≤.故选:B.3.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >- B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤<.故选:D.4.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【分析】首先进行并集运算,然后进行补集运算即可. 【详解】由题意可得:{}1,2,3,4MN =,则(){}5UM N =.故选:A.5.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么EF 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫⎪⎝⎭【答案】A【解析】先分别利用正弦函数、余弦函数和正切函数的图象化简集合E ,F ,再利用交集的运算求解.【详解】∵5{cos sin ,02}44E πθθθθπθθπ⎧⎫=<≤≤=<<⎨⎬⎩⎭∣∣, {}tan sin ,2F k k k πθθθθπθππ⎧⎫=<=+<<+∈⎨⎬⎩⎭Z ∣∣,∴2EF πθθπ⎧⎫=<<⎨⎬⎩⎭∣.故选:A.6.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34πB .πC .2πD .3π【答案】B【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后可求区域的面积. 【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23633BO =⨯=361226PO -=因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=>⨯,故S 的轨迹圆在三角形ABC 内部,故其面积为π故选:B题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2) B .(1)(3) C .(2)(3) D .(2)(4) 【答案】B【分析】根据元素与集合的关系判断. 集合A 有两个元素:{}∅和∅, 故选:B 例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M N B .M N C .M N ⊆ D .M N【答案】B【分析】对于集合N ,令2()k m m =∈Z 和21()k m m Z =-∈,即得解. 【详解】{|24k M x x ππ==+,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,对于集合N ,当2()k m m =∈Z 时,22m x ππ=+,m Z ∈;当21()k m m Z =-∈时,24m x ππ=+,m Z ∈.M N∴,故选:B .1.以下四个写法中:① {}00,1,2∈;②{}1,2∅⊆;③{}{}0,1,2,3=2,3,0,1;④A A ⋂∅=,正确的个数有( ) A .1个 B .2个C .3个D .4个【答案】C对于①,{}00,1,2∈正确;对于②,因为空集是任何集合的子集,所以{}1,2∅⊆正确;对于③,根据集合的互异性可知{}{}0,1,2,3=2,3,0,1正确;对于④, A ∅=∅,所以A A⋂∅=不正确;四个写法中正确的个数有3个,故选C.2.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤【答案】A【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. ①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.3.若{}21,3,a a ∈,则a 的可能取值有( )A .0B .0,1C .0,3D .0,1,3【答案】C【分析】根据元素与集合的关系及集合中元素的性质,即可判断a 的可能取值.0a =,则{}1,3,0a ∈,符合题设;1a =时,显然不满足集合中元素的互异性,不合题设;3a =时,则{}1,3,9a ∈,符合题设;∴0a =或3a =均可以.故选:C【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .9【答案】B 【分析】解指数不等式求得集合A ,解分式不等式求得集合B ,由此求得集合{}|,,z z xy x A y B =∈∈的元素个数. 【详解】 由113381x -<≤得411333x --<≤,411x -<-≤,解得32x -<≤,所以{}2,1,0,1,2A =--.由203x x +<-解得23x -<<,所以{}1,0,1,2B =-.所以{}|,,z z xy x A y B =∈∈{}2,0,2,4,1,1,4=---,共有7个元素.故选:B. 例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______. 【答案】11; 682. 【详解】 试题分析:当时,,,即,,由于不能整除3,从到,,3的倍数,共有682个,【练题型】1.若集合{}2N log 3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .6【答案】C【分析】分别求出集合,A B ,然后,由交集定义求得交集后可得元素个数.由题意得,{}{}081,2,3,4,5,6,7A x x =∈<<=N ,{}3B x x =≥,故{}3,4,5,6,7A B =,有5个元素. 故选:C2.已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为A .3B .4C .6D .9【答案】B【分析】根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数. 因为x A ∈,y A ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.3.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个【答案】D{}{}{}2**|70,|07,1,2,3,4,5,6A x x x x x x x =-<∈=<<∈=N N ,{}*6|,1,2,3,6B y y A y ⎧⎫=∈∈=⎨⎬⎩⎭N ,则B 中的元素个数为4个.本题选择D 选项.【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有 A .4个 B .6个 C .8个 D .10个【答案】C求出点(2,3)关于原点、坐标轴、直线y x =的对称点,其中关于直线y x =对称点,再求它关于原点、坐标轴、直线y x =的对称点,开始重复了.从而可得点数的最小值. 因为(2,3)S ∈,S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =对称,所以(2,3),(2,3),(2,3),(3,2),(32),S S S S S --∈-∈-∈∈--∈,(32),S ∈,-(32),S -∈,所以S 中的元素个数至少有8个, 故选:C.例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .4【答案】A【分析】将1111=()i j i j AB A A A B B B ++代入11i j A B A B ⋅,结合111j A B A A ⊥和111j A B B B ⊥({}2,3,4j ∈)化简即可得出集合中元素的个数.①当11i j A B A B ≠时 正方体12341234A A A A B B B B -∴111j A B A A ⊥ 故:1110j A B A A ⋅=({}2,3,4j ∈)∴111j A B B B ⊥ 故:1110j A B B B ⋅= ({}2,3,4j ∈)1111()i j i j A B A A A B B B =++∴ 11111111()i j i j A B A B A B A A A B B B ⋅=⋅++2111111111j j A B A A A B A B B B =⋅++⋅={}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.②11=i j A B A B 时.2111111111i j x A B A B A B A B A B =⋅=⋅==此时{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.综上所述, {}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.故选:A.【讲技巧】集合知识点交汇处,多涉及到集合与函数,集合与向量,集合与数列,集合与立体几何,集合与圆锥曲线等等相关知识的综合应用。
【世纪金榜】高三数学(人教版理)二轮复习练习:1.2.4导数的简单应用及定积分(含答案)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时巩固过关练六导数的简单应用及定积分(35分钟55分)一、选择题(每小题5分,共20分)1.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2【解析】选D. f′=3x2-12=3,令f′=0,得x=-2或x=2,易知f在上单调递减,在上单调递增,故f的极小值为f,所以a=2.2.(2016·益阳一模)函数f(x)=x2-2lnx的单调减区间是()A.(0,1]B.[1,+∞)C.(-∞,-1)∪(0,1]D.[-1,0)∪(0,1] 【解析】选A.f′(x)=2x-=(x>0),令f(x)≤0,解得:0<x≤1.3.(2016·承德二模)在平面直角坐标系中,过原点O的直线l与曲线y=e x-2交于不同的两点A,B,分别过A,B作x轴的垂线,与曲线y=lnx交于点C,D,则直线CD的斜率为()A.3B.2C.1D.【解析】选C.设直线l的方程为y=kx(k>0),且A(x1,y1),B(x2,y2),故kx1=,kx2=⇒x1=,x2=,则k CD====1.4.(2016·莱芜一模)设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)的解集为()A.B.C.D.【解析】选B.因为3f(x)=f′(x)-3,所以f′(x)=3f(x)+3,可设f(x)=ae bx+c,由f(0)=1,所以a+c=1,又3f(x)=f′(x)-3,所以3ae bx+3c=abe bx-3,即(3a-ab)e bx=-3-3c,所以解得b=3,c=-1,a=2.所以f(x)=2e3x-1,x∈R,又4f(x)>f′(x),所以8e3x-4>6e3x,即e3x>2,解得x>,所求不等式的解集为.二、填空题(每小题5分,共10分)5.(2016·衡阳一模)曲线f(x)=2x2-3x在点(1,f(1))处的切线方程为__________.【解析】f′(x)=4x-3,f′(1)=1,f(1)=-1,所以切线方程为y+1=x-1,即x-y-2=0.答案:x-y-2=06.(2016·汕头一模)若过点A(2,m)可作函数f(x)=x3-3x对应曲线的三条切线,则实数m的取值范围为__________.【解题导引】设切点为(a,a3-3a),利用导数的几何意义,求得切线的斜率k=f′(a),利用点斜式写出切线方程,将点A代入切线方程,可得关于a的方程有三个不同的解,利用参变量分离可得2a3-6a2=-6-m,令g(x)=2x3-6x2,利用导数求出g(x)的单调性和极值,则根据y=g(x)与y=-6-m有三个不同的交点,即可得到m的取值范围.【解析】设切点为(a,a3-3a),因为f(x)=x3-3x,所以f′(x)=3x2-3,所以切线的斜率k=f′(a)=3a2-3,由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a),因为切线过点A(2,m),所以m-(a3-3a)=(3a2-3)(2-a),即2a3-6a2=-6-m,因为过点A(2,m)可作曲线y=f(x)的三条切线,所以关于a的方程2a3-6a2=-6-m有三个不同的根,令g(x)=2x3-6x2,所以g′(x)=6x2-12x=0,解得x=0或x=2,当x<0时,g′(x)>0,当0<x<2时,g′(x)<0,当x>2时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,所以当x=0时,g(x)取得极大值g(0)=0,当x=2时,g(x)取得极小值g(2)=-8,关于a的方程2a3-6a2=-6-m有三个不同的根,等价于y=g(x)与y=-6-m的图象有三个不同的交点,所以-8<-6-m<0,所以-6<m<2,所以实数m的取值范围为(-6,2).答案:(-6,2)三、解答题(7题12分,8题13分,共25分)7.(2016·合肥二模)已知函数f(x)=lnx+(a>0).(1)当a=2时,求出函数f(x)的单调区间.(2)若不等式f(x)≥a对于x>0的一切值恒成立,求实数a的取值范围.【解题导引】(1)对函数求导,令导函数为0,得导函数的根,做表,通过导函数的正负确定原函数的增减.(2)将所要证明的式子变形,建立一个函数,求导后再建立一个新的函数,再求导.需要用到两次求导.再来通过最值确定正负号,然后确定原函数的单调性.【解析】(1)f(x)的定义域为(0,+∞),a=2时,f(x)=lnx+,f′(x)=-=,令f′(x)=0,得x=e.①当0<x<e时,f′(x)<0,则f(x)在区间(0,e)上是单调递减的.②当e<x时,f′(x)>0,则f(x)在区间(e,+∞)上是单调递增的.所以f(x)的递减区间是(0,e),递增区间是(e,+∞).(2)原式等价于xlnx+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=xlnx+a+e-2-ax.因为g′(x)=lnx+1-a,令g′(x)=0,得x=e a-1.①0<x<e a-1时,g′(x)<0,g(x)单调递减,②e a-1<x时,g′(x)>0,g(x)单调递增.所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-ae a-1=a+e-2-e a-1.令t(x)=x+e-2-e x-1.因为t′(x)=1-e x-1,令t′(x)=0,得x=1,且③0<x<1时,t′(x)>0,t(x)单调递增,④1<x时,t′(x)<0,t(x)单调递减.所以当a∈(0,1)时,g(x)的最小值t(a)>t(0)=e-2-=>0.当a∈[1,+∞)时,g(x)的最小值为t(a)=a+e-2-e a-1≥0=t(2).所以a∈[1,2].综上得:a∈(0,2].8.(2016·葫芦岛一模)已知函数f(x)=-x3+ax2+1(a∈R).(1)若在f(x)的图象上横坐标为的点处存在垂直于y轴的切线,求a的值.(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a的取值范围.(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象与函数f(x)的图象恰有三个交点,若存在,试求出实数m的值;若不存在,说明理由.【解析】(1)依题意,f′=0,因为f′(x)=-3x2+2ax,所以a=1.(2)若f(x)在区间(-2,3)内有两个不同的极值点.则f′(x)=0在(-2,3)内有两个不同的实根.又f′(x)=-3x2+2ax=-x(3x-2a),x1=0,x2=,所以-2<<3.解得-3<a<,且a≠0,所以a∈(-3,0)∪.(3)在(1)的条件下,a=1.要使函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点,等价于方程-x3+x2+1=x4-5x3+(2-m)x2+1,即方程x2(x2-4x+1-m)=0恰有三个不同的实根.因为x=0是一个根,所以应使方程x2-4x+1-m=0有两个非零的不等实根,则Δ>0,1-m≠0,解得m>-3,m≠1.所以存在m∈(-3,1)∪(1,+∞)使得两个函数图象恰有三个交点.【加固训练】(2016·洛阳二模)已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式.(2)设函数g(x)=lnx+,若对任意的x1∈[-1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,求实数a的取值范围.【解题导引】(1)利用函数的求导公式计算函数的导数,根据函数在x=1处取到极值得出函数在x=1处的导数值为0,再把x=2代入函数,联立两式求出m,n的值即可.(2)由(1)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[-2,2].从而f(x1)+≥.依题意有g(x)最小值≤.【解析】(1)f′(x)==.由f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2,即解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故f(x)=.(2)由(1)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[-2,2].从而f(x1)+≥.依题意有g(x)最小值≤.函数g(x)=lnx+的定义域为(0,+∞),g′(x)=.①当a≤1时,g′(x)>0,函数g(x)在[1,e]上单调递增,其最小值为g(1)=a≤1<合题意;②当1<a<e时,函数g(x)在[1,a)上有g′(x)<0,单调递减,在(a,e]上有g′(x)>0,单调递增,所以函数g(x)最小值为f(a)=lna+1,由lna+1≤,得0<a≤.从而知1<a≤符合题意;③当a≥e时,显然函数g(x)在[1,e]上单调递减,其最小值为g(e)=1+≥2>,不合题意.综上所述,a的取值范围为a≤.(30分钟55分)一、选择题(每小题5分,共20分)1.曲线C:y=xlnx在点M(e,e)处的切线方程为()A.y=x-eB.y=x+eC.y=2x-eD.y=2x+e【解析】选 C.因为y=xlnx,所以y′=lnx+1,所以k=lne+1=2,所以切线方程为y-e=2(x-e),即y=2x-e.【加固训练】在曲线y=x2上切线倾斜角为的点是()A.(0,0)B.(2,4)C.D.