Non-sequential optimization technique for a computer controlled optical surfacing process using mult
ZEMAX中如何能优化非序列光学系统(翻译)
ZEMAX中如何优化非序列光学系统(翻译)优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。
本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。
推荐的方法如下:The recommended approach is:•在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。
•使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。
这些'Moment of Illumination' 数据优化起来比任何特定的像素点的值平缓的多。
•在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammeroptimizers)提炼结果。
正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。
首先使用正交下降优化法。
作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。
Damped Least Squares vs Orthogonal DescentZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。
DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。
这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。
然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。
SVM算法原理及SMO算法概述
SVM算法原理及SMO算法概述SVM (Support Vector Machine) 是一种广泛应用于分类和回归问题的机器学习算法。
它基于统计学习理论中的VC理论,使用间隔最大化的方法进行分类。
在SVM中,我们将训练数据集视为一个在高维空间中的点集。
SVM的目标是找到一个超平面,能够将不同类别的点分开,并且使其离超平面的距离最大化。
这个超平面被称为最优分隔超平面。
具体来说,SVM算法的原理如下:1.数据预处理:将训练样本映射到高维特征空间,使得样本点能够被线性分隔。
2.寻找最优超平面:在高维特征空间中,寻找能够将不同类别的点分开的超平面。
通常情况下,有多个超平面可以进行分类,而SVM的目标是找到使得间隔最大化的那个超平面。
3.使用支持向量进行分类:SVM找到了最优超平面后,它会选择离该超平面最近的一些点,这些点被称为支持向量。
分类时,SVM根据测试点和支持向量的关系进行判断。
SMO (Sequential Minimal Optimization) 是一种用来训练SVM的优化算法。
传统的SVM算法需要同时优化所有的模型参数,计算量较大。
而SMO算法则是一种序列化的简化方法,每次只优化两个模型参数。
SMO算法的主要思想如下:1.初始化模型参数:选择两个待优化的参数α1和α22.选择两个参数:基于一定的策略,选择两个不同的参数α进行优化。
3.通过求解两个参数的约束最优化问题,更新模型参数。
4.更新阈值和偏置:根据更新后的模型参数,计算出新的阈值和偏置。
5.判断终止条件:检查是否满足终止条件,如果满足则停止优化,否则返回第2步。
SMO算法的核心在于选择两个参数进行优化,并通过解决约束最优化问题来更新参数。
通过反复迭代这个过程,最终得到训练好的SVM模型。
SMO算法的优点是可以有效地处理大规模数据集,并且能够避免陷入局部最优解。
同时,SMO算法还可以引入核函数,使得SVM具有非线性分类和回归能力。
总结来说,SVM是一种基于统计学习理论的分类和回归算法,通过间隔最大化的方法寻找最优分隔超平面。
ZEMAX-概况
ZEMAX概况ZEMAX是一套综合性的光学设计软件。
它集成了光学系统所有的概念、设计、优化、分析、公差分析和文档整理功能。
具有直观、功能强大、灵活、快速、容易使用等优点。
3种不同的版本:SE, XE,和EE。
ZEMAX可以模拟Sequential和non-sequential成像系统和非成像系统。
序列性(Sequential)光线追迹大多数成像系统都可以由一系列顺序排列的光学面来描述。
光线按面的顺序进行追迹。
如相机镜头、望远镜镜头、显微镜头等。
它有很多优点,如光线追迹速度快、可以直接优化和进行公差预算。
ZEMAX中的光学面可以是反射面、折射面或衍射面。
也可以建立因为光学薄膜引起的有不同透射率的光学面特性。
面之间的介质可以是各向同性的,如玻璃或空气。
也可以是任意的渐变折射率分布,折射率可以是位置、波长、温度或其它特性参数的函数。
也支持双折射材料,它的折射率是偏振态和光线角度的函数。
ZEMAX中,所有描述面的特性参数,包括形状、折射、反射、折射率、渐变折射率、热系数、透射率和衍射率都可以自定义。
非序列性(Non-sequential)光线追迹很多重要的光学系统不能用sequential光线追迹的模式描述,如复杂的棱镜、光管、照明系统、小面反射镜、非成像系统或任意形状的物件等。
而且散射和杂光也不能用序列性分析的模式。
这些系统要求用non-sequential模式,此时光线以任意的顺序打到物件上。
Non-sequential模式可以对光线传播进行更细节的分析,包括散射光或部分反射光。
进行non-sequential追迹时,ZEMAX用3D solid models光学元件,可以是任意的形状。
支持散射、衍射、渐变折射率、偏振和薄膜。
用光度学和辐射度学的单位。
Sequential 和non-sequential系统ZEMAX还可以在同一个系统中使用sequential和non-sequential光线追迹模式。
光学设计软件介绍汇总
光学设计软件介绍汇总ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。
版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。
ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。
CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。
除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。
是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。
CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。
ZEMAX中如何能优化非序列光学系统(翻译)
ZEMAX中如何优化非序列光学系统(翻译)优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。
本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。
推荐的方法如下:The recommended approach is:∙在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。
∙使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。
这些'Moment of Illumination' 数据优化起来比任何特定的像素点的值平缓的多。
∙在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammeroptimizers)提炼结果。
正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。
首先使用正交下降优化法。
作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。
Damped Least Squares vs Orthogonal DescentZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。
DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。
这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。
然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。
数据结构与算法常用英语词汇
数据结构与算法常用英语词汇.txt 女人谨记:一定要吃好玩好睡好喝好。
一旦累死了,就别的女人花咱的钱,住咱的房,睡咱的老公,泡咱的男朋友,还打咱的娃。
第一部份计算机算法常用术语中英对照Data Structures 基本数据结构Dictionaries 字典Priority Queues 堆Graph Data Structures 图Set Data Structures 集合Kd-Trees 线段树Numerical Problems 数值问题Solving Linear Equations 线性方程组Bandwidth Reduction 带宽压缩Matrix Multiplication 矩阵乘法Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题Linear Programming 线性规划Random Number Generation 随机数生成Factoring and Primality Testing 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题Discrete Fourier Transform 离散 Fourier 变换Combinatorial Problems 组合问题Sorting 排序Searching 查找Median and Selection 中位数Generating Permutations 罗列生成Generating Subsets 子集生成Generating Partitions 划分生成Generating Graphs 图的生成Calendrical Calculations 日期Job Scheduling 工程安排Satisfiability 可满足性Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支Topological Sorting 拓扑排序Minimum Spanning Tree 最小生成树Shortest Path 最短路径Transitive Closure and Reduction 传递闭包Matching 匹配Eulerian Cycle / Chinese Postman Euler 回路/中国邮路Edge and Vertex Connectivity 割边/割点Network Flow 网络流Drawing Graphs Nicely 图的描绘Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入Graph Problems -- hard 图论-NP 问题Clique 最大团Independent Set 独立集Vertex Cover 点覆盖Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton 回路Graph Partition 图的划分Vertex Coloring 点染色Edge Coloring 边染色Graph Isomorphism 同构Steiner Tree Steiner 树Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何Convex Hull 凸包Triangulation 三角剖分Voronoi Diagrams Voronoi 图Nearest Neighbor Search 最近点对查询Range Search 范围查询Point Location 位置查询Intersection Detection 碰撞测试Bin Packing 装箱问题Medial-Axis Transformation 中轴变换Polygon Partitioning 多边形分割Simplifying Polygons 多边形化简Shape Similarity 相似多边形Motion Planning 运动规划Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski 和Set and String Problems 集合与串的问题Set Cover 集合覆盖Set Packing 集合配置String Matching 模式匹配Approximate String Matching 含糊匹配Text Compression 压缩Cryptography 密码Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion ——递归第二部份数据结构英语词汇数据抽象 data abstraction数据元素 data element数据对象 data object数据项 data item数据类型 data type抽象数据类型 abstract data type逻辑结构 logical structure物理结构 phyical structure线性结构 linear structure非线性结构 nonlinear structure基本数据类型 atomic data type固定聚合数据类型 fixed-aggregate data type可变聚合数据类型 variable-aggregate data type 线性表 linear list栈 stack队列 queue串 string数组 array树 tree图 grabh查找,线索 searching更新 updating排序(分类) sorting插入 insertion删除 deletion前趋 predecessor后继 successor直接前趋直接后继双端列表循环队列immediate predecessor immediate successor deque(double-ended queue) cirular queue指针 pointer先进先出表(队列) first-in first-out list 后进先出表(队列) last-in first-out list栈底栈定压入弹出队头bottom top push pop front队尾 rear上溢 overflow下溢 underflow数组 array矩阵 matrix多维数组 multi-dimentional array以行为主的顺序分配 row major order以列为主的顺序分配 column major order 