滑块模型地位置关系及解题方法

合集下载

滑块滑板模型问题分析方法

滑块滑板模型问题分析方法

• •
0.5a1s' 物μ块1mm对g木μ板1的g 滑2动m摩/ s擦2 力a与1 速度方向相同,则木板的加速度为
a2'
2μ 2
mg
μ1mg
m
4m
/
s2
• 则物块和木板的位移分别为:
s1
2
v12 2a1
0.5m
s2
v0
v1 2
t1
v12 2a2'
1.625m
• 物块相对于木板的位移大小为:
s s2 s1 1.125m
据题意: xB xA L
xA
1 2
aAt 2
xB
1 2
aBt
2
解得: t 2s
变式2
如图,可看作质点的小物块放在长木板正中间,已知长木板质 量为M=4kg,长度为L=2m,小物块质量为m=1kg,长木 板置于光滑水平地面上,两物体皆静止。现在用一大小为F 的水平恒力作用于小物块上,发现只有当F超过2.5N时,才 能让两物体间产生相对滑动。设两物体间的最大静摩擦力 大小等于滑动摩擦力大小,重力加速度g=10m/s2,试求:
解析
• (1)从t=0时刻开始,木板与滑块之间的摩擦力使滑块加速, 使木板减速,此过程一直持续到物块和木板具有共同速度为 止。由图可知,在t=0.5s时,物块和木板的速度相同。设t=0
到则t:=t1时间间a1隔内vt,11 物块和a2木板v的0 加t2 速v1度大小分别为a1和a2,
• 式中v0=5m/s、v1=1m/s,分别为木板在t=0、t=t1时刻速度的 大小。设木板和物体的质量为m,物块和木板间、木板与地 面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得:
考点分析
• 本题考查了“滑动摩擦力”、 “物体的受力分 析”、“匀变速直线运动的规律”、“速度-时间 图像”、“牛顿第二定律”这几个知识内容。

牛顿运动定律巧解滑块-滑板模型

牛顿运动定律巧解滑块-滑板模型

例题三:滑块与滑板在碰撞中的运动
要点一
总结词
要点二
详细描述
碰撞中的滑块-滑板模型需要考虑动量守恒和能量守恒,通 过牛顿运动定律可以求解碰撞后的运动状态。
当滑块与滑板发生碰撞时,根据动量守恒定律,可以求出 碰撞后的速度。根据能量守恒定律,可以判断碰撞是否为 弹性碰撞。根据牛顿第二定律,可以求出碰撞后滑块和滑 板的加速度。通过分析加速度和初速度作用力和反作用力之间的关系,即作用力和反作用力大小相等、方向相反 、作用在同一条直线上。
详细描述
该定律指出,当一个物体对另一个物体施加力时,另一个物体会对施力物体施加 一个大小相等、方向相反的力。这两个力是相互作用的,并且作用在同一条直线 上。
03
CATALOGUE
滑块-滑板模型中的牛顿运动定律
THANKS
感谢观看
滑块与滑板间的相互作用力分析
01
02
03
作用力与反作用力
根据牛顿第三定律,滑块 与滑板间的作用力和反作 用力大小相等、方向相反 。
摩擦力分析
滑动摩擦力的大小与接触 面的粗糙程度和正压力有 关,方向与相对运动方向 相反。
支持力分析
支持力垂直于接触面,指 向被支持的物体,与重力 等其他外力平衡。
滑块与滑板间的动量守恒分析
以判断滑块是否从滑板上滑落。
例题二:滑块与滑板在斜面上的运动
总结词
斜面上的滑块-滑板模型需要考虑重力的影 响,通过牛顿运动定律可以求解滑块和滑板 的运动状态。
详细描述
当滑块放在滑板上,在斜面上运动时,除了 受到重力、支持力和摩擦力的作用外,还需 要考虑重力的分力。根据牛顿第二定律,可 以求出滑块和滑板的加速度。通过分析加速 度和初速度的关系,可以判断滑块是否从滑 板上滑落。

滑块—滑板模型全解

滑块—滑板模型全解

动力学中的滑块—滑板模型
方法指导
方法指导
2.临界条件法:即运用临界条件进行计算。滑块与滑板 恰好能发生相对滑动(要滑动但还未滑动时)的临界条 件是( 1)滑块与滑板间的静摩擦力达到最大静摩擦力 (通常近似地认为最大静摩擦力等于滑动摩擦力); (2)滑块的加速度恰好等于滑板的加速度。

动力学中的滑块—滑板模型
2. 此类试题由于研究对象多、受力分析困难,运动过程复杂, 往往会使考生“手忙脚乱”,“顾此失彼”导致丢分。是 学生比较容易感到“头疼”的一类试题。因此探究并掌握 此类试题的分析技巧和解题方法是十分必要的。
2018年10月24日星期三3时50分45秒
动力学中的滑块—滑板模型
知识梳理
1.模型特点:
上、下叠放两个物体,并且两物体在摩擦力的相互作用下发 生相对滑动. 2.建模指导 解此类题的基本思路: ( 1 )分析滑块和木板的受力情况,根据牛顿第二定律分别 求出滑块和木板的加速度; ( 2 )对滑块和木板进行运动情况分析,找出滑块和木板之 间的位移关系或速度关系,建立方程.特别注意滑块和木板 的位移都是相对地面的位移.
2018年10月24日星期三3时50分45秒
动力学中的滑块—滑板模型
方法指导
方法指导
一、滑块与滑板间是否发生相对滑动的判断方法 两个物体间能否发生相对滑动的问题是常见的问题。 在作用在滑块或木板上的外力已知的情况下,分析判断滑 块与木板间有无相对滑动的方法有两种: 1.动力学条件判断法:即通过分析滑块——滑木板间的摩 擦力是否为滑动摩擦力来进行判断。可先假设滑块与木板 间无相对滑动,然后根据牛顿第二定律对滑块与木板整体 列式求出加速度,再把滑块或木板隔离出来列式求出两者 之间的摩擦力,把求得的摩擦力与滑块和木板之间的滑动 摩擦力进行比较,分析求得的摩擦力是静摩擦力还是滑动 摩擦力,若为静摩擦力,则两者之间无相对滑动;若为滑 动摩擦力,则两者之间有相对滑动。

物理专题7 滑板滑块问题解析版

物理专题7 滑板滑块问题解析版

专题7滑板滑块问题【规律和方法】1.模型特点:涉及两个物体,并且物体间存在相对滑动。

2.摩擦力方向的特点(1)若两个物体同向运动,且两个物体“一快一慢”,则“快”的物体受到的另一个物体对它的摩擦力为阻力,“慢”的物体受到的另一个物体对它的摩擦力为动力。

(2)若两个物体反向运动,则每个物体受到的另一个物体对它的摩擦力均为阻力。

3.运动特点(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长。

设板长为L ,滑块位移大小为x 1,滑板位移大小为x 2同向运动时:如图甲所示,L =x 1-x 2反向运动时:如图乙所示,L =x 1+x 2(2)若滑块与滑板最终相对静止,则它们的末速度相等。