【解析】选D.y′=2x,设切点为(a,a2),所以y′=2a,得切线的斜率为2a,所以2a=tan45°=1,所以a=,在曲线y=x2上切线倾斜角为的点是.2.若函数f(x)=x2-lnx+1在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围为()A.[1,+∞)B.C.[1,2)D.【解析】选B.因为f(x)的定义域为(0,+∞),f′(x)=2x-=,由f′(x)>0得,x>;由f′(x)<0得,0<x<;因为函数f(x)在其定义域内的一个子区间(k-1,k+1)内不是单调函数,所以0≤k-1<<k+1,所以1≤k<.3.函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=e x,且f(1)=e,则() A.f(x)的最小值为e B.f(x)的最大值为eC.f(x)的最小值为D.f(x)的最大值为【解析】选A.设g(x)=xf(x)-e x,所以g′(x)=f(x)+xf′(x)-e x=0,所以g(x)=xf(x)-e x为常数函数.因为g(1)=1×f(1)-e=0,所以g(x)=xf(x)-e x=g(1)=0,所以f(x)=,f′(x)=,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)≥f(1)=e.【加固训练】设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,f=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值【解析】选D.f(x)的定义域为(0,+∞),因为xf′(x)-f(x)=xlnx,所以=,所以′=,所以=ln2x+c,所以f(x)=xln2x+cx.因为f=ln2+c×=,所以c=.所以f′(x)=ln2x+lnx+=(lnx+1)2≥0,所以f(x)在(0,+∞)上单调递增,所以f(x)在(0,+∞)上既无极大值也无极小值.4.设函数f(x)=sin.若存在f(x)的极值点x0满足+[f(x0)]2<m2,则m的取值范围是()A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(4,+∞)【解析】选C.由题意知:f′(x0)=·cos=0,所以x0=,所以m2>+[f(x0)]2=+3sin2=+3,故>3,解得m>2或m<-2.二、填空题(每小题5分,共10分)5.若函数y=f(x)的图象在点(1,f(1))处的切线方程是x-2y+3=0,则f(1)-2f′(1)=__________.【解析】依题意得:当x=1时,y=2,即f(1)=2,又因为切线方程为x-2y+3=0,所以切线的斜率为,所以f′(1)=,所以f(1)-2f′(1)=2-2×=1.答案:1【加固训练】已知直线l:y=kx+b与曲线y=x3+3x+1相切,则斜率k取最小值时,直线l的方程为__________.【解题导引】求出原函数的导函数,得到导函数的最小值,求出此时x的值,再求出此时的函数值,由直线方程的点斜式,求得斜率k最小时直线l的方程.【解析】由y=x3+3x+1,得y′=3x2+3,则y′=3(x2+1)≥3,当y′=3时,x=0,此时f(0)=1,所以斜率k最小时直线l的方程为y-1=3(x-0),即3x-y+1=0.答案:3x-y+1=06.已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有>0,给出下列命题:①f(3)=0;②直线x=-6是函数f(x)的图象的一条对称轴;③函数y=f(x)在[-9,-6]上为增函数;④函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为__________.【解析】对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,令x=-3,则f(-3+6)=f(-3)+f(3),又因为f(x)是R上的偶函数,所以f(3)=0,故①正确.②由(1)知f(x+6)=f(x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(-x),而f(x)的周期为6,所以f(x+6)=f(-6+x),f(-x)=f(-x+6),所以:f(-6-x)=f(-6+x),所以直线x=-6是函数y=f(x)的图象的一条对称轴,故②正确.③当x1,x2∈[0,3],且x1≠x2时,都有>0,所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[-3,0]上为减函数,而f(x)的周期为6,所以函数y=f(x)在[-9,-6]上为减函数,故③错误.④f(3)=0,f(x)的周期为6,所以:f(-9)=f(-3)=f(3)=f(9)=0,函数y=f(x)在[-9,9]上有四个零点,故④正确.答案:①②④三、解答题(7题12分,8题13分,共25分)7.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(1)求函数f(x),g(x)的解析式.(2)求函数f(x)在[t,t+1](t>-3)上的最小值.(3)若对∀x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.【解题导引】(1)求导函数,利用两函数在x=0处有相同的切线,可得2a=b,f(0)=a=g(0)=2,即可求函数f(x),g(x)的解析式.(2)求导函数,确定函数的单调性,再分类讨论,即可求出函数f(x)在[t,t+1](t>-3)上的最小值.(3)令F(x)=kf(x)-g(x)=2ke x(x+1)-x2-4x-2,对∀x≥-2,kf(x)≥g(x)恒成立,可得当x≥-2时,F(x)min≥0,即可求实数k的取值范围.【解析】(1)f′(x)=ae x(x+2),g′(x)=2x+b,由题意,两函数在x=0处有相同的切线.所以f′(0)=2a,g′(0)=b,所以2a=b,f(0)=a=g(0)=2,所以a=2,b=4,所以f(x)=2e x(x+1),g(x)=x2+4x+2.(2)f′(x)=2e x(x+2),由f′(x)>0得x>-2,由f′(x)<0得x<-2,所以f(x)在(-2,+∞)上单调递增,在(-∞,-2)上单调递减.因为t>-3,所以t+1>-2.①当-3<t<-2时,f(x)在[t,-2]上单调递减,在[-2,t+1]上单调递增,所以f(x)min=f(-2)=-2e-2.②当t≥-2时,f(x)在[t,t+1]上单调递增,所以f(x)min=f(t)=2e t(t+1).所以f(x)min=(3)令F(x)=kf(x)-g(x)=2ke x(x+1)-x2-4x-2,由题意当x≥-2时,F(x)min≥0.因为∀x≥-2,kf(x)≥g(x)恒成立,所以F(0)=2k-2≥0,所以k≥1,F′(x)=2ke x(x+1)+2ke x-2x-4=2(x+2)(ke x-1),因为x≥-2,由F′(x)>0得e x>,所以x>ln;由F′(x)<0得x<ln.所以F(x)在上单调递减,在上单调递增.①当ln<-2,即k>e2时,F(x)在[-2,+∞)上单调递增,F(x)min=F(-2)=-2ke-2+2=(e2-k)<0,不满足F(x)min≥0.②当ln=-2,即k=e2时,由①知,F(x)min=F(-2)=(e2-k)=0,满足F(x)min≥0.③当ln>-2,即1≤k<e2时,F(x)在上单调递减,在上单调递增.F(x)min=F=lnk(2-lnk)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].8.已知函数f(x)=ax+-2a+1(a>0).(1)求f(x)的单调区间.(2)若f(x)≥lnx在[1,+∞)上恒成立,求实数a的取值范围.(3)证明:ln>.【解题导引】(1)求出f(x)的定义域,以及导函数,根据导函数的正负与增减性的关系判断即可确定出f(x)的单调区间.(2)令g(x)=ax+-2a+1-lnx,x∈[1,+∞),求出g(1)的值以及导函数,根据导函数的正负与增减性的关系确定出f(x)≥lnx在[1,+∞)上恒成立时实数a的取值范围即可.(3)令a=,根据第二问的结论列出关系式,进而可得lnx2<x-(x>1)(*),所证不等式等价于>,令x=>1(n>2),代入不等式(*),整理即可得证.【解析】(1)f(x)的定义域为{x|x≠0},f′(x)=a-=(a>0),当0<a≤1时,f′(x)>0恒成立,此时,f(x)在(-∞,0),(0,+∞)上是增函数;当a≥1时,令f′(x)=0得:x1=-,x2=,列表如下:此时,f(x)的递增区间是(-∞,-),(,+∞);递减区间是,.(2)令g(x)=ax+-2a+1-lnx,x∈[1,+∞),则g(1)=0,g′(x)=a--==,(i)当0<a<时,>1,若1<x<,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即f(x)<lnx,故f(x)≥lnx在[1,+∞)上不恒成立;(ii)当a≥时,≤1,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即f(x)>lnx,故当x≥1时,f(x)≥lnx,综上所述,所求a的取值范围是.(3)在(2)中,令a=,可得不等式:lnx≤(x≥1)(当且仅当x=1时等号成立),进而可得lnx2<x-(x>1)(*),ln>⇒ln>,令x=>1(n>2),代入不等式(*)得:ln<-=-=,则所证不等式成立.【加固训练】已知函数f(x)=e x+a|x-1|.(1)当a=3时,求函数f(x)在区间[0,2]上的值域.(2)若f(x)≥0对一切实数x∈[0,+∞)恒成立,求a的取值范围.【解析】(1)当a=3时,f(x)=e x+3|x-1|=则函数的导数f′(x)=当0<x<1时,f′(x)=e x-3<0,此时函数单调递减,当1<x<2时,f′(x)=e x+3>0,此时函数单调递增,所以函数的最小值为f(1)=e,又f(0)=4,f(2)=e2+3,则函数在[0,2]上的最大值为e2+3,即函数的值域为[e,e2+3].(2)当x=1时,f(1)=e>0,对一切x≥0都恒成立,所以此时a为任意实数. 当x≠1时,f(x)≥0等价为e x+a|x-1|≥0,即a≥,设g(x)=,则g(x)=g′(x)=即g(x)在[0,1)上单调递减,在(1,2]上单调递增,在(2,+∞)上单调递减, 所以g(x)的极大值为g(2)=-e2,所以a≥-e2,且a≥g(0)=-1,综上a≥-1.1.(2016·包头一模)已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数.(2)求函数f(x)在[1,e]上的最小值及相应的x值.【解析】(1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞)时,f′(x)=>0,故函数f(x)在(1,+∞)上是增函数.(2)f′(x)=(x>0),当x∈[1,e]时,2x2+a∈[a+2,a+2e2].若a≥-2,f′(x)在[1,e]上非负(仅当a=-2,x=1时,f′(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.若-2e2<a<-2,当x=时,f′(x)=0;当1≤x<时,f′(x)<0,此时f(x)是减函数;当<x≤e时,f′(x)>0,此时f(x)是增函数.故[f(x)]min=f=ln-.若a≤-2e2,f′(x)在[1,e]上非正(仅当a=-2e2,x=e时,f′(x)=0),故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x)的最小值为ln-,相应的x值为;当a≤-2e2时,f(x)的最小值为a+e2,相应的x值为e.2.设函数f(x)=lnx+x2-2mx+m2,m∈R.(1)当m=0时,求函数f(x)在[1,3]上的最小值.(2)若函数f(x)在上存在单调递增区间,求实数m的取值范围.(3)若函数f(x)存在极值点,求实数m的取值范围.【解析】(1)当m=0时,f(x)=lnx+x2,其定义域为(0,+∞),f′(x)=+2x.所以f(x)在[1,3]上是增函数,当x=1时,f(x)取得最小值为f(1)=1.故函数f(x)在[1,3]上的最小值为1.(2)依题意,可知f′(x)=+2x-2m=.设g(x)=2x2-2mx+1,则区间上存在子区间使得不等式g(x)>0成立.因为函数g(x)的图象是开口向上的抛物线,所以只要g>0,或g>0即可.由g>0,即-m+1>0,解得m<,由g>0,即-3m+1>0,解得m<,因此,实数m的取值范围是.(3)由(2)可知f′(x)=+2x-2m,假设函数f(x)不存在极值点,所以函数f(x)在定义域内恒单调,所以f′(x)≥0恒成立,所以+2x-2m≥0恒成立,所以m≤,所以若函数存在极值点,m的取值范围是(,+∞).关闭Word文档返回原板块。
2023届高考二轮总复习试题适用于老高考旧教材 数学(理) 圆锥曲线中的定点、定值、证明问题含解析
考点突破练15 圆锥曲线中的定点、定值、证明问题1.(2022·湖南岳阳质检二)已知椭圆C :y 2a 2+x 2b 2=1(a>b>0),F 为上焦点,左顶点P 到F 的距离为√2,且离心率为√22,设O 为坐标原点,点M 的坐标为(0,2). (1)求椭圆C 的标准方程;(2)若过F 的直线l 与C 交于A ,B 两点,证明:∠OMA=∠OMB.2.(2022·陕西西安四区县联考一)已知抛物线x 2=ay (a>0),过点M 0,a2作两条互相垂直的直线l 1,l 2,设l 1,l 2分别与抛物线相交于A ,B 及C ,D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1. (1)求抛物线的方程;(2)设线段AB ,CD 的中点分别为E ,F ,O 为坐标原点,求证:直线EF 过定点.3.(2022·北京石景山一模)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的短轴长等于2√3,离心率e=12. (1)求椭圆C 的标准方程;(2)过右焦点F 作斜率为k 的直线l ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,判断|PF ||AB |是否为定值,请说明理由.4.(2022·全国乙·理20)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点. (1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.5.(2022·河南濮阳一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e=√32,且圆x 2+y 2=2过椭圆C 的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点A (-2,1)是椭圆C 上一点,若直线AE 与AQ 的斜率分别为k AE ,k AQ ,证明:k AE ·k AQ ≤0.6.(2022·广西柳州三模)已知点A (2,√3),B (-2,-√3),点M 与y 轴的距离记为d ,且点M 满足MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d24-1,记点M 的轨迹为曲线W. (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线l 1,l 2,l 1交曲线W 于C ,D 两点,l 2交曲线W 于E ,F 两点,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为k 1,k 2,k 3,求证:k 3(k 1+k 2)为定值.考点突破练15 圆锥曲线中的定点、定值、证明问题1.(1)解 左顶点P 到F 的距离为√2,可得a=√2,又e=ca=√22,故c=1,从而b=1.∴椭圆C 的标准方程为y 22+x 2=1.(2)证明 当l 与y 轴重合时,∠OMA=∠OMB=0°.当l 与y 轴不重合时,设l 的方程为y=kx+1,A (x 1,y 1),B (x 2,y 2),直线MA ,MB 的斜率之和为k MA +k MB =y 1-2x 1+y 2-2x 2=kx 1-1x 1+kx 2-1x 2=2k-(1x 1+1x 2)=2k-x 1+x 2x 1x 2,联立方程{y =kx +1,y 22+x 2=1,可得(2+k 2)x 2+2kx-1=0,x 1+x 2=-2k 2+k2,x 1x 2=-12+k2,∴2k-x 1+x 2x 1x 2=2k-2k=0,从而k MA +k MB =0,故直线MA ,MB 的倾斜角互补,∴∠OMA=∠OMB. 综上,∠OMA=∠OMB. 2.(1)解 ∵y'=2xa ,由题意得2×2a=1,∴a=4,∴抛物线的方程为x 2=4y. (2)证明 由题意得直线l 1,l 2的斜率都存在且都不为0,由M (0,2),可设直线AB 的方程为y=kx+2(k ≠0), 设A (x 1,y 1),B (x 2,y 2),由{y =kx +2,x 2=4y ,得x 2-4kx-8=0,则x 1+x 2=4k ,∴y 1+y 2=k (x 1+x 2)+4=4k 2+4,∴AB 的中点E (2k ,2k 2+2).∵l 1⊥l 2,∴直线CD 的斜率为-1k,同理可得CD 的中点F -2k ,2k2+2,∴EF 的方程为y-(2k 2+2)=2k 2+2-2k 2-22k+2k(x-2k ),化简整理得y=k-1k x+4, ∴直线EF 恒过定点(0,4).3.解 (1)由题意得b=√3,e=√1-b 2a 2=√1-3a 2=12,解得a=2,所以椭圆的方程为x 24+y23=1.(2)是定值.理由如下:由椭圆的方程x 24+y 23=1,得右焦点F (1,0),设直线l 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2), 由{y =k (x -1),x 24+y23=1,得(3+4k 2)x 2-8k 2x+4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB|=√1+k 2|x1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=12(1+k 2)3+4k 2,设线段AB 的中点为D (x 0,y 0),则x 0=x 1+x 22=4k 23+4k2,则y 0=k (x 0-1)=-3k3+4k2,即D (4k 23+4k2,-3k 3+4k 2),所以直线l 的中垂线的方程为y--3k3+4k2=-1k x-4k 23+4k 2.