三角矩阵 truangular matrix对称矩阵 symmetric matrix稀疏矩阵 sparse matrix转置矩阵 transposed matrix链表 linked list线性链表 linear linked list单链表 single linked list多重链表 multilinked list循环链表 circular linked list双向链表 doubly linked list十字链表 orthogonal list广义表 generalized list链 link指针域 pointer field链域 link field头结点 head 头指针 head 尾指针 tail 串 string node pointer pointer空白(空格)串blank string 空串(零串) null string子串 substring树 tree子树 subtree森林 forest根 root叶子结点深度层次双亲孩子leaf node depth level parents children兄弟 brother祖先 ancestor子孙 descentdant二叉树 binary tree平衡二叉树 banlanced binary tree 满二叉树 full binary tree彻底二叉树 complete binary tree遍历二叉树 traversing binary tree 二叉排序树 binary sort tree二叉查找树 binary search tree线索二叉树 threaded binary tree 哈夫曼树 Huffman tree有序数 ordered tree无序数 unordered tree判定树 decision tree双链树 doubly linked tree数字查找树 digital search tree树的遍历 traversal of tree先序遍历 preorder traversal中序遍历 inorder traversal后序遍历 postorder traversal图 graph子图 subgraph有向图无向图彻底图连通图digraph(directed graph) undigraph(undirected graph) complete graphconnected graph非连通图 unconnected graph强连通图 strongly connected graph 弱连通图 weakly connected graph 加权图 weighted graph有向无环图 directed acyclic graph 稀疏图 spares graph稠密图 dense graph重连通图 biconnected graph二部图 bipartite graph边 edge顶点 vertex弧 arc路径 path回路(环) cycle弧头弧尾源点终点汇点headtailsource destination sink权 weight连接点 articulation point 初始结点 initial node终端结点 terminal node相邻边 adjacent edge相邻顶点 adjacent vertex 关联边 incident edge入度 indegree出度 outdegree最短路径 shortest path有序对 ordered pair无序对 unordered pair简单路径简单回路连通分量邻接矩阵simple pathsimple cycle connected component adjacency matrix邻接表 adjacency list邻接多重表 adjacency multilist遍历图 traversing graph生成树 spanning tree最小(代价)生成树 minimum(cost)spanning tree生成森林 spanning forest拓扑排序 topological sort偏序 partical order拓扑有序 topological orderAOV 网 activity on vertex networkAOE 网 activity on edge network关键路径 critical path匹配 matching最大匹配 maximum matching增广路径 augmenting path增广路径图 augmenting path graph查找 searching线性查找(顺序查找) linear search (sequential search)二分查找 binary search分块查找 block search散列查找 hash search平均查找长度 average search length散列表 hash table散列函数 hash funticion直接定址法 immediately allocating method 数字分析法 digital analysis method平方取中法 mid-square method折叠法 folding method除法 division method随机数法 random number method排序 sort内部排序 internal sort外部排序 external sort插入排序 insertion sort随小增量排序 diminishing increment sort 选择排序 selection sort堆排序 heap sort快速排序归并排序基数排序外部排序quick sort merge sortradix sort external sort平衡归并排序 balance merging sort二路平衡归并排序 balance two-way merging sort 多步归并排序 ployphase merging sort置换选择排序 replacement selection sort文件 file主文件 master file顺叙文件 sequential file索引文件 indexed file索引顺叙文件 indexed sequential file索引非顺叙文件 indexed non-sequential file直接存取文件 direct access file多重链表文件 multilist file倒排文件 inverted file目录结构 directory structure树型索引 tree index。
ZEMAX中如何优化非序列光学系统翻译
ZEMAX中如何优化非序列光学系统翻译在ZEMAX中,优化非序列光学系统的一般步骤如下:
1. 打开非序列光学系统:首先,在ZEMAX主界面上点击“File”菜单,然后选择“New Non-Sequential System”选项,创建一个新的非序
列光学系统。
2. 添加和设置非序列组件:在非序列光学系统中,可以通过点击“Insert”菜单,选择不同的组件类型来添加非序列光学元件,例如透镜、镜面、光栅等。
选择组件后,可以通过双击该组件来进行设置,包括位置、旋转角度、材料等。
5. 运行优化:在“Analysis”菜单中选择“Optimization/Global”
选项,打开全局优化设置窗口。
在该窗口中,可以选择优化方法、停止条
件等,并点击“Run”按钮运行优化。
6. 分析优化结果:优化完成后,可以通过查看优化结果来分析系统
的表现。
可以在“Results”菜单中选择“Optimization”选项,查看优
化结果报告和优化变量结果。
以上是在ZEMAX中优化非序列光学系统的一般步骤。
根据具体的光学
系统和优化需求,可能需要进行更详细的设置和调整。
基于Isight和Abaqus缩短涡轮叶片燕尾榫结构优化设计周期
Shortening the Optimization Design Cycle of Dovetail Geometries of Turbine Blades Based on Isight and AbaqusYan-fei YuWei Zhang(Dassault Syst èmes)Abstract:In this paper,Abaqus software is used to analyze the minimum contact pressure and stress around the dovetail of typical turbine blades,and the simulation process automation and optimization design are studied based on the multidisciplinary optimization design platform Isight,in order to find an efficient optimization design scheme on the premise of meeting the design requirements.At the beginning of the design,a variety of algorithms provided by Isight were used for optimization design,and the optimization results and time of different algorithms were compared.It was found that although the optimization time of Nonlinear Sequential Quadratic Programming (NLPQLP)and Downhill Simplex was short,the optimization results fell into local optimization,and the optimization results of Multi-Island Genetic Algorithm (MIGA)and the Non-dominated Sorting Genetic Algorithm (NSGA-II)were ideal,but the optimization efficiency is low.On this basis,two improvement schemes are proposed.First,based on the tools provided by Isight,the Optimal Latin Hypercube is used to collect design samples to create an agent model,and then the agent model is used for further optimization.In the second way,a combination optimization strategy is adopted.First,MIGA or NSGA-II is used for a small amount of global optimization,and then the optimization results are used as the initial scheme for the next optimization.NLPQLP and Downhill Simplex are used for local optimization.Finally,the optimization results and efficiency of various schemes are compared and evaluated.Keywords:Downhill-Simplex;NLPQLP;NSGA-II;MIGA;Kriging;CPRESS;Von-Mises摘要:采用Abaqus 软件对典型涡轮叶片燕尾榫结构周围的最小接触压力和应力进行有限元分析,并基于Isight 软件进行仿真流程自动化和优化设计研究,以期在满足设计要求的前提下,找到一种高效的优化设计方案。
(完整word版)ZEMAX中如何优化非序列光学系统(翻译)
ZEMAX中如何优化非序列光学系统(翻译)优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。
本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。
推荐的方法如下:The recommended approach is:∙在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。
∙使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。
这些'Moment of Illumination' 数据优化起来比任何特定的像素点的值平缓的多。
∙在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammeroptimizers)提炼结果。
正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。
首先使用正交下降优化法。
作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。
Damped Least Squares vs Orthogonal DescentZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。
DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。
这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。
然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。
Multiobjective optimization using non-dominated sorting in genetic algorithms
ZEMAX主要功能介绍
or mixed sequential/non-sequential mode
编辑框(editors)
光学系统结构编辑框 Lens data editor
优化函数编辑框 多重结构编辑框 公差数据编辑框 附加数据编辑框
Merit Function editor Multi-configuration editor Tolerance data editor Extra data editor
光学设计建模——一般光学系统设计
1.系统要求
焦距:f’=9mm • 系统参数: F#: 4 视场:2ω=40度 • 要求所有视场在67.5lp/mm处
MTF〉0.3
选择初始结构
《光学设计手册》(李士贤,郑乐年编) 1990版 P311: 28.25 3.7 ZK5 焦距:f’=74.98mm -781.44 6.62 F#: 3.5 -42.885 1.48 F6 视场:2ω=56度 28.5 4.0
sprintf(szBuffer,"GetMulticon,%i,%i",1,1);
将用户命令写入存储器,准备发送 PostRequestMessage(szBuffer,szBuffer); 发送第一个存储器中的命令,并将返回结果存到第二个存储器 num_config=atoi(GetString(szBuffer,1,szSub));
