《整式的加减》第三课时参考课件

合集下载

《整式的加减》第三课时课件

《整式的加减》第三课时课件

解:顺水航速=船速+水速=(50+a)km/h 逆水航速=船速- 水速=(5--a)km/h
解:(1) 2(50+a)+2(50-a) =100+2a+100-2a =200(km) (2) 2(50+a)-2(50-a) =100+2a-100+2a =4a(km)
接力闯关,谁与争锋
例5 闯关计算: (1) a b c d
(7) a b 2 a b a b 4
(8)3 x y 7 x y 8 x y 6 x y 11 x y
2 2 2
这节课你学到了什么?
1.去括号法则: 如果括号外的因数是正数,去括号后原括号内 各项的符号不原来的符号相同; 如果括号外的因数是负数,去括号后原括号内 各项的符号不原来的符号相反. 2.注意:去括号规律要准确理解,去括号应考虑 括号内的每一项的符号,做到要变都变;要丌变 都丌变;另外,括号内原来有几项,去掉括号后 仍有几项.
二、实际应用,掌握新知
例2 青藏铁路线上,在格尔木到拉萨之间有一段很长的 冻土地段.列车在冻土地段的行驶速度是100 km/h,在 非冻土地段的行驶速度可以达到120 km/h,请根据这些 数据回答下列问题: (3)在格尔木到拉萨路段,列车通过冻土地段比通过非 冻土地段多用0.5 h,如果列车通过冻土地段要t h, 则这段铁路的全长可以怎样表示?冻土地段不非冻土地段 相差多少km?
(2)5a 4c 7b 5c 3b 6a
2 2
(3) 8 xy x 2 y 2 x 2 y 2 8 xy(4)2 x 2 1 3 x 4 x x 2 1

人教版七年级上册整式的加减(第3课时)课件

人教版七年级上册整式的加减(第3课时)课件
2.2 整式的加减
2.2 整式的加减(3)
课题引入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排
都比前一排多一人,一共站了四排,则该合唱团一共有多少名
学生参加?
答案:+(+1)+(+2)+(+3)
课题引入
2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),
小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,
求值.如题目要求“化简求值”时,必须
选用解法二求解.
知识梳理
特别讲授
整式的加减错例剖析
合并同类项是用字母表示数中的重要内容,熟练掌握合并同类项
法则、去括号法则是解决问题的关键.如果对合并同类项法则或去括号
的法则理解不透彻,可能会出现下列计算中的错误.
知识梳理
一、对同类项概念理解错误
例1 计算:
1 -22 -8 2 -2
知识梳理
四、去括号法则理解错误
例4 计算:
1 -(-)
(2) -2(- + )
错解: 1 -(-) = --
(2) -2(- + ) = -2-
(2)3-5-3
错解:(1)-22 -8 2 -2 = (-2-8-1)2 = -112
2 3-5-3 = 2-3 = -
正解:(1) -22 -8 2 -2 = (-2-1)2 -8 2 = -32 -8 2
(2) 3-5-3 = 2-3
(2) 6 + 6 + 8 − 2 + 2 + 2
= 6 + 6 + 8 − 2 − 2 − 2
= 4 + 4 + 6
因此做这两个纸盒共用料 8 + 8 + 10 平方厘米,

