高一数学《函数单调性》优秀说课稿模板

合集下载

《函数单调性》的说课稿

《函数单调性》的说课稿

《函数单调性》的说课稿《函数单调性》的说课稿作为一名优秀的教育工作者,总不可避免地需要编写说课稿,认真拟定说课稿,我们该怎么去写说课稿呢?下面是小编整理的《函数单调性》的说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《函数单调性》的说课稿1今天我要说课的课题是人教版《数学》(基础模块上册)第三章第一节的内容《函数的单调性》。

我将从教材分析;学情分析;教法学法分析;教学过程设计;板书设计五个方面来陈述我对本节课的设计方案。

恳请各位评委老师批评指正。

一、教材分析1、教材的地位和作用①、函数单调性是高中数学中相当重要的一个基础知识点,是已学习过的函数的概念、图象、表示方法等知识的延续和拓展,同时又为后面学习指数函数、对数函数、三角函数奠定了理论基础。

②、是培养学生逻辑推理能力和渗透数形结合思想的重要素材,在整个高中数学中起着承前启后的重要作用。

③、本节中利用函数图象研究函数性质的数形结合思想将贯穿于整个高中数学教学。

④、本节是历年高考的热点,难点问题。

2、教学目标(1)知识目标①、理解函数单调性的概念。

②、掌握判断一些简单函数的单调性的方法;(2)能力目标通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,严密的逻辑思维能力;让学生体会数形结合、类比的数学思想。

(3)情感目标培养学生细心观察、认真分析、严谨论证的良好思维习惯;培养学生勇于探索的精神和善于合作的意识。

3、教学重点和难点教学重点:(1)函数单调性概念的形成,领会函数单调性的实质与应用明确单调性是一个局部的概念。

(2)判断并证明函数的单调性。

教学难点:(1)引导学生归纳并抽象出函数单调性的定义,在学生已有知识的基础上,从学生的学习心理和认知结构出发,教师讲清楚概念的形成过程;(2)根据定义证明简单函数的单调性,学生通过认真观察思考,并通过小组合作探究的办法来实现突破。

二、学情分析在知识准备上学生已经学习了函数的概念,对函数图象的上升和下降已经有了初步的感性认识;掌握了比较大小关系的方法。

函数的单调性说课稿

函数的单调性说课稿

《函数的单调性》说课稿【一】教学背景分析(说教材)本课是人民教育出版社基础模块.数学上册第三章的第一节的内容。

函数的单调性是函数的重要性质,应用非常广泛。

利用函数的单调性定义可以判断某些函数的单调性及单调区间,可以比较两个数的大小,解方程或不等式,求函数的值域或最值等。

在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,而本小节内容,正是初中有关内容的深化、提高。

后面讨论指数函数、对数函数、三角函数的性质时都要用到这个性质。

所以这是非常重要的一个内容,在教材中起到承上启下的作用。

(说学情)函数的单调性是学生在初中学习了函数的概念和基本性质后,又在掌握了求函数的定义域和求值的基础上进行研究的。

由于学生的学习时间不是很长、学习程度较浅,所以在学习过程中难免会出现困难。

为提高学生的学习积极性,本课结合图形,由浅入深,采用数形结合的直观方法。

(说目标)知识目标:理解函数单调性的概念,并学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性。

能力目标:培养学生应用数形结合的思想,观察问题、分析问题的能力。

提高学生利用数学概念进行判断推理的能力。

情感目标:培养学生唯物主义思想观念,通过学生自己对概念的归纳、理解加强学生的自信心。

养成细心观察、认真分析、严谨论证的良好思维习惯。

(说重点、难点)重点:单调函数的概念;难点:函数单调性的判断与证明。

【二】教法学法分析(说教法)本节课主要采用问答式、类比式教学法。

教师在课堂教学中只起着向导作用,让学生在教师的提问中自觉的发现新知,探究新知。

并且加入激励性的语言提高学生学习的积极性,让学生参与知识形成的全过程。

(说学法)通过函数图象的变化趋势,来判断函数的增、减性,然后对图象进行代数分析,得出用定义证明函数单调性的步骤。

【三】教学过程与设计(说教学程序)1、复习回顾,温故知新复习初中时学过的有关函数的增减性的问题一次函数和二次函数在R 上是增函数还是减函数?如何得出函数的增减性?(观察函数图像(图1-1))图1-12、创设情境,设疑导新在学生阅读前提出三个问题:1、增函数、减函数的定义是什么?2、什么叫单调函数、单调区间?3、如何判断简单函数的单调性?阅读自学是学生的薄弱环节,为了锻炼学生的自学能力,本堂课通过三个阅读思考题的提出,引导学生在阅读中学会正确地思考,可以让学生更快进入数学课的氛围,也对新的概念作一个提前了解。

