二元一次不等式(组)与简单的线性规划问题(说课稿)

合集下载

《二元一次不等式组与简单的线性规划问题》教案5新人教A版

《二元一次不等式组与简单的线性规划问题》教案5新人教A版

《二元一次不等式(组)与简单的线性规划问题》教案5(新人教A版必修5)
二元一次不等式与简单的线性规划问题
二元一次不等式与平面区域
教学目的:从实际问题中抽象出二元一次不等式(组)表示的平面区域。

理解、在平面坐标系中的位置(上方、右侧)
重点难点:根据、、的正负,快速判断、的位置
教学过程:
一.知识引入:
1)解一元一次不等式的解,并在数轴上表示出来。

2)课本91
3)二元一次不等式的定义?
4)二元一次方程的解的构成。

二.新课
⒈对直线的知识要点:
⑴当时,直线没有斜率,是一条垂直于轴的直线;
⑵当时,斜率,在轴上的截距;
⑶斜率、截距对直线的图象的影响.
⒉不等式在平面直角坐标系中的区域问题
⑴b0时,不等式的解的区域在直线的上方;不等式的解的区
域在直线的下方。

(2)b0时,不等式的解的区域在直线的下方;不等式的解的区域在直线的上方。

3.不等式组的区域问题。

三例题分析
1.课本94页例1
2.课本94页例2
3.不等式所表示的区域恰好使点(3,4)不在此区域,而点(4,4)在此区域,求b的取值范围。

4.已知点A(a,b)在由不等式组确定的平面区域内,求A (a,b)所在区域的面积。

5.课本95页例3
四.小结
五.作业
1课本105页 1,2
2.课本106页 1, 2
3.画出不等式的区域,并求这个区域的面积.。

精品教案:二元一次不等式组与简单的线性规划问题

精品教案:二元一次不等式组与简单的线性规划问题

二元一次不等式组与简单的线性规划问题【知识网络】1、二元一次不等式组以及可化成二元一次不等式组的不等式的解法;2、作二元一次不等式组表示的平面区域,会求最值;3、线性规划的实际问题和其中的整点问题。

【典型例题】例1:(1)已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( ) A .02300>+y x B .<+0023y x 0C .82300<+y xD .82300>+y x答案: D 。

解析:将(1,2)代入l 得小于0,则003280x y +->。

(2)满足2≤+y x 的整点的点(x ,y )的个数是( )A .5B .8C .12D .13答案:D 。

解析:作出图形找整点即可。

(3)不等式(x -2y +1)(x +y -3)≤0表示的平面区域是 ( )答案:C 。

解析:原不等式等价于⎩⎨⎧≤-+≥+-⎩⎨⎧≥-+≤+-0301203012y x y x y x y x 或 两不等式表示的平面区域合并起来即是原不等式表示的平面区域.(4)设实数x , y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值为 .答案:32。

解析:过点3(1,)2时,yx 有最大值32。

(5)已知1224a b a b ≤-≤⎧⎨≤+≤⎩,求42t a b =-的取值范围 .答案: ]10,5[。

解析:过点31(,)22时有最小值5,过点(3,1)时有最大值10。

例2:试求由不等式y ≤2及|x |≤y ≤|x |+1所表示的平面区域的面积大小. 答案: 解:原不等式组可化为如下两个不等式组:①⎪⎪⎩⎪⎪⎨⎧≤+≤≥≥210y x y x y x 或 ②⎪⎪⎩⎪⎪⎨⎧≤+-≤-≥≤210y x y x y x上述两个不等式组所表示的平面区域为如图所示的阴影部分.它所围成的面积S =21×4×2-21×2×1=3.例3:已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .(Ⅰ)求函数g (x )的解析式;(Ⅱ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围。

二元一次不等式(组)与简单的线性规划问题1

二元一次不等式(组)与简单的线性规划问题1

高三一轮复习数学学案二元一次不等式(组)与简单的线性规划问题一、考纲要求及重难点: 1、 考纲要求:(1) 会从实际情境中抽象出二元一次不等式(组)。

(2) 了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组)。

(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

2、 重难点:(1) 以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积)。

(2) 多在选择题、填空题中出现,有时也会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。

二、课前自测:1、下列各点中,不在10x y +-≤表示的平面区域内的点是( ) A 、(0,0) B 、(1,1)- C 、(1,3)- D 、(2,3)-2、直线2x+y-10=0与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A 、0个B 、1个C 、2个D 、无数个3.(2013山东)在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .13-D .12-4.实数x ,y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数24z x y =+的最小值是( )A 、6B 、-6C 、-2D 、45.完成一项装修工程需要木工和瓦工共同完成。

请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是 。

三、知识梳理:1、二元一次不等式表示的平面区域 已知直线l :0Ax By C ++=(1)开半平面与闭半平面直线l 把坐标平面分成 部分,每个部分叫开半平面, 与 的并集叫做闭半平面。

(2)不等式表示的区域以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象。

教学设计5:7.3 二元一次不等式(组)与简单的线性规划问题

教学设计5:7.3 二元一次不等式(组)与简单的线性规划问题

7.3 二元一次不等式(组)与简单的线性规划问题[知识梳理]1.二元一次不等式(组)表示的平面区域(1)在平面直角坐标系中二元一次不等式(组)表示的平面区域:二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x0,y0)作为测试点来进行判定,满足不等式的,则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.线性规划中的基本概念3.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线;(2)特殊点定域,即在直线Ax+By+C=0的某一侧取一个特殊点(x0,y0)作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C≠0时,常把原点作为测试点;当C=0时,常选点(1,0)或者(0,1)作为测试点.4.最优解问题如果可行域是一个多边形,那么目标函数一般在某顶点处取得最大值或最小值,最优解就是该点的坐标,到底哪个顶点为最优解,只要将目标函数的直线平行移动,最先通过或最后通过的顶点便是.特别地,当表示线性目标函数的直线与可行域的某条边平行时,其最优解可能有无数个.[考点探究]典题导入[例1]直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个由题悟法二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意:不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.以题试法1.(1)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0(2)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a 所表示的平面区域的面积是9,则实数a的值为________.典题导入[例2](1)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________.(2)已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =ax +y (a ≠0)取得最小值时的最优解有无数个,则实数a 的值为________.若本例(2)条件变为目标函数z =ax +y (a ≠0)仅在点⎝⎛⎭⎫12,1处取得最小值,其它条件不变,求a 的取值范围.由题悟法1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.以题试法2.(1)设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________;z 的最小值为________.(2)已知O 是坐标原点,点A (1,0),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA +OM |的最小值是________.典题导入[例3] 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元由题悟法与线性规划有关的应用问题,通常涉及最优化问题.如用料最省、获利最大等,其解题步骤是:①设未知数,确定线性约束条件及目标函数;②转化为线性规划模型;③解该线性规划问题,求出最优解;④调整最优解.以题试法3.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________百万元.答案[知识梳理] 1.(1)不等式表示区域Ax+By+C>0直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题[例1]【解析】由不等式组画出平面区域如图(阴影部分).直线2x+y-10=0恰过点A(5,0),且斜率k=-2<k AB=-43,即直线2x+y-10=0与平面区域仅有一个公共点A(5,0).【答案】B1.【解析】(1)不等式组所表示的平面区域如图中阴影部分,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.(2)不等式组所表示的平面区域是如图所示的△ABC,且A(-2,2),B(a,a+4),C(a,-a),若a≤0,则有△ABC的面积S△ABC≤4,故a>0,BC的长为2a+4,由面积公式可得△ABC的面积S△ABC=12(a+2)·(2a+4)=9,解得a=1.【答案】(1)C (2)1 [例2]【解析】 (1)依题意,画出可行域,如图阴影部分所示,显然,当直线y =12x -z2过点B (1,2)时,z 取得最小值为-3;当直线过点A (3,0)时,z 取得最大值为3,综上可知z 的取值范围为[-3,3].(2)画出平面区域所表示的图形,如图中的阴影部分所示,平移直线ax +y =0,可知当平移到与直线2x -2y +1=0重合,即a =-1时,目标函数z =ax +y 的最小值有无数多个.【答案】 (1)[-3,3] (2)-1解:由本例图知,当直线ax +y =0的斜率k =-a >1, 即a <-1时,满足条件, 所求a 的取值范围为(-∞,-1).2.【解析】(1)在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =6,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.(2)依题意得,OA +OM =(x +1,y ),|OA +OM |=x +12+y 2可视为点(x ,y )与点(-1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(-1,0)向直线x +y =2引垂线的垂足位于该平面区域内,且与点(-1,0)的距离最小,因此|OA +OM |的最小值是|-1+0-2|2=322.【答案】(1)2 -2(2)322[例3]【解析】 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.【答案】 C 3.【解析】可设需购买A 铁矿石x 万吨,B 铁矿石y 万吨, 则根据题意得到约束条件为⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,画出不等式组表示的平面区域如图所示当目标函数经过(1,2)点时目标函数取最小值,最小值为z min =3×1+6×2=15.【答案】15。

zhl1二元一次不等式(组)与简单的线性规划问题教案

zhl1二元一次不等式(组)与简单的线性规划问题教案

3.3.1二元一次不等式(组)与平面区域教学目标:1.知识与技能目标:了解二元一次不等式(组)、二元一次不等式的解和解集的概念。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

