博弈论谢识予第四五章参考标准答案

合集下载

经济博弈论(第三版)复习题及答案%20谢识予著

经济博弈论(第三版)复习题及答案%20谢识予著
5
L 2,0 3,4
R
7、我们用反应函数法来分析这个博弈。先讨论博弈方 1 的选择。根据问题 的假设,如果博弈方 2 选择金额 s2(0≤s2≤10000) ,则博弈方 1 选择 s1 的利益 为: s1 u(s1)= 0
当 S1≤10000 -s2 当 S1≤10000 -s2
因此博弈方 1 采用 s1=1000—s2 时,能实现自己的最大利益 u(s1)= s1=1000— s2。因此 s1=1000—s2 就是博弈方 1 的反应函数。 博弈方 2 与博弈方 1 的利益函数和策略选择是完全相似的,因此对博弈方 1 所选择的任意金额 s1, 博弈方 2 的最优反应策略, 也就是反应函数是 s2=1000- s1。 显然, 上述博弈方 1 的反应函数与博弈方 2 的反应函数是完全重合的,因此 本博弈有无穷多个纳什均衡,所有满足该反应函数,也就是 s1+ s2=10000 的数组 (s1 ,s2)都是本博弈的纯策略纳什均衡。 如果我是两个博弈方中的一个,那么我会要求得到 5000 元。理由是在该博 弈的无穷多个纯策略纳什均衡中, (5000,5000)既是比较公平和容易被双方接 受的,也是容易被双方同时想到的一个,因此是一个聚点均衡。 9、 (1)两个厂商的利润函数为: πi=pqi-ciqi=(a-qi-qj)qi-ciqi 将利润函数对产量求导并令其为 0 得: ∂π i =a-qj-ci-2qi=0 ∂qi 解得两个厂商的反应函数为: qj=(a- qj-ci)/2 或具体写成: q1=(a-q2-c1)/2 q2=(a-q1-c2)/2 (2)当 0<ci<a/2 时, 我们根据上述两个厂商的反应函数,直接求出两个厂商 的纳什均衡产量分别为: a − 2c1 + c 2 3 a + c1 − 2c 2 q2= 3 (3)当 c1<c2<a,但 2c2>a+ c1 时,根据反应函数求出来的厂商 2 产量 q2<0。 这意味着厂商 2 不会生产, 这时厂商 1 成了垄断厂商,厂商 1 的了优产量选择是 利润最大化的垄断产量 a − c1 q1=q* = 2 因此这种情况下的纳什均衡为[(a- c1)/2, 0]。 q1=

博弈论课后习题答案

博弈论课后习题答案

博弈论课后习题答案博弈论课后习题答案博弈论是一门研究决策和策略的学科,它涉及到多个参与者之间的相互作用和决策过程。

在博弈论的学习过程中,习题是非常重要的一部分,通过解答习题可以加深对博弈论概念和原理的理解。

下面是一些常见博弈论习题的答案,希望对大家的学习有所帮助。

1. 两人囚徒困境博弈在囚徒困境博弈中,两个囚犯被关押在不同的牢房里,检察官给每人提供了一个选择:合作(合作供认)或背叛(沉默)。

如果两人都合作,那么每个人的刑期都会较短;如果两人都背叛,那么每个人的刑期都会较长;如果一个人合作而另一个人背叛,那么背叛的人将会获得较短的刑期,而合作的人将会获得较长的刑期。

