华杯小高模拟测试卷

合集下载

第十九届“华杯赛”初赛试卷_小高(北京版)(详解)

第十九届“华杯赛”初赛试卷_小高(北京版)(详解)

v甲
v丙
④将①、②的结果代入③的式子,得到
1 40
S S+
63 4
+
20
=
S - 315
1 40
S
-
63 4
,化简得
S
S + 630
+
1 2
=
S S
-
315 630

进而有
S
S + 630
=
S
0.5S - 630
,故
0.5(S
+
630)
=
S
-
630
,解得
S
=
1890
.
方法二(从条件数的巧妙性入手,考虑时间):①甲速是乙速的 3 倍,所以如果甲全程不掉头


(A)淘气的剪法利用率高
(B)笑笑的剪法利用率高
(C)两种剪法利用率一样
(D)无法判断
【考点】几何
【答案】A
【分析】甲图利用率为 p ;乙图中设小圆的半径为 1,则 7 个小圆面积和为 7p ,大圆面积为 9p ,利用 4
率为 7 , p > 7 ,因此淘气的剪法利用率高. 9 49
4. 小华下午 2 点要到少年宫参加活动,但他的手表每小时快了 4 分钟,他特意在上午 10 点时对好了
二、填空题(每小题 10 分,满分 40 分)
7.
算式1007´
1
3 4
(1+ 2
¸ +
3
4 3
+3¸ +4+
2
1 4
+
1 3
5)´5 -
22
¸19

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛模拟题(小高组)1.计算:22222221234201520162017-+-++-+ 【解析】 原式22222222017201654321=-++-+-+ (20172016)(20172016)(32)(32)1=-⨯+++-⨯++2017201620152014321=+++++++()120171201720351532=⨯+⨯= 2.幼儿园的老师把一些画片分别给A 、B 、C 三个班,每人都分到6张,如果只分给B 班,每人能得15张,如果只分给C 班,每人能得14张,如果只分给A 班,每人能得 张.【解析】 设三个班的总人数为x 人,A 班、B 班、C 班的人数分别为a ,b ,c , 则61514x b c ==,从而62155b x x ==,63147c x x ==,所以2365735a x x x x =--=,因此将这些画片分给A 班,每人能得663535x x ÷=(张). 3.A 、B 两杯食盐水各有40克,浓度比是3:2.在B 中加入60克水,然后倒入A 中________克,再在A 、B 中加入水,使它们均为100克,这时浓度比为7:3.【解析】 在B 中加入60克水后,B 盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水中的盐的质量比仍然为3:2,B 中的盐占所有盐的质量的22325=+,但最终状态下B 中的盐占所有盐的质量的337310=+,也就是说B 中的盐减少了32111054-÷=,所以从B 中倒出了14的盐水到A ,即25克. 4.如图,点E 是长方形ABCD 的对角线AC 上任一点,过E 作AB 与BC 的垂线分别交AB 、BC 于F 、G ,连接DF 、FG 和GD 。

已知8AB =、10AD =、三角形DFG 的面积为30,则长方形BGEF 的面积为 。

G F EC DB A解析:205.四边形ABCD 中,,,E F I 是AB 上的四等分点,,,H G J 是DC 上的三等分的点,如果30,25,AEHD EFGH S S ==,求IBCJ S 。

华杯赛初赛模拟试题(2)(小高组)-T版

华杯赛初赛模拟试题(2)(小高组)-T版

名师堂学校“阶梯数学”出品2017年第22届华罗庚金杯少年数学邀请赛初赛模拟试题(2)(小学高年级组)一、选择题。

(每小题10分,四个选项仅有一个结论正确,请将正确答案的字母填在圆括号中)1. 甲、乙两个小朋友,在一条环形路上跑步,同时从同地出发反向跑,已知甲小朋友的速度是每秒5米,乙小朋友的速度是每秒7米,在14分钟内,他们相遇了21次,则环形路长()米。