2.过程与方法目标:经历把实际问题抽象为数学问题以及类比一元一次不等式得出二元一次不等式的过程,体会类比的思想、数学建模的思想。

3.情感态度与价值观目标:通过探索二元一次不等式解集的过程,培养学生的探索方法与精神。

教学重点与难点:重点:求二元一次不等式表示的平面区域。

难点:理解二元一次不等式解集的几何表示。

教学方法与手段:通过列表分析实例,引导学生从复杂实际问题中抽象出二元一次不等式(组)。

引导学生用类比方法探索出解二元一次不等式的思路,借助多媒体,使学生认识到理解二元一次不等式解集的几何表示。

使用教材的构想:1.3.3.1节分两课时完成,第一课时学习二元一次不等式解集几何表示。

第二课时学习如何求二元一次不等式组的解集。

这样安排是因为理解二元一次不等式(组)解集的几何表示是一个难点,而这一点直接关系到求二元一次不等式组的解集的学习以及后面线性规划问题的学习。

2.教材引入部分的实例已知条件较多,关系复杂,学生不易找出各已知条件的关系,为了克服这一难题,我设计了一个表格,学生通过填表,能较快发现问题本质。

3.教材在解释二元一次不等式解集的几何表示时,理论性过强,学生理解困难,我在设计时去掉了理论分析,主要通过学生观察不等式成立的点的分布,使学生直观地认识到二元一次不等式解集是直线一侧的部分教学流程:一.复习导入:1.老师提问:如何画12+=x y 表示的直线?请一名学生板演2.今天学习二.新课讲授:1,请看下面的不等式x+y >700,10x +12y <0,x >0,y >0,得出定义:含有两个未知数,且未知数的最高次数为1的不等式叫做 二元一次不等式。

注:二元一次方程Ax+By+C=0( A ,B 不全为0)的图象是一条直线。

二元一次不等式(组)与简单的线性规划问题

二元一次不等式(组)与简单的线性规划问题

第十四课时二元一次不等式(组)与简单的线性规划问题【知识与技能】会画出二元一次不等式(组)所表示的平面区域.【重点难点】教学重点:二元一次不等式(组)表示的平面区域.教学难点:准确理解和判断二元一次不等式所表示的平面区域在直线的哪一侧.【教学过程】一、问题与探究1.给出不等式(1)2x+3y-4>0,(2)x-4y+1≤0,观察它们有什么共同特点?提示:都含有个未知数,未知数的次数都是.归纳:(1)含有未知数,并且未知数的次数是的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组叫做二元一次不等式组.(2)满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),称为二元一次不等式(组)的一个,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的.2.如图作直线x+y-1=0,此直线将坐标平面分成几部分?提示:三个部分.即直线的两侧与直线上.3.在直线上任取点P(x0,y0),它与方程x+y-1=0有怎样的关系?提示:P点的坐标满足方程.4.在直线上方取点(0,2),(1,3),(0,5),(2,2),把它们分别代入式子x+y-1中,其符号怎样?在直线的下方取点呢?提示:直线上方的点的坐标都满足x+y-1>0,直线下方的点的坐标都满足x+y-1<0.归纳:(1)直线l:ax+by+c=0把直角坐标平面分成的三个部分:①直线l上的点(x,y)的坐标满足.②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0,另一侧平面区域内的点(x,y)的坐标满足.(2)在直角坐标平面内,把直线l:ax+by+c=0画成,表示平面区域包括这一边界直线;画成表示平面区域不包括这一边界直线.(3)①对于直线ax+by+c=0同一侧的所有点,把它的坐标(x,y)代入ax+by+c所得的符号都.②在直线ax+by+c=0的一侧取某个特殊点(x0,y0),由的符号可以断定ax+by+c>0表示的是直线ax+by+c=0哪一侧的平面区域.(4)二元一次不等式组表示的平面区域是各个不等式表示的平面区域的.二、合作与探究类型1 二元一次不等式表示的平面区域【例1】画出下列不等式表示的平面区域:(1)2x +y -10<0; (2)y ≤-2x +3.小结:1.画平面区域时,要分清实线和虚线,“≥”“≤”应画成实线如(2),“>,<”应画成虚线,如(1).2.二元一次不等式表示的平面区域的画法是以线定界,以点定域(以Ax +By +C >0为例).(1)“以线定界”,即画二元一次方程Ax +By +C =0表示的直线定边界,其中要注意实线或虚线.(2)“以点定域”,由于对在直线Ax +By +C =0同侧的点,实数Ax +By +C 的值的符号都相同,故为了确定Ax +By +C 的符号,可采用取特殊点法,如取原点等.【练习】画出下列不等式表示的平面区域:(1)2x -3y +6≥0; (2)x ≥1; (3)2y +3<0.类型2 二元一次不等式组表示的平面区域 【例2】已知不等式组⎩⎪⎨⎪⎧x >0,y >0,4x +3y ≤12.(1)画出不等式组表示的平面区域;(2)求不等式所表示的平面区域的面积;(3)求不等式所表示的平面区域内的整点坐标.小结:1.在画二元一次不等式组所表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可,其步骤为:①画线(注意实、虚);②定侧;③求“交”;④表示.2.画出不等式表示的平面区域后,常常要求区域面积或区域内整点的坐标.(1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形.(2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠近直线的点,以免出现错误.【练习】画出不等式组⎩⎪⎨⎪⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积.类型3 用二元一次不等式组表示实际问题【例3】一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表所示,设厂里有工人200人,每天只能保证160 kW·h 的用电额度,每天用煤不得超过150 t ,请在直角坐标系中画出每天甲、乙两种产品允许的产量范围.小结:用平面区域来表示实际问题相关量的取值范围的基本方法是:先根据问题的需要设出有关量,再根据有关量的限制条件和实际意义写出不等式,组成不等式组,最后画出平面区域.注意:在实际问题中写不等式组时,必须把所有的限制条件都表示出来,而不能遗漏任何一个.【练习】甲、乙、丙三种食物的维生素A 、维生素D 的含量如下表:混合食物中至少含有560单位维生素A 和630单位维生素D.请在平面直角坐标系画出甲、乙两种食物的用量范围.三、课时小结1.一般地,二元一次不等式Ax +By +C >0或Ax +By +C <0在平面直角坐标系内表示直线Ax +By +C =0某一侧的所有点组成的平面区域.2.在画二元一次不等式表示的平面区域时,应用“直线定边界、特殊点定区域”的方法来画区域.取点时,若直线不过原点,一般用“原点定区域”;若直线过原点,则取点(1,0)即可.总之,尽量减少运算量.3.画平面区域时,注意边界线的虚实问题. 四、课时作业1.(2013·岳阳高二检测)图中阴影部分表示的平面区域满足的不等式是( ) A .x +y -1<0 B .x +y -1>0 C .x -y -1<0D .x -y -1>02.(2013·新余高二检测)在平面直角坐标系中,可表示满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影部分来表示)的是( )3.(2013·福建师大附中高二检测)在平面直角坐标系中,若点(2,t )在直线x -2y +4=0的右下方区域包括边界,则t 的取值范围是( )A .t <3B .t >3C .t ≥3D .t ≤3 4. 5.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥7 5.点P (m ,n )不在不等式5x +4y -1>0表示的平面区域内,则m ,n 满足的条件是________. 6.(2013·苏州高二检测)不等式|2x +y +m |<3表示的平面区域包含点(0,0)和点(-1,1),则m 的取值范围是________.7.(2013·南昌高二检测)已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是________.8.在△ABC 中,A (3,-1),B (-1,1),C (1,3),写出△ABC (包含边界)内部所对应的二元一次不等式组.9.画出下列不等式(组)表示的平面区域.(1)(x -y )(x -y -1)≤0; (2)|3x +4y -1|<5; (3)x ≤|y |≤2x .。