干涉系统仿真设计
导入透镜系统
系统翻转:Tools——〉Reverse Element
添加45度倾斜平面镜 ——Tools——〉Add Fold Mirror
添加并完成第一光路
添加第二光路——多重结构
基于SVM的输变电线路故障原因分析
输变电线路的故障类型多种多样,常见的有短路、断路、过载、接地等。不同故障类型对输变电线路的影响和危 害程度也不同,因此需要对不同的故障类型进行分类和分析。
特征提取
针对不同的故障类型,需要提取相应的故障特征。例如,针对短路故障,可以提取电流、电压等电气特征;针对 断路故障,可以提取线路温度、负荷等特征。通过对这些特征进行提取和预处理,可以为后续的SVM分类提供输 入数据。
现更准确的故障分类和识别。
THANK S感谢观看
故障原因与特征关系分析
总结词
通过对输变电线路故障样本的特征进行 分析,可以揭示不同故障原因与特征之 间的关系,为后续的故障诊断和预测提 供依据。
VS
详细描述
故障原因与特征关系分析,主要是通过收 集输变电线路的故障样本,提取样本的特 征,并建立故障原因与特征之间的关联模 型,用于后续的故障诊断和预测。
02
基于svm的输变电线路故障分类
支持向量机原理
基本思想
支持向量机(SVM)是一种二分类模型,其主要思想是寻找一个最优超平面,使得该超 平面在最大化分类间隔的同时,将两类样本点完全分隔。SVM模型的目标是求解出这个 最优超平面。
模型构建
SVM模型通过定义核函数(kernel function)将输入空间映射到一个高维特征空间,然 后在特征空间中构建分类器。常见的核函数包括线性核、多项式核、径向基核(RBF)等 。
故障预防措施建议
总结词
基于对输变电线路故障原因的分析,提出相 应的故障预防措施建议,以降低故障发生的 概率,提高输变电线路的可靠性和稳定性。
详细描述
通过对输变电线路故障原因的分析,可以提 出相应的预防措施建议,例如加强设备的维 护和检修、优化线路布局等,以降低故障发 生的概率,提高输变电线路的可靠性和稳定 性。
ZEMAX中如何优化非序列光学系统(翻译)
ZEMAX中如何优化非序列光学系统(翻译)优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。
本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。
推荐的方法如下:The recommended approach is:∙在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。
∙使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。
这些'Moment of Illumination' 数据优化起来比任何特定的像素点的值平缓的多。
∙在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammeroptimizers)提炼结果。
正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。
首先使用正交下降优化法。
作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。
Damped Least Squares vs Orthogonal DescentZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。
DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。
这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。
然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。
10.涡轮增压柴油机MPC增压系统优化设计
涡轮增压柴油机MPC增压系统优化设计 Optimum Design of Turbocharged Diesel Engine MPCSystem杨守平张付军(北京理工大学军用车辆动力系统技术国防重点学科实验室,北京 100081)摘 要:为了充分利用柴油机的排气能量,改善柴油机动力性能,开展增压系统类型和排气管结构参数的优化设计研究具有明显的工程意义。
采用GT-POWER软件建立某V型八缸涡轮增压柴油机模型,并进行实验校核。
使用试验设计模块(DOE)选取对柴油机动力性能影响最大的MPC增压系统结构参数,并采用优化设计模块(Optimizer)确定结构参数。
通过对采用定压、脉冲、MPC三种增压系统的柴油机外特性的仿真计算与对比,MPC增压系统能够实现柴油机全转速范围内油耗的最优化。
从涡轮前排气压力波形可以看出,设计的MPC增压系统改善了1缸和2缸之间的排气干涉。
关键词: 涡轮增压柴油机;MPC;优化;GT-POWERAbstract:In order to make full use of exhaust gas energy, to improve the power performance of diesel engine, the types of turbocharged system and exhaust pipe structural parameters optimum design is of obvious engineering importance. A V8 turbocharged diesel engine model is built using GT-POWER software, which is validated by experimental data. The most influencing MPC structural parameters on diesel engine power performance are chosen by using the design of experiment module (DOE), and the final structural parameters are decided by using its optimization module (Optimizer). Finally, the full load performance of the diesel engine using isotonic, pulse and MPC turbocharged systems are simulated and analyzed respectively, which indicates that its fuel economy within whole engine speed range is optimized. The exhaust gas interference between cylinder 1 and cylinder 2 is greatly improved from pressure wave before the turbine.Key words:turbocharged diesel engine; MPC; optimize; GT-POWER1 引言废气涡轮增压器是利用发动机的排气能量来驱动的,所以涡轮增压发动机的增压效果,除了涡轮增压器的良好设计以外,在很大程度上还取决于发动机排气系统的设计,因为排气系统的设计合理与否对发动机排气能量的利用有着重要的影响。
柱面镜扩束系统
柱⾯镜扩束系统柱⾯镜扩束系统⼀、实验背景ZEMAX 是⼀套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在⼀起,它能够在光学系统设计中实现建模、分析和其他的辅助功能。
ZEMAX中有很多功能能够通过选择对话框和下拉菜单来实现。
同时,也提供快捷键以便快速使⽤菜单命令,ZEMAX 不只是透镜设计软件⽽已,更是全功能的光学设计分析软件,具有直观、功能强⼤、灵活、快速、容易使⽤等优点。
ZEMAX功能说明:1、序列性( Sequential )光线追迹⼤多数的成像系统都可由⼀组光学表⾯来描述,光线按照表⾯的顺序进⾏追迹。
如相机镜头、望远镜镜头、显微镜镜头等。
ZEMAX 拥有很多优点,如光线追迹速度快、可以直接优化并进⾏公差计算。
ZEMAX 中的光学表⾯可以是反射⾯、折射⾯或绕射⾯,也可以创建因光学薄膜造成不同穿透率的光学⾯特性;表⾯之间的介质可以是等向性的,如玻璃或空⽓,也可以是任意的渐变折射率分布,折射率可以是位置、波长、温度或其它特性参数的函数。
同时也⽀持双折射材料,其折射率是偏振态和光线⾓度的函数。
在 ZEMAX 中所有描述表⾯的特性参数包括形状、折射、反射、折射率、渐变折射率、温度系数、穿透率和绕射阶数都可以⾃⾏定义。
在 Sequential的光源追迹中,光源由物⾯上的视场或Bitmap扩展光源定义。
有常规的点光源,视场点可由⾓度、物⾼、实际像⾼或近轴像⾼来定义;点光源可以⽤不同权重定义,还可以分别指定每个光源的渐晕,进⽽调整不同视场的相对照度或F/#。
ZEMAX也⽀持像散或椭圆形状的⼆极体光源及扩展光源,这些光源允许使⽤者⽤ASCII码⾃⾏定义的,它类似于Bitmap 图形,或⽤标准的Windows BMP或JPG格式⽽且各个象素上的光强度可以是不同的。
2、⾮序列性( Non-Sequential )光线追迹很多重要的光学系统不能⽤ Sequential 光线追迹的模式描述,例如复杂的棱镜、光机、照明系统、微表⾯反射镜、⾮成像系统或任意形状的对象等,此外散射和杂散光也不能⽤序列性分析模式。
ZEMAX软件基础介绍
Zemax软件的介绍ZEMAX是美国Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。
ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。
1主要特色1.1分析提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP,*.JPG...等,也可存成文字文件*.txt。
1.2优化表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。
1.3公差分析表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。
1.4报表输出多种图形报表输出,可将结果存成图文件及文字文件。
2应用领域含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。
Zemax软件的界面1Zemax软件的工作窗口菜单栏工具栏LDE表面类型曲率半径厚度玻璃半口径Figure 1 Zemax默认的工作窗口2Zemax透镜数据编辑器(LDE)2.1表面类型Zemax在标准面型下有平面、球面和二次曲面等选项。
LDE的Surface Type(表面类型)栏分为两列,左边一列分为OBJ、STO 和IMA三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。
默认的表面类型是标准型,用Standard表示。
OBJ即物面被默认为0面。
表格 1 不同表面的二次曲面系数2.2表面的曲率半径Zemax中面的曲率半径有正负之分。
NlcOptim包:非线性优化与非线性约束的解决方案说明书
Package‘NlcOptim’October12,2022Title Solve Nonlinear Optimization with Nonlinear ConstraintsVersion0.6Author Xianyan Chen<**************>,Xiangrong Yin<********************>Maintainer Xianyan Chen<**************>Description Optimization for nonlinear objective and constraint functions.Linear or nonlinear equal-ity and inequality constraints are allowed.It accepts the input parameters as a constrained matrix. Depends MASS,R(>=3.2.2)License GPL-3LazyData trueImports quadprogRoxygenNote6.0.1NeedsCompilation noRepository CRANDate/Publication2019-01-1815:00:31UTCR topics documented:solnl (1)Index7 solnl Solve Optimization problem with Nonlinear Objective and ConstraintsDescriptionSequential Quatratic Programming(SQP)method is implemented tofind solution for general non-linear optimization problem(with nonlinear objective and constraint functions).The SQP method1can befind in detail in Chapter18of Jorge Nocedal and Stephen J.Wright’s book.Linear or nonlin-ear equality and inequality constraints are allowed.It accepts the input parameters as a constrained matrix.The function solnl is to solve generalized nonlinear optimization problem:minf(x)s.t.ceq(x)=0c(x)≤0Ax≤BAeqx≤Beqlb≤x≤ubUsagesolnl(X=NULL,objfun=NULL,confun=NULL,A=NULL,B=NULL,Aeq=NULL,Beq=NULL,lb=NULL,ub=NULL,tolX=1e-05,tolFun=1e-06,tolCon=1e-06,maxnFun=1e+07,maxIter=4000)ArgumentsX Starting vector of parameter values.objfun Nonlinear objective function that is to be optimized.confun Nonlinear constraint function.Return a ceq vector and a c vector as nonlinear equality constraints and an inequality constraints.A A in the linear inequality constraints.B B in the linear inequality constraints.Aeq Aeq in the linear equality