答案:在囚徒困境博弈中,每个囚犯都会追求自己的最大利益。

根据博弈论的原理,无论对方选择什么,背叛都是最优策略。

因此,两人都会选择背叛,最终导致双方都获得较长的刑期。

2. 石头剪刀布博弈石头剪刀布是一种常见的博弈游戏,两个参与者同时出示石头、剪刀或布,根据两者的选择,结果会有不同的得分。

答案:在石头剪刀布博弈中,每个参与者都有三种选择,而且每种选择的胜负关系都不同。

根据博弈论的原理,最优策略是随机选择,使得对手无法预测自己的选择。

这样做可以最大程度地减少对手的获胜概率。

3. 拍卖博弈拍卖是一种常见的博弈形式,参与者通过竞价来争夺一个物品或服务。

在拍卖中,不同的拍卖规则和策略会对结果产生影响。

答案:在拍卖博弈中,最常见的策略是以自己的估值为基准进行竞价。

如果一个参与者的估值高于其他参与者,那么他可以通过竞价来获得物品或服务。

然而,如果其他参与者也有较高的估值,那么竞价将会继续上升,直到只剩下一个竞价者。

在这种情况下,最高的竞价者将会获得物品或服务,但是他需要支付他的竞价。

4. 价格战博弈价格战是一种常见的博弈形式,不同的公司通过调整价格来争夺市场份额。

在价格战中,公司的利润和市场份额会受到价格策略的影响。

答案:在价格战博弈中,最优策略取决于对手的策略和市场需求。

经济博弈论(谢织予)课后答案及补充习题答案汇编

经济博弈论(谢织予)课后答案及补充习题答案汇编
虽然调查显示我们的创意计划有很大的发展空间,但是各种如“漂亮女生”和“碧芝”等连锁饰品店在不久的将来将对我们的创意小屋会产生很大的威胁。
送人□有实用价值□装饰□
附件(二):
动漫书籍□化“自助化”
大学生购买力有限,即决定了要求商品能价廉物美,但更注重的还是在购买过程中对精神文化爱好的追求,满足心理需求。
送人□有实用价值□装饰□
虽然调查显示我们的创意计划有很大的发展空间,但是各种如“漂亮女生”和“碧芝”等连锁饰品店在不久的将来将对我们的创意小屋会产生很大的威胁。
精明的商家不失时机地打出“自己的饰品自己做”、“DIY(Do It Yourself)饰品、真我个性”的广告,推出“自制饰品”服务,吸引了不少喜欢标新立异、走在潮流前端的年轻女孩,成为上海的时尚消费市场。其市场现状特点具体表现为:
2003年,全年商品消费价格总水平比上年上升1%。消费品市场销售平稳增长。全年完成社会消费品零售总额2220.64亿元,比上年增长9.1%。

演化博弈论__谢识予答案

演化博弈论__谢识予答案

dy/dt dy/dt
x=0
1
x
x=0
1
x
两群体复制动态的关系和稳定性
y 1
1/2
0
1
x
5.4.2 非对称鹰鸽博弈的进化分析
博弈方2


鹰博 鸽弈 方 1
非对称鹰鸽博弈博弈方1群体复制动态相位图
dx/dt dx/dt
dx/dt
1
x
y>5/6
y=5/6
x 1
y<5/6
1x
非对称鹰鸽博弈博弈方2群体复制动态相位图
第五章 有限理性和进化博弈
本章介绍有限理性基础上的进化博弈分析。 完全理性在现实中很难满足,当社会经济环境 和决策问题较复杂时,人们必须存在很大的理 性局限。有限理性对人们的决策、行为选择方 式有很大影响,有限理性基础上的博弈分析与 完全理性博弈分析也有很大区别。进化博弈分 析是有限理性博弈分析的基本框架。本章介绍 以最优反应动态和复制动态为核心,以进化稳 定策略为基本均衡概念的进化博弈分析,包括 基本方法、概念和各种经典模型等。
x——鸣叫雄蛙比例 复制动态方程
可能的不动点: x*=0 x*=1 x*=(m-z)/(1-p)
蛙鸣博弈复制动态相位图
dx/dt
dx/dt
1
x
dx/dt
(m-z)/(1-P)<0
(m-z)/(1-P)
1x
0<(m-z)/(1-P)<1
(m-z)/(1-P)>1
1x
5.4 复制动态和进化稳定性: 两人非对称博弈
A
B
A
B
BA
AB
B
B
B
B