2.2 第3课时 整式的加减

2.2 第3课时 整式的加减

课件目录
首页
末页
第3课时 整式的加减
3.[2018 秋·十堰期末]如果长方形的一边长等于 3a+2b,另一边比它大
a-b,那么这个长方形的周长是( A )
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
【解析】 由题意知,长方形的另一边长等于(3a+2b)+(a-b)=3a+2b
+a-b=4a+b.
课件目录
首页
末页
第3课时 整式的加减
4.如图 2-2-2,甲、乙两个零件截面的面积哪一个较大?大多少?把 结果填入下面的横线上.
截面甲的面积是 πr2-1.5ab ,截面乙的面积是 πr2-2ab ,甲、乙 两个截面面积的差是( πr2-1.5ab )-( πr2-2ab )= 0.5ab , 甲 的 面积比 乙 的面积大 0.5ab .
课件目录
首页
末页
第3课时 整式的加减
6.(1)求单项式 5x2y,-2x2y,2xy2,-4x2y 的和; (2)求 3x2-6x+5 与 4x2+7x-6 的和; (3)求 2x2+xy+3y2 与 x2-xy+2y2 的差.
解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2.
的是( D )
A.a2-3a+4
B.a2-3a+2
C.a2-7a+2
D.a2-7a+4
课件目录
首页
末页
第3课时 整式的加减
【解析】 (6a2-5a+3 )-(5a2+2a-1) =6a2-5a+3-5a2-2a+1 =a2-7a+4.故选 D.
课件目录
首页
末页

初中数学《整式的加减》课件PPT

初中数学《整式的加减》课件PPT

3 化简5(2x-3)+4(3-2x)的结果为( A ) A.2x-3 B.2x+9 C.8x-3 D.18x-3
知1-练
4 若一个多项式减去-4a等于3a2-2a-1,则这个多 项式是( A ) A.3a2-6a-1 B.5a2-1 C.3a2+2a-1 D.3a2+6a-1
5 一个单项式减去x2-y2等于x2+y2,则这个单项式 是( C ) A.2y2 B.-2y2 C.2x2 D.-2x2
知1-讲
解法1: 小红买笔记本和圆珠笔共花费(3x+2y)元,小明买 笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
知1-讲
解法2: 小红和小明买笔记本共花费(3x+4x)元,买圆珠笔 共花费(2y+3y)元. 小红和小明一共花费(单位:元) (3x+4x) + (2y+3y) = 7x+5y.
知1-讲
解:小纸盒的表面积是(2ab+2bc+2ca)cm2, 大纸盒的表面积是(6ab+8bc+6ca) cm2.
(1)做这两个纸盒共用料(单位:cm2)
(2ab+2bc+2ca)+ (6ab+8bc+6ca)
=2ab+2bc+2ca+ 6ab+8bc+6ca
=8ab +10bc+8ca. (2)做大纸盒比做小纸盒多用料(单位: cm2)
(来自教材)
总结
知1-讲
审清题意,在具体情境中用代数式表示数量关 系,根据整式的加减的运算法则进行化简.

人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)

人教版七年级数学上册第二章  2.2  第3课时 整式的加减课件(共24张PPT)
图2-2-5
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.

《2.2 第3课时 整式的加减》课件(两套)

《2.2 第3课时 整式的加减》课件(两套)

的和.
4 5x2 3x 2x 7x2 3
解: (4 5x2 3x) (2x 7x2 3)
有括号要先去括号
4 5x2 3x 2x 7x2 3 有同类项再合并同类项 (5x2 7x2 ) (3x 2x) (4 3)
2x2 x 1.
结果中不能再有同类项
练一练:求上述两多项式的差.
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4b 去括号 =7a+b 合并同类项
(2)(8a-7b)-(4a-5b)
=8a-7b-4a+5b 去括号 =4a-2b 合并同类项
例2 求多项式

2r1+2r2+2r3=2R R
思路点拨: 设大圆半径为R,小圆半径依次为r1,r2,r3, 则图(1)的周长为4πR,图(2)的周长为 2πR+2πr1+2πr2+2πr3=2πR+2π(r1+r2+r3), 因为2r1+2r2+2r3=2R,所以r1+r2+r3=R,因此图(2) 的周长为2πR+2πR=4πR. 这两种方案,用材料一样多,将三个小圆改为n个 小圆,用料还是一样多.
课堂小结
列代数式
{ {பைடு நூலகம்整式的加减
整式加减的步骤
去括号 合并同类项
整式加减的应用
2.2(3) 整式的加减
一、情景引入 二、合作探究 三、课堂小结 四、课后作业
提出 问题
知识 要点
典例 精析
巩固 训练

