相似三角形添加辅助线的方法举例
相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线 段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下 几种: 一、添加平行线构造“ A “ X 型例1:如图,D 是厶ABC 的 BC 边上的点,BD DC=2 1,E 是AD 的中 BE EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P,贝U ••• PE=EF BP=2PF=4E 所以 BE=5EF : BE: EF=5 1.解法二:过点 D 作BF 的平行线交AC 于点Q, ••• BE EF=5: 1. E 作BC 的平行线交AC 于点S , E 作AC 的平行线交BC 于点T ,BCC 边上的点',,BD DC=2 1, E 是 AD 的中点,求AF: CF 的值.D 作CA 的平行线交 D 作BF 的平行线交E 作BC 的平行线交 E 作AC 的平行线交 ABC 的 AB 边和AC 边上各取一点D 和 使 AD= AE, DE 延长线与BC 延长线相交于F ,求证: (证明:过点C 作CG//FD 交AB 于G ) 例 3:女口图,△ ABC 中, ABvAC 在 AB AC 上分别截取 BD=CE DE, BC 长线相交于点F ,证明:AB- DF=AC EF. 分析:证明等积式问题常常化为比例式,再通过相似三角形对 比例来证明。
不相似,因而要通过两组三角形相似,运用中间 得到,为构造相似三角形,需添加平行线。
• 方法一:过E 作EM//AB,交BC 于点M 则厶EM OAABC (两角等,两三角形相似)•方法二:过D 作DN//EC 交BC 于 N.解法三:过点 解法四:过点 BE _BT ; 点,求: 变式:T 如'图,D 是厶ABC 的F, 过点 过点 过点 过点 解法一 解法二 解法三 解法四 例2:如图,在△ 和厶EFB 相似, ••• BE EF=5 1. 连结BE 并延长交AC 于BF 于点 AC 于点 AC 于点BC 于点 P, Q s,T ,应边成比代换 例4:在厶ABC 中, D 为AC 为CB 延长线上的一点, AB 于 F 。
相似三角形之常用辅助线

相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。
而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。
专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。
定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。
例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。
例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。
构造全等三角形添加辅助线的方法

构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。
添加辅助线是构造全等三角形的重要方法之一。
本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。
一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。
原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。
二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。
原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。
三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。
原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。
四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。
原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。
初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。
通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。
3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。
通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。
4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。
通过内切圆可以获得三个切点,进而使用切点的性质解决问题。
5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。
通过外切圆可以获得三个切点,进而使用切点的性质解决问题。
6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。
通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。
8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。
9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。
10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。
几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。
下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。
添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。
然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。
2.证明等腰梯形的对角线垂直。
添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。
通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。
3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。
添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。
通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。
4.证明正方形的对角线互相垂直。
添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。
通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。
5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。
添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。
通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。
以上是几个常见的几何证明例题及其对应的添加辅助线方法。
在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。
但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。
高中几何添加辅助线的常用技巧

高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。
以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。
比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。
2、垂线辅助线:通过向一条直线引垂线来解决问题。
比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。
3、相似三角形辅助线:利用相似三角形的性质来解决问题。