博弈论基础吉本斯课后习题答案

博弈论基础吉本斯课后习题答案

当 n 趋 近 于 无 穷 时 , p* 趋 近 于 边 际 成 本 c, 市 场 趋 近 于 完 全 竞 争 市 场 。
1.5
双 方 都 生 产 qm / 2 时 , 每 一 方 的 利 润 都 为 π1 = (a − c)2 / 8 ; 一 方 生 产 qm / 2 , 另 一 方 生 产 qc
Gibbons《博弈论基础》第二章习题解答(部分)
2.1 采用逆向归纳法,先最大化家长的收益:给定孩子的行动 A,来选择自己的行动 B,
MaxV B
(I
p

B)
+
k(Ic
+
B)
一阶条件: V ' (I p − B) = k , ⇒ B* = I p ( A) −V '−1(k)
接着最大化孩子的收益,给定家长的反应函数 B* ,来选 A:
∴ U2 (S + B) 会增加,因为(*)式,U2 (S + B) 增加的幅度比U1(I1 − S ) 减小的幅度大,所以
孩子的收益效用增大了,同时家长的收益效用也增大了。
2.3 根据Shaked和Sutton的研究发现,我们可以把无限博弈截开(见Gibbons教材55页),首先分
析前三阶段: 假设在第三阶段参与人1提出S,参与人2接受1-S,则解决方案为(S,1-S)。
MaxV B
(I
p