令y=0,得x P =k 23+4k 2,所以|PF|=|x P -1|=|k 23+4k 2-1|=3(k 2+1)3+4k 2,所以|PF ||AB |=3(k 2+1)3+4k 212(1+k 2)3+4k2=14. 4.(1)解 设椭圆E 的方程为mx 2+ny 2=1(m>0,n>0), 则{4n =1,94m +n =1,解得{m =13,n =14. 故椭圆E 的方程为x 23+y 24=1. (2)证明 由点A (0,-2),B (32,-1),可知直线AB 的方程为y=23x-2.当过点P 的直线MN 的斜率不存在时,直线MN 的方程为x=1.由{x =1,x 23+y 24=1,解得{x =1,y =2√63或{x =1,y =-2√63,则点M (1,-2√63),N (1,2√63). 将y=-2√63代入y=23x-2,得x=3-√6,则点T (3-√6,-2√63). 又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (5-2√6,-2√63),所以直线HN 的方程为y-2√63=-2√63-2√635-2√6-1x-1),即y=(2√63+2)x-2, 所以直线HN 过点(0,-2).当过点P 的直线MN 的斜率存在时,设直线MN 的方程为y+2=k (x-1),点M (x 1,y 1),N (x 2,y 2). 由{y +2=k (x -1),x 23+y 24=1,消去y ,得(4+3k 2)x 2-6k (k+2)x+3k (k+4)=0,则Δ>0,x 1+x 2=6k (k+2)4+3k 2,x 1x 2=3k (k+4)4+3k 2. 将y=y 1代入y=23x-2,得x=32(y 1+2),则点T (32(y 1+2),y 1).又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (3y 1+6-x 1,y 1).所以直线HN 的方程为(3y 1+6-x 1-x 2)(y-y 2)=(y 1-y 2)(x-x 2),即(3y 1+6-x 1-x 2)(y-y 2)-(y 1-y 2)(x-x 2)=0.将x=0,y=-2代入上式,整理得12-2(x 1+x 2)+3y 1y 2+6(y 1+y 2)-x 1y 2-x 2y 1=0.(*) 因为x 1+x 2=6k (k+2)4+3k2,x 1x 2=3k (k+4)4+3k2,所以y 1+y 2=k (x 1-1)-2+k (x 2-1)-2=-8k -164+3k 2,x 1y 2+x 2y 1=x 1[k (x 2-1)-2]+x 2[k (x 1-1)-2]=-24k4+3k 2,y 1y 2=[k (x 1-1)-2][k (x 2-1)-2]=-8k 2+16k+164+3k 2,所以(*)式左边=12-12k (k+2)4+3k2+-24k 2+48k+484+3k2+-48k -964+3k2−-24k 4+3k 2=0=右边,即(*)式成立.所以直线HN 过点(0,-2).综上所述,直线HN 恒过定点(0,-2).5.(1)解 由题可知{b =√2,c a =√32,a 2=b 2+c 2,解得a=2√2,b=√2,∴椭圆C 的方程为x 28+y 22=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2),则E (-x 1,-y 1).设直线l 为y=12x+t ,代入椭圆方程得x 2+2tx+2t 2-4=0,则Δ=4t 2-4(2t 2-4)>0,解得-2<t<2,x 1+x 2=-2t ,x 1x 2=2t 2-4,则k AE +k AQ =y 2-1x 2+2+-y 1-1-x 1+2=(2-x 1)(y 2-1)-(2+x 2)(y 1+1)(2+x 2)(2-x 1),又y 1=12x 1+t ,y 2=12x 2+t ,∴(2-x 1)(y 2-1)-(2+x 2)(y 1+1)=2(y 2-y 1)-(x 1y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-(x 1x 2+tx 1+tx 2)+x 1-x 2-4=-x 1x 2-t (x 1+x 2)-4=-(2t 2-4)-t (-2t )-4=0,即k AE +k AQ =0,∴k AE =-k AQ .于是k AE ·k AQ =-k AQ 2≤0.6.(1)解 设M (x ,y ),由题意得d=|x|,MA⃗⃗⃗⃗⃗⃗ =(2-x ,√3-y ),MB ⃗⃗⃗⃗⃗⃗ =(-2-x ,-√3-y ), ∵MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d 24-1,∴(2-x ,√3-y )·(-2-x ,-√3-y )=d 24-1,∴x 2-4+y 2-3=x 24-1.∴3x24+y 2=6,M 的轨迹方程为x 28+y 26=1. (2)证法一 显然GH 斜率存在,设P (x 0,0),设GH 的方程为y=k 4x+m ,由题意知CD 的方程为y=k 1(x-x 0),联立方程{y =k 1(x -x 0),y =k 4x +m ,解得{x =k 1x 0+mk 1-k 4,y =k 1(k 4x 0+m )k 1-k 4,可得G k 1x 0+m k 1-k 4,k 1(k 4x 0+m )k 1-k4,设C (x C ,y C ),D (x D ,y D ),则有x C28+y C26=1,x D28+y D26=1,两式相减得:x C 2-x D28+y C 2-y D26=0,则有k 1=y C -y D x C-x D=-34·x C +xD y C+y D,又G 为CD 中点,则有k 1=-34·k 1x 0+mk1(k 4x 0+m ),将G 坐标代入CD 的方程可得4(k 4x 0+m )k 12+3x 0k 1+3m=0,同理可得4(k 4x 0+m )k 22+3x 0k 2+3m=0,故k 1,k 2为关于k 的方程4(k 4x 0+m )k 2+3x 0k+3m=0的两实根. 由韦达定理得k 1+k 2=-3x 04(k4x 0+m ).将x=x 0代入直线GH :y=k 4x+m ,可得N (x 0,k 4x 0+m ),故有k 3=k 4x 0+m x 0,则k 3(k 1+k 2)=k 4x 0+m x 0[-3x 04(k 4x 0+m )]=-34, 故k 3(k 1+k 2)为定值-34.证法二 由题意知直线CD ,EF ,ON 的斜率都存在,分别为k 1,k 2,k 3,设P (t ,0),N (t ,k 3t )(t ≠0),则直线CD ,EF 的方程分别为y=k 1(x-t ),y=k 2(x-t ),两直线分别与曲线W 相交,联立方程{y =k 1(x -t ),x 28+y 26=1,得(6+8k 12)x 2-16k 12tx+8k 12t 2-48=0,解得{x G =x 1+x 22=4k 12t3+4k 12,y G =-3k 1t3+4k 12,可得G (4k 12t3+4k 12,-3k 1t3+4k 12),同理可得H (4k 22t3+4k 22,-3k 2t3+4k 22),。
2022年高考化学二轮复习培优训练——选择题标准练(三)
【解析】选 D。根据图知,a 电极上 Cr 元素化合价由+3 价变为+6 价,失电子发生氧化反应,则 a 为阳极,b 为阴极,阳极反应式为 2Cr3++7H2O-6e-===Cr2O27- +14H+,Cr2O27- 将环己醇氧 化生成环己酮,阴极反应式为 2H++2e-===H2↑,阳极电势大于阴极电势,据此分析解答。A.阳 极上 Cr3+发生氧化反应生成 Cr2O27- ,Cr2O27- 将环己醇氧化生成环己酮同时生成 Cr3+,结合图中 信息可知,制取环己酮在常温常压下通过电解完成,且 Cr3+及 Cr2O27- 可以循环使用,故 A 正确; B.通过以上分析知,a 极为阳极、b 极为阴极,则 a 极电势高于 b 极,故 B 正确;C.由图中信息可 知 a 极上 Cr3+转化为 Cr2O27- ,电极反应式为 2Cr3++7H2O-6e-===Cr2O27- +14H+,故 C 正确; D.理论上由环己醇(C6H12O)转化为 1 mol 环己酮(C6H10O)时,C 元素化合价由-53 变为-43 ,转移 电子物质的量=1 mol×6×[-43 -(-53 )]=2 mol,则生成 3 mol 环己酮有 6 mol 电子发生转移,结 合“2Cr3++7H2O-6e-===Cr2O27- +14H+”知,有 1 mol Cr2O27- 转化为 2 mol Cr3+,故 D 错误。
7.B2O3 的气态分子结构如图 1 所示,硼酸(H3BO3)晶体结构为层状,其二维平面结构如
图 2 所示。下列说法错误的是( )
A.两分子中 B 原子分别采用 sp 杂化、sp2 杂化
B.硼酸晶体中层与层之间存在范德华力
C.1 mol H3BO3 晶体中含有 6 mol 氢键 D.硼原子可提供空轨道,硼酸电离的方程式为 H3BO3+H2O
2022高考数学(文)二轮复习高考小题标准练(二) Word版含答案
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。
2015届高考理科数学二轮复习:提能专训9 三角函数的图象与性质Word版含解析
提能专训(九) 三角恒等变换与解三角形一、选择题1.(2014·皖南八校联考)sin 2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( )A.15 B .-15 C.75 D .±15 [答案] C[解析] 因为sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=2cos 2⎝⎛⎭⎪⎫π4-α-1,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±75, 因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝ ⎛⎭⎪⎫π4-α=75,故选C.2.(2014·温州十校联考)若sin α+cos α=713(0<α<π),则tan α=( )A .-13 B.125 C .-125 D.13 [答案] C[解析] 由sin α+cos α=713(0<α<π)两边平方,得1+sin 2α=49169,sin 2α=-120169,又sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1,∴2tan αtan 2α+1=-120169,60tan 2α+169tan α+60=0,∴tan α=-125或tan α=-512, 又sin α+cos α>0,∴|sin α|>|cos α|, 即|tan α|>1,故tan α=-125,故选C.3.(2014·大连双基测试)在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [答案] A[解析] 在斜三角形ABC 中,|tan A |>|tan B |⇔|sin A cos B |>|cos A sin B |⇔(sin A cos B )2-(cos A sin B )2>0⇔(sin A cos B +cos A sin B )·(sin A cos B -cos A sin B )>0⇔sin(A +B )·sin(A -B )>0⇔sin C sin(A -B )>0⇔sin(A -B )>0;又-π<A -B <π,因此sin(A -B )>0⇔0<A -B <π,即A >B .因此,在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的充分必要条件,故选A.4.(2014·辽宁五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则角B 等于( )A .90°B .60°C .45°D .30° [答案] C[解析] 由正弦定理,得sin A cos B +sin B cos A =sin C sin C ,即sin(B +A )=sin C sin C ,因为sin(B +A )=sin C ,所以sin C =1,∠C=90°.根据三角形面积公式和余弦定理,得S =12bc sin A ,b 2+c 2-a 2=2bc cos A ,代入已知得12bc sin A =14·2bc cos A ,所以tan A =1,A =45°,因此B =45°,故选C.5.(2014·昆明调研)已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38 [答案] B[解析] 由正弦定理,得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34,故选B.6.(2014·合肥质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2=b 2+c 2+3bc .若a =3,S 为△ABC 的面积,则S +3cos B cos C 的最大值为( )A .3 B. 2 C .2 D. 3 [答案] A[解析] 由cos A =b 2+c 2-a 22bc =-3bc 2bc =-32⇒A =5π6,又a =3,故S =12bc sin A =12·a sin Bsin A ·a sin C =3sin B sin C ,因此S +3cos B cos C =3sin B sin C +3cos B cos C =3cos(B -C ),于是当B =C 时取得最大值3,故选A.7.若sin θ,cos θ是方程4x 2+2mx +m =0的两个根,则m 的值为( )A .1+ 5B .1- 5C .1±5D .-1- 5 [答案] B[解析] 由题意,得sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又∵Δ=4m 2-16m ≥0,解得m ≤0或m ≥4,∴m =1-5,故选B.8.(2014·河北衡水中学五调)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+2π3等于( )A .-45B .-35 C.45 D .35 [答案] C[解析] ∵sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45.∴cos ⎝⎛⎭⎪⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45,故选C.9.(2014·东北四市二联)△ABC 中角A ,B ,C 的对应边分别为a ,b ,c ,满足b a +c +ca +b≥1,则角A 的范围是( )A.⎝⎛⎦⎥⎤0,π3 B.⎝⎛⎦⎥⎤0,π6 C.⎣⎢⎡⎭⎪⎫π3,π D.⎣⎢⎡⎭⎪⎫π6,π [答案] A [解析] 由b a +c +c a +b≥1,得b (a +b )+c (a +c )≥(a +c )(a +b ),化简得b 2+c 2-a 2≥bc ,即b 2+c 2-a 22bc ≥12,即cos A ≥12(0<A <π),所以0<A ≤π3,故选A.10.如图所示,某电力公司为保护一墙角处的电塔,计划利用墙OA ,OB ,再修建一长度为AB 的围栏,围栏的造价与AB 的长度成正比.现已知墙角∠AOB 的度数为120°,当△AOB 的面积为3时,就可起到保护作用.则当围栏的造价最低时,∠ABO =( )A .30°B .45°C .60°D .90° [答案] A[解析] 只要AB 的长度最小,围栏的造价就最低.设OA =a ,OB =b ,则由余弦定理,得AB 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号),又S △AOB =12ab sin 120°=3,所以ab =4.故AB 2≥12,即AB 的最小值为2 3.由a =b 及3ab =12,得a =b =2.由正弦定理,得sin ∠ABO =a sin 120°AB =223×32=12.故∠ABO =30°,故选A. 11.(2014·德阳二诊)已知△ABC 的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小内角的余弦值为( )A.34B.56C.710D.23 [答案] A[解析] 依题意,不妨设三边长a =m -1,b =m ,c =m +1,其中m ≥2,m ∈N ,则有C =2A ,sin C =sin 2A =2sin A cos A ,c =2a ×b 2+c 2-a 22bc ,bc 2=a (b 2+c 2-a 2),m (m +1)2=(m -1)(m 2+4m ),由此解得m =5,因此cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,故选A.12.(2014·石家庄一模)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C .3 D. 3 [答案] D[解析] ∵c sin A =3a cos C , ∴sin C sin A =3sin A cos C , ∵sin A ≠0,∴tan C =3, ∵0<C <π,∴C =π3,∴sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =32sin A +32cos A =3sin ⎝⎛⎭⎪⎫A +π6,∵0<A <2π3,∴π6<A +π6<5π6, ∴32<3sin ⎝ ⎛⎭⎪⎫A +π6≤3, ∴sin A +sin B 的最大值为3,故选D. 二、填空题13.(2014·广州综合测试一)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin ⎝⎛⎭⎪⎫α-π12=________. [答案] 210[解析] 由于α为锐角,则0<α<π2, 则π6<α+π6<2π3,因此sin ⎝ ⎛⎭⎪⎫α+π6>0, 所以sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=1-⎝ ⎛⎭⎪⎫352=45, 所以sin ⎝ ⎛⎭⎪⎫α-π12=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π4 =sin ⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎝ ⎛⎭⎪⎫α+π6sin π4 =45×22-35×22=210.14.