4.方法与技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。

(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。

(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。

(4)分析两物体运动过程时可用速度-时间图象记录物体的运动过程。

【典例分析】【例1】(有外力+水平面光滑)如图所示,光滑水平面上静止放着长L =1.6m ,质量为M =3kg 的木块(厚度不计),一个质量为m =1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s 2)(1)为使小物体不掉下去,F 不能超过多少?(2)如果拉力F =10N 恒定不变,求小物体所能获得的最大速度?(3)如果拉力F =10N ,要使小物体从木板上掉下去,拉力F作用的时间至少为多少?【解答】解:(1)物块随木板运动的最大加速度为a 对小物体由牛顿第二定律:μmg =m a 对整体由牛顿第二定律得:F m =(M+m )a解得:F m =4N(2)因施加的拉力F >4N ,故物块相对木板相对滑动,木板对地运动的加速度为a 1,对木板由牛顿第二定律:F ﹣μmg =M a 1物块在木板上相对运动的时间为t ,L =a 1t 2﹣at 2解得:t =s物块脱离木板时的速度最大,v m =at =m/s(3)设木块滑到木板最右端速度恰好与木板相同时,水平力作用的时间为t 1,长木板加速阶段的末F速度为v 1,减速阶段的时间为t 2,加速度大小为a 2。

物理模型 “滑板—滑块”模型

物理模型 “滑板—滑块”模型

物理模型 “滑板—滑块”模型[模型概述] (1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导] (1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路处理滑块—木板模型问题的分析方法(1)动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t =Δv 2a 2=Δv 1a 1可求出共同速度v 和所用时间t ,然后由位移公式可分别求出二者的位移.(2)功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律,要注意区分三个位移:①求摩擦力对滑块做功时用滑块对地的位移x 滑;②求摩擦力对木板做功时用木板对地的位移x 板;③求摩擦生热时用相对滑动的位移x 相.1.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为A .μmgB .2μmgC .3μmgD .4μmg解析 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg 。

答案 C2.(2017·广西质检)如图所示,A 、B 两个物体叠放在一起,静止在粗糙水平地面上,物体B 与水平地面间的动摩擦因数μ1=0.1,物体A 与B 之间的动摩擦因数μ2=0.2.已知物体A 的质量m =2 kg ,物体B 的质量M =3 kg ,重力加速度g 取10 m/s 2.现对物体B 施加一个水平向右的恒力F ,为使物体A 与物体B 相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A .20 NB .15 NC .10 ND .5 N答案:B 解析:对A 、B 整体,由牛顿第二定律,F max -μ1(m +M )g =(m +M )a ;对物体A ,由牛顿第二定律,μ2mg =ma ;联立解得F max =(m +M )(μ1+μ2)g ,代入相关数据得F max =15 N ,选项B 正确.3.(2017·黄冈质检)如图甲所示,在水平地面上有一长木板B ,其上叠放木块A 。

高考备考重点题型——滑块木板模型解题攻略

高考备考重点题型——滑块木板模型解题攻略

高考备考重点题型——滑块木板模型解题攻略滑块木板模型是高考题构建中一个重要插件,也是一个高频的考察模型。

简单的道具为牛顿运动定律、功能关系的应用提供了广阔的舞台。

在备考中理应收到师生的重视。

【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。

两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。

3、通常所说物体运动的位移、速度、都是对地而言。

在相对运动的过程中相互作用的物体之间位移、速度、时间一定存在关联。

它就是我们解决力和运动突破口。

画出运动草图非常关键。

4、求时间通常会用到牛顿第二定律加运动学公式。

5、求位移和速度通常会用到牛顿第二定律加运动学公式或动能定理。

例1:如图所示,质量为M=100kg的平板车放在光滑水平面上,车高为h=1.25m,一个质量为m=50kg的可视为质点的物体放在车上,距左端b=1m,物体与平板车上表面间的动摩擦因数为μ=0.2,取g=10m/s2。

今对平板车施加水平向右的恒力F,当车运动的位移为s=2m时,物体恰从车的左端滑离平板车,求物体着地时距平板车左端多远?例2:如图所示,质量为M的汽车载着质量为m的木箱以速度v运动,木箱与汽车上表面间的动摩擦因数为μ,木箱与汽车前端挡板相距L,若汽车遇到障碍物制动而静止时,木箱恰好没碰到汽车前端挡板,求:(1)汽车制动时所受路面的阻力大小;(2)汽车制动后运动的时间。

尝试练习1、如图所示,在光滑水平面上有一小车A,其质量为0.2=m kg,小车上放一个A物体B,其质量为0.1=m kg,如图(1)所示。

给B一个水平推力F,当F增B大到稍大于3.0N时,A、B开始相对滑动。

如果撤去F,对A施加一水平推力F′,如图(2)所示,要使A、B不相对滑动,求F′的最大值Fm图(1)图(2)2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数 =0.2,小车足够长(取g=l0 m/s 2)。

秘籍04 滑块板块模型和传送带模型(学生版)-备战2024年高考物理抢分秘籍

秘籍04 滑块板块模型和传送带模型(学生版)-备战2024年高考物理抢分秘籍

秘籍04 滑块木板模型和传送带模型一、滑块木板模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,设板长为L,滑块(可视为质点)位移大小为x块,滑板位移大小为x板。

同向运动时:L=x块-x板.反向运动时:L=x块+x板.3. 判断滑块和模板运动状态的技巧:“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m=F fmm.假设两物体同时由静止开始运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力。

4.技巧突破点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动). 5.分析板块模型的思路二、传送带模型1.水平传送带情景滑块的运动情况 传送带不足够长 传送带足够长一直加速 先加速后匀速v 0<v 时,一直加速 v 0<v 时,先加速再匀速 v 0>v 时,一直减速v 0>v 时,先减速再匀速滑块一直减速到右端滑块先减速到速度为0,后被传送带传回左端.若v 0<v 返回到左端时速度为v 0,若v 0>v 返回到左端时速度为v .2.倾斜传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速(一定满足关系g sin θ<μg cos θ)先加速后匀速一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速若μ<tan θ,先以a1加速,后以a2加速v0<v时,一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速;若μ<tan θ,先以a1加速,后以a2加速v0>v时,一直减速(加速度为g sin θ-μg cos θ)若μ≥tan θ,先减速后匀速;若μ<tan θ,先以a1减速,后以a2加速(摩擦力方向一定沿斜面向上)g sin θ>μg cos θ,一直加速;g sin θ=μg cos θ,一直匀速g sin θ<μg cos θ,一直减速先减速到速度为0后反向加速到原位置时速度大小为v03.划痕问题:滑块与传送带的划痕长度Δx等于滑块与传送带的相对位移的大小,若有两次相对运动且两次相对运动方向相同,Δx=Δx1+Δx2(图甲);若两次相对运动方向相反,Δx等于较长的相对位移大小.(图乙)4.功能关系分析:(1)功能关系分析:W=ΔE k+ΔE p+Q。