A .480B .510C .450D .620【考点】行程问题【难度】★★【答案】A【解析】设环形路长为M 米,则甲、乙相遇1次所需时间是:75 M =12M (秒),所以14×60÷12M =21,因此,M=480.2. 有一种计时方法,将一天分为十二个时辰。

在1729人中,至少有()人出生在同一个月、同一个时辰,且有相同的生肖。

A .4B .3C .2D .5【考点】抽屉原理【难度】★★【答案】C【解析】因为1729=12×12×12+1,所以,至少2人出生在同一个月、同一个时辰,且有相同的生肖。

3. 图FI -10中,AB=5厘米,<ABC=85°,<ACB=45°<DBC=20°,则AD=()厘米A .4B .3C .2D .5【考点】几何【难度】★★【答案】D【解析】因为∠ABC=85°,∠ACB=45°,∠DBC=20°,所以,∠ABD=85°-20°=65°,∠ADB=∠DBC+∠ACB=20°+45°=65°。

得到AD=AB=5(厘米)。

4. 甲、乙、丙,三只蚂蚁同时从点A 出发,沿着三角形ABC 的三条边,AB ,BC ,CA 行进,甲在AB ,BC CA A BCD依次每分钟分别走36厘米,30厘米,45厘米,乙依次每分钟分别走45厘米,45厘米,30厘米,丙依次每分钟分别走30厘米,60厘米,36厘米,如果三者同时回到点A ,那么<ABC 的度数是()度A .30B .90C .45D .60【考点】比和比例【难度】★★【答案】B【解析】设三边长分别为c ,a ,b 则366030304545453036b a c b a c b a c ++=++=++, 整理得a:b:c=3:4:5,所以∠ABC 的度数是90度。

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】

第19届华杯赛初赛小高组卷及参考答案

第19届华杯赛初赛小高组卷及参考答案
第十九届华罗庚金杯少年数学邀请赛(A)卷
1、平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线相互平行。
(A)0
(B)2
(C)3
(D)4
2、某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分。小龙得 分 120 分,那么小龙最多答对了( )道试题。
总结:行程问题始终是围绕“路程=速度×时间”展开的,碰到行程问题,首先画出行程图, 明确题目的已知条件,可以通过其隐含的等量关系列方程求解。

6.解析:【知识点】平面几何,割补法
正方形 ABCD 被分成了四个三角形和一个不规则的四边形,我们设法将不规则阴影部分分割 成规则图形,如图过 E 点作 AB 的平行线,过 F 点作 BC 的平行线,过 G 点作 AB 的平行线,过 H 点作 BC 的平行线,四条辅助线的交点为 I、J、K、M ;
3.解析:【知识点】数独,平均数
题目要求的是 A, B, C, D 这四个方格中数的平均数,没必要求出 A, B, C, D 各自对 应的数是多少,求出它们的和即可;
如下图所示,将第四行的四个数字设为分别为 E,F,G,H,每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复,所以,我们可以得到:
行程问题中,有一个重要的公式“路程=速度×时间”,当路程一致时,速度与时间成反比, 我们假定两种情况下都是匀速运动,那么两种情况下,从甲地到丙地的速度比等于从丙地到 乙地的速度比;
从甲地到丙地, t原计划
: t实际
x : (x 5) ,则
v原计划 v实际
x5 x

同理,从丙地到乙地, t原计划
: t实际
A B E F 16 C D G H 16

华杯小高模拟测试卷

华杯小高模拟测试卷

2021华杯赛小高模拟测试● 1对于任意的两个自然数a 和b ,规定新运算*:a*b=a(a+1)(a+2)…..(a+b-1),其中a. b表示自然数,如果(x*3)*2=3660,那么x 等于几?● 2计算:25×﹛+3*115*31+7*51+……..+25*231﹜● 3计算:﹛+﹜71*6﹛72*6﹜+…﹛7999*6﹜+﹛71000*6﹜● 4计算:1×3+2×4+3×5+….9×11● 5组数列,前两个数分别是1和1989,从第三个数起,每一个数都是它前面两个数中大数减小数的差。