(2014·潍坊一模)若α∈⎝⎛⎭⎪⎫0,π2,则sin 2αsin 2α+4cos 2α的最大值为________.[答案] 12[解析] ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴tan α∈(0,+∞), ∴sin 2αsin 2α+4cos 2α=2sin αcos αsin 2α+4cos 2α=2tan αtan 2α+4 =2tan α+4tan α≤22tan α×4tan α=12, 当且仅当tan α=4tan α,即tan α=2时取等号.15.(2014·贵阳适应性考试)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0,则A =________.[答案] π3[解析] 由题意,得sin A cos C +3sin A sin C =sin B +sin C , ∴sin A cos C +3sin A sin C =sin(A +C )+sin C ,∴sin A cos C +3sin A sin C =sin A cos C +cos A sin C +sin C . ∵sin C ≠0,∴3sin A -cos A =1, 即32sin A -12cos A =12, ∴sin ⎝ ⎛⎭⎪⎫A -π6=12, ∴A -π6=π6,∴A =π3.16.(2014·云南第一次检测)已知a ,b ,c 分别为△ABC 三个内角A 、B 、C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A 的值等于________.[答案] 16 2[解析] 依题,可得sin B =35,又S △ABC =12ac sin B =42,则c =14. 故b =a 2+c 2-2ac cos B =62, 所以b +a sin A =b +bsin B =16 2. 三、解答题17.(2014·江南十校联考)已知函数f (x )=12λsin ωx +32λcos ωx (λ>0,ω>0)的部分图象如图所示,其中点A 为最高点,点B ,C 为图象与x 轴的交点,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b =c =3,且满足(2c -3a )cos B -3b cos A =0.(1)求△ABC 的面积;(2)求函数f (x )的单调递增区间.解:(1)由(2c -3a )cos B -3b cos A =0,得B =π6.在△ABC 中,BC 边上的高h =c sin B =32,BC =2c cos B =3, 故S △ABC =12×BC ×h =334.(2)f (x )=12λsin ωx +32λcos ωx =λsin ⎝⎛⎭⎪⎫ωx +π3,又T =2BC =2πω=6,则ω=π3, 故f (x )=λsin ⎝ ⎛⎭⎪⎫π3x +π3由-π2+2k π≤πx 3+π3≤π2+2k π(k ∈Z ), 可得6k -52≤x ≤6k +12(k ∈Z ). 所以函数f (x )的单调递增区间为 ⎣⎢⎡⎦⎥⎤6k -52,6k +12(k ∈Z ).18.(2014·四川5月高考热身)已知向量m =(3sin x ,-1),n =(cos x ,cos 2x ),函数f (x )=m ·n +12.(1)若x ∈⎣⎢⎡⎦⎥⎤0,π4,f (x )=33,求cos 2x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足2b cos A ≤2c -3a ,求f (B )的取值范围.解:(1)f (x )=m ·n +12=3sin x cos x -cos 2x +12=32sin 2x -12cos 2x -12+12=sin ⎝ ⎛⎭⎪⎫2x -π6.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴-π6≤2x -π6≤π3.又∵f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6=33>0,∴cos ⎝ ⎛⎭⎪⎫2x -π6=63. ∴cos 2x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x -π6+π6 =cos ⎝ ⎛⎭⎪⎫2x -π6×32-12sin ⎝ ⎛⎭⎪⎫2x -π6 =63×32-12×33=22-36.(2)由2b cos A ≤2c -3a ,得2b ·b 2+c 2-a 22bc ≤2c -3a ,即a 2+c 2-b 2≥3ac .∴cos B =a 2+c 2-b 22ac ≥32,∴0<B ≤π6,从而得-π6<2B -π6≤π6,故f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤-12,12. 19.(2014·贵阳适应性考试)已知向量a =(sin x ,-1),b =⎝⎛⎭⎪⎫3cos x ,-12,函数f (x )=(a +b )·a -2. (1)求函数f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,其中A 为锐角,a =23,c =4,且f (A )=1,求△ABC 的面积S .解:(1)f (x )=(a +b )·a -2=|a |2+a ·b -2=sin 2x +1+3sin x cos x +12-2=1-cos 2x 2+32sin 2x -12=32sin 2x -12cos 2x=sin ⎝ ⎛⎭⎪⎫2x -π6. 因为ω=2,所以T =2π2=π.(2)f (A )=sin ⎝ ⎛⎭⎪⎫2A -π6=1. 因为A ∈⎝ ⎛⎭⎪⎫0,π2,2A -π6∈⎝ ⎛⎭⎪⎫-π6,5π6, 所以2A -π6=π2,A =π3.又a 2=b 2+c 2-2bc cos A ,所以12=b 2+16-2×4b ×12, 即b 2-4b +4=0,则b =2.从而S =12bc sin A =12×2×4×sin π3=2 3.20.(2014·衡水一模)在△ABC 中,a ,b ,c 是角A ,B ,C 对应的边,向量m =(a +b ,c ),n =(a +b ,-c ),且m ·n =(3+2)ab .(1)求角C ;(2)函数f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12(ω>0)的相邻两个极值的横坐标分别为x 0-π2,x 0,求f (x )的单调递减区间.解:(1)因为m =(a +b ,c ),n =(a +b ,-c ),m ·n =(3+2)ab ,所以a 2+b 2-c 2=3ab ,故cos C =32, ∵0<C <π,∴C =π6.(2)f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12 =2sin C cos 2(ωx )+cos C sin(2ωx )-12 =cos 2(ωx )+32sin(2ωx )-12=sin ⎝ ⎛⎭⎪⎫2ωx +π6. 因为相邻两个极值的横坐标分别为x 0-π2,x 0,所以f (x )的最小正周期为T =π,ω=1,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 由2k π+π2<2x +π6<2k π+3π2,k ∈Z ,得k π+π6<x <k π+2π3,所以f (x )的单调递减区间为k π+π6,k π+2π3,k ∈Z .。
高三数学二轮复习空间中的平行与垂直练习含试题答案
空间中的平行与垂直[明考情]高考中对直线和平面的平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中档偏下.[知考向]1.空间中的平行关系.2.空间中的垂直关系.3.平行和垂直的综合应用.考点一空间中的平行关系方法技巧(1)平行关系的基础是线线平行,比较常见的是利用三角形中位线构造平行关系,利用平行四边形构造平行关系.(2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.1.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.证明如图所示,作ME∥BC交BB1于点E,作NF∥AD交AB于点F,连接EF,则EF⊂平面AA1B1B.∵ME∥BC,NF∥AD,∴MEBC=B1MB1C,NFAD=BNBD.在正方体ABCD-A1B1C1D1中,∵CM=DN,∴B1M=NB.又B1C=BD,∴ME BC =BN BD =NFAD,又BC =AD ,∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴四边形MEFN 为平行四边形, ∴MN ∥EF .又EF ⊂平面AA 1B 1B ,MN ⊄平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .2.(2017·全国Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥PA ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)解 如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD , 故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =22,可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.3.(2017·龙岩市新罗区校级模拟)如图,O 是圆锥底面圆的圆心,圆锥的轴截面PAB 为等腰直角三角形,C 为底面圆周上一点.(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC ∩OD =E , ∵D 是弧BC 的中点, ∴E 是BC 的中点.又∵O 是AB 的中点,∴AC ∥OE . 又∵AC ⊄平面POD ,OE ⊂平面POD , ∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径, ∴AC ⊥BC .∵弧BC 的中点为D , ∴OD ⊥BC .又AC ,OD 共面,∴AC ∥OD . 又AC ⊄平面POD ,OD ⊂平面POD , ∴AC ∥平面POD .(2)解 设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形, ∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.4.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在?请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.考点二空间中的垂直关系方法技巧判定直线与平面垂直的常用方法(1)利用线面垂直定义.(2)利用线面垂直的判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.5.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .6.(2017·全国Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO .又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt△AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.7.(2017·南京一模)如图,在六面体ABCDE 中,平面DBC ⊥平面ABC ,AE ⊥平面ABC .(1)求证:AE ∥平面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.∵平面DBC ⊥平面ABC ,平面DBC ∩平面ABC =BC ,DO ⊂平面DBC , ∴DO ⊥平面ABC .又AE ⊥平面ABC ,则AE ∥DO .又AE ⊄平面DBC ,DO ⊂平面DBC ,故AE ∥平面DBC .(2)由(1)知,DO ⊥平面ABC ,AB ⊂平面ABC , ∴DO ⊥AB .又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC , ∴AB ⊥平面DBC . ∵DC ⊂平面DBC ,∴AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂平面ABD,则DC⊥平面ABD.又AD⊂平面ABD,故可得AD⊥DC.8.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.(1)求证:EF∥平面SAD;(2)试确定点M的位置,使得平面EFM⊥底面ABCD.(1)证明取SB的中点P,连接PF,PE.∵F为SC的中点,∴PF∥BC,又底面ABCD为正方形,∴BC∥AD,即PF∥AD,又PE∥SA,∴平面PFE∥平面SAD.∵EF⊂平面PFE,∴EF∥平面SAD.(2)解连接AC,AC的中点即为点O,连接SO,由题意知SO⊥平面ABCD,取OC的中点H,连接FH,则FH∥SO,∴FH⊥平面ABCD,∴平面EFH⊥平面ABCD,连接EH并延长,则EH与DC的交点即为M点.连接OE,由题意知SO=3,SE=2.∴OE =1,AB =2,AE =1,∴MC AE =HC HA =13, ∴MC =13AE =16CD ,即点M 在CD 边上靠近C 点距离为16的位置.考点三 平行和垂直的综合应用方法技巧 空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.9.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)在△PAD 中,∵E ,F 分别为AP ,AD 的中点, ∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD , ∴直线EF ∥平面PCD . (2)如图,连接BD .∵AB =AD ,∠BAD =60°, ∴△ADB 为正三角形. ∵F 是AD 的中点, ∴BF ⊥AD .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BF ⊂平面ABCD , ∴BF ⊥平面PAD . 又∵BF ⊂平面BEF , ∴平面BEF ⊥平面PAD .10.(2017·山东)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.11.(2017·汉中二模)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D,D1分别是BC和B1C1的中点.(1)求证:A1D1∥平面AB1D;(2)若平面ABC⊥平面BCC1B1,∠B1BC=60°,求三棱锥B1-ABC的体积.(1)证明 连接DD 1,在三棱柱ABC -A 1B 1C 1中,∵D ,D 1分别是BC 和B 1C 1的中点, ∴B 1D 1∥BD ,且B 1D 1=BD , ∴四边形B 1BDD 1为平行四边形, ∴BB 1∥DD 1,且BB 1=DD 1. 又∵AA 1∥BB 1,AA 1=BB 1, ∴AA 1∥DD 1,AA 1=DD 1, ∴四边形AA 1D 1D 为平行四边形, ∴A 1D 1∥AD .又∵A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D , ∴A 1D 1∥平面AB 1D .(2)解 在△ABC 中,边长均为4,则AB =AC ,D 为BC 的中点, ∴AD ⊥BC .∵平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , ∴AD ⊥平面B 1C 1CB ,即AD 是三棱锥A -B 1BC 的高. 在△ABC 中,由AB =AC =BC =4,得AD =23, 在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°, ∴△B 1BC 的面积为4 3.∴三棱锥B 1-ABC 的体积即为三棱锥 A -B 1BC 的体积V =13×43×23=8.12.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.(1)求证:CD ⊥平面SAD ; (2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?并证明你的结论.(1)证明 ∵四边形ABCD 为正方形, ∴CD ⊥AD .又∵平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知,PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点, ∴QR ∥BC 且QR =12BC .∴QR ∥PD 且QR =PD , 则四边形PDRQ 为平行四边形, ∴PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD , ∴PQ ∥平面SCD .(3)解 存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC ,DM 交于点O ,连接PM ,SP ,NM ,ND ,NO , ∵PD ∥CM ,且PD =CM , ∴四边形PMCD 为平行四边形, ∴PO =CO .又∵N 为SC 的中点, ∴NO ∥SP . 易知SP ⊥AD .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,且SP ⊥AD , ∴SP ⊥平面ABCD , ∴NO ⊥平面ABCD . 又∵NO ⊂平面DMN , ∴平面DMN ⊥平面ABCD .