比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。
4、角平分线辅助线:通过构造角平分线来解决问题。
比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。
5、中垂线辅助线:通过构造线段中点的垂线来解决问题。
比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。
这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。
思维特训(十一) 相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF. 图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E . (1)如图△,当E 恰为DF 的中点时,请求出AD AB的值; (2)如图△,当DE EF =a (a >0)时,请求出AD AB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG △AB 交AC 于点G ,构造相似三角形解决问题;乙:过点F 作FG △AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG △BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB的值. 图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AF AE的值. 图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BM DM=______; (2)若n =2,如图△,求证:BM =6DM ;(3)当n =________时,M 为BD 的中点(直接写出结果,不要求证明).图11-S -66.2019·朝阳 已知:如图11-S -7,在△ABC 中,点D 在AB 上,E 是BC 的延长线上一点,且AD =CE ,连接DE 交AC 于点F .(1)猜想证明:如图△,在△ABC 中,若AB =BC ,学生们发现:DF =EF .下面是两位学生的证明思路:思路1:过点D 作DG △BC ,交AC 于点G ,可通过证△DFG △△EFC 得出结论;思路2:过点E 作EH △AB ,交AC 的延长线于点H ,可通过证△ADF △△HEF 得出结论. 请你参考上面的思路,证明DF =EF (只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图△),过点D 作DM △AC 于点M ,试探究线段AM ,MF ,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图△,在△ABC 中,若AB =AC ,∠ABC =2△BAC ,AB BC=m ,请你用尺规作图在图△中作出AD 的垂直平分线交AC 于点N (不写作法,只保留作图痕迹),并用含m的代数式直接表示FN AC的值. 图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BC AC; (2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图△,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图△,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图△,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OF BF的值,并说明理由. 图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF △CA ,求EF 的长;(3)如图△,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AF BF的值. 图11-S -10详解详析1.解:如图,过点O 作OM △BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC ,∴M 是AB 的中点,即MB =12a , ∴OM 是△ABC 的中位线,OM =12BC =12b . ∵OM ∥BC ,∴△BEF ∽△MEO ,∴BF MO =BE ME , 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG △CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点,∴G 为BF 的中点,FG =BG =12BF . ∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AF BF . 3.解:(1)甲同学的想法:如图△,过点F 作FG △AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF .∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图△,过点F 作FG △AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG .∵FG ∥AC ,∴AG AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴GD =CF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13. ∴AD AB =DG BC =CF BC =13. (2)如图△,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵DE EF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC . ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG AF =12,且BG △AF . 又E 为BD 的中点,∴F 为DG 的中点,△EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA .∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°.又△△AMD =60°,∴∠MAD =30°,∴∠BAE =△BAC -△MAD =30°,即△BAE =△EAD ,∴AE 为△ABC 的中线,∴BE CE=1. 在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半). ∵∠BAM =△ABM =30°,∴AM =BM ,∴BM DM=2. (2)证明:△△AMD =△ABD +△BAE =60°,∠CAE +△BAE =60°,∴∠ABD =△CAE .又△BA =AC ,∠BAD =△ACE =60°,∴△BAD △△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF △BD 交AE 的延长线于点F ,∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②,由△×△得DM BM =16,∴BM =6DM . (3)△M 为BD 的中点,∴BM =MD .∵△BAD ≌△ACE ,∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD ,△AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·ME BM④, 由△×△得CD =5-12DA ,∴n =5-12. 6.解:(1)思路1:如图△,过点D 作DG △BC ,交AC 于点G .∵AB =BC ,∴∠A =△BCA .∵DG ∥BC ,∴∠DGA =△BCA ,∠DGF =△ECF ,∴∠A =△DGA ,∴DA =DG .∵AD =CE ,∴DG =CE .又△△DFG =△EFC ,∴△DFG ≌△EFC ,∴DF =EF .思路2:如图△,过点E 作EH △AB ,交AC 的延长线于点H .∵AB =BC ,∴∠A =△BCA .∵EH ∥AB ,∴∠A =△H .∵∠ECH =△BCA ,∴∠H =△ECH ,∴CE =EH .∵AD =CE ,∴AD =EH .又△△AFD =△HFE ,∴△DF A ≌△EFH ,∴DF =EF .(2)结论:MF =AM +FC .