函数单调性说课稿

函数单调性说课稿

五、 学法指导
让学生利用图形直观启迪思维,并通过正、反 例的构造,来完成从感性认识到理性思维的质 的飞跃。 让学生从问题中质疑、尝试、归纳、总结、运 用,培养学生发现问题、研究问题和分析解决 问题的能力。
六、 教 学 过 程
问题一: 请同学们观察下图, 问题一: 请同学们观察下图,指出 该天的气温在如何变化? 该天的气温在如何变化?
二、 教学目标
知识与技能:理解函数单调性的概念, 知识与技能:理解函数单调性的概念,初步掌 握判断函数单调性的方法。 握判断函数单调性的方法。 方法与过程:通过观察、归纳、抽象、概括, 方法与过程:通过观察、归纳、抽象、概括, 自主建构单调函数等概念, 自主建构单调函数等概念,领会数形结合的数 学思想方法,提高发现问题、分析问题、 学思想方法,提高发现问题、分析问题、解决 问题的能力。 问题的能力。 情感态度与价值观:在学习中, 情感态度与价值观:在学习中,体验数学的科 学价值和应用价值,培养善于观察、 学价值和应用价值,培养善于观察、勇于探索 的良好习惯和严谨的科学态度。 的良好习惯和严谨的科学态度。
三、教学重点和难点
教学重点: 教学重点:增(减)函数形式化的定义
教学难点:对增( 教学难点:对增(减)函数形式化的定义的认 识和理解。用定义证明函数的单调性。 识和理解。用定义证明函数的单调性。
四、教学方法
为了更好的把握教学内容的整体性和联系性, 为了更好的把握教学内容的整体性和联系性, 在教学中应启发引导, 在教学中应启发引导,以问题为核心构建课堂 教学,培养问题意识,孕育创新精神, 教学,培养问题意识,孕育创新精神,提出恰 当的、对学生的数学思维有适度启发的问题, 当的、对学生的数学思维有适度启发的问题, 能引导学生的思考和探索活动, 能引导学生的思考和探索活动,使他们经历观 实验、猜测、推理、交流、 察、实验、猜测、推理、交流、反思等理性思 维的基本过程,切实改进学生的学习方法。 维的基本过程,切实改进学生的学习方法。

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)高一数学《函数的单调性》模板篇1下面是小编整理的高一数学《函数的单调性》说课稿模板,希望对大家有所帮助。

一、教材分析1 、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1) 突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