constraints.Beq Beq in the linear equality constraints.lb Lower bounds of parameters.ub Upper bounds of parameters.tolX The tolerance in X.tolFun The tolerance in the objective function.tolCon The tolenrance in the constraint function.maxnFun Maximum updates in the objective function.maxIter Maximum iteration.ValueReturn a list with the following components:par The optimum solution.fn The value of the objective function at the optimal point.counts Number of function evaluations,and number of gradient evaluations.lambda Lagrangian multiplier.grad The gradient of the objective function at the optimal point.hessian Hessian of the objective function at the optimal point.Author(s)Xianyan Chen,Xiangrong YinReferencesNocedal,Jorge,and Stephen Wright.Numerical optimization.Springer Science&Business Media, 2006.Exampleslibrary(MASS)###ex1objfun=function(x){return(exp(x[1]*x[2]*x[3]*x[4]*x[5]))}#constraint functionconfun=function(x){f=NULLf=rbind(f,x[1]^2+x[2]^2+x[3]^2+x[4]^2+x[5]^2-10)f=rbind(f,x[2]*x[3]-5*x[4]*x[5])f=rbind(f,x[1]^3+x[2]^3+1)return(list(ceq=f,c=NULL))}x0=c(-2,2,2,-1,-1)solnl(x0,objfun=objfun,confun=confun)####ex2obj=function(x){return((x[1]-1)^2+(x[1]-x[2])^2+(x[2]-x[3])^3+(x[3]-x[4])^4+(x[4]-x[5])^4)}#constraint functioncon=function(x){f=NULLf=rbind(f,x[1]+x[2]^2+x[3]^3-2-3*sqrt(2))f=rbind(f,x[2]-x[3]^2+x[4]+2-2*sqrt(2))f=rbind(f,x[1]*x[5]-2)return(list(ceq=f,c=NULL))}x0=c(1,1,1,1,1)solnl(x0,objfun=obj,confun=con)##########ex3obj=function(x){return((1-x[1])^2+(x[2]-x[1]^2)^2)}#constraint functioncon=function(x){f=NULLf=rbind(f,x[1]^2+x[2]^2-1.5)return(list(ceq=NULL,c=f))}x0=as.matrix(c(-1.9,2))obj(x0)con(x0)solnl(x0,objfun=obj,confun=con)##########ex4objfun=function(x){return(x[1]^2+x[2]^2)}#constraint functionconfun=function(x){f=NULLf=rbind(f,-x[1]-x[2]+1)f=rbind(f,-x[1]^2-x[2]^2+1)f=rbind(f,-9*x[1]^2-x[2]^2+9)f=rbind(f,-x[1]^2+x[2])f=rbind(f,-x[2]^2+x[1])return(list(ceq=NULL,c=f))}x0=as.matrix(c(3,1))solnl(x0,objfun=objfun,confun=confun)##############ex5rosbkext.f<-function(x){n<-length(x)sum(100*(x[1:(n-1)]^2-x[2:n])^2+(x[1:(n-1)]-1)^2) }n<-2set.seed(54321)p0<-rnorm(n)Aeq<-matrix(rep(1,n),nrow=1)Beq<-1lb<-c(rep(-Inf,n-1),0)solnl(X=p0,objfun=rosbkext.f,lb=lb,Aeq=Aeq,Beq=Beq)ub<-rep(1,n)solnl(X=p0,objfun=rosbkext.f,lb=lb,ub=ub,Aeq=Aeq,Beq=Beq) ##############ex6nh<-vector("numeric",length=5)Nh<-c(6221,11738,4333,22809,5467)ch<-c(120,80,80,90,150)mh.rev<-c(85,11,23,17,126)Sh.rev<-c(170.0,8.8,23.0,25.5,315.0)mh.emp<-c(511,21,70,32,157)Sh.emp<-c(255.50,5.25,35.00,32.00,471.00)ph.rsch<-c(0.8,0.2,0.5,0.3,0.9)ph.offsh<-c(0.06,0.03,0.03,0.21,0.77)budget=300000n.min<-100relvar.rev<-function(nh){rv<-sum(Nh*(Nh/nh-1)*Sh.rev^2)tot<-sum(Nh*mh.rev)rv/tot^2}relvar.emp<-function(nh){rv<-sum(Nh*(Nh/nh-1)*Sh.emp^2)tot<-sum(Nh*mh.emp)rv/tot^2}relvar.rsch<-function(nh){rv<-sum(Nh*(Nh/nh-1)*ph.rsch*(1-ph.rsch)*Nh/(Nh-1)) tot<-sum(Nh*ph.rsch)rv/tot^2}relvar.offsh<-function(nh){rv<-sum(Nh*(Nh/nh-1)*ph.offsh*(1-ph.offsh)*Nh/(Nh-1)) tot<-sum(Nh*ph.offsh)rv/tot^2}nlc.constraints<-function(nh){h<-rep(NA,13)h[1:length(nh)]<-(Nh+0.01)-nhh[(length(nh)+1):(2*length(nh))]<-(nh+0.01)-n.minh[2*length(nh)+1]<-0.05^2-relvar.emp(nh)h[2*length(nh)+2]<-0.03^2-relvar.rsch(nh)h[2*length(nh)+3]<-0.03^2-relvar.offsh(nh)return(list(ceq=NULL,c=-h))}nlc<-function(nh){h<-rep(NA,3)h[1]<-0.05^2-relvar.emp(nh)h[2]<-0.03^2-relvar.rsch(nh)h[3]<-0.03^2-relvar.offsh(nh)return(list(ceq=NULL,c=-h))}Aeq<-matrix(ch/budget,nrow=1)Beq<-1A=rbind(diag(-1,5,5),diag(1,5,5))B=c(-Nh-0.01,rep(n.min-0.01,5))solnl(X=rep(100,5),objfun=relvar.rev,confun=nlc.constraints,Aeq=Aeq,Beq=Beq) solnl(X=rep(100,5),objfun=relvar.rev,confun=nlc,Aeq=Aeq,Beq=Beq,A=-A,B=-B)Indexsolnl,17。
lighttools基本操作(课)精讲
第一层:类别选单(共6种) 第二层:种类选单 第三层:指令选单
二维几何模型的建立
三维几何模 型的建立
LightTools 模块 组成
1、Core Module:提供了广泛的光学模 块选择方案
系统的建构 布尔运算 交互式3D建模环境的革命性照明 设计软件 包含宏语言和支持COM的界面
不进行焦距渲染
2、将接收面和光源的单位改为光通量
Default (默认值)— Recevier & Source 单位改为Photometric Flux(光通 量) Save:将环境储存成系统内定制
鼠标右键点击Defulats— Save General and Defaults(保存这些设置以供将来练习使用)
何时需要用到LightTools?
每一个需要控制光线的行业里都可以应用!
完美的光学设计解决方案
开始学习Lighttools软件
照明分析的基本架构: 光源 光学 系统 接收器
Monte Carlo 计算 照度图表
确定你的计算机系统
项目 操作系统的要求 处理器 Pentium III, Pentium IV, Pentium M, Xeon,AMD Atholn processors (>1GB)
矩形排列1010个微结构多个zone不可重叠可能导致不准确的模拟结果哪些可以参数化几何形状大小位置外型排列方式突出凹陷xy为表面上得相对坐标轴利用ucs坐标轴参考面dummysurface永远以线构的方式呈现两种参考面平面flatplane通常在设定观察面时会使用到球面sphericalsurface经常使用与于建构复杂的对象二坐标系统lighttools有全局global与用户坐标ucs两种坐标系统两个坐标系统皆遵循右手定则用户坐标系统表面坐标系统ucs每一个表面有属于自己的坐标区域z轴为沿物体外的法线方向可以使用ucs来观察表面坐标位置如何定义ucs可以在view面板上选取ucsaxes面板ucs可以放置在表面或对光线来进行校正与定位
snopt算法的原理
snopt算法的原理SNOPT(Sequential Nonlinear Programming Technique)是一种常用的求解非线性优化问题的算法。
它采用序列化的方法解决非线性规划问题,并在每个序列点上使用全局算法来逼近最优解。
以下是关于SNOPT算法的原理的参考内容:SNOPT算法是基于逐次二次规划(Sequential Quadratic Programming,SQP)的优化算法。
它以信赖域方法为基础,结合了内点法和激励函数的思想。
SNOPT算法的核心思想是通过构造一系列的信赖域子问题来逐步逼近最优解。
它以初始点开始迭代,并通过求解信赖域子问题来对搜索方向进行调整,使目标函数逐渐收敛。
在每一次迭代中,SNOPT算法首先通过求解一个线性化模型来计算搜索方向。
然后,它通过信赖域控制来确保搜索方向在信赖域内。
信赖域控制是指在每次迭代中限制搜索的步长,以保证每一步的目标函数值都能实现减少。
SNOPT算法使用了一种广义的Lagrange函数来描述非线性优化问题。
这个Lagrange函数被分为两部分:主问题和子问题。
主问题是将非线性优化问题转化成一系列子问题,通过求解这些子问题来逼近最优解。
子问题是对应于信赖域模型的最小化问题。
SNOPT算法的求解过程可以分为以下几个步骤:1. 初始化:设置初始点和信赖域半径,准备迭代过程。
2. 计算搜索方向:通过求解线性化模型来计算搜索方向。
3. 信赖域控制:在搜索方向上进行信赖域控制,以确保步长在信赖域内。
4. 更新迭代点:根据得到的搜索方向来更新迭代点,并计算目标函数的值。
5. 判断停止准则:根据预设的停止准则来判断是否达到最优解。
6. 迭代调整:如果停止准则不满足,则调整信赖域半径,并重新执行第2-5步,直到满足停止准则。
SNOPT算法使用了一些高效的数值算法来求解信赖域子问题和线性化模型,如线性化模型的求解采用了广义矩阵求逆技术,信赖域子问题的求解采用了凸二次规划等方法。
Zemax软件设计教程
5. 输入玻璃数据(Entering Glass Data)
6. 输入半径数据(Entering Semi-Diameter)
7. 输入二次曲面数据(Entering Conic Data)
8. 确定光阑面(Defining the Stop Surface)、
2021/10/10
14
Editors
(8)扩展命令菜单(Extensions):用于扩展命令功能,这是ZEMAX的编辑特性。
(9)帮助菜单(Help):提供在线帮助。
2021/10/10
10
文件菜单(File)
2021/10/10
11
Editors
ZEMAX中的editors本质上是为满足透镜设计程序而专门设计的电子数据表:
• Lens Data Editor
Completely sequential: *应用于传统的镜头设计和大多数的成像系统 *应用这种模式时不能进行散射和鬼象分析
Hybrid sequential/non-sequential *应用于有很多序列元件,又有一些非序列元件(比如棱镜或光管)的系统 *必须使用“ports”作为光线进出非序列元件组的端口 Completely non-sequential *应用于照明、散射和杂光分析。光线沿任何物理上有效的路径传输 *这种模式下非序列元件不使用“ports”
15
Graphic and Text windows
ZEMAX的图形和文本窗口都为评价和分析光学系统的性能提供 了有力的帮助。