证明:如图△,由思路1可知:DA =DG ,△DFG ≌△EFC ,∴FG =FC .∵DM ⊥AG ,∴AM =GM .∵MF =FG +GM ,∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图△所示.连接DN ,过点D 作DG △CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2△BAC ,设△BAC =x ,则△B =△ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =△ADN =36°.∵∠ADG =△B =72°,∴∠NDG =△A =36°.又△△DGN =△AGD ,∴△GDN ∽△GAD ,∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG △FC =DG △DA =1△m .∵CG =mb -ma ,∴FG =1m +1·m (b -a ), ∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1, ∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP △BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =△DPN =90°.又△△C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即△MDQ +△MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即△MDP +△NDP =90°,∴∠MDQ =△NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQ DP. ∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN=BC AC. (2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1,DQ =12BC =3,DP =12AC =4. ∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43. 又CP =PB =3,∴CN =3-43=53. 8.解:(1)1△2 BD △BC(2)猜想S △BOC 与S △ABC 之比应该等于OD △AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F ,∴OE ∥AF ,∴OD ∶AD =OE △AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF , ∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE △AF =OD △AD . (3)猜想OD AD +OE CE +OF BF的值是1.理由如下: 由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABC S △ABC=1. 9.解:(1)△将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =△BAC ,∴Rt △AEF ∽Rt △ABC ,∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5. (2)连接AM 交EF 于点O ,如图△,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =△MFE ,∴∠AEF =△AFE ,∴AE =AF ,∴AE =EM =MF =AF ,∴四边形AEMF 为菱形.设AE =x ,则EM =x ,CE =4-x .∵四边形AEMF 为菱形,∴EM ∥AB ,∴△CME ∽△CBA ,∴CM CB =CE CA =EM AB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103. ∵S 菱形AEMF =12EF ·AM =AE ·CM , ∴EF =2×43×2094103=4109. (3)如图△,过点F 作FH △BC 于点H ,∵EC ∥FH ,∴△NCE ∽△NHF , ∴CN ∶NH =CE △FH ,即1△NH =47∶FH ,∴FH ∶NH =4△7. 设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH △AC ,即(4-7x )△3=4x △4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.第11页/共11页 在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。
小专题(六) 相似三角形的辅助线添作技巧

小专题(六) 相似三角形的辅助线添作技巧本专题主要通过添加适当的辅助线构造相似三角形,运用相似三角形的知识来解决数学问题.添作辅助线的方法有:添作平行线、添作垂线、连接线段等.类型1 巧添平行线求线段的比1.如图,在△ABC 中,点D ,E 分别在BC ,AC 上,BE 与AD 交于点F ,且BD=DC ,AE ∶AC=1∶3,求AFFD 的值.解:过点A 作AG ∥BC 交BE 的延长线于点G ,那么△AEG ∽△CEB ,△AFG ∽△DFB ,∴AG BC =AE EC =12,又BD=DC , ∴AG=BD ,∴AFFD =AGBD =1.2.如图,在▱ABCD 中,E 是BC 的中点,在AB 上截取BF=12FA ,EF 交BD 于点G ,求BG ∶GD 的值.解:过点E 作EM ∥AB 交BD 于点M ,那么△BFG ∽△MEG ,∴BGGM =BFEM .∵AB ∥CD ,∴EM ∥CD ,∵BE=EC ,∴BM=MD ,∴EM=12CD ,∵BF=12FA ,∴BF=13AB , ∵AB=CD ,∴BFEM =BGGM =23,∵BM=MD ,∴BG ∶GD=2∶8=1∶4.类型2 巧连线段证线段之间的关系3.如图,在正方形ABCD 中,M 为AD 中点,以M 为顶点作∠BMN=∠MBC ,MN 交CD 于点N. 求证:DN=2NC.解:延长MN ,BC 交于点E ,连接MC ,设AB=2a ,那么AM=a ,BM=√5a.由△BAM≌△CDM,那么BM=MC,且∠BCM=∠CBM=∠BMN.∴△BMC∽△BEM.∴BMBE =BCBM,即√5aBE=√5a,∴BE=52a,∴CE=BE-BC=52a-2a=12a.∵四边形ABCD为正方形,∴∠D=∠DCB=90°,即∠D=∠NCE=90°.∵∠DNM=∠CNE,∴△MDN∽△ECN,∴DNNC =MDCE=a12a=2,即DN=2NC.4.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处(AE为折痕,点E在CD上),在AD上截取DG,使DG=CF.求证:(1)△ABF∽△FCE;(2)BD⊥GE.解:(1)∵四边形ABCD是矩形,∴∠ABF=∠C=∠ADC=90°,∴∠BAF+∠BFA=90°,由折叠的性质可得∠AFE=∠ADC=90°,∴∠CFE+∠BFA=90°,∴∠BAF=∠CFE,∴△ABF∽△FCE.(2)由(1)知EFAF =FCAB,又EF=ED,AF=AD,FC=GD,∴DEAD=GDAB.又∵∠BAD=∠GDE=90°,∴△BAD∽△GDE,∴∠ADB=∠DEG,又∠ADB+∠BDC=90°,∠DEG+∠BDC=90°,∴BD⊥GE.类型3巧添垂线求线段的长5.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,点F在边BC上,且BF=2FC,AF分别与DE,DB相交于点M,N,求MN的长.解:过点F作FH⊥AD于点H,交ED于点O,那么FH=AB=2,∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF=√FH 2+AH 2=√22+22=2√2,∵OH ∥AE ,∴HO AE =DH AD =13,∴OH=13AE=13,∴OF=FH-OH=2-13=53,∵AE ∥FO ,∴△AME ∽FMO ,∴AM FM =AE FO ,即AM FM =153=35,∴AM=38AF=3√24,∵AD ∥BF ,∴△AND ∽△FNB ,∴ANFN =AD BF =32,∴AN=35AF=6√25,∴MN=AN-AM=6√25−3√24=9√220. 类型4 巧添垂线求线段的比6.