高中数学必修四教材分析
高中数学必修四教案重难点
高中数学必修四教案重难点教学内容:平面坐标系和向量教学目标:让学生掌握平面直角坐标系和向量的相关概念,能够灵活运用平面坐标系和向量的性质解决相关问题。
教学重点:1. 平面直角坐标系的建立和性质;2. 向量的定义、表示与性质;3. 向量的加减法及数量积、向量积的计算。
教学难点:1. 向量的数量积和向量积的计算;2. 向量的几何解释和运用;3. 应用题的解答方法。
教学内容安排:一、引入:通过实际生活中的例子引入平面直角坐标系和向量,引发学生对这两个概念的认识和兴趣。
二、讲解平面直角坐标系:1. 平面直角坐标系的建立和性质;2. 平面直角坐标系中点的坐标计算方法;3. 平面直角坐标系中两点间的距离公式推导及应用。
三、引入向量:1. 向量的定义、表示方法和性质;2. 向量的相等与平行性质;3. 向量的数量积和向量积的定义和计算方法。
四、深入讲解向量计算:1. 向量的加法、减法及求模运算;2. 向量的数量积和向量积的计算方法;3. 向量组的线性相关与线性无关性质。
五、应用题解析:通过实例引导学生运用所学知识解答应用题,加深学生对向量应用的理解和掌握。
六、课堂练习与讨论:安排相关练习题,让学生进行课堂练习,并进行讨论和解答,加强学生对所学知识的理解和应用能力。
七、课堂总结与作业布置:对本节课所学知识进行总结,强化学生对平面直角坐标系和向量的理解和应用能力,并布置相关作业,巩固知识。
教学反思:通过本节课的教学,学生可以全面了解平面直角坐标系和向量的相关概念,掌握其应用方法,并基本能独立解答相关问题。
同时,教师需要关注学生学习情况,及时调整教学方法,帮助学生解决学习中的困难,提高学习效果。
高中数学必修四《两角差的余弦公式》优秀教学设计
3.1.1两角差的余弦公式一、教材分析《两角差的余弦公式》是人教A 版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。
本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。
二、教学目标1.引导学生建立两角差的余弦公式。
通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。
2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。
3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。
三、教学重点难点重点 两角差余弦公式的探索和简单应用。
难点 探索过程的组织和引导。
四、学情分析之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角αβ,的正弦余弦值来表示cos()αβ-,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。
五、教学方法1.自主性学习法:通过自学掌握两角差的余弦公式.2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距 六、课时安排:2课时 七、教学过程(一)创设情景,揭示课题以文峰塔高度测量为背景素材(见课件)引入问题。
并针对问题中的0cos15用计算器或不用计算器计算求值,以激趣激疑,导入课题。
问题:(1)能不能不用计算器求值 :0cos 45 ,0cos30 ,0cos15(2)0cos(4530)cos 45cos30-=-是否成立?(3)如何用450和300求0cos15?设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。
(二)、研探新知 1.三角函数线法:问:①怎样作出角α、β、αβ-的终边。
2022年高中人教B版数学必修四优课教案:1.2.4诱导公式
三角函数的诱导公式的教学设计一、指导思想与理论依据数学是一门培育人的思维,进展人的思维的重要学科。
因此,在教学中,不仅要使同学“知其然”而且要使同学“知其所以然”。
所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要接受观看、启发、类比、引导、探究相结合的教学方法。
在教学手段上,则接受多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。
二.教材分析三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角与、、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有格外重要的地位.三.学情分析本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以接受发觉的教学方法应当能轻松的完成本节课的教学内容.四.教学目标(1).基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;(2).力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;(3).创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;(4).共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观.五.教学重点和难点1.教学重点理解并把握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六.教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给同学数学学问,更重要的是传授给同学数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学学问,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以同学为主题,以发觉为主线,尽力渗透类比、化归、数形结合等数学思想方法,接受提出问题、启发引导、共同探究、综合应用等教学模式,还给同学“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让同学体会学习的欢快和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有把握学习方法的人”,很多课堂教学经常以高起点、大容量、快推动的做法,以便教给同学更多的学问点,却忽视了同学接受学问需要时间消化,进而泯灭了同学学习的爱好与热忱.如何能让同学最大程度的消化学问,提高学习热忱是教者必需思考的问题.在本节课的教学过程中,本人引导同学的学法为思考问题共同探讨解决问题简洁应用重现探究过程练习巩固.让同学参与探究的全部过程,让同学在猎取新学问及解决问题的方法后,合作沟通、共同探究,使之由被动学习转化为主动的自主学习.3.预期效果本节课预期让同学能正确理解诱导公式的发觉、证明过程,把握诱导公式,并能娴熟应用诱导公式了解一些简洁的化简问题.七.教学流程设计(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由sin300,你能否知道sin2100的值吗?