二元一次不等式(组)及简单的线性规划问题

二元一次不等式(组)及简单的线性规划问题

第2讲 二元一次不等式(组)及简单的线性规划问题, [学生用书P111])1.二元一次不等式(组)表示的平面区域不等式(组) 表示区域 Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线Ax +By +C ≥0 包括边界直线 不等式组 各个不等式所表示平面区域的公共部分 2.二元一次不等式(组)的解集满足二元一次不等式(组)的x 和y 的取值构成的有序数对(x ,y ),叫做二元一次不等式(组)的解,所有这样的有序数对(x ,y )构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念名称 意义 约束条件 由变量x ,y 组成的不等式(组) 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于变量x ,y 的函数解析式,如z =x +2y 线性目标函数 关于变量x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题 1.辨明两个易误点(1)画出平面区域,避免失误的重要方法就是首先将二元一次不等式化为ax +by +c >0(a >0)的形式;(2)线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.2.求z =ax +by (ab ≠0)的最值方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.1.教材习题改编 不等式x -2y +6<0表示的区域在直线x -2y +6=0的( ) A .右上方 B .右下方 C .左上方 D .左下方C [解析] 画出x -2y +6<0的图象如图所示,可知该区域在直线x -2y +6=0的左上方.故选C.2.教材习题改编 已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .3B .32C .-32D .-3A [解析] 画出可行域,如图阴影部分所示.由z =2x +y ,知y =-2x +z ,当目标函数过点(2,-1)时直线在y 轴上的截距最大,为3.3.(2016·高考北京卷)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y的最大值为( )A .-1B .3C .7D .8C [解析] 依题意得k AB =5-12-4=-2,所以线段l AB :y -1=-2(x -4),x ∈[2,4],即y =-2x +9,x ∈[2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈[2,4].设h (x )=4x -9,易知h (x )=4x -9在[2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.4.(2017·扬州模拟)点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________.[解析] 因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.[答案] ⎝⎛⎭⎫23,+∞ 5.约束条件⎩⎪⎨⎪⎧x +y ≤2x -y ≥-2y ≥0表示的平面区域的面积为________.[解析]作出⎩⎨⎧x +y ≤2x -y ≥-2y ≥0所表示的平面区域如图中阴影部分所示.则A (0,2),B (-2,0),C (2,0),所以S 阴=S △ABC =12×4×2=4.[答案] 4二元一次不等式(组)表示的平面区域[学生用书P112][典例引领](1)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是________.【解析】 (1)不等式组表示的平面区域如图阴影部分所示,由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0得A (8,-2). 由x +y -2=0得B (0,2).又|CD |=2,故S 阴影=12×2×2+12×2×2=4.(2)不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝⎛⎭⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (1)4 (2)(0,1]∪⎣⎡⎭⎫43,+∞若本例(2)条件变为:若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.[解析] 如图,当直线y =a 位于直线y =5和y =7之间(不含y =7)时满足条件.[答案] [5,7)二元一次不等式(组)表示的平面区域的确定方法(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域;(2)当不等式中带等号时,边界为实线,不带等号时,边界应画为虚线,特殊点常取原点.[通关练习]1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)大致是( )C [解析] (x -2y +1)(x +y -3)≤0,即⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,与选项C 符合.故选C.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0x +y -2≤0y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________.[解析] 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.[答案] -1求线性目标函数的最值(范围)(高频考点)[学生用书P113]线性目标函数的最值(范围)问题是每年高考的热点,属必考内容,题型多为选择题和填空题,属中档题.高考对线性目标函数最值(范围)问题的考查主要有以下两个命题角度: (1)求线性目标函数的最值(范围);(2)已知线性目标函数的最值(范围)求参数值(范围).[典例引领](1)(2016·高考全国卷丙)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3【解析】 (1)作出不等式组表示的平面区域, 如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时, z 取得最小值,z min =2×(-1)+3×(-1)-5=-10.(2)联立方程组⎩⎪⎨⎪⎧x +y =ax -y =-1,解得⎩⎪⎨⎪⎧x =a -12y =a +12,代入x +ay =7中, 解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7,故选B. 【答案】 (1)-10 (2)B利用线性规划求目标函数最值的步骤 (1)画出约束条件对应的可行域;(2)将目标函数视为动直线,并将其平移经过可行域,找到最优解对应的点; (3)将最优解代入目标函数,求出最大值或最小值.[注意] 对于已知目标函数的最值,求参数问题,把参数当作已知数,找出最优解代入目标函数.[题点通关]角度一 求线性目标函数的最值(范围)1.(2016·高考全国卷甲)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.[解析] 法一:(通性通法)作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y =12x 并平移,观察可知,当直线经过点A (3,4)时,z min =3-2×4=-5.法二:(光速解法)因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5.[答案] -5角度二 已知线性目标函数的最值(范围)求参数值(范围)2.(2017·郑州第二次质量预测)已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为________.[解析] 画出可行域,如图阴影部分所示.由b =x -2y 得,y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.[答案] 10线性规划的实际应用[学生用书P113][典例引领](2016·高考全国卷乙)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.【解析】 由题意,设产品A 生产x 件, 产品B 生产y 件, 利润z =2 100x +900y , 线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,作出不等式组表示的平面区域如图中阴影部分所示, 又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(60,100), 所以z max =2 100×60+900×100=216 000(元). 【答案】 216 000(2016·高考天津卷)某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料肥料A B C甲 4 8 3 乙 5 5 10现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.[解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.设二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元., [学生用书P114])——数形结合思想求解非线性规划问题(2015·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.【解析】 画出可行域如图阴影所示,因为 yx 表示过点(x ,y )与原点(0,0)的直线的斜率,所以点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0, 得⎩⎪⎨⎪⎧x =1,y =3. 所以A (1,3). 所以yx的最大值为3.【答案】 3(1)本题在求y x 的取值范围时,利用数形结合思想,把yx转化为动点(x ,y )与定点(0,0)连线的斜率.解决这类问题时,需充分把握目标函数的几何含义,在几何含义的基础上加以处理.(2)常见代数式的几何意义: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;② (x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;③yx 表示点(x ,y )与原点(0,0)连线的斜率值; ④y -bx -a表示点(x ,y )与点(a ,b )连线的斜率值.1.(2016·高考山东卷)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [解析] 作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,|OP |2即x 2+y 2取得最大值.由⎩⎪⎨⎪⎧x +y =2,2x -3y =9,解得⎩⎪⎨⎪⎧x =3,y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C.2.(2017·洛阳统考)已知不等式组⎩⎪⎨⎪⎧x +y ≤2,x ≥0,y ≥m表示的平面区域的面积为2,则x +y +2x +1的最小值为( )A .32B .43C .2D .4B [解析] 画出不等式组所表示的区域,由区域面积为2,可得m =0.而x +y +2x +1=1+y +1x +1,y +1x +1表示可行域内任意一点与点(-1,-1)连线的斜率,所以y +1x +1的最小值为0-(-1)2-(-1)=13,所以x +y +2x +1的最小值为43., [学生用书P331(独立成册)])1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)B [解析] 根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0,解得-7<a <24.2.如图阴影部分表示的区域可用二元一次不等式组表示为( )A .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥0B .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≤0C .⎩⎪⎨⎪⎧x -y +1≥0x +2y +2≥0D .⎩⎪⎨⎪⎧x +y -1>0x -2y +2>0A [解析] 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 3.不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)D [解析] 直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).故选D.4.(2017·大连双基测试)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,3x +y -6≥0,y ≤3,则z =-2x +y 的最小值为( )A .-7B .-6C .-1D .2A [解析] 可行域如图,平移直线y =2x 至过点(5,3)时,z 取得最小值-7.5.若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43D .3B [解析] 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m ,1+m ),C ⎝⎛⎭⎪⎫2-4m 3,2+2m 3,D (-2m ,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )(1+m -2+2m 3) =(1+m )⎝⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).6.(2017·河南省六市第一次联考)已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y的最小值为-1,则实数m =( )A .6B .5C .4D .3B [解析] 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l 可知,当直线l 经过A (2,3)时符合题意,又A (2,3)在直线x +y =m 上,所以m =5,故选B.7.(2017·安徽安庆二模)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,x -y +1≥0,2x +y -4≤0,z =x -2y ,则z 的取值范围是________.[解析] 作出不等式组表示的平面区域,如图,由图可知当z =x -2y 过点A 时,z 取得最大值; 当z =x -2y 过点B 时,z 取得最小值,由⎩⎪⎨⎪⎧x -y +1=0,2x +y -4=0解得B (1,2),则z min =1-2×2=-3, 由⎩⎪⎨⎪⎧x +2y -2=0,2x +y -4=0解得A (2,0),则z max =2-2×0=2, 故z =x -2y 的取值范围是[-3,2]. [答案] [-3,2]8.(2017·贵州黔东南州模拟)若变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为________.[解析] 作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C 、D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧y =1,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5. [答案] 5 9.(2016·高考浙江卷改编)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=________.[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2),D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.[答案] 3 210.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.[解析] 法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.[答案] -1或211.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. [解] (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).12.(2017·江西高安中学联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5)C .[0,5]D .⎣⎡⎭⎫53,5B [解析] 作出可行域如图所示:易求得A ⎝⎛⎭⎫2,32,B ⎝⎛⎭⎫13,23,C (2,-1),令μ=2x -2y -1,则y =x -μ+12,当直线y =x -μ+12过点C (2,-1)时,μ有最大值5,过点B ⎝⎛⎭⎫13,23时,μ有最小值-53,因为可行域不包括x =2的边界,所以z =|2x -2y -1|的取值范围是[0,5).故选B.13.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.[解] (1)法一:因为P A →+PB →+PC →=0, 又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),所以⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2,即OP →=(2,2),故|OP →|=2 2.法二:因为P A →+PB →+PC →=0, 则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0,所以OP →=13(OA →+OB →+OC →)=(2,2),所以|OP →|=2 2. (2)因为OP →=mAB →+nAC →, 所以(x ,y )=(m +2n ,2m +n ),所以⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.14.某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A ,B ,C 的数量和一周内可用资源数量如下表所示:原材料 甲(吨) 乙(吨) 资源数量(吨) A 1 1 50 B 4 0 160 C 2 5 200如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么应如何安排生产,工厂每周才可获得最大利润?[解] 设工厂一周内安排生产甲产品x 吨、乙产品y 吨,所获周利润为z 元.依据题意,得目标函数为z =300x +200y ,约束条件为⎩⎪⎨⎪⎧x +y ≤50,4x ≤160,2x +5y ≤200,y ≥0,x ≥0.欲求目标函数z =300x +200y =100(3x +2y )的最大值,先画出约束条件表示的可行域, 如图中阴影部分所示,则点A (40,0),B (40,10),C ⎝⎛⎭⎫503,1003,D (0,40).作直线3x +2y =0,当移动该直线过点B (40,10)时,3x +2y 取得最大值,则z =300x +200y 取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得). 故z max =300×40+200×10=14 000.所以工厂每周生产甲产品40吨,乙产品10吨时,才可获得最大周利润,为14 000元.。