如图,在△ABC 中,AB=AC ,E ,F ,G 分别是BC ,AB ,AC 上一点,∠FEG=2∠B. (1)求证:∠BFE=∠AGE ; (2)假设BECE =12,求EFEG 的值.解:(1)∵2∠B+∠A=180°,∴∠FEG+∠A=180°,∴∠BFE=∠AGE. (2)过点E 作EM ⊥AB 于点M ,作EN ⊥AC 于点N ,∴△EMF ∽△ENG ,∴EFEG =EM EN ,易证△EBM ∽△ECN ,∴EM EN=BECE=12,∴EF EG=12.7.如图,△ABC 中,AB=AC ,∠BAC<60°,D 为BC 延长线上一点,E 为∠ACD 内部一点,且∠ABE=∠ECD=45°,求BE AC的值.解:作AF ⊥BC 于点F ,BG ⊥CE 交EC 的延长线于点G.∵AB=AC ,∴BF=FC=12BC.∵∠ABE=∠ECD=∠BCG=45°,∴∠CBG=45°,BG=√22BC=√2BF.又∵∠ABF=∠EBG ,∴Rt △ABF ∽Rt △EBG ,∴BEAB =BGBF =√2,∴BEAC =√2.8.如图,将一个直角三角板的直角顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与BC 相交于点E ,且AD=10,DC=8,求AP ∶PE 的值.解:过点P作PM⊥AB于点M,PN⊥BC于点N,易证△APM∽△EPN,那么AP∶PE=PM∶PN=AD∶DC=10∶8=5∶4.。
第二十二节相似三角形作辅助线构造“A”“X”型

相似三角形——作辅助线构造“A ”“X ”型【知识要点】1、 了解的特征:与三角形一边平行的直线,在原三角形上截得的三角形与原三角形相似。
2、 解题方法:(1)当题目图中出现“A ”“X ”型时,可利用比例线段求解;(2)当图中出没有“A ”“X ”型时,可作平行线辅助线,构造“A ”“X ”型,得到比例线段。
【典型例题】作辅助线构造“A ”“X ”型例1、 如图,E 是□ABCD 的边AB 的中点,AC EF FD AF ,,31 相交于G ,求GCAG的值例2、如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F 。
求证:AF=EF 。
例3、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长.C例4、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FEED =2,求BE:EA 的比值.例5、如图,21==DE AE CD BD ,求BFAF。
(试用多种方法解)【课堂练习】1.如图,一直线与△ABC 的边AB ,AC 及BC 的延长线分别交于D ,E ,F 。
求证:若CFBFEC AE =,则D 是AB 的中点。
ACFEB D ABCDEF2.如图,在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,BD=3CE ,DE 交BC 于F ,求DF :FE 的值。
3.已知:如图,△ABC 中,AE=CE ,BC=CD ,求证:ED=3EF4.如图所示在△ABC 中,∠ACB=90°,D 为中点,DE ⊥AB 交AC 于E ,交BC 的延长线于F 。
求证:DF DE AD ⋅=2。
5.已知:AM :MD=4:1,BD :DC=2:3,求AE :EC 。
BACDME【作业】 一、判断1.有一个角是30°的两个等腰三角形一定相似. ( ) 2.有一个角是30°的两个直角三角形一定相似. ( ) 3.相似三角形面积的比等于周长比的平方. ( )4.两个三角形相似,则各自由三条中位线构成的两个三角形也相似. ( ) 5.若两个三角形相似,且有一条边相等,则相似比k=1. ( )6.若两个三角形有两边对应成比例,且有一角对应相等,则这两个三角形相似. ( ) 7.已知:△ABC 中,DE ∥BC 交AB 于D ,AC 于E ,AB=12,AD-DB=4,BC=9,则DE=________. 8.已知:Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AD=4,BD=2,则CD=_______,AC=________.9.一个三角形三边长分别为5cm ,8cm ,12cm ,另一个与它相似的三角形的最长边为4.8cm ,则另外两边分别为________.10.△ABC 中,AD ⊥BC 与D ,且2AB BC BD =⋅,则△___∽△___;可以判定△ABC 为_______三角形11.△ABC 中P 是AB 上一点,且∠ACP=∠B ,AC=4,AB=6,则PB=________. 二、1.下列命题中,正确的是 ( )A .有一个角相等的两个等腰三角形相似B .有两边成比例的两个等腰三角形相似C .腰与底对应成比例的两个等腰三角形相似D .都有一个角等于80°的两个等腰三角形相似2.在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,则下列式子中错误的是 ( )A .AD 2=BD ·DCB .CD 2=CF ·CAC .DE 2=AE ·EBD .AD 2=AF ·AC 3.边长为a 的等边三角形,被平行于一边的直线分成等积的两部分,则截得的梯形一底长为a ,另一底长为( )4.在两个三角形中,若一个三角形的两边分别是1.2cm 和1.6cm ,另一个三角形的两边分别是2.8cm 和2.1cm ,且它们的夹角相等,则这两个三角形的关系是 ( )A .全等三角形B .相似三角形C .面积相等的三角形D .不相似的三角形6.已知:如图5—21,△ABC 中,D 、E 分别在AB 、AC 上,且AD=AE ,连结DE 并延长,交BC 延长线于F ,求证:CF ∶BF=CE ∶BD7.如图,D 为△ABC 的BC 边的中点,E 为AC 边上的点,且AC=3CE ,BE 与AD 交于O 点,求ODAO的值。
初中在三角形中辅助线添加规律归纳总结

初中在三角形中辅助线添加规律归纳总结
几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的。
现在将三角形添加辅助线的规律为大家总结成顺口溜:
图中有角平分线,可向两边作垂线
也可将图对折看,对称以后关系现
角平分线平行线,等腰三角形来添
角平分线加垂线,三线合一试试看
线段垂直平分线,常向两端把线连
要证线段倍与半,延长缩短可试验
三角形中两中点,连接则成中位线
三角形中有中线,延长中线等中线
具体解释如下:
一、三角形中辅助线的添加
1. 与角平分线有关的
(1)可向两边作垂线。
(2)可作平行线,构造等腰三角形
(3)在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的
(1)考虑三线合一
(2)旋转一定的度数,构造全等三角形,等腰一般旋转顶角的度数,等边旋转60 °。
几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。
它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。
以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。
1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。
这样,我们可以得出相应的角度和边的关系,进而证明几何问题。
2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。
通
过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。
这种方法常常用于证明三角形的等边、等腰等性质。
3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。
通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。
4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。
内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。
5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。
通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。
总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。
通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。
初二几何辅助线添加方法