高一上册数学说课稿《函数单调性》

高一上册数学说课稿《函数单调性》

高一上册数学说课稿《函数单调性》教案名称:函数单调性教学目标:1. 理解函数单调性的概念,能够判断函数的单调性。

2. 通过练习题,巩固和应用函数单调性的相关知识。

教学内容:1. 函数单调性的概念。

2. 单调递增和单调递减函数的判断方法。

教学重点:理解函数单调性的概念,能够判断函数的单调性。

教学难点:单调递增和单调递减函数的判断方法。

教学准备:教学课件、教学素材、练习题。

教学过程:1. 引入(5分钟)通过一个简单的例子引入函数单调性的概念,例如:小明每天跑步的时间与距离的关系,将这个关系用一个函数来表示。

让学生思考小明的跑步时间和距离的关系,是否有某种规律可循,引出单调性的概念。

2. 理念讲解(10分钟)向学生介绍函数单调性的概念。

单调递增函数是指函数值随着自变量的增加而增加的函数;单调递减函数是指函数值随着自变量的增加而减少的函数。

通过图像和函数表达式的形式来展示单调递增和单调递减函数的特点。

3. 判断方法(15分钟)讲解判断函数单调性的方法。

对于函数y=f(x),可以通过求导数或者观察函数的图像判断函数的单调性。

如果导数恒大于0,则函数为单调递增函数;如果导数恒小于0,则函数为单调递减函数。

4. 练习(15分钟)布置练习题,让学生应用判断函数单调性的方法来解答问题。

包括计算导数,观察图像等练习。

5. 深化与拓展(10分钟)引导学生思考单调性的实际应用,例如在经济学、物理学中的应用,提高学生对函数单调性的理解和认识。

6. 总结(5分钟)对本节课的内容进行总结,并强调函数单调性在数学中的重要性。

教学资源:教学课件、教学素材、练习题。

教学反思:通过本节课的教学,学生能够理解函数单调性的概念,能够判断函数的单调性,并且能够应用判断函数单调性的方法解决问题。

同时,通过练习题的训练,加深了学生对函数单调性的掌握程度。

在今后的教学中可以注重单调性的拓展应用,丰富教学内容,引发学生对数学的兴趣。

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿一、教学内容分析:函数的单调性是学生在掌握了函数概念等基础知识后,学习函数的第一个性质,主要刻画了函数在某区间上图象的变化趋势(上升或下降),为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、定义域、最大值、最小值等性质中有重要应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

而且在解决解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、教学目标的确定:根据本课教材内容的特点、学生现有知识基础、认知能力以及所任教班级学生的特点,本节课从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的理解;强调判断、证明函数单调性的方法的落实;突出逻辑思维能力、类比化归、数形结合能力的培养。

三、教学诊断分析:在函数单调性这节课中,对于函数的单调性,学生在认知过程中主要存在两个方面的困难:(1)“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难。

困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述。

即把某区间上“随着x 的增大,y 也增大”(单调增)这一特征用该区间上“任意的21x x <,有)()(21x f x f <”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的12x x 、。

(2)利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求对高一的学生同样比较困难。

针对这两方面学生存在的困难,在教学中我所采用的教师启发引导,学生探究学习的教学方法,以及多媒体直观教学和反例的恰当应用,较好的解决了学生在这两方面的困惑。

此外,在教学过程中,单调性定义还需要注意以下易错点和疑点:(1)单调性是函数的一个区间上的性质,函数在不同的区间上可以有不同的单调性。

函数单调性说课稿PPT(共25张PPT)

函数单调性说课稿PPT(共25张PPT)
19
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计

-4
-3
-2
-1
0
1
2
3
4


16
9
4
1
0
1
4
9
16

设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方

回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、

函数单调性说课稿

函数单调性说课稿

函数单调性说课稿一、引言函数是数学中的重要概念之一,它描述了自变量与因变量之间的关系。

而函数单调性则是研究函数图象的一个重要方面,它描述了函数在定义域内增减的规律。

二、函数单调性的定义与分类1. 函数单调性的定义函数单调性是指函数在某个定义域内,是否具有单调递增或单调递减的趋势。

具体来说,对于一个定义域为D的函数f(x),如果对于任意两个元素x1、x2∈D,有x1<x2时f(x1)≤f(x2),那么函数f(x)就是递增函数;如果对于任意两个元素x1、x2∈D,有x1<x2时f(x1)≥f(x2),那么函数f(x)就是递减函数。

2. 函数单调性的分类根据定义域的不同,函数单调性可分为闭区间上的单调性和开区间上的单调性。

对于闭区间上的单调性,我们常常使用一阶导数的正负性来进行判断;而对于开区间上的单调性,则需要通过函数的增减表来进行判断。

三、函数单调性的判断方法1. 一阶导数的正负性判断闭区间上的单调性对于函数f(x)在闭区间[a,b]上的单调性判断,我们可以求得函数f(x)在该区间内的一阶导数f'(x)。

若f'(x)>0,那么函数f(x)在[a,b]上单调递增;若f'(x)<0,那么函数f(x)在[a,b]上单调递减。

2. 函数的增减表判断开区间上的单调性对于函数f(x)在开区间(a,b)上的单调性判断,我们需要构建函数的增减表。

具体做法是选择开区间上的一组不重复的数值c1、c2、c3,以及函数f(x)在这些数值上的取值f(c1)、f(c2)、f(c3),然后根据这些数值的大小关系来判断函数的增减性。