例 (12分)如图,四棱锥P -ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,点E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图(1)E ,F 是中点―――→取PD 的中点M 构造▱AEFM ―→线线平行EF ∥AM ―→线面平行EF ∥平面PAD (2)面面垂直PAD ⊥ABCD ―――→PA ⊥AD 线面垂直PA ⊥底面ABCD ―→线线垂直PA ⊥DE―――――――――→Rt△ABH ≌Rt△DAE 线线垂直DE ⊥AH ―→线面垂直DE ⊥平面PAH ―→ 面面垂直平面PAH ⊥平面DEF 规范解答·评分标准证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点, ∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF .…………………………………………………………………………………4分 又∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD .…………………………………………………………………………6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD , 侧面PAD ∩底面ABCD =AD ,∴PA ⊥底面ABCD .∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,则DE ⊥AH .…………………………………………………………………………………8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH .…………………………………………………………………………10分 ∵DE ⊂平面DEF ,∴平面PAH ⊥平面DEF .…………………………………………………………………12分 构建答题模板[第一步] 找线线:通过三角形或四边形的中位线,平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.[第二步] 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.[第三步] 找面面:通过面面关系的判定定理,寻找面面垂直或平行. [第四步] 写步骤:严格按照定理中的条件规范书写解题步骤.1.如图,在空间四面体ABCD 中,若E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点.(1)求证:四边形EFGH 是平行四边形; (2)求证:BC ∥平面EFGH .证明 (1)∵在空间四面体ABCD 中,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点, ∴EF 綊12AD ,GH 綊12AD ,∴EF 綊GH ,∴四边形EFGH 是平行四边形. (2)∵E ,H 分别是AB ,AC 的中点,∴EH ∥BC .∵EH ⊂平面EFGH ,BC ⊄平面EFGH , ∴BC ∥平面EFGH .2.(2017·北京)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 因为PA ⊥AB ,PA ⊥BC , 所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD . (2)证明 因为AB =BC ,D 是AC 的中点, 所以BD ⊥AC . 由(1)知,PA ⊥BD , 所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(3)解 因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.3.(2017·北京海淀区模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱PA 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否不论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥底面ABCD , ∴PA 为此四棱锥底面上的高.∴V 四棱锥P -ABCD =13S 正方形ABCD ×PA =13×12×2=23.(2)证明 连接AC 交BD 于点O ,连接OE .∵四边形ABCD 是正方形, ∴AO =OC . 又∵AE =EP , ∴OE ∥PC .又∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 不论点E 在侧棱PA 的任何位置,都有BD ⊥CE . 证明:∵四边形ABCD 是正方形, ∴BD ⊥AC .∵PA ⊥底面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD . 又∵PA ∩AC =A , ∴BD ⊥平面PAC . ∵CE ⊂平面PAC , ∴BD ⊥CE .4.如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长.(1)证明 ∵四边形ABCD 是正方形, ∴BD ⊥AO ,BD ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O , ∴BD ⊥平面AOC . ∵BD ⊂平面BCD , ∴平面AOC ⊥平面BCD . (2)解 由(1)知BD ⊥平面AOC , ∴V A -BCD =13S △AOC ·BD ,∴13×12OA ·OC ·sin∠AOC ·BD =63, 即13×12×2×2×sin∠AOC ×22=63, ∴sin∠AOC =32. 又∵∠AOC 是钝角, ∴∠AOC =120°.在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos∠AOC=(2)2+(2)2-2×2×2×cos 120°=6, ∴AC = 6.5.(2016·四川)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)求证:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .所以PA ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .。
高三数学(理科)二轮复习
高考数学第二轮复习计划一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。
3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。
三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题.第二轮复习的形式和内容1.形式及内容:分专题的形式,具体而言有以下八个专题。
新教材适用2024版高考化学二轮总复习第4部分题型标准练选择题标准练二
选择题标准练(二)一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项符合题目要求。
1. (2023·湖北选考)2023年5月10日,天舟六号货运飞船成功发射,标志着我国航天事业进入到高质量发展新阶段。
下列不能作为火箭推进剂的是( A )A.液氮—液氢B.液氧—液氢C.液态NO2—肼D.液氧—煤油【解析】虽然氮气在一定的条件下可以与氢气反应,而且是放热反应,但是,由于N ≡N键能很大,该反应的速率很慢,氢气不能在氮气中燃烧,在短时间内不能产生大量的热量和大量的气体,因此,液氮—液氢不能作为火箭推进剂,A符合题意;氢气可以在氧气中燃烧,反应速率很快且放出大量的热、生成大量气体,因此,液氧—液氢能作为火箭推进剂,B不符合题意;肼和NO2在一定的条件下可以发生剧烈反应,该反应放出大量的热,且生成大量气体,因此,液态NO2—肼能作为火箭推进剂,C不符合题意;煤油可以在氧气中燃烧,反应速率很快且放出大量的热、生成大量气体,因此,液氧—煤油能作为火箭推进剂,D不符合题意;综上所述,本题选A。
2. (2023·河北部分示范学校三模)下列说法错误的是( C )A.阴离子的配位数:CsCl晶体>NaCl晶体>CaF2晶体B.BF3与NH3可通过配位键形成氨合三氟化硼(BF3·NH3)C.H3BO3和H3PO3均为三元弱酸,分子结构式均为(X=B,P)D.基态氧原子的电子排布图(轨道表示式)为【解析】在CsCl晶体、NaCl晶体、CaF2晶体中,阴离子的配位数分别为8、6、4,A 正确;BF3与NH3反应生成BF3·NH3,B与N之间形成配位键,N原子提供孤对电子,B原子提供空轨道,B正确;H3BO3分子的结构式为,其水溶液呈酸性是因为H3BO3与H2O发生反应:H3BO3+H2O[B(OH)4]-+H+,因此H3BO3为一元弱酸。
H3PO3分子的结构式为,H3PO3为二元弱酸,C错误;O为8号元素,基态氧原子的电子排布图(轨道表示式)为,D正确;故选C。
小题压轴题专练9 椭圆(2)-2021届高三数学二轮复习
小题压轴题专练9—椭圆(2)一、单选题的面积S 最大,则S 的最大值是( )解:设1(A x ,1)y ,2(B x ,2)y ,联立2214y x n x y =+⎧⎪⎨+=⎪⎩,得2258440x nx n ++-=, △2226420(44)80160n n n =--=->,得n <1285nxx +=-,212445n x x -=, 22212644(44)42||||25255n n AB x x n -∴=-=-=-,当过C 点直线与动直线平行且与椭圆只有一个交点时,C 点到动直线距离取到最值(最大或最小),不妨设过C 点直线方程为y x b =+,联立2214y x bx y =+⎧⎪⎨+=⎪⎩,整理得2258440x bxb ++-=, 则根据△226420(44)0b b =--=,可得b =不妨取b =C 到直线AB 的距离d =,221142|5|2||55(5)2252ABC n S d AB n n n ∆-∴==-=--,n t =,t ∈,则n t =.425ABC S t t ∆∴==-令43()g t t =-+,则322()4(4g t t t t '=-+=--.∴当t ∈时,()0g t '>,当t ∈,时,()0g t '<,∴675()16max g t g ==. ABC S ∆∴=故选:D .2.已知椭圆与双曲线有公共焦点,1F ,2F,1F 为左焦点,2F 为右焦点,P 点为它们在第值为( )解:设椭圆与双曲线的标准方程分别为:2222111x y a b +=,2222221x y a b -=.且222221122c a b a b =-=+,1a ,2a ,1b ,20b >.设1||PF m =,2||PF n =,则12m n a +=,22m n a -=.解得:12m a a=+,12n a a =-.222(2)2cos4c m n mn π=+-,22112124(2)()()(2c a a a a a ∴=-+-,22211211144(22)()e e e ∴=-+-, 化为:1222224-++=. 令122(α-=,222)+,(22β=-,)22+. ||||||αβαβ,∴21212112222()()()2222e e -++++-+. ∴121144222e e +⨯=.当且仅当12322e e =-时取等号.故选:B .3.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .2[2,5]3B .5[3,1) C .2[2,31]- D .[31-,1)解:作出椭圆的左焦点F ',由椭圆的对称性可知,四边形AFBF '为平行四边形,又0FA FB =,即FA FB ⊥,故平行四边形AFBF '为矩形, ||||2AB FF c '∴==,设AF n '=,AF m =,则在直角三角形ABF 中,2m n a +=,2224m n c +=,① 得22mn b =,②①÷②得222m n c n m b +=,令mt n =,得2212c t t b+=,又由||||2||FB FA FB ,得[1mt n=∈,2], 2212[2c t t b ∴+=∈,5]2,即22[1c b∈,5]4即22514c b ,得22415b c ,即222415a c c -,即224115a c -, 则22925a c ,即221529c a ,得159e 得5e则椭圆的离心率的取值范围是, 故选:A .圆的两个焦点),则此时△12F PF 中12F PF ∠的平分线的长度为( )解:由题意,切线方程为0021y yxx b +=, 直线l 与x 、y 轴分别相交于点A 、B ,01(A x ∴,0),20(0,)b B y ,20012AOBb S x y ∆∴=,220000221yx y x b b =+∴0012x y b, AOB S b ∆∴,当且仅当002y x b ==时,(AOB O ∆为坐标原点)的面积最小, 设1||PF x =,2||PF y =,则22x y a +==,由余弦定理可得2224c x y xy =+-,243xy b ∴=,∴△12PF F 的面积213sin 23S xy b π==, ∴201322c y b ⨯=,2032b y b ∴==,6c b ∴=, 2221c b a +==,15b ∴=, 设△12F PF 中12F PF ∠的平分线的长度为m ,则121133||sin ||sin ()2626425m m PF m PF m x y ππ+=+==⨯, 23m ∴=, 故选:A .5.已知点0(P x ,00)()y x a ≠±在椭圆2222:1(0)x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且(PO PM O ⊥为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .3(0,)3B .3(3,1) C .2(2,1) D .2(0,)2解:由题意知(,0)M a ,点0(P x ,0)y ,则0(PO x =-,0)y -,0(PM a x =-,0)y -,PO PM ⊥,∴000()()()()0PO PM x a x y y =--+--=,∴220000y ax x =->;又0a x a -<<,代入椭圆方程中,整理得22232200()0b a x a x a b -+-=;令222322()()0f x b a x a x a b =-+-=,(,)x a a ∈-;22(0)0f a b =-<,f (a )0=,如图所示:△3222222()4()()(a b a a b a =-⨯-⨯-=4224222244)(2)0a a b b a a c -+=-, ∴对称轴满足32202()a a b a <-<-,即32202()a a ab <<-, ∴2212ac <,∴2212c a >,2c e a ∴=>; 又01e <<,∴21e <<;则椭圆C 的离心率e 的取值范围是2(,1). 故选:C .6.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的左右焦点,若E 上存在不同两点A ,B ,使得123F A F B =,则该椭圆的离心率的取值范围为解:延长1AF 交椭圆于1A ,根据椭圆的对称性,则211F B A F =,1113F A A F =,设直线1AA 的方程x m y c =-,1(A x ,1)y ,12(A x ,2)y ,联立22221x my cx y ab =-⎧⎪⎨+=⎪⎩,整理得:222224()20b m a y b mcy b +--=,则2122222b mc y y b ma +=+,412222b y yb m a =-+, 由1113F A A F =,则12y =,解得:22y =,1y =,由2412222)(13)(b y y b m a b ==-+-,整理得:2m =>,则22(20b ->,即222(2c a >=, ∴椭圆的离心率2ce a=> ∴椭圆的离心率的取值范围(21),方法二:利用椭圆的极坐标方程. 由12F A F B λ=,且1||1cos ep F A e θ=-,11||1cos epA F e θ=+,由112A F F B =,所以1cos 1cos ep epe e λθθ=-+,整理得1cos 1e λθλ-=+,其中[0θ∈,2)π, 由A ,B 不重合,所以0θ≠,31cos 31e e θ-=<+,解得23e >-,所以,椭圆的离心率的取值范围(23-,1),故选:C .7.已知点A 为椭圆2222:1(0)x y C a b a b+=>>的左顶点,(,0)F c 为椭圆的右焦点,B 、E 在椭圆上,四边形OABE 为平行四边形(O 为坐标原点),过直线AE 上一点P 作圆222()4b x c y -+=的切线PQ ,Q 为切点,若PQF ∆面积的最小值大于28b ,则椭圆C 的离心率的取值范围是( )A .102(0,)3- B .102(,1)3- C .51(0,)3- D .51(,1)3- 解:因为四边形OABE 为平行四边形, 所以//BE AO ,||||BE AO a ==,设E 点纵坐标为m ,代入椭圆的方程得22221x m a b+=,解得x =(a =,解得m =,当m =,可得2ax =, (2aE),(,0)A a -, 所以直线AE的方程为2())32y x a x a a =+=+,30ay -=,所以||min PF 即为点F 到直线AE的距离d =所以||PQ =所以211()||2228PFQ minb b S PQ R ∆=⋅=⋅, 整理得2212d b >,故22222222222223()3()(1)1393()942b ac a c b e b b b a a c a e +++==>+-+-, 所以221(1)(4)2e e +>-,所以23420e e +->,所以e s <舍去)或e >所以e的取值范围为1). 故选:B .8.