初中数学辅助线1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、分角线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:造角、平、相似,和、差、积、商见;如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关;在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移;故作歌诀:“造角、平、相似,和差积商见;”五:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;初中几何常见辅助线口诀人说几何很困难,难点就在辅助线;辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形问题巧转换,变为△和□;平移腰,移对角,两腰延长作出高;如果出现腰中点,细心连上中位线;上述方法不奏效,过腰中点全等造;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;三角形中作辅助线的常用方法举例一.倍长中线1:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD; 二、截长补短法作辅助线;在△ABC 中,AD 平分∠BAC,∠ACB =2∠B,求证:AB =AC +CD; 三、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC 分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角; 证明:分别延长DA,CB,它们的延长交于E 点,∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件; 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等五、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F;∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,ABC DEF25-图19-图DCBA E F 12A BCD18-图1234ABCD E17-图O∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE 六、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D; 证明:连接BC,在△ABC 和△DCB 中∵⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等七、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB; 分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB; 二 由角平分线想到的辅助线D BA110-图O 111-图D CBAM N口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种; ①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件; 与角有关的辅助线 一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍; 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件; 1-2,AB 21如图图1-2ADBCEF图2-1ABCDE F图示3-1ABCD HE如图所示,在直角梯形ABC D 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围;解:过点B作BM)(2121CH BGBC GH EF --==512=⨯=BE ED BD DH 6251252DHBC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+15cm20cm12cmDCEACD ABD S S S ∆∆∆==DBEABCD S S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆150cA B DC E Hm 如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形. 证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB.又AD 不平行于BC,∴四边形ABCD 是等腰梯形. 三、作对角线即通过作对角线,使梯形转化为三角形;例9如图6,在直角梯形ABCD 中,AD//BC,AB ⊥AD,BC=CD,BE ⊥CD 于点E,求证:AD=DE; 解:连结BD,由AD//BC,得∠ADB=∠DBE ; 由BC=CD,得∠DBC=∠BDC; 所以∠ADB=∠BDE;又∠BAD=∠DEB=90°,BD=BD, 所以Rt △BAD ≌Rt △BED, 得AD=DE;四、作梯形的高 1、作一条高例10如图,在直角梯形ABCD 中,AB//DC,∠ABC=90°,AB=2DC,对角线AC ⊥BD,垂足为F,过点F 作EF//AB,交AD 于点E,求证:四边形ABFE 是等腰梯形;证:过点D 作DG ⊥AB 于点G,则易知四边形DGBC 是矩形,所以DC=BG; 因为AB=2DC,所以AG=GB;从而DA=DB,于是∠DAB=∠DBA;又EF//AB,所以四边形ABFE 是等腰梯形; 2、作两条高例11、在等腰梯形ABCD 中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm, 求:1腰AB 的长;2梯形ABCD 的面积.解:作AE ⊥BC 于E,DF ⊥BC 于F,又∵AD ∥BC, ∴四边形AEFD 是矩形, EF=AD=3cm ∵AB=DC∵在Rt △ABE 中,∠B=60°,BE=1cmA B C D A B C D E A B C D E F∴AB=2BE=2cm,cm BE AE 33==∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD,求证:BD>AC;证:作AE ⊥BC 于E,作DF ⊥BC 于F,则易知AE=DF; 在Rt △ABE 和Rt △DCF 中, 因为AB>CD,AE=DF;所以由勾股定理得BE>CF;即BF>CE; 在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC 五、作中位线1、已知梯形一腰中点,作梯形的中位线;例13如图,在梯形ABCD 中,AB//DC,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD;证:取AD 的中点E,连接OE,则易知OE 是梯形ABCD 的中位线,从而OE=21AB +CD ①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD;2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线;例14如图,在梯形ABCD 中,AD//BC,E 、F 分别是BD 、AC 的中点,求证:1EF//AD ;2)(21AD BC EF -=;证:连接DF,并延长交BC 于点G,易证△AFD ≌△CFG则AD=CG,DF=GF由于DE=BE,所以EF 是△BDG 的中位线 从而EF//BG,且BG EF 21=因为AD//BG,AD BC CG BC BG -=-=所以EF//AD,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的;例15、在梯形ABCD 中,AD ∥BC, ∠BAD=900,E 是DC 上的中点,连接AE 和BE,求∠AEB=2∠CBE;解:分别延长AE与BC ,并交于F点∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F两直线平行内错角相等∠AED=∠FEC 对顶角相等DE=EC E点是CD的中点∴△ADE≌△FCE AAS∴ AE=FE在△ABF中∠FBA=900且AE=FE∴ BE=FE直角三角形斜边上的中线等于斜边的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC, ∴BE=AE.ABDCEF。
专题10 巧添辅助线,构造相似三角形(含答案)