那么第1989个数是多少?● 6观察图1-1的数表,寻找规律,回答下面的问题: 1 2 3 ... (60)(1) 请问第9行和27个数是多少? 4 5 6 … … 63 (2) 数表中出现次数最多的数出现了多少次? 9 10 11 ... … 68 (3) 出现次数最多的数共有多少个? 16 17 18 … … 75 … … … …. …. …..3600 3601 3602 ... (3659)图1-1 ● 7一些数按下列规律排列:﹙1,1﹚﹙1,2﹚﹙2,1﹚(1,3)(2,2)(3,1)(1,4)(2,3)…那么: (1):(5,6)排在第几个? (2):第60个括号是多少? (3):前70个括号内所有数的和是多少?● 8将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面的两个数之和。

如果第7个与第8个数分别是81,131,那么第一个数是多少?● 9某商店进了一批笔记本,按30%的利润定价,当售出这批笔记本的80%后,为了尽早卖完,商店把这批笔记本按五折出售,问卖完后商店实际获得的利润率是多少? ● 10一种商品。

甲店的进货价比乙店的进货价便宜10%,甲店按20%的利润率来定价,乙店按15%的利润率来定价,甲店的定价比乙店的定价便宜11.2元,问甲店的进货价是多少元● 11配制浓度为25%的糖水1000千克,需要浓度为22%和27%的糖水各多少千克?● 12智力运动会准备了一,二三等奖奖杯共40个,一等奖50元/个二等奖40元/个,三等奖30元/个,共花费了1550元,其中二等 三等奖杯数相同,则一 二 三等奖奖杯分别购买多少个?● 13在400米长的环形跑道上,甲。

第十九届“华杯赛”初赛小高组试题a

第十九届“华杯赛”初赛小高组试题a

第十九届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级A组)一、选择题(每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.平面上的四条直线将平面分割成八个部分, 则这四条直线中至多有()条直线互相平行.(A)0(B)2(C)3(D)42.某次考试有50道试题, 答对一道题得3分, 答错一道题扣1分, 不答题不得分.小龙得分120分, 那么小龙最多答对了()道试题.(A)40(B)42(C)48(D)503.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形. 若在右下图的16个方格分别填入1, 3, 5, 7(每个方格填一个数), 使得每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复, 那么A, B, C, D四个方格中数的平均数是()..(A)4(B)5(C)6(D)74.小明所在班级的人数不足40人, 但比30人多, 那么这个班男、女生人数的比不可能是().(A)2:3(B)3:4(C)4:5(D)3:7第 1 页共2页5. 某学校组织一次远足活动, 计划 10 点 10 分从甲地出发, 13 点 10 分到达乙地, 但出发晚了 5 分钟, 却早到达了 4 分钟. 甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(A )11 点 40 分(B )11 点 50 分 (C )12 点(D )12 点 10 分6. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1 cm. 若正方形 ABCD 内的四边形 EFGH 的面积为 78 cm 2, 则正方形的 边长为()cm.(A )10(B )11(C )12(D )13二、填空题 (每小题 10 分, 满分 40 分)7. 五名选手 A, B, C, D, E 参加“好声音”比赛, 五个人站成一排集体亮相. 他们胸前有每人的选手编号牌, 5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是_____.8. 甲乙同时出发, 他们的速度如下图所示, 30 分钟后, 乙比甲一共多行走了 ________米.米/分米/分1001008080606040402020分分5 10 15 20 25 30 5 10 15 20 25 30甲乙9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________ 种不同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况).10. 在一个圆周上有 70 个点, 任选其中一个点标上 1, 按顺时针方向隔一个点的点上标 2, 隔两个点的点上标 3, 再隔三个点的点上标 4, 继续这个操作, 直到 1, 2,3, …, 2014 都被标记在点上.每个点可能不只标有一个数, 那么标记了 2014 的点上标记的最小整数是________.第 2 页 共 2 页。

华杯赛小高近5年真题(附详解)20C

华杯赛小高近5年真题(附详解)20C

A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,
“华”与 1 的和是质数,只能“华” 2 ,进而“杯” 3 .
ቤተ መጻሕፍቲ ባይዱ
4
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
120