2020届高三复习经典教案:二元一次不等式(组)与简单的线性规划问题

2020届高三复习经典教案:二元一次不等式(组)与简单的线性规划问题

第二节 二元一次不等式(组)与简单的线性规划问题[最新考纲] 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.1[1.确定二元一次不等式表示的平面区域位置的方法把二元一次不等式Ax +By +C >0(<0)表示为y >kx +b 或y <kx +b 的形式.若y >kx +b ,则平面区域为直线Ax +By +C =0的上方;若y <kx +b ,则平面区域为直线Ax +By +C =0的下方.2.点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax +By +C =0的两侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方. ( ) (2)线性目标函数的最优解可能不唯一. ( )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距. ( )(4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域. ( )[答案] (1)× (2)√ (3)× (4)√2.(教材改编)不等式组⎩⎨⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )C [x -3y +6<0表示直线x -3y +6=0左上方的平面区域,x -y +2≥0表示直线x -y +2=0及其右下方的平面区域,故选C.]3.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.⎝⎛⎭⎫23,+∞ [直线2x -3y +6=0上方的点满足不等式y >23x +2,∴t >23×(-2)+2,即t >23.] 4.在平面直角坐标系中,不等式组⎩⎨⎧x ≥1,x +y ≤0,x -y -4≤0表示的平面区域的面积是__________.1 [不等式组表示的区域如图中的阴影部分所示,由x =1,x +y =0得A (1,-1), 由x =1,x -y -4=0得B (1,-3), 由x +y =0,x -y -4=0得C (2,-2),∴|AB |=2,∴S △ABC =12×2×1=1.]5.设x ,y 满足约束条件⎩⎨⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为________.3 [根据题意作出可行域,如图阴影部分所示,由z =x +y 得y =-x +z .作出直线y =-x ,并平移该直线,当直线y =-x +z 过点A 时,目标函数取得最大值. 由图知A (3,0),故z ma x =3+0=3.]二元一次不等式(组)表示的平面区域1.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4,所表示的平面区域的面积等于( )A.32B.23C.43D.34C [由题意得不等式组表示的平面区域如图阴影部分,A ⎝⎛⎭⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C.]2.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2,表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥7C [如图,当直线y =a 位于直线y =5和y =7之间(不含y =7)时满足条件,故选C.]3.已知关于x ,y 的不等式组⎩⎨⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0,所表示的平面区域的面积为3,则实数k 的值为________.12[直线kx -y +2=0恒过点(0,2),不等式组表示的平面区域如图所示,则A (2,2k +2),B (2,0),C (0,2),由题意知 1×2×(2k +2)=3,解得k =1.]►考法1 求线性目标函数的最值【例1】(1)(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.(2)(2018·北京高考)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________.(1)6 (2)3 [(1)画出可行域,如图中阴影部分所示.作出直线3x +2y =0并平移,结合图象可知,当平移后的直线经过点B (2,0)时,直线z =3x +2y 在y 轴上的截距最大,z 取得最大值,即当⎩⎨⎧x =2,y =0时,z ma x =3×2+0=6.(2)x +1≤y ≤2x 可化为⎩⎨⎧y ≥x +1,y ≤2x ,其表示的平面区域如图中阴影部分所示,令z =2y -x ,易知z=2y -x 在点A (1,2)处取得最小值,最小值为3.]►考法2 求非线性目标函数的最值【例2】实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. [解]由⎩⎨⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率.因此yx 的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z ma x 不存在). 由⎩⎨⎧ x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎨⎧x -y +1=0,x =0,得A (0,1),所以OA 2=(02+12)2=1, OB 2=(12+22)2=5, 所以z 的取值范围是[1,5].[拓展探究] (1)保持本例条件不变,求目标函数z =y -1x -1的取值范围. (2)保持本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.[解] (1)z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率,所以z 的取值范围是(-∞,0].(2)z =x 2+y 2-2x -2y +3=(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝ ⎛⎭⎪⎫|1-1+1|12+(-1)22=12,所以z ma x =2+1=3,z min =12+1=32. ►考法3 求参数的值【例3】(1)已知实数x ,y 满足⎩⎨⎧ 2x +2≥y ,x -2≤2y ,x +y ≤2,若z =x -my (m >0)的最大值为4,则m =________.(2)若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,其中m >0,且x +y 的最大值为9,则实数m =________.(1)3 (2)1 [(1)作出不等式组所表示的平面区域如图中阴影区域所示,由⎩⎨⎧2x -y +2=0,x -2y -2=0,得B (-2,-2),同理可得A (2,0),C (0,2),因为z =x -my (m >0),则y =1m x -1m z ,当1m >12,即0<m <2时,z =x -my 在点A (2,0)处取得最大值2,不合题意,因此m ≥2,此时z =x -my 在点B (-2,-2)处取得最大值4.所以-2+2m =4,解得m =3.(2)不等式组表示的平面区域如图中阴影部分所示,设z =x +y ,则y =-x +z ,当直线y =-x +z经过点A 时,x +y 有最大值,此时x +y =9,由⎩⎨⎧x +y =9,2x -y -3=0得A (4,5),将A (4,5)代入x -my +1=0得4-5m +1=0,解得m =1.,通过求直线的截距斜率型:形如(1)(2019·长春模拟)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0x -3≤0,,则z =x -2y 的最小值为________.(2)若实数x ,y 满足约束条件⎩⎨⎧2x +y -4≤0,x -2y -2≤0,x -1≥0,则y -1x的最小值为________. (3)已知x ,y 满足约束条件⎩⎨⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最大值为10,则z 的最小值为________.(1)-5 (2)-32(3)5[(1)不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.(2)作出不等式组表示的平面区域如图中阴影部分所示,因为y -1x 表示平面区域内的点与定点P (0,1)连线的斜率.由图知,点P 与点A ⎝⎛⎭⎫1,-12连线的斜率最小,所以⎝ ⎛⎭⎪⎫y -1x min =k P A=-12-11-0=-32.(3)画出不等式组表示的可行域如图中阴影部分所示,作直线l :3x +y =0,平移l ,从而可知经过C 点时z 取到最大值,由⎩⎨⎧3x +y =10,x +y =4, 解得⎩⎨⎧x =3,y =1,∴2×3-1-m =0,m =5.由图知,平移l 经过B 点时,z 最小,∴当x =2,y =2×2-5=-1时,z 最小,z min =3×2-1=5.]线性规划的实际应用【例4】 (2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放 时长(分钟) 广告播放时 长(分钟) 收视人次 (万)甲70 5 60 乙60 5 25 600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式, 并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? [解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧ 70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N ,该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值就最大.又因为x ,y 满足约束条件,所以由图②可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎨⎧ 7x +6y =60,x -2y =0,得⎩⎨⎧x =6,y =3,则点M 的坐标为(6,3).一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.216 000 [设生产产品A 为x 件,产品B 为y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z ma x =2 100×60+900×100=216 000(元).]1.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]B [画出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =x -z 过点A (2,0)时,z 取得最大值,即z ma x =2-0=2;当直线y =x -z 过点B (0,3)时,z 取得最小值,即z min =0-3=-3.所以z =x -y 的取值范围是[-3,2]. 故选B.]2.(2014·全国卷Ⅰ)设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3B [二元一次不等式组表示的平面区域如图所示,其中A ⎝ ⎛⎭⎪⎫a -12,a +12.平移直线x +ay =0,可知在点A ⎝⎛⎭⎪⎫a -12,a +12处,z 取得最值,因此a -12+a ×a +12=7,化简得a 2+2a -15=0,解得a =3或a =-5,但a =-5时,z 取得最大值,故舍去,答案为a =3,故选B.]3.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.9 [画出可行域如图中阴影部分所示.目标函数z =x +y 可化为y =-x +z ,作出直线y =-x ,并平移,当平移后的直线经过点B 时,z 取得最大值.联立,得⎩⎨⎧ x -2y +3=0,x -5=0,解得⎩⎨⎧x =5,y =4,所以B (5,4),故z ma x =5+4=9.]4.(2018·全国卷Ⅲ)若变量x ,y 满足约束条件⎩⎨⎧2x +y +3≥0,x -2y +4≥0,x -2≤0,则z =x +13y 的最大值是________.3 [作出不等式组表示的平面区域如图中阴影部分所示,画出直线y =-3x ,平移该直线,由图可知当平移后的直线经过直线x =2与直线x -2y +4=0的交点(2,3)时,z =x +13y 取得最大值,即z ma x =2+13×3=3.]课后限时集训(三十三) (建议用时:60分钟) A 组 基础达标一、选择题1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )A B C DC [(x -2y +1)(x +y -3)≤0,即⎩⎨⎧ x -2y +1≥0,x +y -3≤0或⎩⎨⎧x -2y +1≤0,x +y -3≥0,与选项C 符合.故选C.]2.已知实数x ,y 满足⎩⎨⎧2x -y -2≥0,x -y +2≥0,2x +y -2≥0,则z =3x -y 的最小值为( )A .-1B .1C .3D .2C [如图,作出不等式组所表示的平面区域(阴影部分),显然目标函数z =3x -y 的几何意义是直线3x -y -z =0在y 轴上截距的相反数,故当直线在y 轴上截距取得最大值时,目标函数z 取得最小值.由图可知,目标函数对应直线经过点A 时,z 取得最小值. 由⎩⎨⎧2x +y -2=0,2x -y -2=0,解得A (1,0). 故z 的最小值为3×1-0=3. 故选C.]3.(2019·泰安模拟)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12 C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎨⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)ma x =|OA |2=32+(-1)2=10.