B)
+
k[U1 ( I c

S)
+U2
(S
+
B)]
一阶条件:
V
'(I
p

B)
=
kU
' 2
(S
+

博弈论参考答案

博弈论参考答案

博弈论参考答案博弈论参考答案博弈论是一门研究决策制定的学科,它涉及到多个参与者之间的相互作用和决策过程。

在博弈论中,参与者的目标是最大化自己的利益,但是他们的决策又会受到其他参与者的影响。

因此,博弈论提供了一种分析决策制定的工具和方法。

博弈论的基本概念是博弈,它是指参与者根据一定的规则进行决策的过程。

在博弈中,每个参与者都有自己的策略和目标,他们通过不同的决策来达到自己的目标。

博弈论研究的重点是分析参与者之间的相互作用和决策过程,以及他们的策略选择和结果。

在博弈论中,最常见的博弈形式是零和博弈和非零和博弈。

零和博弈是指参与者的利益完全相反,他们的利益总和为零。

在这种情况下,一个参与者的利益的增加必然意味着其他参与者的利益的减少。

非零和博弈则是指参与者的利益可以同时增加或减少,他们的利益总和不一定为零。

博弈论中的一个重要概念是纳什均衡,它指的是在一个博弈中,每个参与者选择的策略都是最优的,即使其他参与者的策略发生改变也不会改变自己的策略。

纳什均衡是博弈论中的一个重要解概念,它帮助我们理解参与者之间的相互作用和决策过程。

除了纳什均衡,博弈论还有其他一些解概念,如帕累托最优解和博弈树。

帕累托最优解是指在一个博弈中,存在一种策略选择使得每个参与者的利益都得到最大化,而没有其他策略可以使任何一个参与者的利益得到进一步增加。

博弈树则是一种图形化的表示方式,它将博弈的过程和决策树结合起来,帮助我们分析和理解博弈的过程和结果。

博弈论在许多领域都有应用,如经济学、政治学、生物学等。

在经济学中,博弈论被广泛应用于分析市场竞争、价格战略等。

在政治学中,博弈论被用来分析国际关系、选举策略等。

在生物学中,博弈论被用来分析动物行为、进化策略等。

总之,博弈论是一门研究决策制定的学科,它提供了一种分析决策制定的工具和方法。

通过博弈论的研究,我们可以更好地理解参与者之间的相互作用和决策过程,为决策制定提供参考和指导。

博弈论在许多领域都有应用,它对我们理解和解决实际问题具有重要的意义。

经济博弈论(第三版)复习题及答案%20谢识予著

经济博弈论(第三版)复习题及答案%20谢识予著
1
自然 赚(35%) 我 开 不开 开 不开 亏(65%)
(300) (100)
(0)Байду номын сангаас(100)
(b)如果我是风险中性的,那么根据开的期望收益与不开收益的比较: 0.35×300+0.65×0=105>100 肯定会选择开。 (c)如果成功的概率降低到 0.3,那么因为这时候开的期望收益与不开的收 益比较: 0.30×300+0.70×0=90<100 因此会选择不开,策略肯定会变化。 (d)如果我是风险规避的,开的期望收益为: 0.9×(0.35×300+0.65×0)=0.9×105=94.5<100 因此也会选择开。 (e)如果我是风险偏好的,那么因为开的期望收益为: 1.2×(0.35×300+0.65×0)=1.2×105=126>100 因此这时候肯定会选择开。 10、首先需要注意的是,在该博弈方的得益单位不同,逃犯得到的是增加或 者减少的刑期(年) ,而看守得到的则是奖金(元) ,因此除非先利用效用概念折 算成相同的单位,否则两博弈方的得益相互之间不能比较和加减。 直接采用单位不同的得益,该博弈的得益矩阵如下: 看 路线一 -10,1000 10,0 守 路线二 10,0 -10,1000
其实,根据该得益矩阵不难得到与上述动态博弈相同的结论,仍然是工人会 选择偷懒和老板会选择克扣。这个博弈实际上与囚徒的困境是相似的。
第二章复习题
4,5,5,7,9,10
第二章参考答案
4、多重纳什均衡不会影响纳什均衡的一致预测性质。这是因为一致预测性 不是指各个博弈方有一致的预测, 而是指每个博弈方自己的策略选择与自己的预
逃 犯
路线一 路线二
该博弈的扩展形表示如下:
逃犯 路线一 看守 路线一 路线二 路线一 路线二 路线二

博弈论各章节课后习题答案 (1)

博弈论各章节课后习题答案 (1)