4.2 第3课时 整式的加减 课件(共20张PPT) 人教版七年级数学上册

4.2   第3课时 整式的加减  课件(共20张PPT)  人教版七年级数学上册
【题型二】整式的加减的应用
例4:为落实“阳光体育”工程,某校计划采购网球及网球拍.已知网球拍每个250元,网球每桶30元,甲、乙两个商场推出如下优惠活动:甲商场:按购买金额打九折付款;乙商场:买一个网球拍送一桶网球.现学校需要购买网球拍18个,网球x桶(x>18).(1)分别求出甲、乙两个商场的购买费用;(用含x的整式表示)
解:原式=2a+6a2+2-6a2+3a-6=5a-4.
A
例3:一轮船航行于甲、乙两港之间,它在静水中的航速为a千米/时,水速为16千米/时,则轮船顺水航行5小时的行程与逆水航行3小时的行程相差多少?
解:5(a+16)-3(a-16)=5a+80-3a+48=2a+128(千米).答:轮船顺水航行5小时的行程与逆水航行3小时的行程相差(2a+128)千米.
去括号时,注意不要漏乘,注意符号变化
同学们,悟性的高低取决于有无悟“心”,差别在于你是否去思考,去发现.
教材习题:完成课本101-102页练习1,2,3题.
同学们再见!
授课老师:
时间:2024年9月15日
4.2 整式的加法与减法
第3课时 整式的加减
1. 通过具体实例,引导学生探究、理解整式加减的实质,掌握整式的加减运算法则,培养学生观察、分析的能力.2.通过运用整式的加减运算法则解决实际问题,掌握规范的解题步骤,培养学生的运算能力.
重点
难点
情境导入
同学们,我们一起来看一个问题:小强乘公共汽车到城里的书店买书.小强上车时,发现车上已有(4a-b)人,车到中途站时,有(3a-4)人下车,但是又上来若干人,这时公共汽车上共有(9a-3b)人,则中途有多少人上车? 你能用我们学过的数学知识解决这个问题吗?
求整式的值时,一般需要先化简,再代入数值计算.

【精品】《整式的加减》第三课时ppt课件

【精品】《整式的加减》第三课时ppt课件

2
3
23
,其中 x = -2, y =
2
3.
→ ﹜ →去括号 将式子化简 合并同类项 见负必括 见分必括
﹜再代入数值进行计算
随堂练习二
1 2x2 y2 2y 2 x2 x2 2y2 , 其中 x 1 , y 3 . 3 -9
2 5 3x2 y xy2 xy2 3x2 y , 其中 x 1 , y 1 . 2
分析:把多项式看作一个整体,加括号计算
见多必括
解: (2x2 -3x + 1)+( -3x2 + 5x-7)
= 2x2 -3x + 1 -3x2 + 5x-7 去括号
} = 2x2 -3x2 -3x + 5x+1-7
= - x2 +2x - 6
找出同类项 合并同类项
(2)
x 2 3 x y 1 y 2 与 1 x 2 4 x y 3 y 2 的 .
10b+a
3、求这两个数的和 (10a+b)+(10b+a)
这些和有什么规律?你能验证这个规律吗?
这两个数的和是11的倍数
再做一做
任意写一个三位数
交换它的百位数字与个位数字,又得到一个数
两个数相减 设百位上的数为a,十位上的数为b,个位上的数为c
你又发现了什么规律?
例1、计算:
(1)2x2 -3x + 1与 -3x2 + 5x-7 的和
22
2
解:
去括号
}找出同类项 合并同类项
随堂练习一
1 求整式 x2 7x 2 与 2x2 4x 1的差 . 2 求整式 3x2 7x 12 与 2x2 7x 5 的差 . 3已知A 3a2 ab 7 , B 4a2 6ab 7 , 求 2A B .