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是△12MF F 的内心,G 是△12MF F 的重心,记△12IF F 与△1GF M 的面积分别为1S ,2S ,则( )A .12S S =B .122S S =C .1232S S =D .1243S S =解:离心率为13,∴13c a =,则3a c =,222822b a c c c =-==,设M 的坐标为0(x ,0)y ,三角形△12MF F 的面积为S , 则00122S c y cy =⨯⨯=,G 是△12MF F 的重心,13GO OM ∴=,即213S S =,设内切圆的半径为r ,则121212MF I MIF MF F S SS IF F S++=,则110111112()22222222cr MF MF r cr ar cy ⨯++=⨯+⨯=⨯, 即0()c a r cy +=,即04cr cy =,则04y r =,则01112244y S cr cr c S =⨯===, 即则12134143S S S S ==,即1243S S =,故选:D .9.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A 、B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( )A .11(,)164B .11[,)84C .11(,)162D .11[,)82解:由椭圆的方程:2212x y +=,可得左焦点(1,0)F -,()i 当直线l 的斜率为0时,则直线l 为x 轴,AB 的中垂线为y 轴,这时M 与原点O 重合,这时||2AB a ==||1FM c ==,所以2||1||8FM AB =, ()ii 当直线l 的斜率不存在时,AB 的中垂线为x 轴,舍去,()iii 当直线的斜率不为0时,设直线l 的方程为1x my =-,设A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y ,联立直线与椭圆的方程:22112x my x y =-⎧⎪⎨+=⎪⎩,整理可得:22(2)210m y my +--=, 12222m y y m +=+,12212y y m -=+,所以弦长||AB =, 212122224()2222m x x m y y m m -+=+-=-=++, 所以AB 的中点坐标22(2m -+,2)2mm+, 所以直线AB 的中垂线方程为:222()22m y m x m m -=-+++, 令0y =,可得212x m =-+,所以21(2M m -+,0), 所以221||2m FM m +=+,所以2222||12111(1)(||81818FM m AB m m +=⋅=⋅+∈++,1)4,综上所述2||||FM AB 的取值范围1[8,1)4, 故选:B .10.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的左、右焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆22:(3)3D x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2||||MN NF +的最大值是( )A .433+B .343+C .432+D .342+解:若要满足椭圆上存在一点P ,使得1223F PF π∠=,只需12F PF ∠的最大值不小于23π即可, 在三角形12PF F 中,由余弦定理可得:22222121212121212||||||(||||)4cos 12||||2||||PF PF F F PF PF c F PF PF PF PF PF +-+-∠==-222221212222111||||2||||()2b b b PF PF PF PF a =--=-+,当且仅当12||||PF PF a ==,即此时P 为椭圆短轴的端点时,12F PF ∠最大,如图,不妨设P 点为短轴的上顶点时,12F PF ∠最大,设12F PF θ∠=,则23πθ, 所以3sin [2c e a θ==∈,因此当椭圆C 3时,24a =,故椭圆的标准方程为2214x y +=,连接DN ,则22(||||)3(||||)max max MN NF DN NF ++,所以只需研究2||||DN NF +的最大值即可,连接1NF ,1DF ,211||||4||||4||423DN NF DN NF DF +=+-+=+N ,D ,1F 三点共线(N 点在线段1DF 的延长线上)时,不等式取得等号,所以2||||DN NF +的最大值423+,故2||||MN NF +的最大值是433+. 故选:A .二、多选题11.设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,点P 在椭圆上,且112PF F F ⊥,14||3PF =,214||3PF =.过点(2,1)M -的直线l 交椭圆于A ,B 两点,且A ,B 关于点M 对称,则下列结论正确的有( )A .椭圆的方程为22194x y +=B .椭圆的焦距为5C .椭圆上存在4个点Q ,使得120QF QF ⋅=D .直线l 的方程为89250x y -+=解:由椭圆的定义知122||||6a PF PF =+=,故3a =,因为112PF F F ⊥,所以221221||||||252F F PF PF c -==,所以5c =2b =,所以椭圆的方程为22194x y +=,所以椭圆的焦距为225c =,则A 正确,B 错误,由120QF QF ⋅=知1290F QF ∠=︒,故点Q 在以12F F 为直径的圆上, 由c b >知圆与椭圆有4个交点,C 正确,依题意知点(2,1)M -为弦AB 的中点,设1(A x ,1)y ,2(B x ,2)y , 则22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得12121212()()()()094x x x x y y y y -+-++=, 因为124x x +=-,122y y +=,所以121289ABy y x x -==-, 故直线l 的方程为:81(2)9y x -=+,即89250x y -+=,D 正确,故选:ACD .若点P 是椭圆上不与1F ,2F 共线的任意点,且△12PF F的周长为16,则下列结论正确的是( )D .点Q 是圆2225x y +=上一点,点A ,B 是C 的左、右顶点(Q 不与A ,B 重合),设直线PB ,QB 的斜率分别为1,2,若A ,P ,Q 三点共线,则122516=解:根据题意可得222542216a b a c a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩,解得5a =,4b =,3c =,对于A:椭圆的方程为2212516x y+=,即A正确;对于3:5cB ea==,即B错误;对于C:双曲线22154x y-=的渐近线为25by x xa=±=±,联立222512516y xx y⎧=⎪⎪⎨⎪+=⎪⎩,且0x>,0y>,解得103x=,45y=,∴双曲线22154x y-=的渐近线与椭圆C 在第一象限内的交点为104(,5)33,即C正确;对于D:由题意知,(5,0)A-,(5,0)B,设1(P x,1)y,则1115yx=-,Q在圆2225x y+=上,且A,P,Q三点共线,AQ BQ∴⊥,12151AQxy+∴=-=-,∴212112221116(1)1625252525xyx x-===--,即122516=,故选项D正确.故选:ACD.13.一般地,我们把离心率为512-的椭圆称为“黄金椭圆”.则下列命题正确的有()D .设焦点在x 轴上的“黄金椭圆”左右顶点分别为A ,B ,“黄金椭圆”上动点P (异的斜率分别为1,2,则1212-=解:A 中没有指明焦点在x 轴还是y 轴,应该由两个值,所以A 不正确;B 中,由题意2c =,则c e a ==,所以1a =,则△12AF F 的周长为221)226a c +=+⨯=+,所以B 正确;C 中,由题意可得1||FC a c =+,1||F D a,||DC ,要使椭圆为“黄金椭圆”,则c a=, 所以c =,所以a c +=,所以1||F C=,||DC =,因为221||F C =,222221||||F D DC a +=+=, 所以22211||||||FC F D DC =+,所以12F DC π∠=,所以C 正确;D 中,由题意可得(,0)A a -,(,0)B a ,设0(P x ,0)y ,则为20001222000y y y x a x a x a ⋅=⋅=+--,因为P 在椭圆上2200221x y a b +=,所以222002(1)x y b a=-,所以2122b a⋅=-,因为黄金椭圆”上动点P ,所以c a =,所以222c a ==222c a b =-,所以221b a -=221b a -=-=所以121-=D 正确. 故选:BCD .(0)x =≠与C B 两点,AE x ⊥轴,垂足为E ,直线BE 与椭圆C 的另一个交点为P ,则下列结论正确的是( )B .四边形12AF BF ,可能为矩形12D .若P 与A 、B 两点不重合,则直线PA 和PB 斜率之积为4-解:由椭圆22:14x C y +=,得2a =,1b =,c =在△12PF F 中,由余弦定理可得,222121212||||||2||||cos60F F PF PF PF PF =+-︒, 即2212443||||c a PF PF =-,解得124||||3PF PF =,∴121423F PF S=⨯=,故A 错误; 若四边形12AF BF 为矩形,则11AF BF ⊥,即110F A F B ⋅=,即()()0A B A B x c x c y y +++=,联立2214y x x y =⎧⎪⎨+=⎪⎩,得22(41)4x +=,得0A B x x +=,2441A B x x =-+,22441A B y y =-+,即22244304141-+-=++,得2810-=,该方程有实根,故B 正确;由22(41)4x +=,得241x =±+,由对称性,不妨设0>,得241A +,),2(41B -+,),则241E +,0),则2412BE+==,故C 正确;A PB P B PPAA PB P B Py y y y y y x x x x x x ---+===---+,BE 所在直线方程为()24y x =-,与椭圆2214x y +=联立,可得222()404x x +--=,即222224(1)4041x x ++-=+.得22114B P x x +=⋅+, 22222214()214141(1)41B P y y +=⋅-=+++++,故12PA=-,则11224PA PB⋅=-⋅=-,故D 错误. 故选:BC .三、填空题15.把半椭圆:22221(0)x y x a b+=和圆弧:222(1)(0)x y a x -+=<合成的曲线称为“曲圆”,其中点(1,0)F 是半椭圆的右焦点,1A ,2A 分别是“曲圆”与x 轴的左、右交点,1B ,2B 分别是“曲圆”与y 轴的上、下交点,已知12120B FB ∠=︒,过点F 的直线与“曲圆”交于P ,Q 两点,则半椭圆方程为 22143x y += (0)x ,△1A PQ 的周长的取值范围是 .解:由222(1)(0)x y a x -+=<,令0y =,可得1x a =-以及1(1,0)A a --,再由椭圆的方程及题意可得2(,0)A a ,2(0,)B b ,1(0,)B b -,由12120B FB ∠=︒,可得3bc由(1,0)F 可得3b =所以2a =,所以半椭圆及圆弧的方程分别为221(0)43x y x +=,22(1)4(0)x y x -+=<,所以1212(1,0),(2,0),(0,3),3)A A B B --,可得1A 相当于椭圆的左焦点,△1A PQ 的周长为11PF PA AQ QF +++, 当P 从2A (不包括2)A 向2B 运动时,24PA PF a +==,当Q 在y 轴右侧时,124AQ QF a +==,所以这时三角形的周长为8, 当P 从2B 向1A 运动时,Q 在第四象限,则124AQ QF a +==,112224PF PA r A B a ++=+=, 这时三角形的周长小于8,当P 运动到1A 时,Q 在2A 处,不构成三角形,三角形的周长接近1226A A =, 由曲圆的对称性可得P 运动到x 轴下方时,与前面的一样, 综上所述,△1A PQ 的周长的取值范围为(6,8].故答案为:22143x y +=;(6,8].16.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为46,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作OD AB ⊥交AB 于点D ,点D 的坐标为(2,1),则椭圆C 的方程为 221306x y += .解:由已知可得1AB OD⋅=-,所以11212ABOD=-=-=-, 则直线BA 的方程为:12(2)y x -=--,即25y x =-+,代入椭圆方程消去y 整理可得:2222222(4)20250b a x a x a a b +-+-=,设1(A x ,1)y ,2(B x ,2)y ,2(B x ,2)y ,则2222121222222025,44a a a b x x x x b a b a -+==++,又由已知可得:2c =c =2224a b =+,所以2241212222049,524524a a a x x x x a a -+==--, 所以241212121221214600(25)(25)410()25524a a y y x x x x x x a --=-+-+=-++=-, 又由OA OB ⊥可得12120x x y y +=,所以242424912146000524a a a a a -+--=-,即42341200a a -+=, 解得230a =或4(舍去),所以230a =,26b =,所以椭圆的方程为221306x y +=,故答案为:221306x y +=.过点2F 作12F PF ∠的角平分线PT 的垂线,交PT 于M ,交直线1PF 于Q ,则点M 的横坐标解:设0(P x ,0)y ,1(Q x ,1)y ,因为点P 在椭圆上, 所以220014x y +=,又1(F 0),所以10||2PF =,所以2103||||4||22PQ PF PF x ==-=-, 110||||||3QF PF PQ x =-=,分别过点P ,Q 作PG x ⊥轴于G ,QH x ⊥轴于H ,则//QH PG , 所以1111||||||||QF HF PF GF =, 所以0100333322x x x x +=++,即00103(3)3322x x x x ++=+,有M 是2QF 的中点,所以2000000100003(3)3432433434M x x x x x x x x x x x x ++-+====-+++, 令034t x =+,故444533333333M t t t x tt--=-=+--,(当且仅当433t t=,即2t =时,取等号)即点M 的横坐标的最小值为33-. 故答案为:33-.18.已知点A ,B ,1F ,2F 分别是椭圆2221(1)x y a a+=>的右顶点、下顶点、左焦点和右焦点,点M ,N 是椭圆上任意两点,若M AB ∆的面积最大值为21+,则1212||||||9||NF NF NF NF +的最大值为.解:如图所示,(,0)A a ,(0,1)B -,||AB AB k a =. 直线AB 的方程为:11y x a=-. 设与直线AB 平行且与椭圆相切于点M 的直线l 方程为:1y x m a=+、 联立22221y x m ax a y a ⎧=+⎪⎨⎪+=⎩,化为:2222220x amy a m a ++-=, 令△2222248()0a m a m a =--=,解得:22m =.取m =l ∴与AB之间的距离d =M AB ∴∆112=2a =. 设1||NF t =,2||NF n =. 则4t n +=.∴则1212||||11119119||9||941029()()4NF NF tn NF NF t n t n n t n t====++++++,当且仅当33t n ==时取等号. ∴1212||||||9||NF NF NF NF +的最大值为14.故答案为:14.。
高三数学二轮复习 1.6.1 直线与圆课时巩固过关练 理 新人教版-新人教版高三全册数学试题