第一章绪论
1.什么是博弈论?博弈有哪些基本表示方法?各种表示法的基本要素是什么?(见教材)
2.分别用规范式和扩展式表示下面的博弈。

两个相互竞争的企业考虑同时推出一种相似的产品。

如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。

3.什么是特征函数?(见教材)
4.产生“囚犯困境”的原因是什么?你能否举出现实经济活动中囚徒困境的例子?原因:个体理性与集体理性的矛盾。

例子:厂商之间的价格战,广告竞争等。

企业B
推出
不推出企业A 推出
(400,400)(700,-600)不推出(-600,700)(-500,-500)
(。

博弈论参考答案

博弈论参考答案

博弈论参考答案博弈论参考答案博弈论是一门研究决策制定和战略行为的学科,它通过数学模型和理论分析来研究各种决策者在不同情境下的最优策略。

在现实生活中,我们经常会面临各种决策问题,博弈论为我们提供了一种理论框架,帮助我们分析和解决这些问题。

一、博弈论的基本概念博弈论研究的对象是决策者之间的相互作用,通常包括两个或多个决策者。

每个决策者在做出决策时,都会考虑其他决策者的行为对自己利益的影响。

博弈论通过定义决策者的策略空间、收益函数和信息结构等概念,来描述和分析决策者之间的相互作用。

策略空间指的是决策者可以选择的所有可能策略的集合。

在博弈论中,通常将决策者的策略表示为一个向量,向量的每个分量表示决策者在某个决策变量上的选择。

收益函数是指决策者在不同策略组合下所获得的收益或效用。

收益函数可以是直接测量的,也可以是隐含的,通常用于描述决策者对不同策略的偏好程度。

信息结构是指决策者在做出决策时所拥有的信息。

信息结构可以分为完全信息和不完全信息两种情况。

在完全信息的情况下,决策者可以准确地知道其他决策者的策略选择和收益函数。

而在不完全信息的情况下,决策者只能根据观察到的行为和收益来推测其他决策者的策略和收益。

二、博弈论的解决方法博弈论提供了多种解决方法,其中最常用的是纳什均衡和博弈树。

纳什均衡是指在一个博弈中,每个决策者都选择了对自己最有利的策略,并且其他决策者的策略选择不会对自己的收益产生改变的情况。

纳什均衡是博弈论中最重要的概念之一,它描述了一种稳定的策略选择模式。

博弈树是一种图形化的表示方法,用于描述博弈过程中的决策顺序和结果。

在博弈树中,每个节点表示一个决策者的策略选择,边表示决策者之间的相互作用。

通过分析博弈树,可以找到最优策略和最终结果。

三、博弈论的应用领域博弈论在经济学、政治学、生物学等多个学科领域都有广泛的应用。

在经济学中,博弈论被广泛应用于市场竞争、价格战略和合作博弈等问题的分析。

通过博弈论的方法,可以帮助企业制定最优的定价策略,同时也可以研究市场中不同参与者之间的策略互动。

博弈论各章节课后习题答案 (2)

博弈论各章节课后习题答案 (2)
乙企业
高质量
低质量
甲企业
高质量 低质量
50,50 900,600
100,800 -20,-30
该矩阵博弈还有一个混合的纳什均衡
Q=a+d-b-c= -970,q=d-b= -120,R= -1380,r= -630,可得 x = 12 , y = 63 97 138
因此该问题的混合纳什均衡为 ((12 , 85), ( 63 , 75 )) 。 97 97 138 138
i =1 j=1
i =1 j=1
4
q
* i
=0,p*=c,
说明此时各厂商的产品价格等于边际成本,这时的市场已是完全竞争市场。
9. 对于下列的威慑进入博弈,首先计算垄断情况下的产量与价格组合,再计算存在竞争的
情况下两企业的产量与价格组合,并对这两种情况下的结果作比较分析。假定进入者相信垄
断在位者在随后的阶段将会维持它的产量水平。市场需求曲线由方程 p=10-2Q 给出,其中 p
并设企业 i 生产产量 qi 的总成本 Ci(qi)=cqi,这里 c 是常数,并假设 c<a。企业同时就产量进 行决策。求出该博弈的纳什均衡。当 n 趋于无穷大时,会发生什么情况?
解:厂商 i 的利润为:πi=p(Q)-cqi=(a-Q-c)qi
令 ∂πi ∂q i
=
0
,则有:q
* i
=a-c-Q*
由表达式(2.3.13)~(2.3.16)可得如下不等式组
Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1
将这些数据代入(2.3.19)和(2.3.22),可得混合策略 Nash 均衡(( 1 , 8 ),( 4 , 3 )) 99 77

复旦大学-谢识予-经济博弈论5(不讲,自学)

复旦大学-谢识予-经济博弈论5(不讲,自学)

1
不进
2
不打
(1,5)
u 2 s x 0 (1 x ) 5 5 5 x u 2 n x 2 (1 x ) 5 5 3 x u 2 y u 2 s (1 y )u 2 n 5 2 xy 3 x
(0,0) (2,2)
博弈方1位置博弈群体复制动态相位图
dx dt
F ( x ) x (1 x )[ x ( a c ) (1 x )( b d )]
x (1 x )( 61 x 11)
一般2*2对称博弈
dx/dt
复制动态进化博弈的结果 常常取决与带有很大偶然 性的初始状态。
1 x
11/16
5.3.4 鹰鸽博弈的复制动态 和进化稳定策略
dy/dt 1 y 1 y
y[u 2 e u 2 ] y (1 y )(1 6 x )
dy/dt
x<1/6
x>1/6
dy/dt 1 y
x=1/6
两群体复制动态关系和稳定性
A
B
Y 1
5/6
C
1/6
D
1
x
5 3
2
协调博弈
反应、策略调整规则推导
采用 A 的得益: xi (t ) 50 [ 2 xi (t )] 49 采用 B 的得益: xi (t ) 0 [ 2 xi (t )] 60 当 xi (t ) 22 / 61时,采用 A ;当 xi (t ) 22 / 61时,采用 B
博弈方2 鹰
vc 2
鸽 v, 0
v 2
鹰 鸽
, vc
2
0, v
,