《整式的加减》整式及其加减PPT课件

《整式的加减》整式及其加减PPT课件

巩固练习
变式训练
(2)(3a2-ab+7)-(-4a2+2ab+7); 解:(3a2-ab+7)-(-4a2+2ab+7)
=3a2-ab+7+4a2-2ab-7 =7a2-3ab;
巩固练习
变式训练
(3)2n-(2-n)+(3n-2); 解:2n-(2-n)+(3n-2)
=2n-2+n+3n-2 =6n-4;
连接中考 已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B; (2)若3A+6B的值与x无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1)
=6x2+9xy-6x-3-6x2+6xy-6 =15xy-6x-9; (2)原式=15xy-6x-9=(15y-6)x-9 要使原式的值与x无关,则15y-6=0,
=-16-12+10+5 =-13.
课堂小结
整式加减的步骤 整 式 的 加 减
整式加减的应用
去括号 合并同类项
=2ab+2bc+2ca+6ab+8bc+6ca =(8ab+10bc+8ca)(cm2 ).
巩固练习 (2)做大纸盒比小纸盒多用料多少平方厘米?
小纸盒的表面积是(2ab+2bc+2ca)cm2 大纸盒的表面积是(6ab+8bc+6ca)cm2
解:做大纸盒比做小纸盒多用料
(6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca-2ab-2bc-2ca =(4ab+6bc+4ca)(cm2)

北师大版七年级数学上册第三章整式及其加减第3课时整式的加减课件

北师大版七年级数学上册第三章整式及其加减第3课时整式的加减课件

为( C )
A. m+n
B. 2m+2n
C. m-n D. m+2n
3. 若多项式3x2-2(5+y-2x2)-mx2的值与x的值无关,则m= 7 .
4. 计算:
(1)2x-(5y-7x-2y); =9x-3y
(2)m+n-(m-n); =2n
(3)5xy-[2xy2-(6xy2-2x2y)]+2x2y-xy. =4xy+4xy2
5. 先化简,再求值:
【基础训练】
1. -(a+b)-(-2b+3a)去括号后的结果是( A )
A. -4a+b
B. 4a-b
C. 2a+3b
D. -2a-3b
B
D
4a2+ab+7b2 19
8yz-6xy-8
7. 计算:
8. 先化简,再说明多项式(4m3+5m2+4m-2)-2(2m+m2+2m3)-3m2的值与m 的取值无关.
ห้องสมุดไป่ตู้
第三章 整式及其加减
4 整式的加减 第3课时
进行整式加减运算时,如果遇到括号要先 去括号 ,再 合并同类项 .
1. 一个多项式与a2-2a+1的和是3a+2,则这个多项式为( A )
A. -a2+5a+1
B. -a2+a-1
C. a2-5a+3
D. a2-5a-3
2. 若长方形的周长为4m,其中一边的长为(m+n)(m>n),则另一边的长
原式=4m3+5m2+4m-2-4m-2m2-4m3-3m2=-2. 因此,该多项式的值与m的取值无关. 【提升训练】 9. 求下列各式的值:
10. 已知A-2B=7a2-7ab,且B=-4a2+6ab+7. (1)用含a,b的代数式表示A. (2)若|a+1|+(b-2) 2=0,求A的值

人教版七年级数学上册4.2第3课时整式的加减课件

人教版七年级数学上册4.2第3课时整式的加减课件

4.(新独家原创)梯形的上底为(a+2b),下底为2(3a-2b),高为4, 则梯形的面积为 14a-4b .
解析 梯形的面积为 1 [(a+2b)+2(3a-2b)]×4
2
=2[(a+2b)+(6a-4b)]=2(a+2b+6a-4b) =2(7a-2b)=14a-4b.
5.(2023山东青岛市北期末)先化简,再求值:
2.(2023江西南昌期中)一个多项式与x2-2x+1的和是3x-2,则这
个多项式为 ( A )
A.-x2+5x-3
B.-x2+x-1
C.x2-5x+3
D.x2-5x-3
解析 3x-2-(x2-2x+1)=3x-2-x2+2x-1=-x2+5x-3.故选A.
3.(易错题)(2024黑龙江明水期末)已知A=2x2-1,B=3-2x2,则B-2A = -6x2+5 . 解析 易错点:多项式相减时漏加括号. 由题意得B-2A=3-2x2-2(2x2-1) =3-2x2-4x2+2=-6x2+5.
2x2-3
12-3xx2 2,其32 中xy x=y22,y=-1.
解析 原式=2x2+ 3 x2-2xy+3y2-3x2=x2
2
2
当x=2,y=-1时,
-2xy+3y2,
原式= 4 -2×2×(-1)+3×1=2+4+3=9.
2
6.老师在黑板上写了一个正确的验算过程,随后用手掌捂住 了一个二次三项式: +x2-1=3x2-4x+5. (1)求被手掌捂住的二次三项式. (2)若-x2+2x=1,求手掌捂住的二次三项式的值.