高中物理模型法解题-滑板-木块模型

高中物理模型法解题-滑板-木块模型

高中物理模型法解题——滑板木块模型【模型概述】滑块-滑板问题往往涉及两个物体,并且常常是叠放在一起的,有时也成为“叠放问题”。

两个物体间由某种力联系在一起,并且存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。

既可单独考其中单个知识点,也可以出综合性的大题。

分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和学习的难点。

鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。

因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。

【知识链接】一、滑板-滑块模型1)解题思路:分析滑块和滑板的受力情况——应用牛顿第二定律分别求出速度——对二者进行运动情况分析——找出位移关系或速度关系建立方程并求解。

2)位移关系:滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。

3)速度关系:当滑块和滑板的速度相同,二者距离往往最大或最小。

4) 何时开始运动:判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。

5) 何时开始相对运动:二者加速度相同是发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。

6) 摩擦力做功问题:A )叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如下图所示),A 、B 之间无摩擦力作用.B )如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s 相.二、 运动学相关知识1) 匀速直线运动:匀速直线运动指速度大小和方向均不变的直线运动叫做匀速直线运动,涉及的公式是 。

高中物理《解题手册》专题10滑块模型

高中物理《解题手册》专题10滑块模型

高中物理《解题手册》专题10滑块模型滑块模型是力学中经典的运动模型之一,其应用范围广泛,例如物理、机械等领域。

本篇专题将解析滑块模型的基本概念、解题方法及常见问题,帮助读者更好地理解和应用滑块模型。

基本概念滑块模型是指一个质量为 m 的物体沿着有摩擦的斜面运动的模型。

在滑块模型中,有以下基本概念:1. 斜面:斜面是指倾斜角度不为 0 度的面,滑块模型中常见的斜面有直角三角形面、等边三角形面、平行四边形面等;2. 滑块:滑块是指质量为 m 的物体,在斜面上滑动或者保持静止的物体;3. 摩擦力:摩擦力是指物体在接触面上受到的阻力,它的大小与物体间的接触力成正比,与接触面的粗糙程度有关,滑块模型中存在静摩擦力和动摩擦力;4. 斜面角度α:斜面角度指斜面与水平面的夹角,α 取值在 0 到 90 度之间;5. 重力:重力是指物体受到的地球引力。

解题方法:对于滑块模型的解题方法,我们可以分为以下四个步骤来进行:步骤一:画出物体受力图在开始解题前,我们需要根据滑块模型的实际情景画出物体受力图,以明确物体所受外力,便于后续的计算。

步骤二:分解重力和斜面力将重力向量分解为平行和垂直于斜面的两个分量,其中平行分量与斜面运动方向相反,垂直分量与垂直于斜面的向下方向相反。

然后将斜面力分解为平行和垂直于斜面的两个分量,其中平行分量与斜面运动方向相同,垂直分量与垂直于斜面的向上方向相反。

步骤三:计算静摩擦力和摩擦力根据受力分析,可以得到平行于斜面方向的受力和垂直于斜面方向的受力之和,再根据静摩擦力和动摩擦力的定义及斜面运动状态的不同情况,得到静摩擦力或摩擦力的大小。

步骤四:计算运动状态最后,根据牛顿第二定律和动力学公式,计算物体在斜面上的加速度、速度和位移等运动状态。

常见问题:1. 如何判断斜面模型是否存在静摩擦力?当斜面倾斜较小时,物体沿斜面下滑的速度很慢,此时存在静摩擦力,使物体保持静止或匀速下滑;当斜面倾斜角度增大,物体沿斜面下滑速度增大,此时静摩擦力无法抵消物体的运动趋势,出现动摩擦力,使物体产生加速度下滑。

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题
滑块滑板问题是高考的热点,也是高一上的一个重难点,在高一上的滑块滑板中它主要涉及到受力分析,运动状况分析,以及牛顿运动定律,综合性较强,所以也成为学生学习感到困难的一部分,滑块滑板看似复杂,掌握好受力分析与运动的分析结合牛顿运动定律,再进行分析就比较轻松了。

类型一.“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
类型二.水平传送带问题
滑块在水平传送带上运动常见的三个情景
类型三.倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
总结:处理滑块与滑板类问题的基本思路
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点.方法有整体法隔离法、假设法等.即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的
摩擦力是不是大于最大静摩擦力.。

滑块-滑板模型问题分析方法

滑块-滑板模型问题分析方法
牛顿第二定律
滑块与滑板之间的动力学关系遵循牛顿第二定律,即合外力等于质量与加速度的 乘积。
03
滑块-滑板模型的建立与 求解
模型的建立
确定问题类型
根据实际问题,确定滑块-滑板模型是否适用,并明确模型中的物 理量及约束条件。
建立数学模型
根据物理现象和问题需求,建立滑块-滑板模型的数学表达式,包 括运动方程、力平衡方程等。
在航天器着陆过程中,滑块-滑板模型被用于分析着陆稳定性。通过模拟航天器在着陆时的运动,可以预测航天 器的着陆姿态和稳定性,从而优化着陆方案,确保航天器的安全着陆和回收。
谢谢观看
重力与支持力
滑块-滑板模型中,滑块与滑板之间的 相互作用力遵循牛顿第三定律,即作 用力和反作用力大小相等、方向相反。
滑块和滑板受到的重力与支持力在静 态平衡时相互抵消,而在动态平衡时 则相互作用。
摩擦力
滑块与滑板之间的摩擦力是影响滑块 运动的重要因素,摩擦力的方向和大 小取决于接触面的性质和相对运动状 态。
工程设计中的应用
机械系统设计
滑块-滑板模型在机械系统设计中 被广泛应用,用于分析机构运动 和受力情况,优化设计以提高机
械性能和稳定性。
车辆工程
在车辆工程中,滑块-滑板模型用 于研究车轮与地面之间的相互作用, 分析车辆动力学性能和行驶稳定性。
建筑结构
在建筑结构设计中,滑块-滑板模型 用于模拟和分析桥梁、高层建筑等 结构的滑动支撑和抗震性能。
确定边界条件和初始条件
根据实际问题的边界条件和初始状态,确定模型中相应的边界条件 和初始条件。
模型的求解方法
解析法
对于简单问题,可以采用解析法求解,得到精确解。
数值法
对于复杂问题,可以采用数值法求解,如有限元法、 有限差分法等。

高中物理滑块木板模型(经典)

高中物理滑块木板模型(经典)

高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。

物理滑块问题解题技巧

物理滑块问题解题技巧

物理滑块问题解题技巧
物理滑块问题解题技巧有以下几中方法:
滑块问题在高中物理中经常碰到,它涉及到运动和力的关系、涉及到能量、涉及到动量,对此问题的研究,有助于对力学规律的理解、掌握和选用,有助于提高学生的能力。