ZEMAX的有些功能只支持图形窗口(比如layout,3D layout) , 有些功能只支持文本窗口(如System Data,Prescription Data,Ray Trace,Seidel Coefficients),有些功能既有图形窗口也有文本窗 口(如Ray Fan,OPD Fan,Spot Diagram)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functionsDae Wook Kim,1* Sug-Whan Kim2and James H. Burge11College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA2Space Optics Laboratory, Dept. of Astronomy, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749,Republic of Korea*letter2dwk@Abstract: Optical surfaces can be accurately figured by computercontrolled optical surfacing (CCOS) that uses well characterized sub-diameter polishing tools driven by numerically controlled (NC) machines.The motion of the polishing tool is optimized to vary the dwell time of thepolisher on the workpiece according to the desired removal and thecalibrated tool influence function (TIF). Operating CCOS with small andvery well characterized TIF achieves excellent performance, but it takes along time. This overall polishing time can be reduced by performingsequential polishing runs that start with large tools and finish with smallertools. In this paper we present a variation of this technique that uses a set ofdifferent size TIFs, but the optimization is performed globally – i.e.simultaneously optimizing the dwell times and tool shapes for the entire setof polishing runs. So the actual polishing runs will be sequential, but theoptimization is comprehensive. As the optimization is modified from theclassical method to the comprehensive non-sequential algorithm, theperformance improvement is significant. For representative polishing runswe show figuring efficiency improvement from ~88% to ~98% in terms ofresidual RMS (root-mean-square) surface error and from ~47% to ~89% interms of residual RMS slope error.©2009 Optical Society of AmericaOCIS codes: (220.0220) Optical design and fabrication; (220.4610) Optical fabrication;(220.5450) PolishingReferences and links1. R. A. Jones, “Computer control for grinding and polishing,” Photon. Spectra, 34–39 (1963).2. R. Aspden, R. McDonough, and F. R. Nitchie, Jr., “Computer assisted optical surfacing,” Appl. Opt. 11(12),2739–2747 (1972).3. R. E. Wagner, and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,”Appl. Opt. 13(7), 1683–1689 (1974).4. R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 236–240 (1983).5. R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng. 25, 785–790 (1986).6. J. R. Johnson, and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” in Manufacturingand metrology tooling for the Solar-A Soft X-Ray Telescope, W.R. Sigman, L.V. Burns, C.G. Hull-Allen, A.F.Slomba, and R.G. Kusha, eds., Proc. SPIE 1333, 106–117 (1990).7. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003). 8. H. M. Pollicove, E. M. Fess, and J. M. Schoen, “Deterministic manufacturing processes for precision opticalsurfaces,” in Window and Dome Technologies VIII, R. W. Tustison, eds., Proc. SPIE 5078, 90–96 (2003).9. D. W. Kim, and S. W. Kim, “Static tool influence function for fabrication simulation of hexagonal mirrorsegments for extremely large telescopes,” Opt. Express 13(3), 910–917 (2005).10. S. D. Jacobs, “International innovations in optical finishing,” in Current Developments in Lens Design andOptical Engineering V, P.Z. Mouroulis, W.J. Smith, and R.B. Johnson, eds., Proc. SPIE 5523, 264–272 (2004).11. J. H. Burge, S. Benjamin, D. Caywood, C. Noble, M. Novak, C. Oh, R. Parks, B. Smith, P. Su, M. Valente, andC. Zhao, “Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces,” in Optical Manufacturingand Testing VIII, J. H. Burge; O. W. Fähnle and R. Williamson, eds., Proc. SPIE 7426, 74260L1–12 (2009).#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009 (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 2185012. M. Johns, “The Giant Magellan Telescope (GMT),” in Extremely Large Telescopes: Which Wavelengths? T. E.Andersen, eds., Proc. SPIE 6986, 698603 1–12 (2008).13. J. Nelson, and G. H. Sanders, “The status of the Thirty Meter Telescope project,” in Ground-based and AirborneTelescopes II, L. M. Stepp and R. Gilmozzi, eds., Proc. SPIE 7012, 70121A1–18 (2008).14. D. D. Walker, A. P. Doel, R. G. Bingham, D. Brooks, A. M. King, G. Peggs, B. Hughes, S. Oldfield, C. Dorn, H.McAndrews, G. Dando, and D. Riley, “Design Study Report: The Primary and Secondary Mirrors for theProposed Euro50 Telescope” (2002),/papers/dl/New%20Study%20Report%20V%2026.pdf.15. T. Andersen, A. L. Ardeberg, J. Beckers, A. Goncharov, M. Owner-Petersen, H. Riewaldt, R. Snel, and D.Walker, “The Euro50 Extremely Large Telescope,” in Future Giant Telescopes, J.R.P. Angel and R. Gilmozzi, eds., Proc. SPIE 4840, 214–225 (2003).16. A. Ardeberg, T. Andersen, J. Beckers, M. Browne, A. Enmark, P. Knutsson, and M. Owner-Petersen, “FromEuro50 towards a European ELT,” in Ground-based and Airborne Telescopes, L. M. Stepp, eds., Proc. SPIE 6267, 626725 1–10 (2006).17. R. E. Parks, “Specifications: Figure and Finish are not enough,” in An optical Believe It or Not: Key LessonsLearned, M. A. Kahan, eds., Proc. SPIE 7071, 70710B1–9 (2008).18. J. M. Hill, “Optical Design, Error Budget and Specifications for the Columbus Project Telescope,” in AdvancedTechnology Optical Telescopes IV, L. D. Barr, eds., Proc. SPIE 1236, 86–107 (1990).19. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing toolinfluence functions,” Opt. Express 17(7), 5656–5665 (2009).20. A. P. Bogodanov, “Optimizing the technological process of automated grinding and polishing of high-precisionlarge optical elements with a small tool,” Sov. J. Opt. Technol. 52, 409–413 (1985).21. C. L. Carnal, C. M. Egert, and K. W. Hylton, “Advanced matrix-based algorithms for ion beam milling of opticalcomponents,” in Current Developments in Optical Design and Optical Engineering II, R. E. Fischer and W. J.Smith, eds., Proc. SPIE 1752, 54–62 (1992).22. M. Negishi, M. Ando, M. Takimoto, A. Deguchi, and N. Nakamura, “Studies on super-smooth polishing (2ndreport),” J. Jpn. Soc. Precis. Eng. 62, 408–412 (1996).23. H. Lee, and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetricalaspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in C (Cambridge, 1988)25. C. Bob, Crawford, Don Loomis, Norm Schenck, and Bill Anderson, Optical Engineering and FabricationFacility, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, (personal communication, 2008).26. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Edge tool influence function library using the parametricedge model for computer controlled optical surfacing,” in Optical Manufacturing and Testing VIII, J. H. Burge;O. W. Fähnle and R. Williamson, Proc. SPIE 7426, 74260G1–12 (2009).27. P. R. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6 m Solar Telescope in Big Bear – theNST,” J. Korean Astron. Soc. 35, 1–8 (2002).28. A. Heller, “Safe and sustainable energy with LIFE” (2009), https:///AprMay09/pdfs/05.09.02.pdf.29. H. H. Barrett, and K. J. Myers, Foundations of Image Science (Wiley, 2004)30. D. W. Kim, and S. W. Kim, “Novel simulation technique for efficient fabrication of 2m class hexagonalsegments for extremely large telescope primary mirrors,” in Optical Design and Testing II, Y. Wang, Z. Weng, S. Ye and J. M. Sasian, eds., Proc. SPIE 5638, 48–59 (2005).1. IntroductionMany computer controlled optical surfacing (CCOS) processes have been developed and used since 1963 [1–8]. These CCOS processes are usually aimed at three characteristics, i) low tooling overhead, ii) deterministic material removal and iii) embedded process control intelligence [9,10].These CCOS techniques have been successfully used for fabrication of large aspheric optical surfaces, including off-axis segments [4–8,11]. Nevertheless, further development in the efficiency and performance of the CCOS techniques is highly desired to meet the demanding target specifications of the next generation Extremely Large Telescope (ELT) projects, such as those for Giant Magellan Telescope (GMT), Thirty Meter Telescope (TMT), and European Extremely Large Telescope (EELT) [12–16].Those ELTs use giant segmented primary mirrors with hundreds of square meter collecting area, and may have hundreds of segments. Each meter-class segment is to have the surface form accuracy of better than 18nm peak-to-valley [14]. Such a primary mirror system is to be phased and aligned to the precision of about 10-20nm RMS (root-mean-square) [15]. Also, mid-spatial frequency error (a.k.a. tool marks) suppression on these precision optical surfaces is important for maximum performance (i.e. less scattering, well defined point spread function) of the optical systems [17]. Most of the recent large optical surfaces have been#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009 (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21851polished until the spatial frequencies of the surface errors satisfied a target structure functionor power spectrum density (PSD) specification to quantify the target form accuracy as a function of spatial frequencies [17,18]. Thus, the improved CCOS technique must provide anefficient fabrication process for a mass-fabrication of precision optical surfaces while minimizing the mid-spatial frequency error.In a conventional CCOS process, a dwell time map (i.e. ablation time as a function of position on the workpiece) of a tool influence function (TIF) is optimized as the major optimization parameter to achieve a target material removal (i.e. target error map). The TIF represents instantaneous material removal for a tool with specific motion. Then a numerically controlled polishing machine executes the optimized dwell time map on the workpiece by altering the transverse speed of the tool [1–7].The convergence rate and overall efficiency of CCOS figuring are optimized using asequence of polishing runs, where the largest scale irregularities are addressed by large tools. Smaller tools are used to correct small scale irregularities and tool marks from the larger tools. This method works, but may not be optimal.The new CCOS process suggested here uses a non-sequential optimization technique utilizing multiple TIFs simultaneously in a single CCOS run optimization, while the conventional CCOS processes use TIFs one by one in a sequential manner. The actual polishing runs are still to be sequential under the guidance of comprehensive optimization. This new technique, which enables the ensemble of various TIFs, forms an attractive solution for the mass fabrication capability of high quality optical surfaces.The theoretical background for the non-sequential optimization technique is presented inSection 2. We introduce, in Section 3, the non-sequential optimization engine in detail, and discuss its novelty over the conventional methods. A reference TIF library (i.e. collection of different TIFs) is provided also. Simulation results are presented to demonstrate the performance of the new technique in Section 4. Section 5 summarizes the implications.2. Theoretical background2.1 Generation of the TIF libraryA TIF is the material removal foot-print for a given tool and tool motion, which can becalculated based on Preston’s equation [9], but is usually measured directly. Because the material removal process is affected by the workpiece motion and edge effects, which are the function of tool position on the workpiece, the TIF is also changed according to its center position on the workpiece [19]. For instance, the relative motion between the tool and workpiece varies as the tool moves on the workpiece. Also, the tool removes more material near the workpiece edge as the tool overhangs the workpiece [19].We define a TIF library as a collection of these TIFs depending on tool shape, tool motion,and lap materials. The TIFs are parameterized as functions of positions on the workpiece. The shape, size and magnitude of the TIFs are directly calculated from these tool configuration parameters. Two common edge TIFs from a circular tool with orbital and spin tool motion are depicted in Fig. 1 [19]. The TIF library for various tool configuration cases is provided in Appendix A.Fig. 1. Orbital (left) and spin (right) tool motion with their parametric edge TIFs [19].#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009 (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 218522.2 Dwell time map optimization using merit functionsOne key factor of successful CCOS processes is the dwell time optimization technique which provides the closest (ideally equal) removal map to the target removal map (e.g. measured errors on the optical surface). This optimization is also known as a de-convolution of the target removal map using a TIF. A TIF can be regarded as an impulse response of a tool with a given tool motion. In other words, a TIF represents the instantaneous material removal for a unit time at a location on the workpiece. The removal map (i.e. accumulated TIFs over the whole workpiece) after the tool finishes its path on the workpiece can be expressed as _(,)__(,)(,,,)workpiece workpiece workpiece workpiece TIF TIF workpiece workpiece Removal map x y Dwell time map x y TIF x y x y =∗∗ (1)where x workpiece , y workpiece are the coordinates on the workpiece, x TIF , y TIF the coordinates on the TIF, and ** is the two dimensional convolution operator.Because no general solution to the dwell time map in Eq. (1) exists, as briefly explained in Appendix B, finding the best dwell time map solution becomes an optimization problem. There has been a wide range of study for dwell time map optimization techniques (e.g. Fourier transform based algorithms, matrix-based least-squares algorithms) [20–23]. For all optimization techniques, it is very important to define a relevant merit function (i.e. objective function) to search for the optimal solution. The merit function for the non-sequential optimization technique is presented in Section 3.4.3. Non-sequential optimization technique using multiple TIFs3.1 Conventional (i.e. sequential) vs. non-sequential optimization techniqueFor the case of conventional (i.e. sequential) CCOS optimization, a dwell time map for one TIF has been the major search space for the optimal solution. In other words, an optimization engine searches for the optimal dwell time values for a TIF on the workpiece, which gives the best residual error map. After the CCOS run is executed, another (or same) TIF is used for the next dwell time map optimization to attack the residual error map. This sequential process is repeated, usually using successively smaller TIFs until the target specification is achieved. In contrast, the non-sequential optimization approach uses various TIFs in a single optimization, simultaneously. Each TIF has its own dwell time map. Thus, multiple dwell time maps are brought into the non-sequential optimization engine, and optimized to achieve the target removal map. The total removal comes from the combination of all different TIFs and their own dwell time maps. Unlike the conventional technique using TIFs sequentially, different TIFs are used together to support each other in a single optimization. Non-linear optimization allows TIFs with low significance (i.e. ignorable dwell time or removal) to be extracted from the TIF library during the optimization. However, the key difference of the non-sequential technique from the conventional one is not the number of utilized TIFs. The conventional case may use as many TIFs as the non-sequential case in sequential manner. The major improvement comes from considering all TIFs at the same time, so that the optimal combinations of TIFs are used in constructive manner to improve the performance of the CCOS process.For instance, a large square tool with orbital tool motion may be selected to remove most of the low spatial frequency errors on the workpiece. A small TIF from a circular tool with spin tool motion may be chosen with the large square tool TIF as an optimal set to achieve high figuring efficiency (defined in Section 4.1) by removing localized small errors. As a result, the mid-spatial frequency error on the workpiece, often caused by the small tool, can be minimized because the small tool was used only for a short time. Some specialized TIFs such as the parametric edge TIFs in Fig. 1 may be utilized for an edge figuring optimization.In summary, both conventional and non-sequential optimization techniques are used to find an optimal dwell time map solution. However, there are significant differences, which make the non-sequential technique more powerful than the conventional one. The (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21853#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009optimization engine now has wider search space, including tool shape, tool size, tool motion,and so forth. These various tool configuration parameters were formerly the human’s decision in the conventional CCOS technique. Many different combinations of the various TIFs aresimulated to find an optimal TIF set. This technical advance leads to improvements in figuring efficiency and mid-spatial frequency error reduction, which are demonstrated in Section 4.3.2 Non-sequential optimization engine using the gradient search methodThe non-sequential optimization engine was developed using the gradient search (a.k.a.steepest descent) method [24]. The method is known as one of the most simple and straightforward optimization technique which works in search spaces of any number of dimensions. This method presupposes that the gradient of the merit function space at a given point can be computed. It starts at a point, and moves to the next point by minimizing a figure of merit along the line extending from the initial point in the direction of the downhill gradient. This procedure is repeated as many times as required. Because the search space for the non-sequential optimization also has multiple dimensions (i.e. many TIFs with various tool configuration parameters), the gradient descent method is suitable for our application.There are two general weaknesses in the gradient descent method. First, it may take many iterations to converge towards the optimal solution in the search space, especially if the search space has complex variations [24]. This problem can be minimized by putting only reasonable TIFs in the TIF library. For instance, if we put a too small TIF (e.g. 5cm in diameter) in the TIF library to optimize an 8m diameter target removal map, the curvature of the figure of merit values along the 5cm TIF direction may be very shallow compared to the other reasonable size TIF (e.g. 20, 35, or 50cm in diameter) directions. Thus, including a 5cm TIF to the TIF library is inappropriate in this case. Limiting the total number of TIFs in the library improves computing efficiency. We do not rely on especially powerful computers for this work. Most of the optimization runs (including the case study runs in Section 4) are finished in 2-10 minutes on a regular desktop PC. Second, an improper perturbation step to calculate the local gradient may result in poor optimization performance. However, most of the search space dimensions are not a continuous space, but a discrete space depending on the given TIF library. For instance, there are only five available tool sizes (30, 40, 50, 60, and 70cm) in the reference TIF library in Table 3 (Appendix A). Although we carefully claim that the gradient descent method is suitable for this application, we still acknowledge the possibility of undesired optimization results for some special cases. For example, the TIFs are not orthogonal functions. Consequentially, the sequential application of TIFs for the optimization engine may not lead to the global minimum, but to a local minimum. However, we have not yet observed such cases in our trial optimization runs. Some actual optimization results using this optimization method are demonstrated in Section 4.The schematic flow chart for the non-sequential optimization technique is shown in Fig. 2. The TIF library is fed into the non-sequential optimization engine to calculate the optimal dwell time maps for each TIF. More explanation about the TIF library is presented in Section 3.3. In order to calculate the local gradient in the multi-dimensional search space, the optimization engine begins to perturb the dwell time maps, which have a constant value initially. A minimum dwell time is applied during the perturbations to avoid an impractically small dwell time at a position on the workpiece. Because an actual computer controlled polishing machine (CCPM) has its mechanical limitations (e.g. maximum acceleration), the minimum