《整式》整式的加减PPT教学课件(第3课时)

《整式》整式的加减PPT教学课件(第3课时)
人教版 数学 七年级 上册
2.1 整式 第3课时
导入新知
知识回顾
1.什么叫单项式?
2.单项式
的3系ab数2c是 ,次数是 5
3 . 5
4
3. 2a和3b都是单项式,那2a+3b又是什么呢?
素养目标
3. 会用整式解决简单的实际问题. 2. 会用整式表示简单的数量关系,并根据整式中字母的值求多 项式的值.
分析:该多项式最高次项为-4xmy2,其次数为m+2, 故m+2=6.
解:由题意得m+2=6,
所以m=4. 所以该多项式为-5x4+104x5-4x4y2.
归纳总结:解题的关键是弄清多项式次数是多项式中次数最高的项的次数. 然 后根据题意,列出方程,求出m的值.
巩固练习
把m,n当作已知常数看待 ,属于系数部分。
若关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m 、n的值.
分析:多项式不含哪一项,则哪一项的系数为0. 解:由题意得m=0,n-1=0,所以n=1.
探究新知
素养考点 3 利用多项式解答实际问题
例3 如图,用式子表示圆环的面积.当R=15cm,r=10cm 时,求圆环的面积(π 取3.14).
1. 理解多项式、多项式的项和次数、整式的概念.
探究新知
知识点
1. 温度由t℃下降5℃后是
多项式的有关概念
℃(;t-5)
列式表示下 列数量
2. 买一个篮球需要x元,买一个排球需要y 元,买一个足球需要z元
,买3个篮球、5个排球、2个足球共需要
元.
(3x+5y+2z)
探究新知
探究: 下列各式是单项式吗?这些式子有什么共同特点?与单项式有什么 关系?

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第3课时)

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第3课时)
2. 整式加减实际上就是去括号、合并同类项.
3. 运算结果,常将多项式的某个字母(如x)的降 幂(升幂)排列.
巩固练习
求3x2–6x+5与4x2+7x–6的差. 解:(3x2–6x+5) –(4x2+7x–6)
= 3x2–6x+5–4x2–7x+6 = –x2–13x+11.
探究新知
素养考点 3 整式的化简求值
够,请你比较两种方案,哪一种需用的材料多(即比较两个图形
的周长)?若将三个小圆改为n个小圆,又会得到什么结论?
课堂检测
R
2r1+2r2+2r3=2R
解:设大圆半径为R,小圆半径依次为r1,r2,r3, 则图(1)的周长为 4πR,图(2)的周长为2πR+2πr1+2πr2+2πr3=2πR+2π(r1+r2+r3). 因为2r1+2r2+2r3=2R, 所以r1+r2+r3=R,因此图(2)的周长为 2πR+2πR=4πR. 这两种方案,用材料一样多,将三个小圆改为n个小圆,用料
答:种果树的地有2b亩.
探究新知
例5 做大小两个长方体纸盒,尺寸如下(单位:cm):
长宽高
小纸盒 a
b
c
大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
探究新知
解:小纸盒的表面积是( 2ab +2bc +2ac )cm2 .
2
大纸盒的表面积是( 6ab +8bc + 6ac )cm2 .
探究新知