滑块与长木板组成的相互作用的系统,简称滑块模型,木板滑块模型是多个物体的多个构成问题,解决滑块问题的具体步骤:
1、分别隔离滑块与长木板受力分析,弄清其受力情况和运动状态,分别运用牛顿第二定律求其各自的加速度a1和a2;
2、列其各自的速度方程和位移方程;
3、根据临界条件列出其位移的关联方程;
4、解方程;。

1鼎盛-高中物理最经典-滑块—木板模型问题的分析和技巧

1鼎盛-高中物理最经典-滑块—木板模型问题的分析和技巧

滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x 相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.模型二 传送带模型例2 如图所示,传送带与水平面之间的夹角为θ=30°,其上A 、B 两点间的距离为l =5 m ,传送带在电动机的带动下以v =1 m/s 的速度匀速运动.现将一质量为m =10 kg 的小物体(可视为质点)轻放在传送带上的A 点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A 点传送到B 点的过程中,求:(g 取10 m/s 2)(1)传送带对小物体做的功;(2)电动机做的功.【解析】 (1)小物体刚开始运动时,根据牛顿第二定律有μmg cos θ-mg sin θ=ma解得小物体上升的加速度为a =g 4=2.5 m/s 2 当小物体的速度为v =1 m/s 时,位移为x =v 22a=0.2 m 然后小物体以v =1 m/s 的速度做匀速运动到达B 点.由功能关系得W =ΔE k +ΔE p =12m v 2+mgl sin θ=255 J. (2)电动机做功使小物体的机械能增加,同时小物体与传送带间因摩擦产生热量Q ,由v =at 得t =v a=0.4 s 相对位移x ′=v t -v 2t =0.2 m 摩擦产生的热量Q =μmgx ′cos θ=15 J故电动机做的功为W电=W+Q=270 J.【答案】(1)255 J(2)270 J传送带问题的分析流程和技巧1.分析流程2.相对位移一对相互作用的滑动摩擦力做功所产生的热量Q=F f·x相对,其中x相对是物体间相对路径长度.如果两物体同向运动,x相对为两物体对地位移大小之差;如果两物体反向运动,x相对为两物体对地位移大小之和.3.功能关系(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.[高考真题]1.(2016·四川卷,1)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功 1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】由动能定理可知,ΔE k=1 900 J-100 J=1 800 J,故A、B均错.重力势能的减少量等于重力做的功,故C正确、D错.答案 C2.(2014·山东卷,20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmh R (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h(h +2R ) B .mg 月R R +h (h +2R ) C.mg 月R R +h (h +22R ) D .mg 月R R +h(h +12R ) 【解析】 设玉兔在h 高度的速度为v ,则由万有引力定律得,G Mm (R +h )2=m v 2R +h,可知玉兔在该轨道上的动能为E k =12GMm (R +h ),由功能关系可知对玉兔做的功为:W =E k +E p =12GMm (R +h )+GMmh R (R +h ),结合在月球表面:G Mm R 2=mg 月,整理可知W =mg 月R R +h(h +12R ),故正确选项为D.【答案】 D3.(2014·广东卷,16)如图所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板, 楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能【解析】 由于楔块与弹簧盒、垫板间有摩擦力,即摩擦力做负功,则机械能转化为内能,故A 错误,B 正确;垫板动能转化为内能和弹性势能,故C 错误;而弹簧弹性势能也转化为动能和内能,故D 错误.【答案】 B[名校模拟]4.(2018·宁夏银川一中模拟)如图所示,水平传送带两端点A 、B 间的距离为L ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度逆时针匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是( )A .W 1=W 2,P 1<P 2,Q 1=Q 2B .W 1=W 2,P 1<P 2,Q 1>Q 2C .W 1>W 2,P 1=P 2,Q 1>Q 2D .W 1>W 2,P 1=P 2,Q 1=Q 2【解析】 当传送带不运动时,拉力做功W 1=FL ,物体从A 运动到B 的时间t 1=L v 1,因摩擦而产生的热量Q 1=fL .当传送带运动时,拉力做功W 2=FL ,物体从A 运动到B 的时间t 2=L v 1+v 2<t 1,因摩擦而产生的热量Q 2=f v 1t 2.拉力做功功率P 1=W 1t 1,P 2=W 2t 2,比较可知W 1=W 2,P 1<P 2.又v 1t 2<v 1t 1,v 1t 1=L ,得Q 1>Q 2,故选B.【答案】 B5.(2018·山东临沂高三上学期期中)如图所示,一质量为m 的小球用两根不可伸长的轻绳a 、b 连接,两轻绳的另一端分别系在竖直杆的A 、B 两点上,当两轻绳伸直时,a 绳与杆的夹角为30°,b 绳水平,已知a 绳长为2L ,当竖直杆以自己为轴转动,角速度ω从零开始缓慢增大过程中,下列说法正确的是( )A .从开始至b 绳伸直但不提供拉力时,绳a 对小球做功为0B .b 绳伸直但不提供拉力时,小球的向心加速度大小为33gC .从开始至b 绳伸直但不提供拉力时,小球的机械能增加了⎝⎛⎭⎫2-536mgL D .当ω= g 3L时,b 绳未伸直 【解析】 细绳对球的拉力方向与球的位移方向不垂直,故一定对球做正功,使其机械能增大,A 错;ma =mg tan 30°,a =33g ,B 对;m v 2L =mg tan θ,E k =12m v 2=36mgL ,A 球ΔE =E k +E p =36mgL +mg (2L -3L )=⎝⎛⎭⎫2-536·mgL ,C 对;令mLω2=mg tan 30°,得ω=3g 3L,D 对. 【答案】 BCD6.(2018·江苏南通高三模拟)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22 D .环减少的机械能大于重物增加的机械能【解析】 环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.【答案】 B课时作业(十七)[基础小题练]1.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )A .变大B .变小 C.不变 D .不能确定【解析】 人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A 正确.【答案】 A2.如图所示,A 物体用板托着,细绳跨过轻质光滑定滑轮与A 、B 相连,绳处于绷直状态,已知A 、B 的质量分别为2m 和m .现将板抽走,则A 下落一段距离的过程中( )A .A 物体减少的机械能大于B 物体增加的机械能B .A 物体减少的机械能等于B 物体增加的机械能C .悬挂滑轮的绳子对天花板的拉力大于3mgD .悬挂滑轮的绳子对天花板的拉力小于3mg【解析】 对A 、B 组成的系统,没有机械能与其他形式能的转化,因此系统的机械能守恒,A 物体减少的机械能等于B 物体增加的机械能,A 错误,B 正确;对滑轮受力分析,根据平衡条件得F =2F T ,对A 、B 整体受力分析,根据牛顿第二定律得2mg -mg =3ma ,对B 物体受力分析得F T -mg =ma ,联立得F =83mg ,C 错误,D 正确. 【答案】 BD3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能【解析】 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误.【答案】 B4.悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m 的运动员刚入水时的速度为v ,水对他的阻力大小恒为F ,那么在他减速下降深度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)( )A .他的动能减少了(F -mg )hB .他的重力势能减少了mgh -12m v 2 C .他的机械能减少了FhD .他的机械能减少了mgh【解析】 合力做的功等于动能的变化,合力做的功为(F -mg )h ,A 正确;重力做的功等于重力势能的减少量,故重力势能减小了mgh ,B 错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh ,C 正确,D 错误.【答案】 AC5.如图所示,在光滑斜面上的A 点先后水平抛出和静止释放两个质量相等的小球1和2,不计空气阻力,最终两小球在斜面上的B 点相遇,在这个过程中( )A .小球1重力做的功大于小球2重力做的功B .小球1机械能的变化大于小球2机械能的变化C .小球1到达B 点的动能大于小球2的动能D .