引如新课.设计意图自信的鼓舞是增加同学学习数学的自信,简洁易做的题加强了每个同学学习的热忱,具体数据问题的消灭,让同学既有好像会做的心理但又有迷惑的茫然,去发掘潜力期盼查找机会证明我能行,从而思考解决的方法.(二)新知探究1. 让同学发觉300角的终边与2100角的终边之间有什么关系;2.让同学发觉300角的终边和2100角的终边与单位圆的交点为(x,y) 、(-x,-y) 的坐标有什么关系;3.Sin2100与sin300之间有什么关系.设计意图由特殊问题的引入,使同学简洁了解,实现教学过程的平淡过度,为同学们探究发觉任意角与的三角函数值的关系做好铺垫.(三)问题一般化探究一1.探究发觉任意角α的终边与πα+的终边关于原点对称;2.探究发觉任意角α的终边和角πα+的终边与单位圆的交点坐标关于原点对称;3.探究发觉任意角α与πα+的三角函数值的关系.设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为同学将要自主发觉、探究公式三和四起到示范作用,下面练习设计为了生疏公式一,让同学感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值.(1)sin2250. ;(2)sin2400. ;(3)sin2700. .喜悦之后让我们重新启航,接受新的挑战,引入新的问题.(五)问题变形由sin300=0.5 动身,用三角的定义引导同学求出 sin(-300),Sin1500值,让同学联想若已知sin300= 0.5,能否求出sin(-300 ),sin(-1500 )的值.同学自主探究1.探究任意角α与 -α的三角函数又有什么关系;2.探究任意角α与πα-的三角函数之间又有什么关系.设计意图遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经受思考问题-观看发觉-到一般化结论的探究过程,从特殊到一般,数形结合,同学对学问的理解与把握以深化脑中,此时以类同问题的提出,大胆的放手让同学分组争辩,重现了探究的整个过程,加深了学问的深刻记忆,对同学无形中鼓舞了气概,增加了自信,加大了挑战.而新学问点的自主探讨,对老师驾驭课堂的力量也布满了极大的挑战.彼此信任,彼此信任,产生了师生的默契,师生共同进步.呈现同学自主探究的结果诱导公式(三)、(四)给出本节课的课题三角函数诱导公式设计意图标题的后出,让同学在经受整个探究过程后,还回味在探究,发觉的成功喜悦中,猛然回头,哦,原来学问点已经轻松把握,同时也是对本节课内容的小结.。
高一下学期数学人教A版必修4第一章1.4.3 正切函数的性质与图象 教学设计
《正切函数的性质与图象》教学设计一、教材内容分析:1、教学内容人教版A版,数学必修4,第一章,1.4.3“正切函数的性质与图象”《普通高中课程标准实验教科书·数学 4 (必修)》第一章第四节第三课时内容2、教材分析:本节课是研究了正弦、余弦函数的图象与性质后,又一具体的三角函数.正切函数的性质和图象是对前面已学函数以及三角函数知识的深化运用。
教材紧扣课题,先探究正切函数的性质,再作图,这与前面对正弦函数、余弦函数的研究恰好相反。
本节课提出先推导函数性质,再作图,又由图形发现新性质,再理性反思的处理方式,这样既能在性质的指导下,可以更加有效地作图,数形结合相得益彰,又能给学生提供更多研究数学问题的视角。
二、学习者特征分析:学生已经学习了正切的定义、单位圆中的正切线、诱导公式、正弦函数的图象和性质等,具备了学习本节课的知识基础.并且在学习基本初等函数时,已然形成了稳定的函数研究模式,即先画图、再性质.选择恰当的方法和过程来研究正切函数的性质,对学生来说也是一种考验。
三、教学策略选择与设计:我们知道研究函数常见两种方式,第一种方式是先根据函数解析式作出整体的函数图象.通过观察图象获得对函数性质的直观感性的认识,然后再把直观想象的内容用代数的语言加以抽象概括,进一步加以推理证明。
这种研究过程体现的思维模式是由“直观想象”到“抽象概括”,研究方法是由“整体”到“局部”;第二种方式是先用代数的语言抽象概括出函数的局部性质,再根据性质画出函数的整体图象,这种研究过程体现的思维模式是由“抽象概括”到“直观想象”,研究方法是由“局部”到“整体”;前面主要研究了正余弦函数的图象和性质,我们的研究方法是先画出函数的图象,观察图象得到函数的性质.这节课研究正切函数过程中要体会另一种思维模式,先研究函数的一些局部的抽象的性质,再通过性质画出函数的整体的直观的图象.使学生的研究函数的思维模式从“直观到抽象、整体到局部”突破到“抽象到直观、局部到整体”,研究过程也从“先图象后性质”突破到“先性质后图象”,这也是今后研究一个不熟悉的函数时的常用方法。
新课程高中数学必修4教案
新课程高中数学必修4教案
教案范本
第一课时
主题:集合与命题
教学目标:学生将能够理解集合的概念,掌握集合的运算及性质,了解命题的基本结构和逻辑运算。
教学内容:
1. 集合的基本概念和表示方法
2. 集合的运算:并集、交集、差集、补集
3. 集合的性质:幂集、空集、全集
4. 命题及逻辑运算:与、或、非、等价、蕴含
教学活动:
1. 引导学生思考日常生活中的集合问题,如班级里喜欢看电影的同学的集合是什么等
2. 讲解集合的基本概念和运算,并进行相关例题讲解
3. 设计讨论题,让学生解答关于集合的问题,巩固学习成果
4. 引导学生掌握命题的基本结构和逻辑运算,进行适当的练习
作业安排:
1. 完成课后习题,复习集合的概念和运算
2. 思考并总结日常生活中的命题,写出具体例子
评价标准:
1. 熟练掌握集合的基本概念和运算
2. 能够准确运用命题的逻辑运算,理解命题间的关系
拓展延伸:
学生可以通过实际场景中的案例,更好地理解集合和命题的应用,同时可以深入学习集合的进阶内容和更复杂的逻辑运算。
高中数学必修4教案:1.5.1正弦函数的图像
§5.1正弦函数的图像一、教学目标:1. 知识与技能(1) 了解正弦曲线的画法,能利用描点法(包括示意图的近视画法——五点法)画出x y sin 的图像.(2) 会利用正弦函数的图像进一步研究和理解正弦函数的单调性、奇偶性、最大值和最小值、图像与x 轴的交点等性质.2. 过程与方法通过利用单位圆研究正弦函数性质的过程,增强学生自主分析问题、解决问题的能力.3. 情感、态度与价值观通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯.二、教材分析1. 教材突出了单位圆在研究正弦函数中的作用.从单位圆看正弦函数的简单性质,不仅能使学生较直观的看出正弦函数的简单性质,更重要的是它可以帮助学生从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,以便更深刻地认识、理解、记忆正弦函数性质. 2. 教材采用平移任意一个角的终边与单位圆交点的纵坐标的方法,画出正弦函数的图像.(1)为了强调任意一个角的终边与单位圆交点的纵坐标都可以平移,教材选取了区间[]π2,0上的一系列的x 值:ππππ2,...,2,3,6,0的值取得越多越好)(x ,画出函数x y sin =图像上的一系列的点.(2)“五点法”是画正弦函数图像常用的方法,用这种方法画正弦函数图像是建立在对正弦函数图像形状基本特征的把握基础之上的.这种方法突出了正弦函数图像的基本特征,同时便于抓住正弦函数的主要性质。