专题10巧添辅助线,构造相似三角形知识解读相似三角形是几何与图形中的重要内容,是证明角相等和求线段长度的重要依据;有关问题也是中考、竞赛的主要考点之一.近年来的中考数学压轴题、竞赛的解答题中,经常出现以几何、函数知识为背景的探索性问题,特别是有关相似三角形的四边形、圆、抛物线等多方面知识,既考查学生的基本运算能力,又考查学生识图能力、逻辑推理能力和表达能力.若能巧妙添加辅助线,则往往有助于这类问题的迅速解决.因此,构造相似三角形解决问题是数学解题中的重要方法,而添加辅助线的目的是“构造”满足条件的图形,即“构造相似三角形”.在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角、等边,从而为证明三角形相似或进行相关的计算找到等量关系.下面结合例题谈谈怎样构造相似三角形,并运用其性质解决数学问题。
培优学案典例示范例1 如图1-10-1,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F .求证:BF BDCF CE=. 【提示】过点C 作CG ∥FD 交AB 于点G ,如图1-10-2. 【解答】图1-10-2图1-10-1FEBDCA GFEDCBA跟踪训练如图1-10-3,△ABC 中,AB <AC ,在AB ,AC 上分别截取BD =CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF =AC ·EF .【提示】证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明.欲证AB ·DF =AC ·EF ,需证AB EFAC DF=,而这四条线段所在的两个三角形显然不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线.方法1:过E 作EM ∥AB ,交BC 于点M ,则△EMC ∽△ABC (两角对应相等,两三角形相似). 方法2:过D 作DN ∥EC 交BC 于N .图1-10-3EDBA例2 如图1-10-4,从□ABCD 顶点C 向AB 和AD 的延长线引垂线CE 和CF ,垂足分别为E ,F . 求证:AB ·AE +AD ·AF =AC ².【提示】过B 作BM ⊥AC 于M ,过D 作DN ⊥AC 于N . 【解答】图1-10-4FED CBA跟踪训练如图1-10-5,△ABC 中,∠ACB =90°,AC =BC ,P 是AB 上一点,Q 是PC 上一点(不是中点),MN 过Q 且MN ⊥CP ,交AC ,BC 于M ,N .求证:PA :PB =CM :CN .【解答】图1-10-5QP N MC BA例3 如图1-10-6,Rt △ABC 中,CD 为斜边AB 上的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G .求证:FG ²=CF ·BF .【提示】欲证式可化为FG CFBF FG=,由“三点定形”,△BFG 与△CFG 会相似吗?显然不可能(因为△BFG 为直角三角形),但由E 为CD 的中点,可设法构造一个与△BFG 相似的三角形来求解,不妨延长GF 与AC 的延长线交于H .G FED CBA 图1-10-6跟踪训练 如图1-10-7,在梯形ABCD 中,AD ∥BC ,若∠BCD 的平分线CH 垂直AB 于点H ,BH =3AH ,且四边形AHCD 的面积为21,求△HBC 的面积.【提示】因为问题涉及四边形AHCD ,所以可构造相似三角形,把问题转化为相似三角形的面积比而加以解决.【解答】图1-10-7HDCBA例4 如图1-10-8,△ABC 中,∠BAC =90°,AE ⊥BC 于E ,D 在AC 边上,若BD =DC =EC =1,求AC . 【提示】利用等腰三角形有公共底角,则这两个三角形相似,取BC 中点M ,构造△MAC 与△DBC 相似是解题关键。
全等三角形六种辅助线方法

全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
相似三角形之常用辅助线

相似三角形之常用辅助线在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。
而有些时候,这样的相似三角形在问题中,并不是十分明显。
因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。
专题一、添加平行线构造“A ”“X ”型定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想)G F ED CBAGF EDCBACDBD AC AB例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若DCBD =FA FC=2,求BE:EA 的比值.变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FEED =2,求BE:EA 的比值.例3、BE =AD ,求证:EF ·BC =AC ·DF变式1、如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB·DF=AC·EF 。
ACFEB D ACFEB D EDCBA例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长.变式:如图,21==DE AE CD BD ,求BFAF。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结:(1)遇燕尾,作平行,构造 字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。
相似三角形添加辅助线的方法举例

相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。
例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。
2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。
这些中位线的交点被称为三角形的重心。
通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。
3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。
例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。
4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。
例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。
5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。
例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。
以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。
在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。
三角形画辅助线的技巧总结

三角形画辅助线的技巧总结
1. 哎呀呀,碰到三角形一边的中点,那就要想到中位线呀!这不,在三角形 ABC 中,点 D 是 AB 的中点,那咱就赶紧把 CD 中位线给画上呀,那解决问题可就容易多啦,懂了不?
2. 嘿哟,如果有等腰三角形,那就在底边上画个高呀!比如在等腰三角形ABC 中,AB=AC,那就在底边 BC 上画个高 AD 呀,这一画,很多问题不就一目了然啦?
3. 哇塞,如果三角形里有角平分线,那就在角平分线上找点做垂线呀!就像在三角形 ABC 中,AD 是角平分线,咱就在上面找个点 E 作 BC 的垂线,这不就找到突破点啦?
4. 你看呀,当三角形里有直角的时候,可别忘记画斜边中线呀!像是在直角三角形 ABC 中,角 C 是直角,那赶紧把斜边 AB 的中线画出来呀,是不是很妙呀?
5. 嘿,要是有两个相似三角形在一起,那就连接对应点呀!比如三角形ABC 和三角形 A'B'C'相似,那把 AA',BB',CC'连接起来呀,会有新发现哦!
6. 哎呀呀,如果想证明线段相等,那就找全等三角形呀,然后把辅助线画上帮助证明呀!就好像知道 AB=CD,那就通过画辅助线找到对应的全等三角形呀,是不是很机智?
7. 哇哦,三角形里有特殊角度的时候,也可以通过画辅助线构造特殊图形呀!像三角形中有 30 度角,那是不是可以构造直角三角形呀,很神奇吧?
8. 嘿哟,如果需要把三角形拆分或组合,那就大胆地画辅助线呀!比如把一个大三角形分成几个小三角形来分析呀,多有趣呀!