两小球到达B 点时,在竖直方向的分速度相等【解析】 重力做功只与初、末位置的高度差有关,与物体经过的路径无关,所以重力对1、2两小球所做的功相等,A 错误;1、2两小球从A 点运动到B 点的过程中,只有重力对其做功,所以它们的机械能均守恒,B 错误;由动能定理可得,对小球1有:mgh =E k1-E k0,对小球2有:mgh =E k2-0,显然E k1>E k2,C 正确;由上面的分析可知,两小球到达B 点时,小球1的速度大于小球2的速度,且小球1的速度方向与竖直方向的夹角小于小球2速度方向与竖直方向的夹角,因此,小球1在竖直方向上的速度大于小球2在竖直方向上的速度,D 错误.【答案】 C6.如图所示,水平传送带AB 长为21 m ,以6 m/s 的速度顺时针匀速转动,台面与传送带平滑连接于B 点,半圆形光滑轨道半径R =1.25 m ,与水平台面相切于C 点,BC 长x =5.5 m ,P 点是圆弧轨道上与圆心O 等高的一点.一质量为m =1 kg 的物块(可视为质点),从A 点无初速度释放,物块与传送带及台面间的动摩擦因数均为0.1,则关于物块的运动情况,下列说法正确的是( )A .物块不能到达P 点B .物块能越过P 点做斜抛运动C .物块能越过P 点做平抛运动D .物块能到达P 点,但不会出现选项B 、C 所描述的运动情况【解析】 物块从A 点释放后在传送带上做加速运动,假设到达台面之前能够达到传送带的速度v ,则由动能定理得,μmgx 1=12m v 2,得x 1=18 m <21 m ,假设成立.物块以6 m/s 冲上台面,假设物块能到达P 点,则到达P 点时的动能E k P 可由动能定理求得,-μmgx -mgR =E k P -12m v 2,得E k P =0,可见,物块能到达P 点,速度恰为零,之后从P 点沿圆弧轨道滑回,不会出现选项B 、C 所描述的运动情况,D 正确.【答案】 D[创新导向练]7.生活娱乐——蹦床娱乐中的能量转化问题在儿童乐园的蹦床项目中,小孩在两根弹性绳和蹦床的协助下实现上下弹跳.如图所示,某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点,不计空气阻力.下列说法正确的是( )A .从A 运动到O ,小孩重力势能减少量大于动能增加量B .从O 运动到B ,小孩动能减少量等于蹦床弹性势能增加量C .从A 运动到B ,小孩机械能减少量小于蹦床弹性势能增加量D .若从B 返回到A ,小孩机械能增加量等于蹦床弹性势能减少量【解析】 从A 运动到O 点,小孩重力势能减少量等于动能增加量与弹性绳的弹性势能的增加量之和,选项A正确;从O运动到B,小孩动能和重力势能的减少量等于弹性绳和蹦床的弹性势能的增加量,选项B错误;从A运动到B,小孩机械能减少量大于蹦床弹性势能增加量,选项C错误;若从B返回到A,小孩机械能增加量等于蹦床和弹性绳弹性势能减少量之和,选项D错误.【答案】 A8.物理与生物——以“跳蚤”弹跳为背景考查能量问题在日常生活中,人们习惯于用几何相似性放大(或缩小)的倍数去得出推论,例如一个人身体高了50%,做衣服用的布料也要多50%,但实际上这种计算方法是错误的.若物体的几何线度为L,当L改变时,其他因素按怎样的规律变化?这类规律可称之为标度律,它们是由量纲关系决定的.在上例中,物体的表面积S=kL2,所以身高变为1.5倍,所用的布料变为1.52=2.25倍.以跳蚤为例:如果一只跳蚤的身长为2 mm,质量为0.2 g,往上跳的高度可达0.3 m.可假设其体内能用来跳高的能量E∝L3(L为几何线度),在其平均密度不变的情况下,身长变为2 m,则这只跳蚤往上跳的最大高度最接近()A.0.3 m B.3 mC.30 m D.300 m【解析】根据能量关系可知E=mgh,由题意可知E=kL3,则mgh=kL3;因跳蚤的平均密度不变,则m=ρL3,则ρgh=k,因ρ、g、k均为定值,故h不变,则这只跳蚤往上跳的最大高度最接近0.3 m,故选A.【答案】 A9.就地取材——利用“弹弓”考查功能关系问题弹弓是80后童年生活最喜爱的打击类玩具之一,其工作原理如图所示,橡皮筋两端点A、B固定在把手上,橡皮筋ABC恰好处于原长状态,在C处(AB连线的中垂线上)放一固体弹丸,一手执把,另一手将弹丸拉至D点放手,弹丸就会在橡皮筋的作用下迅速发射出去,打击目标,现将弹丸竖直向上发射,已知E是CD的中点,则()A.从D到C,弹丸的动能一直在增大B.从D到C的过程中,弹丸在E点的动能一定最大C.从D到C,弹丸的机械能先增大后减少D.从D到E弹丸增加的机械能大于从E到C弹丸增加的机械能【解析】在CD连线中的某一处,弹丸受力平衡,但是此点不一定是E点,所以从D到C ,弹丸的速度先增大后减小,弹丸的动能先增大后减小,故A 、B 错误;从D 到C ,橡皮筋对弹丸做正功,弹丸机械能一直在增加,故C 错误;从D 到E 橡皮筋作用在弹丸上的合力大于从E 到C 橡皮筋作用在弹丸上的合力,两段长度相等,所以DE 段橡皮筋对弹丸做功较多,即机械能增加的较多,故D 正确,故选D.【答案】 D10.综合应用——能量转化与守恒定律的实际应用如图所示,倾角θ=37°的光滑斜面上粘贴有一厚度不计、宽度为d =0.2 m 的橡胶带,橡胶带的上表面与斜面位于同一平面内,其上、下边缘与斜面的上、下边缘平行,橡胶带的上边缘到斜面的顶端距离为L =0.4 m ,现将质量为m =1 kg 、宽度为d 的薄矩形板上边缘与斜面顶端平齐且从斜面顶端静止释放.已知矩形板与橡胶带之间的动摩擦因数为0.5,重力加速度大小为g =10 m/s 2,不计空气阻力,矩形板由斜面顶端静止释放到完全离开橡胶带的过程中(此过程矩形板始终在斜面上),sin 37°=0.6,cos 37°=0.8,下列说法正确的是( )A .矩形板受到的摩擦力大小为4 NB .矩形板的重力做功为3.6 JC .产生的热量为0.8 JD .矩形板的上边缘穿过橡胶带下边缘时其速度大小为2355m/s 【解析】 当矩形板全部在橡胶带上时摩擦力为F f =μmg cos 37°=4 N ,此时摩擦力最大,其他情形摩擦力均小于4 N ,故A 错误;重力对矩形板做功W G =mgh =mg (L +d )sin 37°=3.6 J ,B 正确;从滑上橡胶带到完全离开橡胶带,因矩形板受到的摩擦力与位移的变化为线性关系,则产生的热量Q =0+μmg cos 37°2×2d =0.8 J ,C 正确;从释放到完全离开橡胶带,对矩形板由动能定理有mg (L +d )sin 37°-0+μmg cos 37°2×2d =12m v 2,代入可得v =2355m/s ,D 正确.【答案】 BCD[综合提升练]11.如图所示,A 、B 间是一个风洞,水平地板AB 延伸至C 点,通过半径r =0.5 m 、圆心角为θ的光滑圆弧CD 与足够长的光滑斜面DE 连接,斜面倾角为θ.可以看成质点、质量m =2 kg 的滑块在风洞中受到水平向右的恒定风力F =20 N ,滑块与地板AC 间的动摩擦因数μ=0.2.已知x AB =5 m ,x BC =2 m ,如果将滑块在风洞中A 点由静止释放,已知sin θ=0.6,cos θ=0.8,重力加速度g 取10 m/s 2.求(计算结果要求保留3位有效数字):(1)滑块经过圆弧轨道的C 点时对地板的压力大小及在斜面上上升的最大高度;(2)滑块第一次返回风洞速率为零时的位置;(3)滑块在A 、C 间运动的总路程.【解析】 (1)滑块在风洞中A 点由静止释放后,设经过C 点时速度为v 1,由动能定理得Fx AB -μmgx AC =12m v 21 在C 点由牛顿第二定律有F N C -mg =m v 21r代入数据解得F N C =308 N ,由牛顿第三定律知滑块经过C 点时对地板的压力为308 N 滑块由C 点上滑过程中,机械能守恒12m v 21=mgr (1-cos θ)+mgh 代入数据解得h =3.50 m.(2)滑块返回风洞时,风力与摩擦力皆为阻力,设滑块运动到P 点时速率为零,由能量守恒得12m v 21=μmg (x BC +x PB )+Fx PB 代入数据解得x PB =83m ≈2.67 m 滑块第一次返回风洞速率为零时的位置在B 点左侧2.67 m 处.(3)整个过程等效为滑块从A 处在风力和滑动摩擦力的共同作用下被推到B 处,然后在足够长水平面上滑行至静止,设总路程为s ,由动能定理得Fx AB -μmgs =0代入数据解得s =25.0 m.【答案】 (1)308 N 3.50 m (2)在B 点左侧2.67 m 处 (3)25.0 m12.如图所示,在竖直方向上A 、B 两物体通过劲度系数为k =16 N/m 的轻质弹簧相连,A 放在水平地面上,B 、C 两物体通过细线绕过轻质定滑轮相连,C 放在倾角α=30°的固定光滑斜面上.用手拿住C ,使细线刚好拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行.已知A 、B 的质量均为m =0.2 kg ,重力加速度取g =10 m/s 2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C 后它沿斜面下滑,A 刚离开地面时,B 获得最大速度,求:(1)从释放C 到物体A 刚离开地面时,物体C 沿斜面下滑的距离;(2)物体C 的质量;(3)释放C 到A 刚离开地面的过程中细线的拉力对物体C 做的功.【解析】 (1)设开始时弹簧的压缩量为x B ,得kx B =mg ①设物体A 刚离开地面时,弹簧的伸长量为x A ,得kx A =mg ②当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B ③由①②③解得h =2mg k=0.25 m .④ (2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有F T -mg -kx A =0⑤对C 有Mg sin α-F T =0⑥由②⑤⑥解得M =4m =0.8 kg.(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v 2m 解得v m =1 m/s对C 由动能定理可得Mgh sin α+W T =12M v 2m解得W T =-0.6 J.【答案】 (1)0.25 m (2)0.8 kg (3)-0.6 J。