课时巩固过关练十五直线与圆(30分钟55分)一、选择题(每小题5分,共20分)1.(2016·某某一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=( ) A.±2 B.± C. D.【解析】选B.抛物线的准线为y=-1,将圆化为标准方程+y2=,圆心到直线的距离为1=⇒m=±.2.(2016·某某一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )A. B.2 C.3 D.4【解析】选C.由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.l1,l2间的距离为=.原点到l2的距离为=,所以点M到原点的距离最小值为+=3.3.(2016·某某二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+ (y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-【解析】选D.由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为:y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆相切,圆心为(-3,2),所以=1.整理得12k2+25k+12=0,解得:k=-或k=-.4.(2016·某某二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b ∈R且ab≠0,则+的最小值为( )A.1B.3C.D.【解析】选A.x2+y2+2ax+a2-4=0即(x+a)2+y2=4,x2+y2-4by-1+4b2=0即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,当且仅当=,即a=±2b时取等号.二、填空题(每小题5分,共10分)5.(2016·某某高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.【解析】设C(a,0)(a>0),由题意知=,解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=96.(2016·某某二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.【解析】由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.答案:18三、解答题(7题12分,8题13分,共25分)7.(2016·某某一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程.(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.【解析】(1)由圆C:x2+y2-4x-6y+12=0,配方,得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.又斜率不存在时直线x=3也与圆相切,故所求切线方程为x=3或3x-4y+11=0.(2)直线OA的方程为y=x,即5x-3y=0,点C到直线OA的距离为d==,又|OA|==,所以S=|OA|d=.8.(2016·某某一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程.(2)求过P点的圆C的弦的中点的轨迹方程.【解析】(1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4.C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.直线l的斜率不存在时,也满足题意,此时方程为x=0.所以所求直线l的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即·=0,所以(x+2,y-6)·(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.【误区警示】在本题(1)的求解中不可忽视直线l斜率的存在性,在由距离公式求出一个k 时应考虑直线斜率不存在的情况,否则会造成漏解.【加固训练】(2016·某某二模)已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.(1)求圆O的方程.(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求·的取值X围.【解析】(1)圆M的方程可整理为(x-1)2+(y-1)2=8,故圆心M(1,1),半径R=2.圆O的圆心为O(0,0),因为|MO|=<2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以|MO|=R-r,即=2-r,解得r=.所以圆O的方程为x2+y2=2.(2)不妨设E(m,0),F(n,0),且m<n.由解得或故E(-,0),F(,0).设D(x,y),由|DE|,|DO|,|DF|成等比数列,得|DE|·|DF|=|DO|2,即·=x2+y2,整理得x2-y2=1.而=(--x,-y),=(-x,-y),所以·=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1.由于点D在圆O内,故有得y2<,所以-1≤2y2-1<0,即·∈[-1,0).(30分钟55分)一、选择题(每小题5分,共20分)1.直线l1:ax-y-3=0,l2:2x+by+c=0,则ab=-2是l1∥l2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.当ab=-2且c=3时,l1与l2重合,而l1∥l2时一定有ab-2×(-1)=0,即ab=-2,所以ab=-2是l1∥l2的必要不充分条件.【加固训练】设向量a=(a,1),b=(1,b)(ab≠0),若a⊥b,则直线b2x+y=0与直线x-a2y=0的位置关系是( )A.平行B.相交且垂直C.相交但不垂直D.重合【解析】选B.由题意知两直线都经过点(0,0),因为a⊥b,所以a·b=a+b=0,所以a=-b,由于直线b2x+y=0的斜率为-b2,直线x-a2y=0的斜率为,则(-b2)·=-1,故两直线垂直.2.已知直线l:x·cosα+y·sinα=2(α∈R),圆C:x2+y2+2cosθ·x+2sinθ·y=0(θ∈R),则直线l与圆C的位置关系是( )A.相交B.相切C.相离D.相切或相离【解析】选D.x2+y2+2cosθ·x+2sinθ·y=(x+cosθ)2+(y+sinθ)2=1,所以圆的圆心坐标为(-cosθ,-sinθ),半径为1,则直线到圆心的距离为d==|2+cos(α-θ)|∈[1,3],所以直线l与圆C的位置关系是相切或相离.3.命题p:0<r<4,命题q:圆(x-3)2+(y-5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于1,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题导引】先求出圆心到直线的距离,因为到直线4x-3y=2的距离等于1有两条,数形结合可得答案.【解析】选A.因为圆心(3,5)到直线4x-3y=2的距离等于1,所以圆(x-3)2+(y-5)2=r2上恰好有两个点到直线4x-3y=2的距离等于1时,0<r<2,所以q是p充分不必要条件.【加固训练】动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+2+1总有公共点,则圆C的面积( )A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π【解析】选D.由题意圆C的圆心在以F为焦点,以x=-1为准线的抛物线上,抛物线方程为y2=4x.因为与直线y=x+2+1总有公共点,所以圆C的面积有最小值,最小半径为抛物线上的点到直线的距离的最小值.设与直线y=x+2+1平行且与抛物线相切的直线方程为y=x+t,由得y2-4y+4t=0,由Δ=0得t=1.所以直线y=x+1与y=x+2+1间的距离=2即为最小半径.所以圆C的最小面积为4π.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O为坐标原点,且有|+|≥||,则k的取值X围是( )A.(,+∞)B.[,2)C.[,+∞)D.[,2)【解析】选B.由已知得圆心到直线的距离小于半径,即<2,由k>0得0<k<2. ①如图,又由|+|≥||得|OM|≥|BM|⇒∠MBO≥,因为|OB|=2,所以|OM|≥1,故≥1⇒k≥, ②综合①②得≤k<2.二、填空题(每小题5分,共10分)5.已知直线x+y-a=0与圆x2+y2=2交于A,B两点,O是坐标原点,向量,满足|2-3|=|2+3|,则实数a的值为________.【解析】由|2-3|=|2+3|得·=0,即OA⊥OB,则直线x+y-a=0过圆x2+y2=2与x轴、y轴正半轴或负半轴的交点,故a=±.答案:±【加固训练】已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.【解析】依题意,设所求直线l1的方程是3x+4y+b=0,则由直线l1与圆x2+(y+1)2=1相切,可得圆心(0,-1)到直线3x+4y+b=0的距离为1,即有=1,解得b=-1或b=9.因此,直线l1的方程是3x+4y-1=0或3x+4y+9=0.答案:3x+4y-1=0或3x+4y+9=06.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且=6,则圆C的方程为________.【解题导引】先求圆心坐标,再利用点到直线的距离公式求圆心到直线的距离,最后根据勾股定理求圆的半径.【解析】设所求圆的半径为r,抛物线y2=4x的焦点坐标为(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,故圆C的方程是x2+(y-1)2=10.答案:x2+(y-1)2=10【加固训练】已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,则△PAB面积的最大值是________.【解析】依题意得圆x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是-+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2×=3+.答案:3+三、解答题(7题12分,8题13分,共25分)7.已知半径为2,圆心在直线y=-x+2上的圆C.(1)当圆C经过点A(2,2),且与y轴相切时,求圆C的方程.(2)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值X 围.【解析】(1)因为圆心在直线y=-x+2上,半径为2,所以可设圆的方程为(x-a)2+[y-(-a+2)]2=4,其圆心坐标为(a,-a+2).因为圆C经过点A(2,2),且与y轴相切,所以有解得a=2,所以圆C的方程是(x-2)2+y2=4.(2)设Q(x,y),由|QF|2-|QE|2=32,得(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,解得y=3,所以点Q在直线y=3上.又因为点Q在圆C:(x-a)2+[y-(-a+2)]2=4上,所以圆C与直线y=3必须有公共点.因为圆C的圆心的纵坐标为-a+2,半径为2,所以圆C与直线y=3有公共点的充要条件是1≤-a+2≤5,即-3≤a≤1.所以圆心的横坐标a的取值X围是[-3,1].8.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为☉H.(1)若直线l过点C,且被☉H截得的弦长为2,求直线l的方程.(2)对于线段BH上的任意一点P,若在以点C为圆心的圆上都存在不同的两点M,N,使得点M 是线段PN的中点,求☉C的半径r的取值X围.【解析】(1)线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y-3=0,所以外接圆圆心为H(0,3),半径为=,☉H的方程为x2+(y-3)2=10.设圆心H到直线l的距离为d,因为直线l被☉H截得的弦长为2,所以d==3.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线l的方程为y-2=k(x-3),则=3,解得k=,直线l的方程为4x-3y-6=0.综上,直线l的方程为x=3或4x-3y-6=0.(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y),因为点M是线段PN的中点,所以M,又M,N都在半径为r的☉C上,所以即因为此关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2≤(3-6+m)2+(2-4+n)2≤(r+2r)2,又3m+n-3=0,所以r2≤10m2-12m+10≤9r2对∀m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为,故r2≤且10≤9r2.又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对∀m∈[0,1]成立,即r2<.故☉C的半径r的取值X围为.【加固训练】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值X 围;若不存在,说明理由.【解析】方法一:(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为弦AB的中点,即C1M⊥AB,所以·k AB=-1,即·=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由=得k=±,又k DE=-k DF=-=,结合上图可知当k∈∪[-,]时,直线l:y=k(x-4)与曲线C只有一个交点.方法二:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0).(2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0).又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.(3)由题意知直线l表示过定点(4,0),斜率为k的直线,把直线l的方程代入轨迹C的方程x2-3x+y2=0,其中<x≤3,化简得(k2+1)x2-(3+8k2)x+16k2=0,其中<x≤3,记f(x)=(k2+1)x2-(3+8k2)x+16k2,其中<x≤3.若直线l与曲线C只有一个交点,令f(x)=0.当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,解得x=∈,所以k=±满足条件.当Δ>0时,①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意.②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一个根,满足题意.③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-<k<.故在区间上有且仅有一个根,满足题意.综上所述,k的取值X围是-≤k≤或k=±.。
高三数学人教版 二轮复习 圆有关的轨迹问题
圆有关的轨迹问题一、选择题1.圆x2+y2=4,过A〔4,0〕作圆的割线ABC,那么弦BC中点的轨迹方程是〔〕A. 〔x-2〕2+y2=4B. 〔x-2〕2+y2=4〔0≤x<1〕C. 〔x-1〕2+y2=4D. 〔x-1〕2+y2=4〔0≤x<1〕2.M是圆C:x2+y2=1上的动点,点N〔2,0〕,那么MN的中点P的轨迹方程是〔〕A. 〔x-1〕2+y2=B. 〔x-1〕2+y2=C. 〔x+1〕2+y2=D. 〔x+1〕2+y2=3.两定点A〔-2,0〕,B〔1,0〕,假设动点P满足|PA|=2|PB|,那么P的轨迹为〔〕A. 直线B. 线段C. 圆D. 半圆4.在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点〔不包括边界〕,记直线D1P与MN所成角为θ,假设θ的最小值为,那么点P的轨迹是〔〕A. 圆的一局部B. 椭圆的一局部C. 抛物线的一局部D. 双曲线的一局部5.两定点A〔-3,0〕,B〔3,0〕,假如动点P满足|PA|=2|PB|,那么点P的轨迹所包围的图形的面积等于〔〕A. πB. 4πC. 9πD. 16π6.复数z满足条件:|2z+1|=|z-i|,那么z对应的点的轨迹是〔〕A. 圆B. 椭圆C. 双曲线D. 抛物线二、填空题7.在平面直角坐标系xoy中,A,B是圆x2+y2=4上的两个动点,且AB=2,那么线段AB中点M的轨迹方程为______ .8.自圆x2+y2=4上点A〔2,0〕引此圆的弦AB,那么弦的中点的轨迹方程为______ .9.动圆M与圆C1:〔x+1〕2+y2=1,圆C2:〔x-1〕2+y2=25均内切,那么动圆圆心M的轨迹方程是______.10.圆x2+y2=4,B〔1,1〕为圆内一点,P,Q为圆上动点,假设∠PBQ=90°,那么线段PQ中点的轨迹方程为______.11.在直角坐标系xOy中,A〔-1,0〕,B〔0,1〕,那么满足PA2-PB2=4且在圆x2+y2=4上的点P的个数为______.12.点A〔0,2〕是圆O:x2+y2=16内定点,B,C是这个圆上的两动点,假设BA⊥CA,求BC中点M的轨迹方程为______ .三、解答题〔本大题共5小题,共60.0分〕第 1 页13.点P〔2,2〕,圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.〔1〕求M的轨迹方程;〔2〕当|OP|=|OM|时,求l的方程及△POM的面积.14.圆C:〔x+1〕2+y2=8,点A〔1,0〕,P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.〔1〕求曲线E的方程;〔2〕假设直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON 面积的最大值.15.动圆C过定点F2〔1,0〕,并且内切于定圆F1:〔x+1〕2+y2=16.〔1〕求动圆圆心C的轨迹方程;〔2〕假设y2=4x上存在两个点M,N,〔1〕中曲线上有两个点P,Q,并且M,N,F2三点共线,P,Q,F2三点共线,PQ⊥MN,求四边形PMQN的面积的最小值.16.圆N经过点A〔3,1〕,B〔-1,3〕,且它的圆心在直线3x-y-2=0上.〔Ⅰ〕求圆N的方程;〔Ⅱ〕求圆N关于直线x-y+3=0对称的圆的方程.〔Ⅲ〕假设点D为圆N上任意一点,且点C〔3,0〕,求线段CD的中点M的轨迹方程.17.圆O:x2+y2=4及一点P〔-1,0〕,Q在圆O上运动一周,PQ的中点M形成轨迹C.〔1〕求轨迹C的方程;〔2〕假设直线PQ的斜率为1,该直线与轨迹C交于异于M的一点N,求△CMN 的面积.答案和解析【答案】1. B2. A3. C4. B5. D6. A7. x2+y2=38. 〔x-1〕2+y2=1,〔x≠2〕9. .10. x2+y2-x-y-1=011. 212. x2+y2-2y-6=013. 解:〔1〕由圆C:x2+y2-8y=0,得x2+〔y-4〕2=16,∴圆C的圆心坐标为〔0,4〕,半径为4.设M〔x,y 〕,那么,.由题意可得:.即x〔2-x〕+〔y-4〕〔2-y〕=0.整理得:〔x-1〕2+〔y-3〕2=2.∴M的轨迹方程是〔x-1〕2+〔y-3〕2=2.〔2〕由〔1〕知M的轨迹是以点N〔1,3〕为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.∵k ON=3,∴直线l的斜率为-.∴直线PM 的方程为,即x+3y-8=0.那么O到直线l的间隔为.又N到l的间隔为,∴|PM |==.∴.14. 解:〔Ⅰ〕∵点Q在线段AP的垂直平分线上,∴|AQ|=|PQ|.又|CP|=|CQ|+|QP |=2,∴|CQ|+|QA |=2>|CA|=2.第 3 页∴曲线E是以坐标原点为中心,C〔-1,0〕和A〔1,0〕为焦点,长轴长为2的椭圆.设曲线E的方程为=1,〔a>b>0〕.∵c=1,a=,∴b2=2-1=1.∴曲线E的方程为.〔Ⅱ〕设M〔x1,y1〕,N〔x2,y2〕.联立消去y,得〔1+2k2〕x2+4kmx+2m2-2=0.此时有△=16k2-8m2+8>0.由一元二次方程根与系数的关系,得x1+x2=,x1x2=,.∴|MN|==∵原点O到直线l的间隔d=-,∴S△MON==.,由△>0,得2k2-m2+1>0.