2.2整式的加减(第3课时)教学PPT

2.2整式的加减(第3课时)教学PPT

3
3
99
Hale Waihona Puke (练一练) 先化简,再求值: 5(3a2b-ab2)-(ab2+3a2b),其中 a 1 ,b 1
23
解:
5(3a2b ab2 ) (ab2 3a2b)
15a2b 5ab2 ab2 3a2b
12a2b 6ab2
当a= 1 ,b= 1时, 23
原式=12
(1)做这两个纸盒共用料(单位:cm2)
(2ab 2bc 2ca) (6ab 8bc 6ca)
2ab 2bc 2ca 6ab 8bc 6ca
8ab 10bc 8ca
(2)做大纸盒比做小纸盒多用料:
(6ab 8bc 6ca) (2ab 2bc 2ca)
解:小红买笔记本和圆珠笔共花费(3x 2y) 元, 小明买笔记本和圆珠笔共花费 (4x 3y) 元. 小红和小明一共花费:(3x 2y) (4x 3y)
3x 2y 4x 3y 7x5y
试写出另一种解法:
解:小红和小明买笔记本共花费 (3x 4x) 元, 买圆珠笔共花费 (2y 3y)元.
整式的加减(三)
请去括号:
① 8x 2y (5x y) = 8x 2y 5x y ;
② (3a 2b) 2(a b) = 3a+2b-2a+2b .
认真阅读课本第67页至第69页的内容,完 成下面练习,并体验知识点的形成过程.
知识点 灵活运用整式的加减步骤及去括号 的法则

1 2
2


1 3

6

1 2

人教版数学七年级上册.第3课时整式的加减课件

人教版数学七年级上册.第3课时整式的加减课件

例3 做大小两个长方体纸盒,尺寸如下(单位:cm):



小纸盒 a
b
c
大纸盒 1.5a
2b
2c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?
解:小纸盒的表面积是(2ab+2bc+2ca)cm2, 大纸盒的表面积是(6ab+8bc+6ca) cm2.
(1)做这两个纸盒共用料(单位:cm2) (2ab+2bc+2ca)+ (6ab+8bc+6ca) =2ab+2bc+2ca+ 6ab+8bc+6ca =8ab +10bc+8ca.
2
4
4
-b2 b 3
因为这个式子的值与a的取值无关,所以 即使把a抄错,最后的结果都会一样.
随堂演练
1.化简x+y-(x-y)的结果是( B ) A.2x+2y B.2y C.2x
D.0
2.多项式3a-a2与单项式2a2的和等于( B ) A.3a B.3a+a2 C.3a+2a2 D.4a2
例题讲授
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4b 去括号 =7a+b 合并同类项
(2)(8a-7b)-(4a-5b)
=8a-7b-4a+5b 去括号 =4a-2b 合并同类项
进行整式加减的一般步骤是: 去括号、合并同类项。
(3x+2y)+(4x+3y) =3x+2y+4x+3y =7x+5y

《整式的加减》PPT(第3课时)

《整式的加减》PPT(第3课时)
手抄报:/shouc haobao/
语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
科学课件:/keji an/kexue/
化学课件:/keji an/huaxue/
(2) x2-x4+2-5x
2.把多项式
2
4
3 2
2 3
2 x y x y 3x y x 2
降幂排列
3
例1
做大小两个长方体纸盒,尺寸如
下(单位:cm):



小纸盒
a
b
c
大纸盒
1.5a
2b
2c
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米?
一般步骤:
历史课件:www.1ppt.c om/keji an/lishi /
1
1 2
3
1 2
x

2
(
x

y
)

(

x

y ) 的值,其中
例2 求
2
3
2
3
2
2
x

2(
x

y
)