故选C.]4.(2019·衡阳模拟)若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为( )A.13B.23 C .1 D .2 D[由选项得m >0,作出不等式组⎩⎨⎧x +y ≥1,mx -y ≤0(m >0),3x -2y +2≥0表示的平面区域,如图中阴影部分.因为z =3x -y ,所以y =3x -z ,当直线y =3x -z 经过点A 时,直线在y 轴上的截距-z 最小,即目标函数取得最大值2.由⎩⎨⎧3x -2y +2=0,3x -y =2,得A (2,4),代入直线mx -y =0得2m -4=0,所以m =2.]5.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元D[设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值. 由⎩⎨⎧x +2y =8,3x +2y =12得A (2,3).则z ma x =3×2+4×3=18(万元).] 二、填空题6.(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.-1[不等式组⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0表示的可行域如图阴影部分所示.由z =3x -4y 得y =34x -14z .平移直线y =34x ,易知经过点A 时,z 有最小值.由⎩⎨⎧ x -y =0,x +y -2=0得⎩⎨⎧x =1,y =1,∴A (1,1). ∴z min =3-4=-1.]7.若变量x ,y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为________.5 [作出不等式组对应的平面区域如图阴影部分所示,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C ,D 间的距离最小,此时z 最小. 由⎩⎨⎧ y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5.]8.已知实数x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,则目标函数z =y +2x -5的最大值为________.-12[作出约束条件所表示的平面区域,其中A (0,1),B (1,0),C (3,4).目标函数z =y +2x -5表示过点Q (5,-2)与点(x ,y )的直线的斜率,且点(x ,y )在△ABC 平面区域内.显然过B ,Q 两点的直线的斜率z 最大,最大值为0+21-5=-12.]三、解答题 9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.[解] (1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎨⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0, 即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. [解] (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1. 所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2, 解得-4<a <2.故a 的取值范围是(-4,2).B 组 能力提升1.若平面区域⎩⎨⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B.2C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎨⎧ x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎨⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]2.若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43 D .3B [作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C (2-4m 3,2+2m3),D (-2m,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )·⎝ ⎛⎭⎪⎫1+m -2+2m 3=(1+m )⎝ ⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).]3.已知实数x ,y 满足⎩⎨⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为__________.10 [画出可行域,如图阴影部分所示.由b =x -2y ,得y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.]4.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1现有A 种原料200知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.[解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图①中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,它的图象是斜率为-23,随z 变化的一组平行直线,z3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.根据x ,y 满足的约束条件,由图②可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎨⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24),所以z ma x =2×20+3×24=112.即生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.第二节 二元一次不等式(组)与简单的线性规划问题[考纲传真] 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.1[1.确定二元一次不等式表示的平面区域位置的方法把二元一次不等式Ax +By +C >0(<0)表示为y >kx +b 或y <kx +b 的形式.若y >kx +b ,则平面区域为直线Ax +By +C =0的上方;若y <kx +b ,则平面区域为直线Ax +By +C =0的下方.2.点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax +By +C =0的两侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方. ( ) (2)线性目标函数的最优解可能不唯一. ( )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距. ( )(4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域. ( )2.(教材改编)不等式组⎩⎨⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )3.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.4.在平面直角坐标系中,不等式组⎩⎨⎧x ≥1,x +y ≤0,x -y -4≤0表示的平面区域的面积是__________.5.设x ,y 满足约束条件⎩⎨⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为________.1.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4,所表示的平面区域的面积等于( )A.32B.23C.43D.342.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2,表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥73.已知关于x ,y 的不等式组⎩⎨⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0,所表示的平面区域的面积为3,则实数k 的值为►考法1 求线性目标函数的最值 【例1】(1)(全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.(2)(北京高考)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________.►考法2 求非线性目标函数的最值 【例2】实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围.[拓展探究] (1)保持本例条件不变,求目标函数z =y -1x -1的取值范围.(2)保持本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.►考法3 求参数的值 【例3】(1)已知实数x ,y 满足⎩⎨⎧ 2x +2≥y ,x -2≤2y ,x +y ≤2,若z =x -my (m >0)的最大值为4,则m =________.(2)若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,其中m >0,且x +y 的最大值为9,则实数m =________.,通过求直线的截距斜率型:形如(1)(2019·长春模拟)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0x -3≤0,,则z =x -2y 的最小值为________.(2)若实数x ,y 满足约束条件⎩⎨⎧2x +y -4≤0,x -2y -2≤0,x -1≥0,则y -1x的最小值为________. (3)已知x ,y 满足约束条件⎩⎨⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最大值为10,则z 的最小值为________.【例4】 (天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式, 并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.1.(全国卷Ⅲ)设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]2.·全国卷Ⅰ)设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-33.(·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.4.(全国卷Ⅲ)若变量x ,y 满足约束条件⎩⎨⎧2x +y +3≥0,x -2y +4≥0,x -2≤0,则z =x +13y 的最大值是________.课后限时集训(三十三) (建议用时:60分钟) A 组 基础达标一、选择题1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )A B C D2.已知实数x ,y 满足⎩⎨⎧2x -y -2≥0,x -y +2≥0,2x +y -2≥0,则z =3x -y 的最小值为( )A .-1B .1C .3D .23.(2019·泰安模拟)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .124.(2019·衡阳模拟)若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为( )A.13B.23 C .1 D .25.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元二、填空题6.(全国卷Ⅲ)若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.7.若变量x ,y 满足约束条件⎩⎨⎧ x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为________.8.已知实数x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,则目标函数z =y +2x -5的最大值为________.三、解答题 9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.10.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.B 组 能力提升1.若平面区域⎩⎨⎧ x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B.2C.322 D. 52.若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43D .33.已知实数x ,y 满足⎩⎨⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为__________.4.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1现有A 种原料200知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.。

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案一、教学目标:1、理解二元一次不等式及其组的概念和运算法则,掌握解二元一次不等式及其组的方法。