三、重点和难点本节的重点:正弦函数的图像及基本性质. 本节的难点:x y sin =图像的画法.四、教学方法与手段教学方法:合作与探究 教学手段:多媒体辅助教学.五、教学过程(一)、创设情境,揭示课题教师提问:已知某函数的解析式,如何画出该函数的图像?画函数图像的基本步骤是什么?如何画出正弦函数y =sinx 的图像呢?本节课我们将学习如何画出正弦函数的图像.(二)、探究新知1.画图的步骤(正弦函数线MP )下面我们来探讨正弦函数的一种几何表示.如右图所示,角α的终边与单位圆交于点P (x ,y ), 提出问题:①线段MP 的长度可以用什么来表示?②能用这个长度表示正弦函数的值吗?如果不能,你能否设计一种方法加以解决?引出有向线段的概念.有向线段:当α的终边不在坐标轴上时,可以把MP 看作是带方向的线段. 当y >0时,把MP 看作与y 轴同向(多媒体优势,利用计算机演示角α终边在一、二象限时MP 从M 到P 点的运动过程.让学生看清后定位,运动的方向表明与y 轴同向).当y <0时,把MP 看作与y 轴反向(演示角α终边在三、四象限时MP 从M 到P 点的运动过程.让学生看清后定位,运动的方向表明与y 轴反向).师生归纳:① MP 是带有方向的线段,这样的线段叫有向线段.MP 是从M →P ,而PM 则是从P →M.②不论哪种情况,都有MP =y .③依正弦定义,有sin α=MP =y ,我们把MP 叫做α的正弦线.(投影仪出示反馈练习) 当α为特殊角,即终边在坐标轴上时,找出其正弦线。
高中数学必修4教案6篇
高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。
教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。
(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。
二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。
依据弧度制的定义推导并运用弧长公式和扇形面积公式。
以详细的实例学习角度制与弧度制的互化,能正确使用计算器。
三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。
数学》必修④第一章正弦函数的图像(共21张PPT)
3.根据学生在课后作业情况,查漏补缺。
谢谢
华侨中学 苏育亮
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
高中数学必修四《任意角》教学设计
1.1.1 任意角(教学设计)内容:人教A版高中数学必修④第一章第一节第一课时.适合对象:高一学生【教材分析】三角函数是基本初等函数之一,也是中学数学的重要内容之一,它是研究度量几何的基础,又是研究自然界周期变化规律的最强有力的数学工具.因此,本节课作为高中三角函数的起始课,有着衔接初高中学习,承前启后的作用,也为今后学习任意角的三角函数奠定了基础.本节课主要介绍推广角的概念,引入正角、负角、零角的定义;介绍象限角的概念;终边相同的角的表示方法;帮助学生树立运动变化的观点,并由此深刻理解推广后角的概念.【教学目标分析】根据新课程标准和上述教材分析,本节课的教学目标设计如下:1.知识与技能目标:(1)使学生理解用“旋转”定义角;(2)理解“正角”、“负角”、“零角”、“象限角”、“终边相同的角”的含义;(3)掌握所有与角α终边相同的角(包括角α)的表示方法.2.过程与方法(1)通过问题情境,让学生自己完成角的概念的推广这一认知过程,培养学生观察、分析、运用所学知识解决问题的能力;(2)指导学生通过各种角表示法的训练,提高分析、抽象、概括的能力.3.情感态度价值观(1)通过对角的定义的推广过程的教学使学生感受到数学的应用性和知识的力量,增强学习数学的兴趣和信心,激发学生学习数学的热情;(2)重视知识的形成过程教学,让学生知其然并知其所以然,同时体会到创新的乐趣;(3)通过对角的集合表示的严密化,培养学生形成扎实严谨的科学作风.【教学重难点】1.教学重点:理解并掌握正角、负角、零角及象限角的定义,会表示终边相同的角的集合;2.教学难点:把终边相同的角用集合的符号语言表示出来.【教学问题诊断分析】学生在初中已学过0360范围内的角,这可能对角的概念的推广在认识上有一定的困难,因此,在教学中可结合生活中的具体例子,以学生熟悉的背景,引起学生的认知冲突,让学生体会角的概念有推广的必要.接着给出有关角的概念,在已有的认知条件下,学生是可以接受的.值得注意的是,终边相同的角的概念并不难理解,但用集合表示终边相同的角时,部分学生还是会有一些障碍,针对这一问题,在教学时应多举实例将特殊问题推广到一般情况,最好能让学生自己总结.【教学方法分析】新课程要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课可采用问题引领的方式让学生思考、自主探究及教师启发的教学方法.教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,并以多媒体辅助教学为手段,构建学生自主探究的平台,激发学生的求知欲,促使学生解决问题.【信息技术分析】多媒体教室及PowerPoint2003.【教学过程】导入新课师:今天这节课,我想和大家共同探讨一个话题:角(教师板书)师:对于角,我们并不陌生,初中就学过角的概念.问题1:初中我们是如何定义一个角的?所学的角的范围是什么?师生活动:教师提问,学生思考、回答.设计意图:回忆初中所学角的概念,为接下来角的推广作准备.新课讲解内容一:角的定义问题2:体操名词“程菲跳”是“踺子后手翻转体180度接前直转体空翻540度”的动作命名.这里的540度是一个什么样的角,能描述它吗?设计意图:用体操情境引发学生思考,激发学生探究新知的欲望,调动学生参与教学的积极性,由此引出用“旋转”来定义角.师生活动:师:540度角初中学过吗?怎么描述呢?生:初中没学过,我认为540度实际上就是旋转了一周半.师:那540度角能画出来吗?生:我目前画不出来.师:现在540度角还画不出来,说明初中角的概念不能满足我们进一步学习的需要,所以本节课的首要任务就是将角推广到任意角.(教师板书:1.1.1任意角,同时PPT给出角的定义)角的定义:平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的的图形.(接着用PPT演示角的形成过程并给出角的表示方法以及角的顶点、始边和终边的概念)内容二:正角、负角和零角师:好,我们接着看下一个问题.问题3:跳水运动员向内、向外转体两周半,这是多大角度?设计意图:使学生认识到角的推广不仅考虑要用旋转量,还应考虑旋转方向,为接下来正角、负角和零角的概念做好准备.师生活动:生:这是900度的角(教师追问:你是怎么想到的?学生继续作答)师:那向内旋转和向外旋转完全一样吗?生:不完全一样,空中旋转过程不一样(因为方向不同)师:也就是说,我们不仅需要从数量的角度将角推广,还需要根据旋转方向不同将角加以区分.在新的定义下,我们继续探讨与角有关的概念.(教师板书,同时PPT给出概念)1.