四、函数单调性的应用函数单调性在数学和实际问题中都具有重要应用价值。

1. 在求函数极值问题中,函数的单调性可以帮助我们找到函数的最大值和最小值,从而在实际问题中得到最优解。

高中数学《函数的单调性》说课稿教案模板

高中数学《函数的单调性》说课稿教案模板

高中数学《函数的单调性》说课稿教案模板一、教学目标1.理解函数的单调性的概念和特点;2.掌握函数单调性的判断方法;3.能够应用函数的单调性解决实际问题。

二、教学重点1.函数单调性的概念和特点;2.函数单调性的判断方法。

三、教学难点函数单调性的应用解决实际问题。

四、教学方法1.演示法:通过具体的例子,讲解函数的单调性概念和特点;2.归纳法:总结函数单调性的判断方法;3.练习法:通过练习题,巩固学生对函数单调性的理解和应用能力。

五、教学过程1. 导入(5分钟)通过引入一个与函数单调性相关的实际问题,激发学生的学习兴趣和思考。

2. 概念讲解(10分钟)分别介绍函数的递增和递减性质,并解释函数单调性的概念。

通过图像和实例,让学生理解函数的单调性的特点。

3. 判断方法(20分钟)3.1 函数求导法:讲解函数单调性的判断方法之一,介绍导函数的概念,以及导函数与原函数单调性之间的关系。

3.2 函数的增减表法:讲解函数单调性的判断方法之二,通过绘制函数的增减表,通过观察函数在不同区间的增减情况,判断函数的单调性。

4. 实例演练(15分钟)通过一些典型的函数及其图像,引导学生灵活运用函数的单调性判断方法,解决实际问题。

5. 拓展延伸(10分钟)通过引入其他函数的单调性的相关概念,如函数的局部单调性、函数的整体单调性等,对函数的单调性进行深入探讨。

6. 练习与巩固(20分钟)设计一些练习题,对函数的单调性进行巩固和提高。

其中包括判断函数的递增和递减区间、求函数的极值等。

7. 归纳总结(5分钟)通过学生的回答和讨论,归纳总结函数单调性的判断方法和注意事项。

六、教学评价1.教师观察学生的听讲和思考情况;2.学生课堂练习的成绩;3.学生课后作业的完成情况。

七、板书设计# 函数的单调性## 概念- 递增性- 递减性- 单调性## 判断方法- 函数求导法- 函数的增减表法## 实例演练## 拓展延伸## 练习与巩固八、教学反思本节课以函数的单调性为主题,通过概念讲解、判断方法的介绍和实例演练等步骤,深入浅出地向学生传授了函数单调性的相关知识。

高中数学说课稿:《函数的单调性》2篇

高中数学说课稿:《函数的单调性》2篇

高中数学说课稿:《函数的单调性》高中数学说课稿:《函数的单调性》精选2篇(一)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。