2、能够应用二元一次不等式及其组的解法解决实际问题,了解简单线性规划问题的基本概念和求解方法。

二、教学重点难点:1、二元一次不等式及其组的概念和运算法则。

2、解二元一次不等式及其组的方法。

三、教学方法:1、课堂讲解法2、实例讲解法3、课堂练习法四、教学内容及进度安排:教学内容学时数一、二元一次不等式及其组的概念和运算法则 4二、解二元一次不等式及其组的方法 8三、应用二元一次不等式及其组的解法解决实际问题 4四、简单线性规划问题的基本概念和求解方法 4总计 20具体教学内容和进度安排:一、二元一次不等式及其组的概念和运算法则(4学时)1、概念:⑴二元一次不等式及其组定义;⑵不等式的符号和解集的含义;⑶一次不等式及其图像;⑷解二元一次不等式的方法,化为标准式;⑸同时含有两个变量的二元一次不等式组的解法。

2、运算法则:⑴二元一次不等式及其组的加减法,思想与方程相似;⑵实质:得到一组解或一些解的并集。

二、解二元一次不等式及其组的方法(8学时)1、解二元一次不等式:⑴将二元一次不等式转化为标准式,再根据各种情况进行分类讨论;⑵根据解集与图形的关系,解二元一次不等式的图像。

2、解二元一次不等式组:⑴联立,消元,分类讨论;⑵根据解集与图形的关系,解二元一次不等式组的图像。

三、应用二元一次不等式及其组的解法解决实际问题(4学时)通过实例,引入应用二元一次不等式及其组的解法解决实际问题,如商场折扣、产品出售等。

四、简单线性规划问题的基本概念和求解方法(4学时)1、概念:线性规划问题定义;2、方法:图形法;3、实例讲解。

五、教学过程:第一课时:二元一次不等式及其组的概念和运算法则知识与技能:1、掌握二元一次不等式及其组的概念和运算法则;2、理解一次不等式的图像。

7.3 二元一次不等式(组)与简单的线性规划问题教学文案

7.3  二元一次不等式(组)与简单的线性规划问题教学文案

变式2:求z=(x+1)2+(y-3)2 的最大值与最小值
知能迁移2 (2009·浙江理,13)若实数x,y满足不
等式组
x 2
x
y
y
2
, 4
,
则z=2x+3y的最小值是__4___.
x y 0 ,
知能迁移3 在如图所示的坐标平面的可行域内
(阴影部分且包括边界),若目标函数z=x+ay取
3
x
5
y
25
x 1
x-4y+3=0
B
O
A
x 3x+5y-25=0
x=1
当x=1,y=1时,z取最小值,zmin=3
当x=5,y=2时,z取最大值,zmax=12
y
C
x-4y+3=0
A B
O
x
3x+5y-25=0
x=1 变式 3.求zy2的取值.范
x3
变式1:求z=2x-y(x,y均为整数) 的最大值与最小值
2、画图时应非常准确,否则将得不到正确结果。
2.简单的线性规划
有关概念 由x,y 的不等式(或方程)组成的不等
式组称为x,y 的约束条件。关于x,y 的一次不等式或
No 方程组成的不等式组称为x,y 的线性约束条件。欲达
到最大值或最小值所涉及的变量x,y 的解析式称为目 标函数。关于x,y 的一次目标函数称为线性目标函数。
第七编 不等式
§7.4 二元一次不等式(组)与 简单的线性规划问题
柯桥中学高三数学组 何利民
1.二元一次不等式表示平面区域
在平面直角坐标系中,不等式
Ax + By + C > 0 表示在直线:Ax+By+C = 0的某一侧的平面区域

《二元一次不等式组与简单的线性规划问题》教案1新人教A版

《二元一次不等式组与简单的线性规划问题》教案1新人教A版

《二元一次不等式(组)与简单的线性规划问题》教案1(新人教A版必修5)3.3 二元一次不等式组与简单的线性规划问题第一课时二元一次不等式(组)与平面区域一、教学目标(1)知识与技能:了解二元一次不等式组的相关概念,并能画出二元一次不等式(组)来表示的平面区域(2)过程与方法:本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。

始终渗透"直线定界,特殊点定域"的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使问题更清晰和准确。

教学中也特别提醒学生注意表示区域时不包括边界,而则包括边界(3)情感与价值:培养学生数形结合、化归、集合的数学思想二、教学重点、教学难点教学重点:灵活运用二元一次不等式(组)来表示的平面区域教学难点:如何确定不等式表示的哪一侧区域三、教学设计(一)引例:一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔贷款至少可带来30000元的收益,其中从企业贷款中获益12﹪,从个人贷款中获益10﹪。

那么,信贷部应如何分配资金呢?提问:1.这个问题中从在一些不等关系,我们应该用什么不等式模型来刻画它们呢?2.设用于企业贷款的资金为元,用于个人贷款的资金为元,由于总资金为25000000元,得到:①3.由于计划从企业贷款中获益12﹪,从个人贷款中获益10﹪,共创收30000元以上,所以(12﹪)+(10﹪)4.企业和个人贷款不能为负,所以解:分析题意,我们可得到以下式子(二)概念1、二元一次不等式:我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式。

我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组。

3、满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.注意:有序实数对可以看成直角坐标平面内点的坐标.于是, 二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.例如二元一次不等式的解集为(三)问题: 二元一次不等式所表示的图形?在直角坐标系中,所有点被直线分成三类:一类是在直线上;二类是在直线左上方的区域内的点;三类是在直线右下方的区域内的点.尝试:设点P是直线上的点,任取点A,使它的坐标满足不等式,在图中标出点P和点A.观察并讨论我们发现,在直角坐标系中,以二元一次不等式的解为坐标的点都在直线的左上方;反之,直线左上方点的坐标也满足不等式.因此,在直角坐标系中,不等式表示直线左上方的平面区域. 类似地, 不等式表示直线右下方的平面区域.我们称直线为这两个区域的边界.将直线画成虚线,表示区域不包括边界. 结论:1、一般地, 在直角坐标系中,二元一次不等式表示某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式表示区域时则包括边界,把边界画成实线.2、二元一次不等式表示的平面区域常采用"直线定界,特殊点定域"的方法,即画线---取点---判断。

《二元一次不等式组与简单的线性规划问题》优秀教案

《二元一次不等式组与简单的线性规划问题》优秀教案

3.5.1 二元一次不等式组所表示的平面区域课时目标1了解二元一次不等式表示的平面区域2会画出二元一次不等式组表示的平面区域.1.二元一次不等式组的概念含有____未知数,并且未知数的最高次数是____的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为____________.2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式A+B+C>0表示直线____________某一侧所有点组成的平面区域,把直线画成______以表示区域不包括边界.不等式A+B+C≥0表示的平面区域包括边界,把边界画成______.3.二元一次不等式组表示平面区域的确定1直线A+B+C=0同一侧的所有点的坐标,代入A+B+C所得的符号都______.2在直线A+B+C=0的一侧取某个特殊点0,0,由________________的符号可以断定A+B+C>0表示的是直线A+B+C=0哪一侧的平面区域.一、选择题1.如图所示,表示阴影部分的二元一次不等式组是0的点,所在的区域为4.不等式组错误!表示的平面区域内整点的个数是A.2个B.4个C.6个D.8个5.在平面直角坐标系中,不等式组错误!a为常数表示的平面区域的面积是9,那么实数a的值为A.3错误!+2 B.-3错误!+2C.-5 D.16.若不等式组错误!所表示的平面区域被直线=+错误!分为面积相等的两部分,则的值是二、填空题7.△ABC的三个顶点坐标为A3,-1,B-1,1,C1,3,则△ABC的内部及边界所对应的二元一次不等式组是________________.8.已知,为非负整数,则满足+≤2的点,共有________个.9.原点与点1,1有且仅有一个点在不等式2-+a>0表示的平面区域内,则a的取值范围为________.10.若A为不等式组错误!表示的平面区域,则当a从-2连续变化到1时,动直线+=a扫过A中的那部分区域的面积为________.三、解答题11.利用平面区域求不等式组错误!的整数解.12.若直线=+1与圆2+2++m-4=0相交于表示的平面区域的面积是多少?能力提升13.设不等式组错误!=a的图象上存在区域D上的点,则a的取值范围是A.1,3] B.[2,3]C.1,2] D.[3,+∞14.若不等式组错误!表示的平面区域是一个三角形,则a的取值范围是______________.1.二元一次不等式组的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式组.常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定的范围,再逐一代入不等式组,求出的范围最后确定整数解的个数.§35二元一次不等式组与简单的线性规划问题3.51二元一次不等式组所表示的平面区域答案知识梳理1.两个1二元一次不等式组+B+C=0虚线实线3.1相同2A0+B0+C作业设计1.C[可结合图形,根据确定二元一次不等式组表示的平面区域的方法逆着进行.由图知所给区域的三个边界中,有两个是虚的,所以C正确.]2.A[由题意知,-3+2-a9-3-a0等价于不等式组Ⅰ错误!或不等式组Ⅱ错误!错误!错误!错误!错误!错误!错误!无解.②原点0,0不在该区域内,点1,1在该区域内,则错误!,∴-11,=a恰好经过A点时,由a2=9,得a=3要满足题意,需满足a2≤9,解得1错误!时,表示区域是△AOB;当+=a过B1,0时表示的区域是△DOB,此时a=1;当0<a<1时可表示三角形;当a<0时不表示任何区域,当1<a<错误!时,区域是四边形.故当0<a≤1或a≥错误!时表示的平面区域为三角形.。