正角、负角和零角我们规定,按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个零角.师:这样,我们就把角的概念推广到了任意角,包括正角、负角和零角.内容三:象限角师:前面我们讲了这么多,现在请大家动手画出120的角.设计意图:利用新概念重新认识角的问题,通过画120角发现位置可能不同,让学生感受没有统一标准时,角的表示不方便. 通过画图探究、交流,不难给出合理的规定,让学生感知把角放到平面直角坐标系中的好处.师生活动:教师让学生把所画的图形在黑板上展示,最好有位置不同的图形作对比.如果没有的话,教师自己画一个和学生所画位置不同的角.师:可以看出,由于选取始边的位置不同,可能同样大小的角画出来的位置不同,我们更好的管理任意角,我们要给任意角加以规定.为了后续学习的需要,我们常在平面直角坐标系中讨论角,那么怎么呢把角放到坐标系中比较合理?生:把角的顶点放在坐标原点,始边放在x 轴的正半轴.(教师纠正为x 轴非负半轴) 教师在总结分析角的始边和顶点规定的基础上,给出象限角的概念.(教师板书:象限角.同时PPT 上给出象限角的概念)2.象限角为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.内容四:终边相同的角师:学习了这些概念,我们再画几个角.问题4:在平面直角坐标系中作出32-,328,392-的角,观察这些角之间有什么内在联系?设计意图:从具体问题入手,了解终边相同的角的关系.师生活动:学生独立画图.教师巡视后,学生回答.生:这些角的终边相同.(教师追问:为什么?能解释一下吗?)师:与32-角终边相同的角有多少个?(学生回答:无数个)师:这些与32-角终边相同的角,包括32-的角在内,能用集合表示出来吗?教师给足时间让学生思考、作图,教师巡视后请学生(可找多个学生)在黑板上写出自己的答案,教师归纳总结,得出终边相同的角的集合.(教师板书,PPT 展示下面文字)3.终边相同的角一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}=360,k k Z ββα+⋅∈即任一与角α终边相同的角,都可以表示成角α与整数 个周角的和.例题分析例 1 在0360(即0360α≤<)范围内,找出与95012'-角终边相同的角,并判定它是第几象限角.解:95012129483360''-=-⨯,所以在0360范围内,与95012'-角终边相同的角是12948',它是第二象限角.设计意图:通过例题,使学生进一步理解任意角的概念以及象限角和终边相同的角的概念. 师生活动:学生独立完成后回答,教师点评总结.学生练习1.下列说法正确的是( )参考答案:DA .第一象限的角小于第二象限的角B .若90180α≤≤,则α是第二象限的角C .小于90的角都是锐角D .有些角不是任何象限的角2.与460-角终边相同的角可以表示成( )参考答案:CA .460360,k k Z +⋅∈B .100360,k k Z +⋅∈C .260360,k k Z +⋅∈D .260360,k k Z -+⋅∈设计意图:通过练习,检验是否掌握的任意角的概念.师生活动:学生独立思考,教师巡视、个别辅导后请学生回答,教师再点评. 课堂小结通过本节课的学习,你有哪些收获?设计意图:让学生复习本节课的主要内容,完善学生的认知结构,体会数学思想方法. 师生活动:学生回答,教师补充.同时解决学生提出的疑惑布置作业必做题:课本第9页 习题1.1 A 组 1、2、3选做题:已知α是第一象限角,那么2α和2α是第几象限角? 板书设计。
高中数学必修4教案pdf
高中数学必修4教案pdf 第一课:函数的概念与性质
一、教学目标:
1. 理解函数的定义和基本性质;
2. 掌握函数的表示方法和性质;
3. 能够解决函数相关的问题。
二、教学重点:
1. 理解函数的概念;
2. 掌握函数的性质;
3. 解决函数相关的问题。
三、教学内容:
1. 函数的定义;
2. 函数的图像;
3. 函数的性质;
4. 函数的应用。
四、教学过程:
1. 引入:通过实际例子引入函数的概念;
2. 教学重点:讲解函数的定义和性质;
3. 练习:做一些相关练习,巩固所学知识;
4. 拓展:引导学生思考函数的应用;
5. 总结:总结本节课的重点内容。
五、教学反馈:
1. 检查学生的作业情况;
2. 解答学生提出的问题;
3. 提出下节课的预习内容。
六、教学资源:
1. PowerPoint课件;
2. 教科书;
3. 作业练习册。
七、教学评价:
1. 学生课堂表现;
2. 学生作业完成情况;
3. 学生对函数的理解程度。
以上为本课教案,希望能够帮助学生更好地理解函数的概念和性质。
愿我们共同努力,取得更好的成绩!。
人教B版高中数学必修四《3.2 倍角公式和半角公式 3.2.1 倍角公式》_29
3.1.3 二倍角的正弦、余弦、正切公式教学设计
一、教材分析
导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。
二、教学目标
(一)知识目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
(二)能力目标
1,了解掌握二倍角公式。
2.会用二倍角公式解决一些常见问题。
三、教学重点、难点
教学重点:二倍角公式的推导与应用
教学难点:(1)公式的灵活应用,如公式的逆用、变形用、连用、巧用;
(2)公式的综合应用,如倍角公式与同名三角函数公式、诱导公式等的综合应用。
四、教法:自主合作探究
五、学法:根据学生情况我应用“观察——归纳--讨论——练习”的学习方法。
六、学生情况:本节课将在高一年级2、3班中进行,两班学生基础
知识掌握较差,运算能力比较差。
七、教学过程及设计说明:
活动1【导入】复习回顾
上一节课我们共同探讨了两角和的正弦、余弦、正切公式,请同学们说出这些公式.
活动2【导入】创设问题情景
创设问题情景
活动3【讲授】合作交流,探索新知
合作交流,探索新知
活动4【活动】运用新知,体验成功
运用新知,体验成功
活动5【活动】归纳小结
归纳小结
例题讲解,巩固练习
通过练习对理解、达到巩固、消化新知识的目的。
课堂检测
作业:P48 2-2 B 1 2。
高中数学必修4教资教案
高中数学必修4教资教案
课程名称:高中数学必修4
课时安排:共40课时,每周3课时,共13周完成
教学目标:通过本教材的教学,使学生能够有效掌握高中数学必修4的相关知识和技能,提高学生的数学素养和解决问题的能力。
第一课时:集合与常用逻辑符号
教学内容:
1. 了解集合的概念和性质。
2. 掌握集合的表示方法和常用符号。
3. 学习常用的逻辑符号及其意义。
教学重点:理解集合的概念和常用逻辑符号的含义。
教学难点:如何用常用逻辑符号表示命题、复合命题的判断。
教学方法:示例分析法、讨论交流法
教学过程:
1. 引入集合的概念,讲解集合的定义和性质。
2. 介绍集合的表示方法和常用符号,并通过例题进行讲解。
3. 学习常用的逻辑符号及其含义,讲解逻辑符号的运用。
4. 练习题目,巩固学生对集合和逻辑符号的理解。
作业:完成课后习题,熟练掌握集合和逻辑符号的用法。
课后反思:本节课主要是介绍集合的概念和常用逻辑符号,学生在掌握这些基本知识的基础上,可以更好地理解后续内容。
备注:本教案为高中数学必修4教材第一章的教学内容,旨在帮助学生建立良好的数学基础,为以后更深入的学习打下坚实的基础。