又m≠0,∴据根本不等式,得S△MON=.≤=,当且仅当m2=时,不等式取等号.∴△MON面积的最大值为.15. 解:〔1〕设动圆的半径为r,那么|CF2|=r,|CF1|=4-r,所以|CF1|+|CF2|=4>|F1F2|,由椭圆的定义知动圆圆心C的轨迹是以F1,F2为焦点的椭圆,a=2,c=1,所以,动圆圆心C的轨迹方程是.〔2〕当直线MN斜率不存在时,直线PQ的斜率为0,易得|MN|=4,|PQ|=4,四边形PMQN 的面积S=8.当直线MN斜率存在时,设其方程为y=k〔x-1〕〔k≠0〕,联立方程得,消元得k2x2-〔2k2+4〕x+k2=0设M〔x1,y1〕,N〔x2,y2〕,那么∵PQ⊥MN,∴直线PQ的方程为,,得〔3k2+4〕x2-8x+4-12k2=0 设P〔x3,y3〕,Q〔x4,y4〕,那么四边形PMQN的面积,令k2+1=t,t>1,上式,令2t+1=z,〔z>3〕,〔z >3〕,∴,∴S>8〔1+0〕=8,综上可得S≥8,最小值为8.16. 解:〔Ⅰ〕由可设圆心N〔a,3a-2〕,又由得|NA|=|NB|,从而有,解得:a=2.于是圆N的圆心N〔2,4〕,半径.所以,圆N的方程为〔x-2〕2+〔y-4〕2=10.〔Ⅱ〕N〔2,4〕关于x-y+3=0的对称点为〔1,5〕,所以圆N关于直线x-y+3=0对称的圆的方程为〔x-1〕2+〔y-5〕2=10〔Ⅲ〕设M〔x,y〕,D〔x1,y1〕,那么由C〔3,0〕及M为线段CD 的中点得:,解得:.又点D在圆N:〔x-2〕2+〔y-4〕2=10上,所以有〔2x-3-2〕2+〔2y-4〕2=10,化简得:.故所求的轨迹方程为.17. 解:〔1〕设M〔x,y〕,那么Q〔2x+1,2y〕,∵Q在圆x2+y2=4上,∴〔2x+1〕2+4y2=4,即〔x +〕2+y2=1.∴轨迹C的方程是〔x +〕2+y2=1.〔2〕直线PQ方程为:y=x+1,圆心C到直线PQ的间隔为d ==,∴|MN |=2=,∴△CMN 的面积为==.【解析】1. 解:设弦BC中点〔x,y〕,过A的直线的斜率为k,割线ABC的方程:y=k〔x-4〕;作圆的割线ABC,所以中点与圆心连线与割线ABC垂直,方程为:x+ky=0;因为交点就是弦的中点,它在这两条直线上,故弦BC中点的轨迹方程是:x2+y2-4x=0如图应选B.第 5 页结合图形,不难直接得到结果;也可以详细求解,使用交点轨迹法,见解答.此题考察形式数形结合的数学思想,轨迹方程,直线与圆的方程的应用,易错题,中档题.2. 解:设线段MN中点P〔x,y〕,那么M〔2x-2,2y〕.∵M在圆C:x2+y2=1上运动,∴〔2x-2〕2+〔2y〕2=1,即〔x-1〕2+y2=.应选A.设出线段MN中点的坐标,利用中点坐标公式求出M的坐标,根据M在圆上,得到轨迹方程.此题考察中点的坐标公式、求轨迹方程的方法,考察学生的计算才能,属于根底题.3. 解:设P点的坐标为〔x,y〕,∵A〔-2,0〕、B〔1,0〕,动点P满足|PA|=2|PB|,∴,平方得〔x+2〕2+y2=4[〔x-1〕2+y2],即〔x-2〕2+y2=4.∴P的轨迹为圆.应选:C.设P点的坐标为〔x,y〕,利用两点间的间隔公式表示出|PA|、|PB|,代入等式|PA|=2|PB|,化简整理得答案.此题考察动点的轨迹的求法,着重考察了两点间的间隔公式、圆的标准方程,属于中档题.4. 解:把MN平移到面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值,是直线D1P与面A1B1C1D1所成角,即原问题转化为:直线D1P与面A1B1C1D1所成角为,点P在面A1B1C1D1的投影为圆的一局部,∵点P是△A1C1D内的动点〔不包括边界〕∴那么点P的轨迹是椭圆的一局部.应选:B.把MN平移到面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值,是直线D1P与面A1B1C1D1所成角,即原问题转化为:直线D1P与面A1B1C1D1所成角为,求点P的轨迹.点P在面A1B1C1D1的投影为圆的一局部,那么点P的轨迹是椭圆的一局部.此题考察了空间轨迹问题,考察了转化思想,属于中档题.5. 解:设P〔x,y〕,那么|PA|=,|PB|=,∵|PA|=2|PB|,∴〔x+3〕2+y2=4[〔x-3〕2+y2],即x2+y2-10x+9=0,化为标准式方程得〔x-5〕2+y2=16.即P的轨迹所包围的图形为半径为4的圆,该圆的面积S=π×42=16π.应选:D.设出P点坐标,根据|PA|=2|PB|列出方程整理出P的轨迹方程,判断图形计算面积.此题考察了轨迹方程的求法,属于根底题.6. 解:设复数z=x+yi,x,y∈R,∵|2z+1|=|z-i|,∴|2z+1|2=|z-i|2,∴〔2x+1〕2+4y2=x2+〔y-1〕2,化简可得3x2+3y2+4x+2y=0,满足42+22-4×3×0=20>0,表示圆,应选:A设复数z=x+yi,x,y∈R,由模长公式化简可得.此题考察复数的模,涉及轨迹方程的求解和圆的方程,属根底题.7. 解:由题意,OM⊥AB,OM ==,∴线段AB中点M的轨迹方程为x2+y2=3,故答案为x2+y2=3.由题意,OM⊥AB,OM ==,即可求出线段AB中点M的轨迹方程.此题考察轨迹方程,考察垂径定理的运用,比拟根底.8. 解:设AB中点为M〔x,y〕,由中点坐标公式可知,B点坐标为〔2x-2,2y〕.∵B点在圆x2+y2=4上,∴〔2x-2〕2+〔2y〕2=4.故线段AB中点的轨迹方程为〔x-1〕2+y2=1.不包括A点,那么弦的中点的轨迹方程为〔x-1〕2+y2=1,〔x≠2〕故答案为:〔x-1〕2+y2=1,〔x≠2〕.设出AB的中点坐标,利用中点坐标公式求出B的坐标,据B在圆上,将P坐标代入圆方程,求出中点的轨迹方程.此题主要考察轨迹方程的求解,应注意利用圆的特殊性,同时注意所求轨迹的纯粹性,防止增解.9. 解:设动圆的圆心为:M〔x,y〕,半径为R,动圆与圆M1:〔x+1〕2+y2=1内切,与圆M2:〔x-1〕2+y2=25内切,∴|MM1|+|MM2|=R-1+5-R=6,∵|MM1|+|MM2|>|M1M2|,因此该动圆是以原点为中心,焦点在x轴上的椭圆,2a=4,c=1解得a=2,根据a、b、c的关系求得b2=3,∴椭圆的方程为:.故答案为:.首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程.此题考察的知识点:椭圆的定义,椭圆的方程及圆与圆的位置关系,相关的运算问题.10. 解:设PQ的中点为N〔x,y〕,在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,那么ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+〔x-1〕2+〔y-1〕2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.故答案为:x2+y2-x-y-1=0.利用直角三角形的中线等于斜边长的一半得到|PN|=|BN|,利用圆心与弦中点连线垂直弦,利用勾股定理得到|OP|2=|ON|2+|PN|2,利用两点间隔公式求出动点的轨迹方程.此题考察中点坐标公式、直角三角形斜边的中线等于斜边的一半、圆心与弦中点的连线垂直弦、相关点法求动点轨迹方程.第 7 页11. 解:设P〔x,y〕,∵A〔-1,0〕,B〔0,1〕,由PA2-PB2=4,得〔x+1〕2+y2-x2-〔y-1〕2=4.整理得:x+y=2.联立,解得:或.∴P点坐标为〔0,2〕或〔2,0〕.即满足条件的P点的个数为2.故答案为:2.设出P点的坐标,由等式求出P点的轨迹方程,和圆的方程联立求解P点的坐标,那么答案可求.此题考察了轨迹方程的求法,考察了方程组的解法,是中档题.12. 解:设M〔x,y〕,连接OC,OM,MA,那么由垂径定理,可得OM⊥BC,∴OM2+MC2=OC2,∵AM=CM,∴OM2+AM2=OC2,∴x2+y2+x2+〔y-2〕2=16,即BC中点M的轨迹方程为x2+y2-2y-6=0.故答案为:x2+y2-2y-6=0.设M〔x,y〕,连接OC,OM,MA,那么由垂径定理,可得OM⊥BC,OM2+MC2=OC2,即可求BC中点M的轨迹方程.垂径定理的使用,让我们在寻找M的坐标中的x与y时,跳过了两个动点B,C,而直达一个非常明确的结果,减少了运算量.13. 〔1〕由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;〔2〕设M的轨迹的圆心为N,由|OP|=|OM|得到ON⊥PM.求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的间隔公式求出O到l的间隔,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案.此题考察圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的间隔公式的应用,是中档题.14. 〔1〕根据椭圆的定义和性质,建立方程求出a,b即可.〔2〕联立直线和椭圆方程,利用消元法结合设而不求的思想进展求解即可.此题主要考察与椭圆有关的轨迹方程问题,以及直线和椭圆的位置关系的应用,利用消元法以及设而不求的数学思想是解决此题的关键.,运算量较大,有一定的难度.15. 〔1〕利用条件判断轨迹是椭圆,求出a,b即可得到椭圆方程.〔2〕利用直线MN斜率不存在时,求解四边形PMQN的面积S=8.当直线MN斜率存在时,设其方程为y=k〔x-1〕〔k≠0〕,联立方程得,设M〔x1,y1〕,N〔x2,y2〕,利用韦达定理,弦长公式,通过PQ⊥MN,推出直线PQ的方程为,设P〔x3,y3〕,Q〔x4,y4〕,求出|PQ|,推出四边形PMQN的面积利用换元法以及根本不等式求解表达式的最值.此题考察轨迹方程的求法,椭圆的简单性质以及直线与椭圆的位置关系的综合应用,三角形的面积的最值的求法,函数的思想的应用.16. 〔Ⅰ〕首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;〔Ⅱ〕求出N〔2,4〕关于x-y+3=0的对称点为〔1,5〕,即可得到圆N关于直线x-y+3=0对称的圆的方程;〔Ⅲ〕首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程.此题考察圆的方程,考察参数法,圆的方程一般采用待定系数法,属于中档题.17. 〔1〕设M〔x,y〕,用x,y表示出Q点坐标,代入圆O方程化简即可;〔2〕求出直线l的方程,圆心C到直线l的间隔,利用勾股定理求出弦长|MN|,即可得出三角形的面积.此题考察了轨迹方程的求解,直线与圆的位置关系,属于中档题.第 9 页。
高三数学二轮复习 2221特殊值型、图象分析型、构造型、综合型课件 理 人教版
[解析] 解法一:取特殊值 a=3,b=4,c=5,则 cosA=45,cosC=0,1c+oscAo+sAccoossCC=45.
[解析]
∵m、n 分别是方程 10x+x=10 与 lgx+x=10 的根, ∴令 y1=lgx,y2=10x,y3=10-x,在同一坐标系中作 出它们的图象,设其交点为 A、B,如图所示. 设直线 y=x 与直线 y3=10-x 的交点为 M,联立方程 组yy3==x1,0-x, 得 M(5,5).
【探究 2】 若直线 l:ax+y+2=0 与连结点 A(-2,3) 和点 B(3,2)的线段有公共点,则 a 的取值范围为________.
解析:解法一:利用数形结合求解 如图所示,连接 AC、BC.
由方程 ax+y+2=0,可知此直线恒过定点 C(0,-2).由 A(-2,3),B(3,2),可得 kAC=3--2- -20=-52,kBC=2-3--02 =43.
【探究 1】 (2011·山东泰安模拟)
如图,在△ABC 中,AO 是 BC 边上的中线,K 为 AO 上一点,且A→O=2A→K,过点 K 的直线分别交直线 AB、AC 于不同的两点 M、N,若A→B=mA→M,A→C=nA→N,则 m+n =________.
分析:题目中过点 K 的直线是任意的,因此 m 和 n 的 值是变化的,但从题意看 m+n 的值是一个定值,故可取一 条特殊的直线进行求解.
பைடு நூலகம்
“8+3+3”小题强化训练(29)2024届高三数学二轮复习(新高考九省联考题型)(原卷版)
2024届高三二轮复习“8+3+3”小题强化训练(29)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2R 230A x x x =∈--<,集合(){}2R log 21B x x =∈+<,则A B⋂=()A.()3,2- B.()2,3- C.()2,0- D.()1,0-2.在正方体1111ABCD A B C D -中,下列关系正确的是()A.1AD B C ⊥B.1A D BD ⊥C.11AC A C ⊥D.11AC CD ⊥3.已知某4个数据的平均数为6,方差为3,现再加入一个数据8,则这5个数据的方差为()A.125 B.7625 C.145 D.1854.已知等边ABC 的边长为2,点D 、E 分别为,AB BC 的中点,若2DE EF = ,则EF AF ⋅=()A.1B.45C.65D.545.若圆锥的内切球半径为1,圆锥的侧面展开图为一个半圆,则圆锥的体积为()A.2πB.8π3C.3πD.4π6.已知抛物线24y x =的焦点为F ,点M 在抛物线上.若点Q 在圆22(3)1x y -+=上,则MF MQ +的最小值为()A.5B.4C.3D.27.已知()()()cos 140sin 110sin 130ααα︒-+︒+=︒-,求tan α=()A.B.C.D.8.已知1F ,2F 是椭圆和双曲线的公共焦点,P ,Q .是它们的两个公共点,且P ,Q .关于原点对称,223PF Q π∠=,若椭圆的离心率为1e ,双曲线的离心率为2e ,则22122212313e e e e +++的最小值是()A.23B.13+C.3D.3二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()πsin cos 06f x x x ωωω⎛⎫=++> ⎪⎝⎭的最小正周期为2,则()A.πω= B.曲线()y f x =关于直线16x =对称C.()f x)f x ⎡∈⎣ D.()f x 在区间11,22⎡⎤-⎢⎥⎣⎦上单调递增10.已知1()5P A =,1(|)4P B A =.若随机事件A ,B 相互独立,则()A.1()3P B =B.1()20=P ABC.4(|)5=P A B D.4()5+=P A B11.已知定义域为R 的函数()f x 的导函数为()f x ',若函数()41f x +和()2f x '+均为偶函数,且()()21,11f f =-=',则()A.()202311i f i ='=-∑ B.()20241i f i ='=∑ C.()202312023i f i ==∑ D.()20241i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.12.在复平面内,复数z 对应的点的坐标是()2,1,则i z ⋅=______.13.设n 为正整数,()2n a b +展开式的二项式系数的最大值为x ,()21n a b ++展开式的二项式系数的最大值为y ,若95x y =,则n =_____.14.数列{}n a 满足18a =,11nn n a a na +=+(*n ∈N ),112nn n b a λ⎛⎫⎛⎫=+⋅⎪ ⎪⎝⎭⎝⎭,若数列{}n b 是递减数列,则实数λ的取值范围是______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
高考小题标准练(九)
满分80分,实战模拟,40分钟拿下高考客观题满分!
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )
A.(0,4]
B.[0,4)
C.[-1,0)
D.(-1,0] 【解析】选B.因为集合M={x|x2-3x-4<0}={x|-1<x<4}.N={x|0≤x≤5},所以M∩N={x|0≤x<4}.
2.设复数z=3+i(i为虚数单位)在复平面中对应的点为A,将OA绕原点O逆时针旋转90°得到OB,则点B在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】选B.复数z=3+i对应复平面上的点A(3,1),将OA逆时针旋转90°后得到OB,故B(-1,3),在第二象限.
3.某校为了研究“学生的性别”和“对待某一活动的支持态度”是否有关,运用2×2列联表进行独立性检验,经计算K2=7.069,则认为“学生性别与支持活动有关”的犯错误的概率不超过( )
A.0.1%
B.1%
C.99%
D.99.9%
附:
【解析】选B.因为7.069>6.635,所以认为“学生性别与支持活动有关系”出错的概率不超过1%.
4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c.若a=2,cosA=,则△ABC面积的最大值为( )
A.2
B.
C.
D.
【解析】选B.由a2=b2+c2-2bccosA得4=b2+c2-bc≥2bc-bc=bc,所
以bc≤3,S=bcsinA=bc·≤×3×=.
5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔细算相还”,其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则第二天走了( )
A.96里
B.48里
C.192里
D.24里
【解析】选A.由题意,得该人每天走的路程形成以为公比、前6项和为378的等比数列,设第一天所走路程为a1,则=378,
解得a1=192,a2=96,即第二天走了96里.
6.若函数f(x)=sinωx(ω>0)在区间上单调递增,且
f>f,则ω的一个可能值是( )
A. B. C. D.
【解析】选C.由函数f(x)=sinωx(ω>0)在区间上单调递增,得≤⇒ω≤.
由f>f,得>,
ω>,所以<ω≤.故选C.
7.如图所示的程序框图中,循环体执行的次数是( )
A.50
B.49
C.100
D.99
【解析】选B.从程序框图反映的算法是S=2+4+6+8+…,i的初始值为2,由i=i+2知,执行了49次时,i=100,满足i≥100,退出循环.
8.设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,。