个人教学设计模板[二元一次不等式(组)与简单的线性规划问题]

个人教学设计模板[二元一次不等式(组)与简单的线性规划问题]
二、提出问题
1.例题:
设z=2x+y,式中变量 x,y满足4≤x+y≤6(1),2≤x-y≤4,求z 的取值范围
问题(1):上节我们学习了二元一次不等式表示平面区域,那么题中的不等式组能表示什么样的区域呢?
x + y≥4,x + y≤6
x-y≥2,x-y≤4
问题1:学生独立完成
错因分析,怎样来解决此题呢?引出例题,需教师的层层点拨。
解:如图得出不等式组的平面区域,则z=2x+y即y=-2x+z(z为参数),直线在与区域有公共点时根据图象得z的最大值和最小值即当x=3,y=1 =7时;当x=5,y=1时 =11。
处理办法:几何画板演示
2.形成概念:
(1)线性规划
(2)线性约束条件
(3)可行解
(4)可行域
(5)最优解
3. 学生归纳步骤:
二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点)
1.会从实际问题的情景中抽象出二元一次不等式组模型;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;会从实际问题中抽象出一些简单的二元线性规划问题,并能加以解决。
2.了解线性规划问题的坐标法,并会用坐标法求目标函数的最值,培养学生的识图,画图能力。
引例:若实数x,y满足3≤x≤5 ,0≤y≤2
,求2x+y的取值范围
活动设计:(1)教师给出例题并组织学生迅速动手解答此题,估计学生有错误的解法。
(2)错解分析,学生讨论辨析,得出结论.
1.学生错解(展示黑板上)
2.估计学生能通过举特殊值法
本环节通过巧布“陷阱”,目的在于创设一个问题情境,让学生主动的参与。

数学《二元一次不等式(组)与简单的线性规划问题》高中教案

数学《二元一次不等式(组)与简单的线性规划问题》高中教案

数学《二元一次不等式(组)与简单的线性规划问题》高中教案数学《二元一次不等式(组)与简单的线性规划问题》高中教案上课是理解和掌握基础知识、基本技能和基本方法的关键环节。

学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

下学生通过自己的分析得出了正确的结论,让他们从中体会到了获取新知后的成就感,从而增加了对数学的学习兴趣.同时也让他们体会人们在认识新生事物时从特殊到一般,再从一般到特殊的认知过程.】(二)实例展示:例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.【通过利用多媒体对实例的展示让学生体会到画出不等式表示的平面区域的基本流程:直线定界,特殊点定域,而不等式(组)表示的平面区域是各个不等式表示的平面区域的公共部分.同时对具体作图中的细节问题进行点拔.】(三)练习:学生练习P86第1-3题.【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】(四)课后延伸:师:我们在今天主要解决了在给出不等式(组)的情况下如何用平面区域来表示出来的问题. 如果反过来给出了平面区域你能写出相关的不等式(组)吗?例如你能写出A(2,4),B(2,0),C(1,2)三点构成的三角形内部区域对应的不等式组吗?你能写出不等式形如二元一次不等式(组)与简单的线性规划问题的模块单元教学设计这种不等式表示的平面区域?(五)小结与作业:二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)作业:第93页A组习题1、2,补充作业:若线段PQ的两个端点坐标为P(3,-1),Q(2,4),且直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计与线段PQ。

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

3.3二元一次不等式(组)与简单的线性规划问题 教案

3.3二元一次不等式(组)与简单的线性规划问题 教案

的解集为数轴上的一个区间(如图)
表示直线2
=右
x y
≥≤≥)2)2)2

件,又已知条件可得
…………
画出不等式组所表示的平面区域:
安排利润最大?
变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要
14.
大利润
的问
的最大值,使式中的
生产1车皮乙种肥能够产生最大的利润?
轴上的截距为2z的一组最大,即z最大。

容易
,这个点不是整数,经过可行域内整
B(3,9),C(4,8).
张,或第一种钢板4张,第二种钢板8张,
的最大值问题可转化为区域内的点和原点的连线的斜率的最大值,画出可
,由此说明y的最大值为
答案:3
③十。

3二元一次不等式(组)与简单的线性规划问题(优秀经典公开课教案及练习解答)

3二元一次不等式(组)与简单的线性规划问题(优秀经典公开课教案及练习解答)

3⼆元⼀次不等式(组)与简单的线性规划问题(优秀经典公开课教案及练习解答)第3讲⼆元⼀次不等式(组)与简单线性规划问题★知识梳理★(⼀)⼆元⼀次不等式表⽰的区域对于直线0=++C By Ax (A>0)当B>0时, 0>++C By Ax 表⽰直线0=++C By Ax 上⽅区域; 0<++C By Ax 表⽰直线0=++c By Ax 的下⽅区域.当B<0时, 0>++C By Ax 表⽰直线0=++C By Ax 下⽅区域; 0<++C By Ax 表⽰直线0=++c By Ax 的上⽅区域.(⼆)线性规划(1)不等式组是⼀组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的⼀次不等式,所以⼜可称其为线性约束条件.z =A x +B y 是欲达到最⼤值或最⼩值所涉及的变量x 、y 的解析式,我们把它称为⽬标函数.由于z =A x +B y ⼜是关于x 、y 的⼀次解析式,所以⼜可叫做线性⽬标函数.另外注意:线性约束条件除了⽤⼀次不等式表⽰外,也可⽤⼀次⽅程表⽰.(2)⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题.(3)那么,满⾜线性约束条件的解(x ,y )叫做可⾏解,由所有可⾏解组成的集合叫做可⾏域.在上述问题中,可⾏域就是阴影部分表⽰的三⾓形区域.其中可⾏解(11,y x )和(22,y x )分别使⽬标函数取得最⼤值和最⼩值,它们都叫做这个问题的最优解.线性⽬标函数的最值常在可⾏域的顶点处取得;⽽求最优整数解必须⾸先要看它们是否在可⾏(4)⽤图解法解决简单的线性规划问题的基本步骤:1.⾸先,要根据线性约束条件画出可⾏域(即画出不等式组所表⽰的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从⽽找到最优解.4.最后求得⽬标函数的最⼤值及最⼩值.(5) 利⽤线性规划研究实际问题的解题思路:⾸先,应准确建⽴数学模型,即根据题意找出约束条件,确定线性⽬标函数.然后,⽤图解法求得数学模型的解,即画出可⾏域,在可⾏域内求得使⽬标函数取得最值的解.最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.★重难点突破★1.重点:灵活运⽤⼆元⼀次不等式(组)来表⽰的平⾯区域,掌握线性规划的图解法2.难点:如何确定不等式0(Ax By C ++>或<0)表⽰0Ax By C ++=的哪⼀侧区域,如何寻求线性规划问题的最优解.3.重难点:如何将实际问题转化为线性规划问题并准确求得线性规划问题的最优解(1) 怎样画⼆元⼀次不等式(组)所表⽰的平⾯区域?问题1. 画出不等式组??(2)求线性规划的最优解问题2. 某⼈上午7时,乘摩托艇以匀速v 海⾥/时(4≤v ≤20)从A 港出发到距50海⾥的B 港去,然后乘汽车以w 千⽶/时(30≤w ≤100)⾃B 港向距300千⽶的C 市驶去,应该在同⼀天下午4⾄9点到达C 市.设汽车、摩托艇所需的时间分别是,x y ⼩时.(1)写出,x y 所满⾜的条件,并在所给的平⾯直⾓坐标系内,作出表⽰,x y 范围的图形;(2)如果已知所需的经费1003(5)2(8)p x y =+-+-(元),那么,v w 分别是多少时⾛得最经济?此时需花费多少元?点拨:(1) 由题意得:v =y 50,w =x300,4≤v ≤20,30≤w ≤100,∴3≤x ≤10,25≤y ≤225.①由于汽车、摩托艇所要的时间和x +y 应在9⾄14⼩时之间,即9≤x +y ≤14,②因此满⾜①②的点(x ,y )的存在范围是图中阴影部分(包括边界).(2) 因为p =100+3(5-x )+2(8-y ),所以3x +2y =131-p ,设131-p =k ,那么当k 最⼤时,p 最⼩,在图中通过阴影部分区域且斜率为-23的直线3x +2y =k 中,使k 值最⼤的直线必通过点(10,4),即当y =4时,p 最⼩,此时x =10,v =12.5,w =30,p 的最⼩值为93元.★热点考点题型探析★考点1 ⼆元⼀次不等式(组)与平⾯区域题型1. 求约束条件及平⾯区域的⾯积例1 .双曲线4y x 22=-的两条渐近线与直线x=3围成⼀个三⾓形区域,表⽰该区域的不等式组是()A. ≤≤≥+≥-3x 00y x 0y xB. ??≤≤≤+≥-3x 00y x 0y x≤≤≤+≤-3x 00y x 0y xD. ??≤≤≥+≤-3x 00y x 0y x【解题思路】依据平⾯区域的画法求解.[解析]双曲线4y x 22=-的两条渐近线⽅程为x y ±=,两者与直线3x =围成⼀个三⾓形区域时有??≤≤≥+≥-3x 00y x 0y x ,故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次不等式(组)与简单的线性规划问题一、教学容分析本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与最优解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。