谢识予:经济博弈论4——重复博弈

谢识予:经济博弈论4——重复博弈
0 0
考虑如下的触发策略:
厂商在第一阶段给工资率 w ,在第t阶段,如果前面t-1 阶段结果都是( w , y) 则继续给 w * ,否则从此永远 是w 0 。 工人的策略是如果 w w 则接受,否则宁愿作个体 户得到 w ,并在以前各期结果都是( w , y) 和当前工资率 为 w * 时努力工作,否则偷懒。
-1,-1
(-5,-5) 囚徒2 坦 白 不坦白 囚 坦白 -10,-10 -5,-13 徒 -13,-5 -6,-6 1 不坦白 (-10,-10)
有限次重复削价竞争博弈
寡头2 高 价
寡 高价 头 1 低价 100,100 150,20
低 价
20,150 70,70
有唯一纯策略纳什均衡 (70,70) 有限次重复的结果仍然是 (低价,低价)
2
4 1

4.5 4 5.0625 即 9 17 1 1
上述策略是厂商2对厂商1的同样触发策略的最佳反应, 否则偏离是最佳反应。
4.3.4 有效工资率
模型设定: 首先厂商选择工资率为 w ,然后工人选择接受或拒绝。 如果拒绝,则他作个体户得到收入 w 小于 w ,如果接 受 w ,则工人选择努力工作(负效用 e )还是偷懒(无 负效用)。 厂商只能看到产量高低,高产量为 y 0 ,低产量0。 工人努力工作时一定是高产量 y ,不努力时却并不一 定是0,而是高产量 y 的概率为 p ,低产量0的概率 为 1 p 。 工人努力工作时,厂商得益为 y w ,工人得益 为 w e ; 工人偷懒时,厂商期望得益为 py w ,工人 得益为 w 。
削价竞争博弈
4.2.3多个纯策略纳什均衡博弈的 有限次重复博弈
厂商2
厂 商 1

博弈论各章节课后习题答案

博弈论各章节课后习题答案

9. 求如图所示完全信息动态博弈的子博弈完美纳什均衡(图中数字(a,b,c)分别表示局中人 1、
2、3 的 收 益 )。
1
A1
A2
3
2
C1
C2
B1
B2
(4,2,3)
(1,7,8) 3
C1
C2 C1
3
C2
(5,4,3) (7,6,6) (2,1,9) (0,4,2)
答:局中人 1 采取 A2 行 动 ,局中人 2 采取行动 B1 时,局中人 3 必然采取 C2 行 动( 因为 3<6), 因而该博弈的顶点只能是(7,6,6)。同样对于局中人 3 右边一个子博弈,必然采取 C1 行动 (9>2),因而该博弈的顶点只能是(2,1,9)。进而原博弈简化为:
的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,c<a.假定博弃 重复无穷多次,每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美 均衡结果出现的最低贴现因子δ,并解释δ与n的关系。
分以下几个步骤进行。
1)计算纳什均衡 当企业 i 选择价格 pi,其它企业选择价格 pj(j=1,2,…,n,j≠i)时,企业 i 的利润为: πi = (pi − c)qi = (pi − c)(a − pi + b(p1 + p2 + ⋯ + pi−1 + pi+1 + ⋯ + pn )) ,i=1,2,…,n
∂π2 ∂q 2
= a − q1
− 2q2
− q3
−c=0
∂π3 ∂q3
=
a
− q1
− q2
− 2q3
−c