9. 总之呢,画辅助线可是解决三角形问题的一把利器呀!要根据具体情况灵活运用呀,学会这些技巧,三角形问题都不怕啦!。
相似三角形构造相似辅助线双垂直模型

相似三角形构造相似辅助线双垂直模型Modified by JEEP on December 26th, 2020.构造相似辅助线(1)——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N 是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
求C、D两点的坐标。
6.答案:解:分两种情况第一种情况,图象经过第一、三象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=2,AC=1,AO=AB∴AD=OC=2,BD=AC=1∴D点坐标为(2,3)∴B点坐标为(1,3)∴此时正比例函数表达式为:y=3x第二种情况,图象经过第二、四象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=1,AC=2,AO=AB∴AD=OC=1,BD=AC=2∴D点坐标为(3,1)∴B点坐标为(3,﹣1)∴此时正比例函数表达式为:y=x7.答案:解:情形一:情形二:情形三:8.答案:证明:方法一:连接PC,过点P作PD⊥AC于D,则PD案:A解题思路:如图过点D作AB的平行线交BC的延长线于点M,交x轴于点N,则∠M=∠DNA=90°,由于折叠,可以得到△ABC≌△ADC,又由B (1,3)∴BC=DC=1,AB=AD=MN=3,∠CDA=∠B=90°∴∠1+∠2=90°∵∠DNA=90°∴∠3+∠2=90°∴∠1=∠3∴△DMC∽△AND,∴设CM=x,则DN=3x,AN=1+x,DM=∴3x+=3 ∴x=∴,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形添加辅助线的方法举例例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2=2CD ·AC .例2.已知梯形ABCD 中,BC AD //,AD BC 3=,E 是腰AB 上的一点,连结CE(1)如果AB CE ⊥,CD AB =,AE BE 3=,求B ∠的度数;(2)设BCE ∆和四边形AECD 的面积分别为1S 和2S ,且2132S S =,试求AEBE的值例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,AD AF 31=,连E 、F 交AC 于G .求AG :AC的值.BCD例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BDAC AB.相似三角形添加辅助线的方法举例答案例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2=2CD ·AC .分析:欲证 BC 2=2CD ·AC ,只需证BCACCD BC =2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、分变形,构造出单一线段后,再证明三角形相似.由“2”所放的位置不同,证法也不同.证法一(构造2CD ):如图,在AC 截取DE =DC , ∵BD ⊥AC 于D ,∴BD 是线段CE 的垂直平分线, ∴BC=BE ,∴∠C=∠BEC , 又∵ AB =AC , ∴∠C=∠ABC .∴ △BCE ∽△ACB .∴BC AC CE BC =, ∴BCACCD BC =2 ∴BC 2=2CD ·AC . 证法二(构造2AC ):如图,在CA 的延长线上截取AE =AC ,连结BE , ∵ AB =AC , ∴ AB =AC=AE . ∴∠EBC=90°, 又∵BD ⊥AC .∴∠EBC=∠BDC=∠EDB=90°, ∴∠E=∠DBC , ∴△EBC ∽△BDC∴BC CE CD BC =即BCAC CD BC 2= ∴BC 2=2CD ·AC . 证法三(构造BC 21) :如图,取BC 的中点E ,连结AE ,则EC=BC 21.又∵AB=AC ,∴AE ⊥BC ,∠ACE=∠C ∴∠AEC=∠BDC=90° ∴△ACE ∽△BCD .∴BC AC CD CE =即BCACCD BC=21. ∴BC 2=2CD ·AC . 证法四(构造BC 21):如图,取BC 中点E ,连结DE ,则CE=BC 21. ∵BD ⊥AC ,∴BE=EC=EB ,∴∠EDC=∠C又∵AB=AC ,∴∠ABC=∠C , ∴△ABC ∽△EDC .BCEBCBB C∴ECACCDBC=J即BCACCDBC21=.∴BC2=2CD·AC.说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔.例2.已知梯形ABCD中,BCAD//,ADBC3=,E是腰AB上的一点,连结CE(1)如果ABCE⊥,CDAB=,AEBE3=,求B∠的度数;(2)设BCE∆和四边形AECD的面积分别为1S和2S,且2132SS=,试求AEBE的值(1)设kAE=,则kBE3=解法1如图,延长BA、CD交于点FΘBCAD//,ADBC3=,∴AFBF3=∴kAF2=,E为BF的中点又BFCE⊥CFBC=,又BFCF=∴BCF∆为等边三角形故︒=∠60B解法2如图作ABDF//分别交CE、CB于点G、F则DFCE⊥,得平行四边形ABFD同解法1可证得CDF∆为等边三角形故︒=∠=∠601B解法3如图作ECAF//交CD于G,交BC的延长线于F作ABGI//,分别交CE、BC于点H、I则GICE⊥,得矩形AEHGCEAF//Θ∴3==AEBECFBC,又AD BC 3= ∴AD CF =,故G 为CD 、AF 的中点 以下同解法1可得CGI ∆是等边三角形 故︒=∠=∠601B 解法4 如图,作CD AF //,交BC 于F ,作CE FG //,交AB 于G ,得平行四边形AFCD ,且AB FG ⊥ 读者可自行证得ABF ∆是等边三角形,故︒=∠60B 解法5 如图延长CE 、DA 交于点F ,作CD AG //,分别交BC 、CE 于点G 、H ,得平行四边形AGCD 可证得A 为FD 的中点,则k AH 2=,故︒=∠601 得ABG ∆为等边三角形,故︒=∠60B 解法6 如图(补形法),读者可自行证明CDF ∆是等边三角形, 得︒=∠=∠60F B(注:此外可用三角形相似、等腰三角形三线合和一、等积法等) (2)设S S BCE 3=∆,则S S AECD 