突出体现了优化思想,与数形结合的思想。

本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

二、学生学习情况分析本小节容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解. 但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

三、设计思想以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。

注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

四、教学目标1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应最优解;2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力; 在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性.五、教学重点和难点重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究.六、教学基本流程第一课时,利用生动的情景激起学生求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域.让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到最优方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤.通过例5的展示让学生从动态的角度感受图解法.最后再现情景1,并对之作出完美的解答。

第四课时,给出新的引例,让学生体会到线性规划问题的普遍性.让学生讨论分析,对引例给出解答,并综合前三个课时的教学容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程.总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

七、教学过程设计第一课时: 二元一次不等式组与平面区域(1)(一)引入:(1)情景1王老汉的疑惑:秋收过后,村中拥入了不少生意人,收购大豆与红薯,精明的王老汉上了心,一打听,顿时喜上眉梢.村豆的收购价是5元/千克,红薯的收购价是2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.女说:“收购大豆每千克获利多故应收购大豆”,子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。

【问题情景使学生感受到数学是来自现实生活的,让学生体会从实际问题中抽象出数学问题的过程;通过情景我们不仅能从中引出本堂课的容“二元一次不等式(组)的概念,及其所表示的平面区域”,也为后面的容“简单的线性规划问题”埋下了伏笔.】(2)问题与探究师:同学们,你们能用具体的数字体现出王老汉的两个子的收购方案吗?生,讨论并很快给出答案.(师,记录数据)师:请你们各自为王老汉设计一种收购方案.生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)师:这些同学的方案都是对的吗?生,讨论并找出其中不合理的方案.师:为什么这些方案就不行呢?生,讨论后并回答师:满足什么条件的方案才是合理的呢?生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)师,让几个学生上黑板列出不等式组,并对之分析指正(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)师:同学们还记得什么是方程的解吗?你能说出二元一次方程6=+y x 的一组解吗?生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)师:同学们能说出什么是不等式(组)的解吗?你能说出二元一次不等式6<+y x的一组解吗?生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)师:我们知道每一组有序实数对都对应于平面直角坐标系上的一个点,你能把上面记录的不等式6<+y x 的解在平面直角坐标系上标记出来吗?生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)师,利用多媒体课件展示平面直角坐标系及不等式6<+y x 的解所对应的一些点,让学生观察并思考讨论:不等式6<+y x 的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)师,引导学生在同一平面直角坐标系中画出方程6=+y x 的解所对应的图形(一条直线,指导学生用与坐标轴的两个交点作出直线),再提出问题:二元一次不等式6<+y x 的解为坐标的点在平面直角坐标系中的位置有什么特点?生,提出猜想:直线6=+y x 分得的左下半平面.【教师通过几个简单的问题,让学生产生了利用平面区域表示二元一次不等式的想法,而后再让学生大胆的猜想,细心的论证,让他们从中让体会到对新知识进行科学探索的全过程.】师:这个结论正确吗?你能说出理由来吗?生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线6=+y x 下方的点与对应直线上的点对照比较的方法进行说明)师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线6=+y x 横坐标相同而纵坐标不同的点对应分析的方法进行证明.师:直线6=+y x 的右上半平面应怎么表示?生:表示为6>+y x ,(很快回答)师: 从中你能得出什么结论?生,讨论并得到一般性结论(教师总结纠正)(教师总结并用多媒体展示,二元一次不等式0>++C By Ax 表示直线0=++C By Ax 的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式0≥++C By Ax 表示的平面区域因包含边界故直线画成实线.)师:点O(0,0)是不等式62<+y x 一个解吗?据此你能说出不等式62<+y x 对应的平面区域相对与直线62=+y x 的位置吗?生,作图分析,讨论并回答(师,对学生的回答进行分析)师:结合上面问题请同学们归纳出作不等式62<+y x 对应的平面区域的过程.生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)师:你们能说出作二元一次不等式0>++C By Ax 对应的平面区域的过程吗?生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)师:若点P(3,-1),点Q(2,4)在直线02=-+y ax 的异侧,你能用数学语言表示吗?生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式02<-+y ax 的解,一个是不等式02>-+y ax 的解)师:你能在这个条件下求出a 的围吗?生.讨论分析,最后得到不等式0)242)(213(<-+--a a 并求解.师:若把上面问题改为点在同侧呢?请同学们课后完成.【在教师的帮助下学生通过自己的分析得出了正确的结论,让他们从中体会到了获取新知后的成就感,从而增加了对数学的学习兴趣.同时也让他们体会人们在认识新生事物时从特殊到一般,再从一般到特殊的认知过程.】(二)实例展示:例1、画出不等式62>+y x 表示的平面区域.例2、用平面区域表示不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 的解集.【通过利用多媒体对实例的展示让学生体会到画出不等式表示的平面区域的基本流程:直线定界,特殊点定域,而不等式(组)表示的平面区域是各个不等式表示的平面区域的公共部分.同时对具体作图中的细节问题进行点拔.】(三)练习:学生练习P86第1-3题.【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】(四)课后延伸:师:我们在今天主要解决了在给出不等式(组)的情况下如何用平面区域来表示出来的问题. 如果反过来给出了平面区域你能写出相关的不等式(组)吗?例如你能写出A(2,4),B(2,0),C(1,2)三点构成的三角形部区域对应的不等式组吗?你能写出不等式形如0422≤-y x 这种不等式表示的平面区域?(五)小结与作业:二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)作业:第93页A 组习题1、2,补充作业:若线段PQ 的两个端点坐标为P(3,-1), Q(2,4),且直线02=-+y ax 与线段PQ 相交,求a 的取值围 第二课时: 二元一次不等式组与平面区域(2)(一)引入王老汉的疑惑:秋收过后,村中拥入了不少生意人,收购大豆与红薯,精明的王老汉上了心,一打听,顿时喜上眉梢.村豆的收购价是5元/千克,红薯的收购价是2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.女说:“收购大豆每千克获利多故应收购大豆”,子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了. 师:同学们,我们在昨天已经替王老汉的收购方案做出了一定的规划与设计,用二元一次不等式组进行了约束.你能再现昨天的不等式组并用平面区域表示出来吗?生,独立的思考并开始练习.(教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,强调这是同一事物的两种表达形式数与形)师,利用多媒体展示解答过程与图形,引导学生分析如何把实际问题转化为数学问题,并回顾作二元一次不等式(组)所表示的平面区域的过程.【再现引例,通过它让学生体会到数学问题源于生活而用于生活,同时引导学生得出建立线性规划模型的基本过程:理清数据关系→设立决策变量→建立数学关系式→画平面区域,】(二)实例展示例3、要将两种大小不同的钢板截成A、B、C三种规格,每钢板可同时截得三种规格的今需要A、B、C三种规格的成品分别为15,18,27块,请用数学关系式和图形表示上述要求.请学生读题,引导阅读理解后,明白列表也是表示数量关系的一种方法,是文字语言向符号语言转化中的一种过度形式,让学生设出决策变量,写出线性数学关系式,画出相应的平面区域.教师在巡视中并发现代表性的练习进行展示.教师用多媒体展示,让学生与引例对比,分析其中的区别.这里要关注平面区域本题是开放型的,而引例是封闭型的;本题的变量是整数而引例中是实数.【问题情景使学生体会到在具体问题向数学问题转化中的隐含条件,让学生了解建立线性规划模型的基本过程:列表→设立决策变量→建立数学关系式→画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程】例4、一个化肥厂生产甲、乙两种混料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。

相关文档
最新文档