(

x

y)
解: 2
整式的化简
3
2
3
求值问题步
1
2 2 3
1 2
x 2x y x y
(2)当a=3cm或a=7cm时,还能得到
四边形吗?这时的图形是什么形状?
(1)一个多项式加上2x2-x3-5-3x4得
3x4-5x3-3,求这个多项式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算 (2)(5x+4y ) - ( 2x-3y ) 解 :(5x+4y)-(2x-3y) = 5x+4y -2x+3y =5x-2x+4y+3y =3x+7y
归纳:整式的加减运算通常是先 ( 去括号 ) 合并同类项 )。 再(
(1)(8a-7b)-(4a-5b) (2) 8a+2b+(5a-b) (3) (5a-3b)-3(a-2b)
2
(2)做大纸盒比小纸盒多用料多少平方厘米? 分析:小纸盒的表面积是(2ab+2bc+2ca)cm2 大纸盒的表面积是(6ab+8bc+6ca)cm2
解:做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(cm2 )
计算
(1) ( 2x-3y )
+ ( 5x+4y )
解:(2x-3y)+(5x+4y) =2x-3y+5x+4y 去括号 =2x+5x-3y+4y 找出同类项 =7x+y 合并同类项

对小明和小红写出的式子 小红 : 2x-3y 小明 : 5x+4y
小明说,求5x+4y与2x-记本的单价是x(元),圆珠笔的单价 是y(元),小红买这种笔记本3本,买圆珠笔2枝; 小明买这种笔记本4个,买圆珠笔3枝,买这些笔记 本和圆珠笔,小红和小明共花费多少钱? 小 分析: 小红买3本笔记本,花去3x元,2支圆珠笔花去2y元,•
红共花去( 3x+2y )元;小明买4本笔记本,花去4x元, 3枝圆珠笔花去3y元,小明共花去(4x+3y • )元,
2、化简下列各式。
(1) 2x+(5x-1) 解: 2x+(5x-1) =2x+5x-1 =7x-1
(2) 3y-(4+2y) 解:3y-(4+2y) =3y-4-2y =y-4
2.2整式的加减(三)
活动二:新课探究
1、小红和小明各自在自己的纸片上 写出了一个式子 小红 : 2x-3y 小明 :5x+4y 问题: 小红说,求出它们的和.你能帮助 她吗?
活动三 巩固练习 教材P69第1.2题
• 活动四 课堂小结
整式的加减运算的一般步骤是什么?
整式加减运算法则 一般地,几个整式相加减,如果有括号就先去 括号,然后再合并同类项.
• 活动五
课后作业
归纳:整式的加减运算在实际问题中是如何应用的? 1.根据题意把题目中的量用式子表示出来。 2.列式,再进行整式的加减运算。
例8.做大小两个长方体纸盒,尺寸如下(单位:cm).

小纸盒
大纸盒


c b a 1.5a 2c 2b
a
b C 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
分析:小纸盒的表面积是(2ab +2bc +2ca )cm2 大纸盒的表面积是( 6ab +8bc +6ca)cm 解:做这两个纸盒共用料 (2ab+2bc+2ca)+(6ab+8bc+6ca) =2ab+2bc+2ca+6ab+8bc+6ca =8ab+10bc+8ca(cm2 )
解:小红和小明一共花去 (3x+2y)+(4x+3y) =3x+2y+4x+3y =7x+5y(元)
思考:还能用其他的方法来知道“小红和小明共花费多少 钱吗?”
方法二:小红和小明买笔记本共花去( 3x+4x )元,买圆珠笔共 花去( 2y+3y )元
解:
小红和小明买笔记本和圆珠笔共花去 (3x+4x)+(• 2y+3y) =7x+5y(元)
活动一
火眼金睛
1、判断下列各题中的正误: × 1、4a+(-a+3)=4a+a+3=5a+3 2、 (2a-b)-(6b-7a)=2a-b-6b-7a=-5a-7b × 3、3(x-2y)-2(4x-6y)=3x-6y-8x+6y=-5x × 4、-(2x+4y)+(6x-2y+1)=-2x-4y+6x-2y=4x-6y × 5、4-3(2x-5)=4-6x+15=19-6x √
相关文档
最新文档