4 3
30+ 40 3

最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)

最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)

第二十一届华杯赛决赛小高组模拟试题B 答案1、637【解答】原式=910891078910678910106372!3!4!5!⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++=。

2、32【解答】她爷爷正常是60岁退休,应该是1939年出生的兔,1945年是鸡年,1957年又是鸡年,这一年她爷爷才18岁,不到结婚年龄,因而1969年的鸡年,应该是她爸爸的出生年,否则,下一个鸡年是1981年,到2000年才19岁,也不能当父亲,故2001年,小琴的爸爸32岁。

3、23【解答】乙已经开了9小时,甲再开9小时,此时15-9=6小时,两个一起放水还需要6小时注满。

由已知,要达到乙开6小时的注水量,甲还需要开6×43=8小时,故甲还需要9+6+8=23小时注满水池。

4、51【解答】10个数中有5个奇数,5个偶数,从5个偶数中取出3个,共有10种不同的取法;从5个偶数中取1个,从5个奇数中取2个,共有50种不同的取法,所以和为偶数的不同取法共有60种,其中{}0,1,3,{}0,1,5,{}0,1,7,{}0,2,4,{}0,2,6,{}0,3,5,{}1,2,3,{}1,2,5,{}1,3,49种取法的和小于10.综上,满足条件的不同取法共有51种。

5、2【解答】将棋子放中间行的白色方格中,就可以唯一地确定一种放法,其中棋子放左边方格和右边方格是相同放法,故不同放法只有2种。

6、201【解答】连接EF ,三角形BCF 的面积=41,三角形BEF 的面积=41×31=121,三角形ECF 的面积=61,三角形BED 的面积=61,三角形FED 的面积=三角形BED 的面积-三角形BEF 的面积=121。

由共边定理,面积面积EGF ECF ∆∆=面积面积DFG DFC ∆∆=GF CF ,面积DFG -12161∆=面积DFG 41∆=GF CF ,解得DFG ∆的面积=201。

7、14从表中可以看出,满足这样条件的(m,n )数对有14个。

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

(A)3
(B)2
(C)1
(D)0
5、【第 18 届华杯赛初赛 C 卷第 9 题】
黑板上有 11 个 1,22 个 2,33 个 3,44 个 4,做以下操作: 每次擦掉 3 个不同
的数字,并且把没擦掉的第四种数字多写 2 个。例如: 某次操作擦掉 1 个 1,1
个 2,1 个 3,那就再写上 2 个 4.经过若干次操作后, 黑板上只剩下 3 个数字,
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
某个自然数的五次方,那么 的最小值是( )。
(A)10
(B)17
(C)23
(D)31
4、【第 18 届华杯赛初赛 C 卷第 6 题】
从 1~11 这 11 个整数中任意取出 6 个数, 则下列结论正确的有( )个。
①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;
③其中必有一个数的 2 倍是其中另一个数的倍数。
目录
计算篇……………………………………………………………………………..…1 计数篇 ………………………………………………………………………………3 几何篇 ………………………………………………………………………………5 数论篇 ………………………………………………………………………………9 应用题 ………………………………………………………………………………12 行程篇 ………………………………………………………………………………14 组合篇 ………………………………………………………………………………16

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是().(A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ?-?÷+=+ ,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.罗华庚金杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552+?-?+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+??20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是(). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,()得到的糖水最甜.(A )甲(B )乙(C )丙(D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532??=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么γβα++ 的最小值是().再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999?的结果中含有()个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒()米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是().(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有()种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于().(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于().(A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 3=, M 是AB 的中点, 且2=OM , 那么PM 长为.9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是.10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+?+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

第17届华杯赛初赛小高组A卷试题解答

第17届华杯赛初赛小高组A卷试题解答

第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19[(0.8)24]7.6(___) 514+⨯+-=(A)30 (B)40 (C)50 (D)60【答案】B【解析】2、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