高中必修四数学教案
高中必修四数学教案
教学内容:高中必修四数学课程
目标:帮助学生掌握高中必修四数学的基本知识和技能,提高数学思维能力和解题能力
教学重点:数学基本知识和技能的掌握
教学难点:数学理解和运用的能力提升
教学方法:综合应用教学法、问题解决教学法
教学步骤:
一、引入(5分钟)
1.和学生一起回顾上节课的内容,引出本节课的主题
2.介绍本节课要学习的知识点和目标
二、讲解(30分钟)
1.讲解高中必修四数学课程中的基本知识和概念,包括整数、有理数、无理数、代数运算等内容
2.通过案例分析和实例演练,让学生掌握数学运算规则和方法
三、练习(20分钟)
1.布置练习题让学生巩固所学知识并提高解题能力
2.辅导和指导学生解决问题,解答疑惑和困惑
4.让学生互相讨论交流,提高合作学习能力
四、总结(5分钟)
1.和学生一起总结本节课的重点和难点,复习本节课的内容
2.鼓励学生勤勉学习,提高数学思维和解题能力
教学反思:根据学生实际情况调整教学策略,及时反馈学生学习情况,帮助学生解决问题和提高能力。
高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案
正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x 的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈;(3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π=-,x R ∈ 课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈ 附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明 《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。
高中数学新北师大版精品教案《北师大版高中数学必修4 课题学习 摩天轮中的数学问题》
《摩天轮中的数学问题》的教学设计一、教材分析1.地位与作用:本节内容选自普通高中课程标准实验教科书数学4(必修)(北师大版).本节通过三角函数与三角函数恒等变形学习完成后的一节课题学习,旨在让学生感受生活中存在的周期现象,三角函数是描述周期现象的重要数学模型,通过数学建模体验数学与日常生活的紧密联系,并尝试运用已有的数学知识和方法解决这一实际问题,使其养成用数学用数学的眼光观察生活,用数学的思想方法解决的思维习惯。
2 对课题学习的解读:陶行知先生告诉我们:“行是知之始”、“重知必重行”。
数学课题学习,即数学研究性学习,就是将研究性学习的思想和方法体现在数学学科教学中,使教学过程变成一种科研或微科研的过程,让学生在获取知识的同时,参与体验研究性学习过程,学生通过亲身实践获得感悟和体验,获得丰富的非结构性的知识。
3 课题学习的特点和教法的选择:数学课题学习强调学生探究问题的过程,并且过程具有开放性,同时学生掌握学习的自主权。
因此教师只是活动的组织者和参与者,所以本节课以学生自主探究、自主学习、合作交流为主。
二、教学目标:1知识与技能:借助对实际模型的分析与解决,进一步巩固和掌握三角函数=Ain(ωφ)b的图像和性质。
2过程与方法:利用陶行知思想,通过对实际背景的研究过程,体会函数是重要的数学模型,三角函数是刻画与描述现实世界中具有周期变化规律的重要函数;经历观察、猜测、分析数学事实,提出有意义的数学问题,探求适当的数学结论或规律这一过程,初步掌握数学建模的一般方法,提升学生的数学应用意识。
3情感态度、价值观:用数学知识发现生活中的问题,推动学生联系现实,了解社会,体验人生,并积累一定的感性认识和实践经验。
体验数学发现和创造的历程,发展他们的创新意识,体验数学解决实际问题中的作用与日常生活的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。
在自主、合作、民主的氛围中,逐步转变学生的学习方式,提高学习的自主性和积极性,并间接的了解到陶行知先生是我国伟大的教育家。
高中数学_平面向量的实际背景及基本概念教学设计学情分析教材分析课后反思
平面向量的实际背景及基本概念教学设计本节课的内容是数学必修4,第二章《平面向量》的引言和第一节平面向量的实际背景及基本概念两部分,所需课时为1课时。
一教材分析向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的起始课,具有“统领全局”的作用。
本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能二学情分析在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
三目标定位根据以上的分析,本节课的教学目标定位:1)、知识目标⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。
2)、能力目标培养用联系的观点,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维;3)、情感目标使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
重点:向量概念、向量的几何表示、以及相等向量概念;难点:让学生感受向量、平行或共线向量等概念形成过程;四、教学过程概述:4.1 向量概念的形成4.1.1 让学生感受引入概念的必要性引子:章节引言意图:向量概念不是凭空产生的。
用这一简单直观的问题让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容,学生会有亲切感,有助于激发学习兴趣。
高中数学必修四学期教案
高中数学必修四学期教案课程名称:高中数学必修四课时安排:每周4课时教学目标:1. 熟练掌握函数、导数、积分等概念,能够灵活运用相关知识解决问题。
2. 培养学生的数学思维和解题能力,提高其数学素养。
3. 培养学生的逻辑思维能力和创新意识,提高其综合分析和解决问题的能力。
教学内容:第一学期:函数与导数1. 函数的概念及性质2. 导数的定义及性质3. 函数导数的计算方法4. 导数在函数图像上的几何意义第二学期:导数的应用1. 函数的极值与拐点2. 函数的凹凸性及拐点3. 函数的图像与导数的关系4. 函数的优化问题第三学期:不定积分与定积分1. 不定积分的概念和性质2. 不定积分的计算方法3. 定积分的概念及性质4. 定积分的计算方法第四学期:定积分的应用1. 定积分的几何应用2. 定积分的物理应用3. 定积分在统计学中的应用4. 定积分在经济学中的应用教学方法:1. 理论与实践相结合,注重培养学生的数学思维和解题能力。
2. 教师以启发式教学为主,引导学生主动思考和解决问题。
3. 通过多种案例分析和实际应用,激发学生的学习兴趣和求知欲。
4. 组织学生进行小组合作学习,促进学生之间的互动和沟通,提高团队合作能力。
评价方法:1. 日常作业练习:每周布置一定量的练习题,检验学生对知识点的掌握情况。
2. 课堂表现评价:考察学生的课堂表现和思维能力,评定学生的积极性和主动性。
3. 期中期末考试:安排期中和期末考试,测试学生对各个知识点的掌握情况。