牛顿运动定律的应用_牛顿运动定律的应用之“滑块_木板模型”

牛顿运动定律的应用_牛顿运动定律的应用之“滑块_木板模型”

一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型<如图所示>,涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。

二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。

三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态〔具体做什么运动;2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体"所需要"的摩擦力f;比较f与最大静摩擦力f m的关系,若f> f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移〔即两者的位移差或位移和;6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度〔相对静止是滑块滑离木板的临界条件。

[名师点睛]1. 此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度<注意两过程的连接处加速度可能突变>,找出物体之间的位移<路程>关系或速度关系是解题的突破口。

第10讲 牛顿运动定律之滑块-滑板模型(解析版)

第10讲 牛顿运动定律之滑块-滑板模型(解析版)

第10讲滑板-滑块模型11.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。

2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。

(3)通常所说物体运动的位移、速度、加速度都是对地而言的。

在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。

它就是解决问题的突破口。

(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。

(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。

另外求相对位移时,通常会用到系统能量守恒定律。

(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。

3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。

4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。

说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。

(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度;(2)画好运动草图,找出位移、速度、时间等物理量间的关系;(3)明确每一过程的末速度是下一过程的初速度。

2一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f MmgF M m=+B.要使物块A 、B 发生相对滑动,应满足关系1Mm μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22MmgF M m=+【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f MmgF M m=+,故A 正确;B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+解得21Mm μμ=- 故要使物块A 、B 之间发生相对滑动,则21Mm μμ>-,故B 错误; C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2f mgMmF a M ==+对C 受力分析,根据牛顿第二定律有mg F ma -=解得22MmgF M m=+根据力的合成法则,可得轻绳对定滑轮的作用力2222+=2MmgN F F M m=+故D 错误。