(A)3 (B)4 (C)6 (D)8【答案】D【解析】几何计数注意看清题目,是以4个点为端点连接线段,构成的图形最多可以有多少个三角形;而不是以这4个点位端点,最多可以有多少三角形,所以如图可知,有8个。

选D3、一个奇怪的动物庄园里住着猫和狗, 狗比猫多180只. 有20% 的狗错认为自己是猫;有20% 的猫错认为自己是狗. 在所有的猫和狗中, 有32% 认为自己是猫, 那么狗有( )只.(A )240 (B )248 (C )420 (D )842【答案】A【解析】这是一道典型的比例应用题。

方法一、方程法这个是最直接最快的。

假设狗有x 只,有:20%(180)80%(180)32%x x x x ⨯+-⨯=+-⨯;148(180)(2180)5525x x x +-=- (25)⇒两边同乘以5+20(180)8(2180)x x x -=-253600161440x x -=-92160x =240x =所以狗的数量就是240只。

(也可以假设猫为x 只,这样计算值会小很多。

)方法二、存在比例的题目都可以考虑十字交叉来做:由以上可以发现狗和猫的数量之比是4:1;相差3份,相差180只,即1份为60只。

狗是4份,所以狗是240只。

4、老师在黑板上写了从1开始的若干个连续自然数,1,2,3……,后来擦掉其中一个数,剩下数的平均数是112524,擦掉的自然数是()A 、12B 、17C 、20D 、3【答案】D 【解析】1+n 123...n ,,,一直到的平均数可以表示为2 现在擦掉一个数之后,剩下的数,平均值为112524,估算有1+n =252,n 的值在50左右。

详解第二十三届“华杯赛”小学高年级组初赛试题

详解第二十三届“华杯赛”小学高年级组初赛试题

第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。

(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。

这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。

如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。

如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。

所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。

2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。

(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。

总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。

第21届“华杯赛”决赛小高组A组试题和参考答案

第21届“华杯赛”决赛小高组A组试题和参考答案
13. 【答案】31 14. 【答案】9
- 1 -
线
5.

对于任意一个三位数 n, 用 n 表示删掉 n 中为 0 的数位得到的数. 例如 n 102 时 n 12 .那么满足 n n 且 n 是 n 的约数的三位数 n 有 个.
6.

共有 12 名同学玩一种扑克游戏, 每次 4 人参加, 且任意 2 位同学同时参加的 次数不超过 1. 那么他们最多可以玩 次. .
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 如右图, 有一张由四个 11 的小方格组成的凸字形 纸片和一张 5 6 的方格纸. 现将凸字形纸片粘到方 格纸上, 要求凸字形纸片的每个小方格都要与方格 纸的某个小方格重合,那么可以粘出多少种不同的 图形? (两图形经旋转后相同看作相同图形)
题号 答案 1 2 2 五 3 5 4 6 5 93 6 9 7 108 8 7
二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程)
9. 【答案】甲、乙得票分别为 126, 120 或 147, 140 10. 【答案】172.5 11. 【答案】5 12. 【答案】38
三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)
第二十一届华罗庚金杯少年数学邀请赛决赛试题 A (小学高年级组)
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 复活赛上, 甲乙二人根据投票结果决出最后一个参加决赛的名额 . 投票人 数固定 , 每票必须投给甲乙二人之一 . 最后 , 乙的得票数为甲的得票数的 20 , 甲胜出. 但是, 若乙得票数至少增加 4 票, 则可胜甲. 请计算甲乙所得 21 的票数. 10. 如右图, 三角形 ABC 中, AB 180 厘米, AC 204 厘米, D, F 是 AB 上的点, E, G 是 AC 上的点, 连结 CD, DE, EF, FG, 将三角形 ABC 分成面积相等的五 个小三角形. 则 AF AG 为多少厘米? 11. 某水池有甲、乙两个进水阀. 只打开甲注水, 10 小时可将空水池注满; 只打 开乙, 15 小时可将空水池注满. 现要求 7 个小时将空水池注满, 可以只打开 甲注水若干小时, 接着只打开乙注水若干小时, 最后同时打开甲乙注水. 那 么同时打开甲乙的时间是多少小时? 12. 将一个五边形沿一条直线剪成两个多边形, 再将其中一个多边形沿一条直 线剪成两部分 , 得到了三个多边形, 然后将其中一个多边形沿一条直线剪 成两部分, , 如此下去. 在得到的多边形中要有 20 个五边形, 则最少剪 多少次?