dwell time is set by the CCPM specification. The optimization engine evaluates each TIF to achieve the target removal map for all possible TIF locations on the workpiece. For each trial, the change in the total figure of merit, FOM total in Section 3.4, is recorded to determine the steepest descent case as follows. Using the TIFs with their own dwell time maps for each perturbation case, the expected removal maps are calculated using Eq. (1). The difference between the total expected removal map (i.e. sum of all expected removal maps from each TIF) and the target removal map is the residual error map. This residual error map is used to evaluate the FOM total. After all TIFs (i.e. dimensions of the search space) have been#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009 (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21854tried, the optimization engine updates the dwell time maps with the optimal trial, which recorded the steepest improvements in FOM total.Fig. 2. Flow chart for the non-sequential optimization technique using the gradient descentmethodThe optimization engine repeats this procedure in a loop until FOM total reaches the specification or does not decrease anymore (i.e. saturated). The current dwell time maps for each TIF become the optimization result. If these conditions are not met, more TIFs are fed into the TIF library. The TIFs which were hardly used are extracted from the TIF library. Byperforming more rounds of optimization using the updated TIF library, the optimal TIF set with their dwell time maps is determined eventually.3.3 TIF libraryThe search space, including the tool configuration parameters, is defined by the TIF library in practice. Even though infinite numbers of TIFs are possible in theory, the non-sequential optimization engine utilizes the TIFs provided in the library. For instance, a typical pitch tool can be carved into any shape [25]. However, due to the limited resources (e.g. computing power, time), only reasonable TIFs need to be generated and saved in the library. A square tool, a circular tool, and a sector tool (e.g. TIF #7 in Fig. 6, Appendix A) with orbital or spin tool motions may create a sufficient tool shape search space (i.e. TIF library) for most cases. Also, the shop does not need to have a large inventory for all tools in the library. Only some optimal tool sets need to be made and maintained.A complimentary TIF library was generated and provided using various tool shapes, tool motions, and tool sizes as mentioned in Section 2.1. The TIF library can be used as a good reference when one designs a CCOS run using multiple TIFs. The relative rotation speed between the tool and workpiece was changed since it played an important role to determine the TIF shape. These parameters for the TIF library are listed in Table 3 (Appendix A). The tool shape with its static TIF and ring TIF profiles are presented in Fig. 6 (Appendix A). The static TIF shows a material removal map under the tool motion for a unit time without any workpiece motion (i.e. workpiece RPM = 0). The ring TIF is the axisymmetric removal profile when the workpiece also rotates, and is calculated using the relative speed between the tool motion and the workpiece rotation. The ring TIF looks like a ring (i.e. donut) on the workpiece. The ring TIF shape is a function of radial position of the TIF center, ρ, on the workpiece. The ring TIF radial profiles in Fig. 6 are only displayed for ρ = 50, 150, and 250cm. The full TIF library includes the ring TIFs for all ρ values on the workpiece. These two different types of TIFs can be selected depending on the relative speed between the tool and workpiece. If the workpiece motion is slow compared to the tool motion, the static TIFs are used because their shapes do not change significantly by the workpiece motion. However,#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009 (C) 2009 OSA23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21855if the workpiece rotates quickly, then the ring TIFs, which incorporate the workpiece motion effect, are used. Different tool shapes (circle, ellipse, square, sector and so forth) with different tool motions (spin and orbital) were used to generate the TIF library No.1-10. The relative speed between the tool and workpiece motion was changed in TIF library No. 11-20. As shown in the ring TIFs, the removal profiles can be skewed by changing the relative rotation directions between the tool and workpiece. This technique has been often used to correct the edge errors by opticians manually [25]. The circular tool diameter was changed from 70cm to 30cm to show the effect of the tool size in TIF size and magnitude. These TIFs are shown in TIF library No. 21-25. Some TIFs using the parametric edge TIF models [19] are presented in TIF library No. 26-30. More parametric edge TIFs are available in the previous study [26].3.4 Merit functions for the non-sequential optimization techniqueThe non-sequential optimization technique provides an optimal solution which suppresses the mid-spatial frequency error while still maintaining the high figuring efficiency as mentioned in Section 3.1. In order to find the optimal solution, the merit functions must completely represent the residual error map in terms of the RMS of the error map, mid-spatial frequency error, and newly generated local error features. Also, the computational load for the merit function calculations should be minimized, because the calculations are placed in the optimization loop.The figure of merit used for this work combines six different merit functions using RSS (root-sum-square) as follows:_total RMS errors FOM RSS ≡=where C 1-6 is the weighting factors for FOM 1-6. Each FOM i is defined as1FOM RMS of Positive Error Map ≡=2FOM RMS of Negative Error Map ≡=(4)3FOM RMS of x Slope Map ≡= (5)4FOM RMS of y Slope Map ≡= (6)5FOM RMS of xCurvature Map ≡= (7)6FOM RMS of y Curvature Map ≡= (8) where the surface integral limit M represents the error map surface. M + and M- are the error map areas with positive and negative residual error values, respectively. The six weighting factors can be adjusted depending on a specific purpose of a CCOS run as a design parameter. The RMS deviation of the error map is calculated using FOM 1 and FOM 2. FOM 1 is the RMS of the positive error map, where the final surface is still higher than the target surface. FOM 2 is the RMS of the negative error map, where the final surface is lower than the target (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21856#116367 - $15.00 USD Received 28 Aug 2009; revised 30 Oct 2009; accepted 6 Nov 2009; published 18 Dec 2009。