4. 个人项目评价:鼓励学生进行个人或小组项目研究,评定学生的综合能力和创新意识。
通过以上教学方案,将能有效提高学生的数学素养和解题能力,帮助他们顺利完成高中数学必修四学科的学习任务。
2020-2021学年高中数学新教材人教B版必修第四册教师用书:11.4.1直线与平面垂直含解析
11.4空间中的垂直关系11.4.1直线与平面垂直[课程目标] 1.了解异面直线所成角的概念,会求一些较特殊的异面直线所成的角;2.掌握直线和平面垂直的定义及相关概念;3.掌握直线和平面垂直的判定定理及判定方法.知识点一直线与直线所成的角[填一填]1.两条相交直线所成角的大小,指的是它们相交所得到的不大于直角的角的大小.两条直线所成的角也称为这两条直线的夹角.2.如果a,b是空间中的两条异面直线,过空间中任意一点,分别作与a,b平行或重合的直线a′,b′,则a′与b′所成角的大小,称为异面直线a与b所成角的大小.3.规定空间中两条平行直线所成角的大小为0°.空间中两条直线l,m所成角的大小为90°时,称l与m垂直,记作l⊥m.[答一答]1.求异面直线所成的角的解题思路是什么?提示:把空间两异面直线通过平移,转化为平面内相交直线所成的角,具体的平移过程应视题而定,主要有以下四种平移途径:①利用三角形的中位线平移;②利用平行线分线段成比例的推论平移;③利用平行四边形平移;④利用补形平移.知识点二直线与平面垂直及其判定定理[填一填]1.直线与平面垂直的定义:(1)文字语言:直线l与平面α内的任意直线都垂直.(2)图形语言:如下图所示.(3)符号语言:∀m⊂α,l⊥m⇔l⊥α.2.直线与平面垂直的判定定理(1)文字语言:如果一条直线与一个平面内的两条相交直线垂直,则这条直线与这个平面垂直.(2)图形语言:如下图所示.(3)符号语言:m⊂α,n⊂α,m∩n≠∅,l⊥m,l⊥n⇒l⊥α.[答一答]2.如果直线l与平面α内的无数条直线垂直,l与α垂直吗?提示:不一定.若平面内的无数条直线是平行的,则直线l与平面可能平行,也可能垂直,也可能是相交但不垂直,也可能直线l在平面内.3.如果一条直线和平面内的两条直线垂直,那么这条直线和这个平面垂直吗?为什么?提示:无法判断这条直线和这个平面是否垂直.因为当这两条直线相交时,由判定定理可知直线和平面垂直;而当这两条直线相互平行时,直线和平面不一定垂直,直线可能在平面内,也可能与平面平行,还可能与平面斜交.4.直线与平面垂直的判定定理的作用是什么?提示:直线与平面垂直的判定定理是证明线面垂直的依据,体现了相互转化的数学思想,在应用时,应该注意定理条件的完备性.知识点三直线与平面垂直的性质[填一填]定理内容:如果两条直线垂直于同一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b.图形语言:如图所示.作用:证明两直线平行.[答一答]5.两条平行线中的一条垂直于一个平面,另一条也垂直于这个平面吗?提示:垂直.因为两条平行线中的一条垂直于这个平面,所以这条直线垂直于平面内的两条相交直线,所以另一条直线也垂直于这两条相交直线,故另一条也垂直于这个平面.6.分别垂直于两个平行平面的两条直线是否平行?提示:平行.因为一条直线垂直于一个平面,那么这条直线垂直于这个平面的平行平面,所以这两条直线垂直于同一个平面,所以这两条直线平行.知识点四直线与平面垂直的应用[填一填]1.如果A是平面α外一点,B是平面α内一点,则AB⊥α时,AB是平面α的垂线段.如果C是平面α内一点,且AC与α不垂直,则称AC是平面α的斜线段(相应地,直线AC称为平面α的斜线),称C为斜足.2.如图中,AB是平面α的垂线段,AC是平面α的斜线段,B为A在平面α内的射影,所以直线BC称为直线AC在平面α内的射影.则∠ACB称为直线AC与平面α所成的角.[答一答]7.求线面角的常用方法有哪些?提示:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).类型一异面直线所成的角[例1]在空间四边形ABCD中,AB=CD,且AB与CD所成锐角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的大小.[解]如图所示,取AC的中点G,连接EG,FG,则EG∥AB且EG=12AB,GF∥CD且GF=12CD,由AB=CD知EG=FG,从而可知∠GEF为EF与AB所成角,∠EGF或其补角为AB与CD 所成角.∵AB与CD所成角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°,当∠EGF=150°时,∠GEF=15°,故EF与AB所成角的大小为15°或75°.求两条异面直线所成的角的一般步骤(1)构造角:根据异面直线的定义,通过作平行线或平移平行线,作出异面直线夹角的相关角.(2)计算角:求角度,常利用三角形.(3)确定角:若求出的角是锐角或是直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.[变式训练1]在正方体AC1中,E,F分别是A1B1,B1C1的中点,求异面直线DB1与EF所成角的大小.解:如图,连接A1C1,B1D1,并设它们相交于点O,取DD1的中点G,连接OG,A1G,C1G.则OG∥B1D,EF∥A1C1.∴∠GOA1为异面直线DB1与EF所成的角或其补角.∵GA1=GC1,O为A1C1的中点,∴GO⊥A1C1.∴异面直线DB1与EF所成的角为90°.类型二直线与平面垂直的判定定理[例2]如图所示,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过点A作AE⊥PC于点E,求证:AE⊥平面PBC.[证明]∵P A⊥平面ABC,∴P A⊥BC.又∵AB是⊙O的直径,∴BC⊥AC.而P A∩AC=A,∴BC⊥平面P AC.又∵AE⊂平面P AC,∴BC⊥AE.∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC.1.用线面垂直的判定定理判断一条直线与此平面垂直时,需在平面内找两条相交直线,证明一条直线同时垂直于这两条相交直线,这是证明线面垂直的一个常用方法.2.线线垂直与线面垂直的转化关系[变式训练2]如图所示,ABCD是矩形,P A⊥平面ABCD,△P AD 是等腰三角形,M、N分别为AB、PC的中点,求证:MN⊥平面PCD.证明:取PD的中点E,连接AE,NE,∵N,E为中点,∴NE为△PCD的中位线,∴NE綉12CD.在矩形ABCD中,AB綉CD,又∵M为AB的中点,∴AM綉12CD.∴AM綉NE,∴四边形AMNE为平行四边形,∴AE∥MN.又∵△P AD为等腰三角形,E为PD的中点.∴AE⊥PD,∴MN⊥PD.连接PM、CM,设AD=a,AB=2b,∴PM2=a2+b2,CM2=a2+b2,∴CM=PM,∴MN⊥PC.又∵PC∩PD=P,∴MN⊥平面PCD.类型三直线与平面垂直的性质定理[例3]如右图,在正方体ABCD-A1B1C1D1中,E,F分别为A1D 和AC上的点,EF与异面直线AC,A1D均垂直.求证:EF∥BD1.[分析]BD1为正方体的体对角线,连接AB1,B1C后可证得BD1⊥平面AB1C,只需证EF⊥平面AB1C即可.[证明]连接AB1,B1C,BD,B1D1.∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又∵AC⊥BD,∴AC⊥平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C.∴BD1⊥平面AB1C.又EF与异面直线AC,A1D均垂直,即EF⊥AC,EF⊥A1D.又A1D∥B1C,∴EF⊥B1C,∴EF⊥平面AB1C,∴EF∥BD1.正方体、直棱柱、正棱锥、正四面体等特殊的几何体都有明显的几何特征,解题时,要充分挖掘这些几何体的线面关系.如直棱柱的侧棱垂直于底面等.[变式训练3]如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB.求证:a∥l.证明:因为EA⊥α,α∩β=l,即l⊂α,所以l⊥EA.同理l⊥EB.又EA∩EB=E,所以l⊥平面EAB.因为EB⊥β,a⊂β,所以EB⊥a,又a⊥AB,EB∩AB=B,所以a⊥平面EAB.由线面垂直的性质定理,得a∥l.类型四直线与平面垂直的判定定理、性质定理的综合应用[例4]在如图所示的几何体中,四边形ABCD是菱形,四边形ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,E为AB的中点,P为线段CM上的一点.求证:DE⊥CN.[证明]连接DB,在菱形ABCD中,AD=AB,∠DAB=60°.∴△ABD为等边三角形.又∵E为AB的中点,∴DE⊥AB.又∵AB∥DC,∴DE⊥DC.∵四边形ADNM为矩形,∴DN⊥AD.又∵平面ADNM⊥平面ABCD,平面ADNM∩平面ABCD=AD,DN⊂平面ADNM,∴DN⊥平面ABCD,∵DE⊂平面ABCD,∴DN⊥DE.又∵DE⊥DC,DC∩DN=D,∴DE⊥平面DCN,∵CN⊂平面DCN,∴DE⊥CN.1.线线垂直的证明,常转化为线面垂直来证明,即:把两条直线中一条放在某个平面内,然后证明另一条垂直于这个平面.要证线面垂直,可通过线面垂直的定义及判定定理,体现了线线垂直→线面垂直→线线垂直,解题时要注意这种相互转化关系的合理应用.2.要学会逆向分析的方法,从要证明的结论入手,层层递推,这是解决问题的有效方法.[变式训练4]已知α∩β=AB,PQ⊥α于Q,PO⊥β于O,OR⊥α于R,求证:QR⊥AB.证明:如图,∵α∩β=AB,PO⊥β于O,∴PO⊥AB.∵PQ⊥α于Q,∴PQ⊥AB.∵PO∩PQ=P,∴AB⊥平面PQO.∵OR⊥α于R,∴PQ∥OR.∴PQ与OR确定平面PQRO.又∵QR⊂平面PQRO,∴QR⊥AB.类型五点到平面的距离[例5]如图所示,已知P为△ABC外一点,P A、PB、PC两两垂直,P A=PB=PC=a,求P点到平面ABC的距离.[解]过P作PO⊥平面ABC于O,连接AO、BO、CO.∴PO⊥OA,PO⊥OB,PO⊥OC.∵P A=PB=PC=a,∴△P AO≌△PBO≌△PCO.∴OA=OB=OC,∴O为△ABC的外心.∵P A、PB、PC两两垂直,∴AB=BC=CA=2a,△ABC为正三角形,∴AO=33AB=63a,∴PO=P A2-AO2=33a.因此点P到平面ABC的距离为33a.1.求点到平面距离的基本程序是:首先找到或作出要求的距离,然后使所求距离在某一个三角形中,最后在三角形中根据三角形的边角关系求出距离.2.求距离问题转化成解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.[变式训练5]已知:线段AB的中点为O,O∈平面α.求证:A,B两点到平面α的距离相等.证明:(1)当线段AB⊂平面α时,显然A,B到平面α的距离均为0,相等.(2)当AB⊄平面α时,如图,分别过点A,B作平面α的垂线,垂足分别为A1,B1,则AA1,BB1分别是点A、点B到平面α的距离,且AA1∥BB1.所以AA1与BB1确定一个平面,设为β,则α∩β=A1B1.因为O∈AB,AB⊂β,所以O∈β.又因为O∈α,所以O∈A1B1.所以∠AOA1=∠BOB1.又AA1⊥A1O,BB1⊥B1O,AO=BO.所以Rt△AA1O≌Rt△BB1O.所以AA1=BB1,综上,A,B两点到平面α的距离相等.1.在正方体ABCD-A1B1C1D1中,与棱AA1互相垂直的棱的条数为(C)A.4 B.6C.8 D.10解析:∵AA1⊥平面ABCD,AA1⊥平面A1B1C1D1,∴与AA1垂直的棱共有8条.2.已知平面α与平面β相交,直线m⊥α,则(C)A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直解析:因为平面α与平面β相交,直线m⊥α,所以m垂直于两平面的交线,所以β内不一定存在直线与m平行,必存在直线与m垂直.3.在三棱锥P-ABC中,若P A=PB=PC,则顶点P在平面ABC 内的射影是△ABC的(B)A.内心B.外心C.重心D.垂心解析:如图,作PO⊥平面ABC,∵P A=PB=PC,易证△AOP,△BOP,△COP全等,∴OA=OB=OC.4.如图所示,AB是⊙O的直径,P A⊥平面⊙O,C为圆周上一点,AB=5 cm,AC=2 cm,则B到平面P AC的距离为21 cm.解析:∵C为圆周上的一点,AB为直径,∴BC⊥AC.又∵P A⊥平面⊙O,BC⊂平面⊙O,∴P A⊥BC.又∵P A∩AC=A,∴BC⊥平面P AC,C为垂足,∴BC即为B到平面P AC的距离.在Rt△ABC中,BC=AB2-AC2=52-22=21(cm).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π π 在区间 ,π 的简图是( 3 2
二.填空题
1.(2009 宁夏海南卷文)已知函数 f ( x) 2sin( x ) 的图像如图所示,则
7 f 12
。
2.(2009 年上海卷)函数 y 2cos x sin 2 x 的最小值是_____________________ .
6
B.
4
C.
3
D.
2
)
7. (2008 海南、 宁夏文科卷) 函数 f ( x) cos 2 x 2sin x 的最小值和最大值分别为 ( A. -3,1 B. -2,2 C. -3,
3 2
D. -2,
3 2
)
8.(2007 海南、宁夏)函数 y sin 2 x
的奇函数 2 D、最小正周期为 的偶函数 2
B、最小正周期为
)
4.(2009 山东卷文)将函数 y sin 2 x 的图象向左平移 得图象的函数解析式是( A. y 2cos x
2
个单位, 再向上平移 1 个单位,所 4
). B. y 2sin x
2
C. y 1 sin( 2 x
一:内容简括
(一)三角函数
1:任意角,弧度
了解任意角的概念和弧度制,能进行弧度与角度的互化。
2:三角函数
(1) 借助单位圆理解任意角三角函数(正弦,余弦,正切)的定义。 (2) 借助单位圆中的三角函数线推导出诱导公式,能画出 y=sinx,y=cosx,y=tanx 的图像,了解三角函数的周期性。 (3) 借助图像理解正弦函数,余弦函数,正切函数的性质(如单调性,最大和 最小值,图像与 x 轴交点等) 。 (4) 理解同角三角函数的基本关系式。 eg: sin^2(α)+cos^2(α)=1 1+tan^2(α) =sec^2(α) 1+cot^2(α)=csc^2(α) (5) 结合实例,了解 y=Asin(ωx+ψ)的实际意义,能借助计算器或计算机画出 y=Asin(ωx+ψ)的图像,观察参数 A,ω,ψ对函数图像变化的影响。 (6) 会用三角函数解决一些简单的实际问题, 体会三角函数的描述周期变化现 象的重要函数模型。