华杯赛小高近 真题 附详解 A

华杯赛小高近 真题 附详解 A

a2014 1 2 3
2014
2014 2
2015
2029105

2029105
28987 70
15

a5
15

因此第 15 个点上标记的最小整数为 5.
第十九届华罗庚金杯少年数学邀请赛初赛试题 A(小学高年级组)
5
第十九届华罗庚金杯少年数学邀请赛初赛试题 A(小学高年级组)
3
5. 【答案】 B 【解析】从 10 点 10 分到 13 点 10 分共有 3 个小时,比计划时间少用 9 分钟,即每小时少用 3 分钟,少用 5 分
钟的时候即是到达 B 点的时间.此时需要 5 (3 60) 100 分钟,即 1 小时 40 分钟,所以到达 B 点的时 间是 11 点 50 分. 6. 【答案】 C 【解析】用竖直线和水平线将正方形 ABCD 分割为如右图所示的 5 个长方形,中间长方形的面积是 4 3 12 ,
D.4
2. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小
龙最多答对了( )道试题.
A.40
B.42
C.48
D.50
3. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形.若在右下图的 16 个方格分别填入 1,3,5, 7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么 A,B,C,D 四个方格中数的平均数是( ).
图 5a
图 5b
图 5c-1 图 5c-2 图 5c-3 图 5c-4
图 5d
10.
【答案】 5
【解析】将 70 个点中某个点为起始点,然后按顺时针方向依次将这 70 个点记为第 1 个,第 2 个,第 3 个,…,

华杯赛初赛模拟试题(6)(小高组)-T版

华杯赛初赛模拟试题(6)(小高组)-T版

华杯赛初赛模拟试题(6)(小高组)-T版名师堂学校“阶梯数学”出品2022年第22届华罗庚金杯少年数学邀请赛初赛模拟试题(6)(小学高年级组)一、选择题。

(每小题10分,四个选项仅有一个结论正确,请将正确答案的字母填在括号中)1.欧洲杯小组赛中,A,B,C,D四支足球队分在一个小组.已知最终比赛结果中,A的排名高于B,C的排名高于D,无排名相同的结果,则符合这种情况的小组赛排名有()种。

A.2B.4C.6D.8【考点】计数问题【难度】★【答案】C【解析】用A>B表示A的排名高于B。

那么根据题目条件,C相对于A和B的位置有3种可能:(1)C>A>B,此时,D的位置有3种可能:D >A,A>D>B,B>D;(2)A>C>B,此时,D的位置有2种可能:D>B,B>D(3)A>B>C,此时,D的位置只有1种可能。

总的可能情况有3+2+1=6(种),an,,2.一列数:a1,a2,a3,其中a1=2022,a2=21,an=(an1)+(an2),这里(an-1)表示an1的所有数字之和,那么a2022=()。

A.15B.12C.9D.6【考点】周期问题【难度】★★【答案】B【解析】这列数为2022,21,12,6,9,15,15,12,9,12,12,6,9,15,15,12,9,……,从a3开始每8个数一个循环。