滑块模型地位置关系及解题方法

滑块模型地位置关系及解题方法

滑块模型地位置关系及解题⽅法滑块模型的位置关系及解题⽅法⾼中物理涉及到物体的运动过程的研究,搞清楚物体的位置关系很重要,⼩举⼀例,以作参考:【例】如图1所⽰,⼀质量为M 、长为L 的长⽅形⽊板B 放在光滑的⽔平地⾯上,在其右端放⼀质量为m 的⼩⽊块A ,m <M .现以地⾯为参照系,给A 和B 以⼤⼩相等、⽅向相反的初速度(如图1),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板,以地⾯为参照系.(1)若已知A 和B 的初速度⼤⼩为V 0,求它们最后的速度⼤⼩和⽅向. (2)若初速度的⼤⼩未知,求⼩⽊块A 向左运动到达的最远处(从地⾯上看)离出发点的距离.【解析】⽅法1、⽤⽜顿第⼆定律和运动学公式求解.A 刚好没有滑离B 板,表⽰当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V ,经过时间为t ,A 、B 间的滑动摩擦⼒为f .如图2所⽰.对A 据⽜顿第⼆定律和运动学公式有:f =ma A , L 2=2021t a t V A, V =-V 0+a A t ;对B 据⽜顿第⼆定律和运动学公式有:图1f =Ma B , 20021t a t V L B -=,V =V 0-a B t ;由⼏何关系有:L 0+L 2=L ;由以上各式可求得它们最后的速度⼤⼩为 V =mM mM +-. V 0,⽅向向右.mM mMV fL +=202对A ,向左运动的最⼤距离为L MMm a V L A 42201+==.⽅法2、⽤动能定理和动量定理求解.A 刚好没有滑离B 板,表⽰当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V ,经过时间为t , A 和B 的初速度的⼤⼩为V 0,则据动量定理可得:对A : f t = m V +m V 0 ①对B :-ft=MV -MV 0 ②解得:V =mM mM +-V 0,⽅向向右A 在B 板的右端时初速度向左,⽽到达B 板左端时的末速度向右,可见A 在运动过程中必须经历向左作减速运动直到速度为零,再向右作加速运动直到速度为V 的两个阶段.设L 1为A 开始运动到速度变为零过程中向左运动的路程,L 2为A 从速度为零增加到速度为V 的过程中向右运动的路程,L 0为A 从开始运动到刚好到达B 的最左端的过程中B 运动的路程,如图2所⽰,设A 与B 之间的滑动摩擦⼒为f ,则由动能定理可得:对于B : -f L 0=2022121MV MV - ③对于A : -f L 1= -2021mV ④f (L 1-L 2)=221mV ⑤由⼏何关系L 0+L 2=L ⑥由①、②、③、④、⑤、⑥联⽴求得L 1=MLm M 4)(+.⽅法3、⽤能量守恒定律和动量守恒定律求解.A 刚好没有滑离B 板,表⽰当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V , A 和B 的初速度的⼤⼩为V 0,则据动量守恒定律可得:MV 0-mV 0=(m+m)V解得:V =mM mM +-. V 0,⽅向向右 .对系统的全过程,由能量守恒定律得:Q=fL=220)(21)21V M m V m M +-+(对于A fL 1= 2021mV 由上述⼆式联⽴求得L 1=MLm M 4)(+.从上述三种解法中,不难看出,解法三简洁明了,容易快速求出正确答案.因此我们在解决动⼒学问题时,⾸先搞清楚物体运动过程及位置关系,解题时应优先考虑使⽤能量守恒定律和动量守恒定律求解,其次是考虑使⽤动能定理和动量定理求解,最后才考虑使⽤⽜顿第⼆定律和运动学公式求解.练习题:1、如图,⼀质量为M=3kg 的长⽅形⽊板B 放在光滑⽔平地⾯上,在其右端放⼀质量m=1kg 的⼩⽊块A 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑块模型的位置关系及解题方法高中物理涉及到物体的运动过程的研究,搞清楚物体的位置关系很重要,小举一例,以作参考:【例】如图1所示,一质量为M 、长为L 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M .现以地面为参照系,给A 和B 以大小相等、方向相反的初速度(如图1),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板,以地面为参照系.(1)若已知A 和B 的初速度大小为V 0,求它们最后的速度大小和方向. (2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离.【解析】方法1、用牛顿第二定律和运动学公式求解.A 刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V ,经过时间为t ,A 、B 间的滑动摩擦力为f .如图2所示.对A 据牛顿第二定律和运动学公式有:f =ma A , L 2=2021t a t V A -, V =-V 0+a A t ; 对B 据牛顿第二定律和运动学公式有:f =Ma B , 20021t a t V L B -=,V =V 0-a B t ;由几何关系有:L 0+L 2=L ;由以上各式可求得它们最后的速度大小为V =m M m M +-. V 0,方向向右.mM mMV fL +=202对A ,向左运动的最大距离为L MMm a V L A 42201+==.方法2、用动能定理和动量定理求解.A 刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V ,经过时间为t , A 和B 的初速度的大小为V 0,则据动量定理可得:对A : f t = m V +m V 0 ① 对B :-ft=MV -MV 0 ②解得:V =mM mM +-V 0,方向向右A 在B 板的右端时初速度向左,而到达B 板左端时的末速度向右,可见A 在运动过程中必图1 V 0 V 0 B V 0 V 0BL 1L 2 L 0答图2须经历向左作减速运动直到速度为零,再向右作加速运动直到速度为V 的两个阶段.设L 1为A 开始运动到速度变为零过程中向左运动的路程,L 2为A 从速度为零增加到速度为V 的过程中向右运动的路程,L 0为A 从开始运动到刚好到达B 的最左端的过程中B 运动的路程,如图2所示,设A 与B 之间的滑动摩擦力为f ,则由动能定理可得:对于B : -f L 0=2022121MV MV - ③ 对于A : -f L 1= -2021mV ④f (L 1-L 2)=221mV ⑤由几何关系L 0+L 2=L ⑥ 由①、②、③、④、⑤、⑥联立求得L 1=MLm M 4)(+.方法3、用能量守恒定律和动量守恒定律求解.A 刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速度,设此速度为V , A 和B 的初速度的大小为V 0,则据动量守恒定律可得:MV 0-mV 0=(m+m)V解得:V =mM mM +-. V 0,方向向右 .对系统的全过程,由能量守恒定律得:Q=fL=220)(21)21V M m V m M +-+( 对于A fL 1=2021mV 由上述二式联立求得L 1=MLm M 4)(+.从上述三种解法中,不难看出,解法三简洁明了,容易快速求出正确答案.因此我们在解决动力学问题时,首先搞清楚物体运动过程及位置关系,解题时应优先考虑使用能量守恒定律和动量守恒定律求解,其次是考虑使用动能定理和动量定理求解,最后才考虑使用牛顿第二定律和运动学公式求解.练习题:1、如图,一质量为M=3kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量m=1kg 的小木块A 。