二:三角函数分析 (一)任意角和弧度制
课本从体操转体以及齿轮转动引出正角和负角的概念, 加上零角就构成了任 意角。 因为同一个角度位置可以用不同角的大小来表示,所以就给出了下列几何 定义: 一般的,我们有: 所有与角α终边相同的角,连同角α在内,可构成一个集合 S={β|β=α+K· 360º,K∈Z},即任一与角α终边相同的角, 都可以表示成为角 α与整数个周期的和。 因为角可以用单位进行度量,1 度=周角的 1/360,这叫角度制,为了方便, 数学上还引用了弧度制。把长度等于半径长的弧所对的圆心角叫做 1 弧度的角, 用 rad 表示。一般,正角的弧度数是一个正数,负角的弧度制是一个负数,零角 的弧度数为 0,如果半径为 r 的圆的圆心角α所对弧的长为 l,那么,角α的弧度 数的绝对值是|α|=l/r 分析:通过了解任意角和弧度制来引出三角函数概念,这是最基本的内容。 接下来 就进入更深一步的学习。
y x
图一
分析: 通过单位圆可以将很抽象的角度 转换到直角坐标系中,用坐标来表示。而 三角函数的正负取决于坐标正负。
这里给一个例题:选择①sinθ>0,②sinθ<0,③cosθ>0,④cosθ<0,⑤tanθ>0, ⑥tanθ<0 中适应的关系式的序号填空: (1) 当角θ为第一象限角时,①③⑤是对的 (2) 当角θ为第二象限角时,①④⑥是对的 (3) 当角θ为第三象限角时,②④⑤是对的 (4) 当角θ为第四象限角时,②③⑥是对的 通过对单位圆的认识,课本又引入了三角函数的诱导公式: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα
, )。 3 2
1 3 sin x (1) cos x 2 2
(2) 3 sin x cos x =2sin(x+ /3)=2cos( /6-x)
=sin( /6-x)=cos( /3+x)
分析: 这两个题都是利用特殊角的正弦余弦值以及推导公式化简的, 很灵活, 而且都可以化为两种形式。
四:平面向量
平面向量中包含其线性运算河基本定理及坐标表示,还有数量积,因以三角 函数为主,这里就不详细叙述。
教育科学与管理学院《教育研究方法》课程
期末研究报告
学 学 姓 期: 号: 名: 2016-2017 学年第一学期 1443201000046 李秋霖
高中数学必修四教材分析
——以三角函数为主
摘要:三角函数在高中是很重要的一块内容,此教材分析主要针对必修四的 三角函数和三角恒等变换。 从任意三角形推广到周期函数, 特殊化到锐角三角形, 然后又联系到解三角形,类比了指数函数对数函数,幂函数,联系了物理生物, 自然界中的周期现象。 第三章从差角余弦公式到和角公式再到倍角公式,最后掌 握简单三角恒等变换。 关键词:正弦函数;余弦函数;正弦余弦正切公式
参考文献
[1]章建越.数学必修 4(普通高中课程标准实验教科书)[M].北京:人民教育出版 社,2011 [2]中华人民共和国教育部.数学课程标准[M].北京:人民教育出版社,2012
附录:
三角函数高考真题
一.选择题 1、 (2009)函数 y 2cos 2 x A.最小正周期为 的奇函数 C.最小正周期为
三:三角恒等变换
两角和与差的正弦,余弦和正切公式
从两角差的余弦公式导出两角和与差的正弦,余弦,正切公式,二倍角的正 弦余弦,正切公式,了解它们的内在联系。数学课程标准上说明要求学生能运用 上述公式进行简单的恒等变换。 下面是三角函数的推导公式 sin(α+β)=sinαcosβ+cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ tan(α+β)=(tanβ+tanα)/(1-tanαtanβ) sin2α=2sinαcosα cos2α=(cosα)^2-(sina)^2=2(cosα)^2-1=1-(sinα)^2 tan2α=(2tanα)/(1-(tanα)^2)
(二)任意角的三角函数以及其诱导公式
引进弧度制时我们看到, 在半径长为单位长的圆中,角α的弧度制的绝对值 等于圆心角α所对的弧长,在直角坐标系中,我们称以原点Ο为圆心,以单位长 度为半径的圆为单位圆, 这样我们锐角三角形可以用单位圆定义任意角的三角函 数。 如图是对于单位圆的认识
sinα=y cosα=x tanα=
4
)
D. y cos 2 x
5.(2009 江西卷文)函数 f ( x) (1 3 tan x) cos x 的最小正周期为
A. 2
B.
3 2
C.
D.
2
6. (2009 全国卷Ⅰ文) 如果函数 y 3cos(2 x ) 的图像关于点 ( 的最小值为 A.
4 那么 , 0) 中心对称, 3
2Leabharlann 3.(2009 辽宁卷文)已知函数 f ( x) sin( x )( 0) 的图象如图所示,则 =
三.解答题
1、 (2008)已知函数 f ( x) A sin( x )(a 0,0 ), x R 的最大值是 1,其图像经 过点 M (
1
任意负角的 三角函数 任意正角的 三角函数
锐角三角函 数
0~2 的角 的三角函数
上述步骤体现了由未知转化为已知的化归思想。这也是接下来要掌握的内 容的基础。 接下来给出一个关于诱导公式的例题: 已知 sin(α-3π)=2cos(α-4π),求
sin (-)+5cos (2-) 的值. 3 2sin - -sin (-) 2
【解析】 ∵sin(α-3π)=2cos(α-4π), ∴-sin(3π-α)=2cos(4π-α), ∴sinα=-2cosα,且 cosα≠0. sin+5cos -2cos+5cos 3cos 3 ∴原式= = = =- -2cos+sin -2cos-2cos -4cos 4
1 是 4
B.最小正周期为 的偶函数 D.最小正周期为
2
的奇函数 2
的偶函数 2
)
2、 (2008)已知函数 f ( x) (1 cos 2 x)sin x, x R ,则 f ( x) 是( A、最小正周期为 的奇函数 C、最小正周期为 的偶函数
3.(2009 浙江文)已知 a 是实数,则函数 f ( x) 1 a sin ax 的图象不可能 是( ...
分析:推导公式的运用是学生学习的难点,这需要学生灵活运用,且要能自 己推导,这一章不仅给出二倍角公式,半角公式,还有一个很重要的考点就是辅 助角公式的运用。 掌握推导公式和辅助角公式,对于高考题型也就掌握了大部分 了。 下面是辅助角公式的具体内容: asinα+bcosα= sin(a+φ),其中 tanφ=b/a,其终边过点(a, b) asinα+bcosα= cos(a-φ),其中 tanφ=a/b,其终边过点(b,a) 这个公式通常用于特殊角, 下列是一些具体事例,让我们从中体会辅助角公 式。 化简
3:三角恒等变换
(1) 经历用向量的数量积推导出两角差的余弦公式的过程, 进一步体会向量方 法的作用。 (2) 能从两角差的余弦公式导出两角和与差的正弦,余弦,正切公式,二倍角 的正弦,余弦,正切公式,了解它们的内在联系。
(3) 能运用公式进行简单的恒等变换(包括引导导出积化和差,和差化积,半 角公式) 。