希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。

首先,我们来回顾一下函数的定义。

函数是将一个集合的元素对应到另一个集合的元素的规则。

通常我们用字母 f、g 等来表示函数,用 x、y 等来表示自变量和因变量。

函数的定义域是指所有可能的自变量的集合,值域是指所有可能的因变量的集合。

那么什么是函数的单调性呢?简单来说,如果一个函数在定义域上递增或递减,我们就称这个函数是递增或递减的,也可以称为单调递增或单调递减函数。

具体来说,对于递增函数,当自变量增大时,函数值也会增大;对于递减函数,当自变量增大时,函数值会减小。

接下来,我们来看一些例子。

请大家看图1,这是一个函数图像。

我们可以观察到,当 x 从 a 增加到 b 时,函数的值也从 f(a) 增加到 f(b),这说明这个函数是递增的。

类似地,如果函数图像在定义域上是递减的,我们称之为递减函数。

图1:函数图像(递增函数)接下来,我将详细讲解如何判断一个函数在给定的区间上的单调性。

首先,我们需要求出函数的导数。

导数可以帮助我们找到函数的变化趋势。

对于一个已知函数 f(x),我们求其导数 f'(x)。

如果 f'(x) 大于零,则 f(x) 在该区间内是递增的;如果 f'(x) 小于零,则 f(x) 在该区间内是递减的。

例如,对于函数 f(x) = x^2,我们可以求导得到 f'(x) = 2x。

当 x 大于零时,f'(x) 大于零,说明函数在该区间内是递增的。

当 x 小于零时,f'(x) 小于零,说明函数在该区间内是递减的。

除了求导数外,我们还可以通过构造表格的方式来判断一个函数的单调性。

高中数学《函数单调性》说课稿获奖范文(6)说课稿

高中数学《函数单调性》说课稿获奖范文(6)说课稿

高中数学《函数单调性》说课稿获奖范文(6)说课稿说课的基本形式是“四大模块”模式,一般由说教材、说教法、说学法、说教学程序等部分构成。

为大家准备一篇高中数学《函数的单调性》说课稿获奖范文6.98KB,希望给你说课写作带来参考。

课题:函数的单调性教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)授课教师:北京景山学校许云尧1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.函数单调性的概念、判断及证明.根据定义证明函数的单调性.教师启发讲授,学生探究学习.计算机、投影仪.一、创设情境,引入课题为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了____年到____年每年这一天的天气情况,下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及达到的时刻;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.教师指出:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、降雨量、燃油价格、股票价格等.归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,是函数的重要性质,称为函数的单调性,同学们在初中对函数的这种性质就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义. 1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值的变化规律?预案:(1)函数,在整个定义域内y随_的增大而增大;函数,在整个定义域内y随_的增大而减小.(2)函数,在上y随_的增大而增大,在上y随_的增大而减小.(3)函数,在上y随_的增大而减小,在上y随_的增大而减小.引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数吗?预案:如果函数在某个区间上随自变量_的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量_的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.抽象思维,形成概念问题1:如图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在上为增函数?预案:(1)在给定区间内取两个数,例如2和3,因为22。

高中数学必修1《函数的单调性》说课稿-7页word资料

高中数学必修1《函数的单调性》说课稿-7页word资料

说课教案课题:函数的单调性教材:全日制普通高级中学教科书(必修1)人民教育出版社一、教材内容与地位从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础。

《必修一》函数的单调性是函数的重要性质.作为学生学习函数概念后学习的第一个函数性质,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,本节课教学应实现如下教学目标:(一)知识与技能1、理解增函数、减函数的概念及函数单调性的定义。

2、会根据函数的图像判断函数的单调性。

3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数。

(二)过程与方法1、培养学生利用数学语言对概念进行概括的能力2、通过利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感态度与价值观1、通过本节课的教学,启发学生养成细心观察,分析归纳,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。

三、教学重、难点根据以上的教学目标,本节课的重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。

四、教法本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,在教法上我采取了:利用图形演示比较与教师引领启发学生,充分调动学生的积极性和主动性;教师讲述与师生互动突出教学重点,进而突破难点;例题讲解与巩固练习进一步强化基础知识;讨论与思考拓宽学生思维,提升学生推理论证能力。

高中数学说课稿:高一数学《函数的单调性》优秀说课稿模板

高中数学说课稿:高一数学《函数的单调性》优秀说课稿模板

高中数学说课稿:高一数学《函数的单调性》优秀说课稿模板高中数学说课稿:高一数学《函数的单调性》优秀说课稿模板《函数的单调性》说课稿尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感态度与价值观在函数单调性的学习过程中,使学生体函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2019年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量810,对应的函数值有14.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1 t2时,是否都有f(t1)f(t2)呢?[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=-2x+2,f(x)=x2+2x-3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念[教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)f(1),那么函数f(x)是R上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P34-35例2(2)书面作业:必做:教材 P43 1、7、11选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.四、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.陆萍。

高中数学说课稿:苏教版高中数学《函数的单调性》说课稿教案模板

高中数学说课稿:苏教版高中数学《函数的单调性》说课稿教案模板

高中数学说课稿:苏教版高中数学《函数的单调性》说课稿教案模板高中数学说课稿:苏教版高中数学《函数的单调性》说课稿教案模板课题:函数的单调性(一)教材:苏教版必修(1)扬州大学附属中学陆萍一、教材分析1、教材内容本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.三、教学过程完整版苏教版高中数学《函数的单调性》说课稿.doc。

高中数学《函数的单调性》说课稿教案模板

高中数学《函数的单调性》说课稿教案模板

高中数学《函数的单调性》说课稿教案模板一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第3节。

是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。

通过对这一节课的学习,可以让学生加深对函数的本质认识。

也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;能力训练目标:培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。

形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法。

三、学法倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。

数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。

我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。

在课堂结构上,我根据学生的认知水平,我设计了①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

函数单调性说课稿

函数单调性说课稿

函数的单调性说课稿一、说教材:1、教材的作用和地位“函数的单调性”是普通高中课程标准实验教科书人教A版第一章第三节的第一课时的内容,是函数重要性质之一,在教材中起着承上启下的作用。