现以地面为参考系,给A 和B 以大小均为4.0m/s 方向相反的初速度,使A 开始向左运动,B 开始向右运动,,但最后A 并没有滑离B 板。

站在地面的观察者看到在一段时间内小木板A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是 ( )A.2.4m/sB.2.8m/sC.3.0m/sD.1.8m/s2. 如图所示,已知光滑水平面上有质量为M 的长板正以速度v 0向右运动,某时刻,质量为mv v B A的木块以与M等大的速度v0从长板右端进入长板上面向左运动,m<M.已知木块没有滑离长板且最后木块和长板相对静止,求从木块滑上长板到木块与长板相对静止的过程中,木块及长板的最小速度分别为多大?木块和长板相对水平面的位移大小之比为多少?3.如图所示,平板小车停在光滑水平面上,质量均为m的物块A和B从小车两端相向滑上小车上表面,它们的水平速度大小分别为2v0和v0.若小车质量为m,A和B与小车间的动摩擦因数均为μ,试问经过多少时间A和B相对静止?(小车足够长,A、B不相撞)4、如图所示,一块质量为M、长为l的匀质板放在很长的水平桌面上,板的左端有一质量为m的物块,物块上连接一根很长的细绳,细绳跨过位于桌面边缘的定滑轮并与桌面平行,某人以恒定的速度v向下拉绳,物块最多只能到达板的中点,且此时板的右端距离桌边定滑轮足够远.求:(1)若板与桌面间光滑,物块与板的动摩擦因数及物块刚到达板的中点时板的位移.(2)若板与桌面间有摩擦,为使物块能到达板右端,板与桌面的动摩擦因数的范围.5、如图所示,一块质量为M的匀质板放在足够长的光滑水平桌面上,初始时速度为零.板的左端有一个质量为m的物块,物块与板间的动摩擦因数为μ,物块上连接一根足够长的细绳,细绳跨过位于桌面边缘的定滑轮,某人以恒定速度v向下匀速拉绳,绳子对物块的拉力保持水平,物块最多只能向右达到板的中点,且此时板的右端尚未到达桌边定滑轮.求:(1)物块与匀质板相对滑动的过程中,物块受到板的摩擦力和板运动的加速度;(2)若物块在板左端时,给板一个水平向左的初速度v′,为使板与物块能脱离,v′应满足的条件.vvA B23题vvmM2题Mmv6、如图所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ.最初木板静止,A 、B 两木块同时以方向水平向右的初速度V 0和2V 0在木板上滑动,木板足够长, A 、B 始终未滑离木板.求:(1)木块B 从刚开始运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移; (2)木块A 在整个过程中的最小速度.7、质量为M =4.0kg 的平板小车静止在光滑的水平面上,如图所示,当t =0时,两个质量分别为m A =2kg 、m B =1kg 的小物体A 、B 都以大小为v 0=7m/s 。

方向相反的水平速度,同时从小车板面上的左右两端相向滑动。

到它们在小车上停止滑动时,没有相碰,A 、B 与车间的动摩擦因素μ=0.2,取g =10m/s 2,求:(1)A 在车上刚停止滑动时,A 和车的速度大小(2)A 、B 在车上都停止滑动时车的速度及此时车运动了多长时间。

(3)在给出的坐标系中画出小车运动的速度——时间图象。

8、如图所示为一个模拟货物传送的装置,A 是一个表面绝缘、质量M =l00kg 、电量q = + 6.0×t/s10-2C 的传送小车,小车置于光滑的水平地面上。

在传送途中,有一个水平电场,电场强度为E=4.0×l03V /m ,可以通过开关控制其有无。

现将质量,m =20kg 的货物B 放置在小车左端,让它们以υ=2m /s 的共同速度向右滑行,在货物和小车快到终点时,闭合开关产生一个水平向左的匀强电场,经过一段时间后关闭电场,当货物到达目的地时,小车和货物的速度恰好都为零。

已知货物与小车之间的动摩擦因素μ=0.1。

(1)试指出关闭电场的瞬间,货物和小车的速度方向。

(2)为了使货物不滑离小车的另一端,小车至少多长?(货物不带电且体积大小不计,g 取10m /s 2)练习题答案: 1、A2、解析:由于M >m ,Mv 0>mv 0,所以,最终M 和m 以相同的速度向右运动.即m 先向左做匀减速运动,速度减到零后再向右做匀加速运动,直到和长板达到共同速度,长板一直向右做匀减速运动,直到和木块达到共同速度,之后它们一起做匀速运动.所以,木块的最小速度为零,长板的最小速度为它们一起匀速运动的速度v ,由动量守恒定律得Mv 0-mv 0=(M +m )v ,解得v =mM mM +-v 0;在它们相对运动的过程中,木块位移的大小为s m =20v v -t =)(m M m+v 0t 长板位移大小为s M =20v v +t =)(m M M+v 0t 它们相对水平面的位移之比为M m S s =Mm.3.解析: A 、B 两物块都滑动时小车静止,当B 的速度减小到零后,在A 的摩擦力作用下,小车与B 一起向右加速运动,直到跟A 达到相同速度之后,A 、B 和小车以相同速度做匀速直线运动.由动量守恒定律得 2mv 0-mv 0=3mv ,解得v =31v 0; 对A 由动量定理得 -μmgt =mv -m ·2v 0从A 、B 滑上小车到它们跟小车相对静止,经历的时间为t =gv μ350.4、解析:(1)板在摩擦力作用下向右做匀加速运动直至与物块速度相同,此时物块刚到达板的中点,设木板加速度为a 1,运动时间为t 1,对木板有 μ1mg = Ma 、v = a 1t 1 ∴t 1 =Mvμ1mg设在此过程中物块前进位移为s 1,板前进位移为s 2,则s 1 = vt 1、 s 2 =v 2t 1 又因为s 1 - s 2 = l2,-由以上几式可得物块与板间的动摩擦因数μ1= Mv 2mgl 、板的位移s 2 = l2.(2)设板与桌面间的动摩擦因数为μ2,物块在板上滑行的时间为t 2,木板的加速度为a 2,对板有 μ1mg — μ2(m + M ) g = Ma 2,且v = a 2t 2 解得t 2 =gM m mg Mv)(21+-μμ又设物块从板的左端运动到右端的时间为t 3,则vt 3 —v 2t 3 = l , t 3 = 2lv--为了使物块能到达板的右端,必须满足 t 2 ≥ t 3 –即v l g M m mg Mv 2)(21≥+-μμ,则μ2 ≥glM m Mv )(22+ -所以为了使物块能到达板的右端,板与桌面间的摩擦因数μ2 ≥glM m Mv )(22+-5、(1)f mg μ=;mga Mμ=;(2)v ′应满足的条件为 )1v v '≥6、解析:(1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等为止,设为V 1.对A 、B 、C 三者组成的系统,由动量守恒定律得:100)3(2V m m m mV mV ++=+解得:V 1=0.6V 0对木块B 运用动能定理,有:2021)2(2121V m mV mgs -=-μ 解得)50/(91:20g V s μ=(2)设木块A 在整个过程中的最小速度为V ′,所用时间为t ,由牛顿第二定律: 对木块A :g m mg a μμ==/1, 对木板C :3/23/22g m mg a μμ==,当木块A 与木板C 的速度相等时,木块A 的速度最小,因此有: t g gt V )3/2(0μμ=-,解得)5/(30g V t μ=木块A 在整个过程中的最小速度为:.5/2010/V t a V V =-=7、解析:(1)当A 和B 在车上都滑行时,在水平方向它们的受力分析如图所示:由受力图可知,A 向右减速,B 向左减速,小车向右加速,所以首先是A 物块速度减小到与小车速度相等。

相关文档
最新文档