2022=3+8某251+5,所以,a2022=a8=12.3.两个盒子A和B分别装着不同数量的两种小球,两盒中小球的总重量是一样的。

同时从A,B盒子中个拿出一个小球放入C盒子,记为一次操作。

C盒子开始为空,经过40次操作后,C盒子总重量和B盒子一样,又经过10次操作,C盒子总重量与A盒子一样。

那么A,B盒子中单个小球的重量比为()。

A.1:1B.1:2C.1:3D.1:4【考点】方程,比【难度】★★【答案】B【解析】设A盒子中中单个小球重量为1,B盒子中单个小球重量为k,根据题目,可以判断k≥1(A盒子小球比B盒子小球轻)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015华杯赛小高模拟测试
● 1对于任意的两个自然数a 和b ,规定新运算*:a*b=a(a+1)(a+2)…..(a+b-1),其中a. b 表示自
然数,如果(x*3)*2=3660,那么x 等于几?
● 2计算:25×﹛
+3*115*31+7*51+……..+25*231 ﹜
● 3计算:﹛+﹜71*6﹛72*6﹜+…﹛7999*6﹜+﹛7
1000*6﹜
● 4计算:1×3+2×4+3×5+….9×11
● 5组数列,前两个数分别是1和1989,从第三个数起,每一个数都是它前面两个数中大数减小
数的差。

那么第1989个数是多少?
● 6观察图1-1的数表,寻找规律,回答下面的问题: 1 2 3 ... (60)
(1) 请问第9行和27个数是多少? 4 5 6 ... (63)
(2) 数表中出现次数最多的数出现了多少次? 9 10 11 ... (68)
(3) 出现次数最多的数共有多少个? 16 17 18 ... (75)
… … … …. …. …..
3600 3601 3602 ... (3659)
图1-1
● 7一些数按下列规律排列:
﹙1,1﹚﹙1,2﹚﹙2,1﹚(1,3)(2,2)(3,1)(1,4)(2,3)…那么:
(1):(5,6)排在第几个?
(2):第60个括号是多少?
(3):前70个括号内所有数的和是多少?
● 8将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面的两个数之和。

如果
第7个与第8个数分别是81,131,那么第一个数是多少?
● 9某商店进了一批笔记本,按30%的利润定价,当售出这批笔记本的80%后,为了尽早卖完,
商店把这批笔记本按五折出售,问卖完后商店实际获得的利润率是多少?
● 10一种商品。

甲店的进货价比乙店的进货价便宜10%,甲店按20%的利润率来定价,乙店按
15%的利润率来定价,甲店的定价比乙店的定价便宜11.2元,问甲店的进货价是多少元
● 11配制浓度为25%的糖水1000千克,需要浓度为22%和27%的糖水各多少千克?
● 12智力运动会准备了一,二三等奖奖杯共40个,一等奖50元/个二等奖40元/个,三等奖30
元/个,共花费了1550元,其中二等 三等奖杯数相同,则一 二 三等奖奖杯分别购买多少个?
● 13在400米长的环形跑道上,甲。

乙两人分别从A.B 两地出发,同向而行,4分钟后,甲第
一次追上乙,又经过10分钟甲第二次追上乙,已知甲的速度是每秒3米,那么乙的速度是多少?A,B 两地相距多少米?
● 14琪琪在一条与铁路平行的小路上走,有一客车迎面而来,40秒后经过琪琪,如果这客车从
琪琪的背后开来,60秒后经过琪琪。

试问:如果琪琪站着不动,客车多长时间可以经过琪琪?
● 15AB 两地全程600km,甲 乙 丙三人从A 出发驶向B ,甲先出发2小时,乙 丙同时出发。

3
小时后,乙追上甲,过了一段时间后,丙又追上甲,此时,乙恰好到达B 地后返回与甲 丙相遇,已知丙的速度比甲快9
1,求甲速每小时多少千米?
● 16快 中 慢三辆车同时从甲地出发追赶前方的骑车人,分别用了6分钟,12分钟,20分钟追
上。

已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米?
● 17三角形ABC 中,G 是AC 的中点,D E F 是BC 边上的四等分点,AD 与BG 交于M,,AF
与BG 交于N ,已知三角形ABM 的面积比四边形FCGN 的面积大3平方厘米,则三角形ABC 的面积是多少平方厘米?
● 18在一个直角三角形铁皮上剪下一块正方形,剩下两个三角形,已知AD=3cm ,DB=4cm ,两
个三角形面积和是多少?。

相关文档
最新文档