一方面,是初中有关内容的深化、提高,使学生对函数单调性从感性认识提高到理性认识。

另一方面,可以通过对函数单调性的学习,为后面学习指数函数、对数函数、及数列这种特殊的函数打下基础,它与等式、求函数的值域、最值,导数等等都有着紧密的联系。

从方法论角度分析,本节教学过程中还渗透了探索发现、数形结合,归纳转化等数学思想方法。

2、教学目标(1)、知识与技能目标:理解函数单调性的概念,并能作简单的函数单调性判断及应用;(2)、过程与方法目标:培养学生细心观察、认真分析、严谨论证的良好思维习惯,培养学生数形结合,辩证思维的能力;(3)、情感态度与价值观目标:让学生发现形和数的统一和谐美,体会自己发现、解决问题的乐趣。

3、教学重、难点(1)教学重点:函数单调性的概念、判断及证明;(2)教学难点:引导学生归纳出函数单调性的定义以及根据定义证明函数的单调性。

二、说教法:教法分析:本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,以问题为核心构建课堂教学,培养问题意识,孕育创新精神,提出恰当的、对学生的教学思维有适度启发的问题,能引导学生的思考和探索活动,是他们经历观察、实验、猜测、推理、交流、反思等理性思维的过程,切实改进学生的学习方法。

三、说学法学法分析:让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性认识的质的飞跃。

让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现分析、分析问题、解决问题的能力。

四、说教学过程1、创设情境,引入课题我国的人口出生率变化曲线,请同学们观察说出人口出生的大致变化情况。

我们可以很方便地从图象观察出人口出生的变化情况,对今后的工作具有一定的指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学《函数单调性》优秀说课稿模板
高一数学《函数单调性》优秀说课稿模板
学无止境,高中是人生成长变化最快的阶段,所以应该用心去想,去做好每件事,xx为大家整理了《函数的单调性》优秀说课稿模板 ,希望可以帮助到更多学子。

尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.
二、教法学法
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内随着时间的增大气温逐渐升高这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.
(二)探究发现建构概念
[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.
[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如, t1=8时,f(t1)=1,t2=10时,f(t2)=4 这一情形进行描述.引导学生回答:对于自变量8 10,对应的函数值有1 4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述在区间[4,14]上,气温随时间增大而升高这一特征.
在学生对于单调增函数的特征有一定直观认识时,进一步提出:
问题3:对于任意的t1、t2 [4,16]时,当t1 t2时,是否都有f(t1)
[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.
[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词区间内、任意、当
时,都有
.告诉他们把满足这些条件的函数称之为单调增函数,之后由他们集体给出单调增函数概念的数学表述.提出:
问题4:类比单调增函数概念,你能给出单调减函数的概念吗?
最后完成单调性和单调区间概念的整体表述.
[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历数学化、再创造的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.
(三)自我尝试运用概念
1.为了理解函数单调性的概念,及时地进行运用是十分必要的.
[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.
[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=-2x+2,f(x)=x2+2x-3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间.
[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数
的单调区间时写成并集.
[设计意图]在学生已有认知结构的基础上提出
新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.
2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?
[教师活动]问题6:证明
#FormatImgID_5#
在区间(0,+ )上是单调减函数.
[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.
[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.
[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值
作差变形
定号
判断.
[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(四)回顾反思深化概念
[教师活动]给出一组题:
1、定义在R上的单调函数f(x)满足f(2) f(1),那么函数f(x)是R上的单调增函数还是单调减函数?
2、若定义在R上的单调减函数f(x)满足f(1+a)
#FormatImgID_9#
的取值范围吗?
[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.
[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想
方法,从而实现对函数单调性认识的再次深化.
[教师活动]作业布置:
(1)阅读课本P34-35例2
(2)书面作业:
必做:教材P431、7、11
选做:二次函数y=x2+bx+c在[0,+ )是增函数,满足条件的实数
的值唯一吗?
探究:函数y=x在定义域内是增函数,函数
有两个单调减区间,由这两个基本函数构成的函数
的单调性如何?请证明你得到的结论.
[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
四、教学评价
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.
《函数的单调性》优秀说课稿模板由xx整理提供,愿考生学业有成。

更多关于高一数学说课稿相关内容内容请关注【高一数学】。

相关文档
最新文档