2=四边形 解法1(补形法)如图补成平行四边形ABCF ,连结AC ,则AD DF 2= 设x S ACD =∆,则x S S ACE -=∆2,x S CDF 2=∆ 由ACF ABC S S ∆∆=得, x x x s s 223+=-+,∴s x 45=∴s x s S ACE 432=-= ∴4433===∆∆ss S S AE BE ACE BCE解法2(补形法)如图,延长BA 、CD 交于点F ,91=∆∆ABC FAD S S∴sS S S FAD ABCD FAD 581∆∆==梯形 ∴s S FAD 85=∆,s s s S FEC 821285=+=∆,又s S EBC 3=∆ ∴87==∆∆BEC FBC S S BE EF 设m 8=BE ,则m 7=EF ,m 15=BF ,m 5=AF∴m 2=AE ,∴4==AEBE解法3(补形法)如图连结AC ,作AC DF //交BA 延长线于点F 连结FC则FAD ∆∽ABC ∆,故AF AB 3=(1)ACF ACD S S ∆∆=,FEC AECD S S ∆=四边形 ∴23===∆∆∆AECD BCE FEC BEC S S S S EF BE 四边形 故AF AE AF AE EF BE 33)(332+=+==(2) 由(1)、(2)两式得AE BE 4= 即4=AEBE解法4(割补法)如图连结A 与CD 的中点F 并延长交BC 延长线于点G ,如图,过E 、A 分别作高1h 、2h ,则AD CG =且AECG AECD S S 四边形四边形=,∴s S S ABCD ABG 5==∆梯形∴21212153h BG h BC S S ABGEBC⋅⋅⋅⋅==∆∆,又43=BG BC ∴5421=h h ,∴54=AB BE ,故4=AEBE 说明 本题综合考查了等腰三角形的性质,相似三角形的判定和性质,解题关键是作辅助线,构造相似三角形.例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,AD AF 31=,连E 、F 交AC 于G .求AG :AC的值.解法1: 延长FE 交CB 的延长线于H , ∵ 四边形ABCD 是平行四边形,∴BCAD //,∴ ∠H=∠AFE ,∠DAB=∠HBE又AE=EB ,∴ △AEF ≌△BEH ,即AF=BH ,∵AD AF 31=,∴ BC AF 31=,即CH AF 41=.∵ AD ∥CH ,∠AGF=∠CGH ,∠AFG=∠BHE ,∴ △AFG ∽△CGH .∴ AG :GC=AF :CH ,∴ AG :GC=1:4,∴ AG :AC=1:5.解法2: 如图4—2,延长EF 与CD 的延长线交于M ,由平行四边形ABCD 可知,DCAB //,即AB ∥MC ,∴ AF :FD=AE :MD ,AG :GC=AE :MC . ∵ AD AF 31=,∴ AF :FD=1:2,∴ AE :MD=1:2.∵DCAB AE 2121==.∴ AE :MC=1:4,即AG :GC=1:4,∴ AG :AC=1:5例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.解析:取CF 的中点G ,连接BG .∵ B 为AC 的中点, ∴ BG :AF=1:2,且BG ∥AF ,又E 为BD 的中点, ∴ F 为DG 的中点. ∴ EF :BG=1:2.故EF :AF=1:4,∴ AF :AE=4:3.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长.解法1: 过O 点作OM ∥CB 交AB 于M , ∵ O 是AC 中点,OM ∥CB ,∴ M 是AB 的中点,即a MB 21=,∴ OM 是△ABC 的中位线,b BC OM 2121==,且OM ∥BC ,∠EFB=∠EOM ,∠EBF=∠EMO .∴ △BEF ∽△MOE ,∴EM BE OMBF =, 即cacb BF +=221,∴c a bc BF 2+=. 解法2: 如图4-8,延长EO 与AD 交于点G ,则可得△AOG ≌△COF ,∴ AG=FC=b-BF ,∵ BF ∥AG ,∴AE BE AG BF =.即c a cBF b BF +=-, ∵ c a c bBF 2+= ∴ c a bcBF 2+=. 解法3: 延长EO 与CD 的延长线相交于N ,则△BEF 与△CNF 的对应边成比例,即CN BECF BF =. 解得c a bcBF 2+=.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BDAC AB =. 分析1 比例线段常由平行线而产生,因而研究比例线段问题,常应注意平行线的作用,在没有平行线时,可以添加平行线而促成比例线段的产生.此题中AD 为△ABC 内角A 的平分线,这里不存在平行线,于是可考虑过定点作某定直线的平行线,添加了这样的辅助线后,就可以利用平行关系找出相应的比例线段,再比较所证的比例式与这个比例式的关系,去探求问题的解决. 证法1: 如图4—9,过C 点作CE ∥AD ,交BA 的延长线于E .在△BCE 中,∵ DA ∥CE ,∴ AE BADCBD =① 又∵ CE ∥AD ,∴ ∠1=∠3,∠2=∠4,且AD 平分∠BAC ,∵ ∠1=∠2,于是∠3=∠4,∴ AC=AE .代入②式得AC ABDCBD =. 分析2 由于BD 、CD 是点D 分BC 而得,故可过分点D 作平行线.证法2: 如图4—10,过D 作DE ∥AC 交AB 于E ,则∠2=∠3.∵ ∠1=∠2,∴ ∠1=∠3. 于是EA=ED .又∵DC BD EA BE =,∴ EA BE ED BE AC AB ==,∴CD BDAC AB =. 分析3 欲证式子左边为AB :AC ,而AB 、AC 不在同一直线上,又不平行,故考虑将AB 转移到与AC 平行的位置.证法3: 如图4—11,过B 作BE ∥AC ,交AD 的延长线于E ,则∠2=∠E .∵ ∠1=∠2,∴ ∠1=∠E ,AB=BE .又∵AC BE DCBD =,∴ CD BDAC AB =. 分析4 由于AD 是∠BAC 的平分线,故可过D 分别作AB 、AC 的平行线,构造相似三角形求证.证法4 如图4—12,过D 点作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .易证四边形AEDF 是菱形.则 DE=DF .由△BDE ∽△DFC ,得DE BEDF BE DC BD ==.又∵ AC AB DE BE =,∴ DC BD AC AB =.。