吉本斯《博弈论基础》课后习题答案

吉本斯《博弈论基础》课后习题答案
{ } ((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 )) ,((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 ))
1.14
证 明 : 在 混 合 战 略 纳 什 均 衡 中 , 参 与 人 i 的 混 合 战 略 为 pi* , 其 中 选 择 第 j 个 纯 战 略 sij 的 概
1.4 对 于 第 i个 厂 商 , 其 目 标 为 最 大 化 自 己 的 利 润 , 即 :
max πi
=
max( p qi ≥0
− c)qi
=
max qi ≥0
(
a

qi

q−*i
− c)qi

由 一 阶 条 件 ∂π i / ∂qi = 0 , 可 得 : qi* = (a − q−*i − c) / 2 … … ( 1)
率 为 pi*j 。 用 反 证 法 证 明 。
假 设 pi*j > 0 , 且 sij 是 第 一 个 被 重 复 剔 除 劣 战 略 所 剔 除 的 战 略 。 那 么 参 与 人 i 必 定 存 在 另 一
个 纯 战 略 Sik, 使 得 ui (sij , p−i ) < ui (sik , p−i ) , p−i 是 其 他 参 与 人 任 意 的 战 略 组 合 。 因 为 sij 第
经济学家-
经济学家-
Gibbons《博弈论基础》第二章习题解答(部分)
2.1 采用逆向归纳法,先最大化家长的收益:给定孩子的行动 A,来选择自己的行动 B,
MaxV B
(I
p

博弈论基础吉本斯课后习题答案

博弈论基础吉本斯课后习题答案

∴ U2 (S + B) 会增加,因为(*)式,U2 (S + B) 增加的幅度比U1(I1 − S ) 减小的幅度大,所以
孩子的收益效用增大了,同时家长的收益效用也增大了。
2.3 根据Shaked和Sutton的研究发现,我们可以把无限博弈截开(见Gibbons教材55页),首先分
析前三阶段: 假设在第三阶段参与人1提出S,参与人2接受1-S,则解决方案为(S,1-S)。
目 要 求 , 即 ( qc , qc )是 唯 一 的 纳 什 均 衡 , 并 且 在 纳 什 均 衡 下 , 每 一 企 业 的 福 利 都 要 比 他 们 相
互合作时低,但两个企业都没有严格劣战略。 1.6
当 0 < c1, c2 < a / 2 时 , 易 求 均 衡 产 量 q1* = (a + c2 − 2c1) / 3 , q2* = (a + c1 − 2c2 ) / 3 。 而 当
时 , 生 产 qm / 2 的 一 方 的 利 润 为 π 2 = 5(a − c)2 / 48 , 生 产 qc 的 一 方 的 利 润 为
π3 = 5(a − c)2 / 36 ; 双 方 都 生 产 qc 时 , 每 一 方 的 利 润 都 为 π 4 = (a − c)2 / 9 。 以 标 准 式 表 示
如 果 有 两 个 候 选 人 , 唯 一 的 纯 战 略 纳 什 均 衡 为 x1* = x2* = 0.5 , 即 两 候 选 人 集 聚 于 中 点 , 平
分全部选票。下面简单证明:无论两候选人都在中点右侧,都在中点左侧,还是分居中点 两侧,每一候选人都倾向于比另一候选人更接近中点以获得超过半数的选票,所以没有稳 定 的 均 衡 ; 都 在 中 点 时 , 每 个 人 都 有 1/2 的 胜 出 概 率 , 而 偏 离 必 定 输 掉 选 举 , 所 以 没 有 人 会 偏离中点。由此得证上述均衡为唯一的纯战略纳什均衡。 如果有三个候选人,可以用类似于上面的方法证明不存在纯战略纳什均衡:无论三个候选 人的相对位置如何,都不会形成稳定的均衡。所以题目要求的是混合纳什均衡。具体方法 请 参 见 Hotelling, H. (1929) “Stability in Competition”, Economic Journal 39: 41-57.

博弈论各章节课后习题答案 (5)

博弈论各章节课后习题答案 (5)

第五章合作博弈1.设三人联盟博弈的特征函数v 的值是:v({i})=0,i=1,2,3;v({1,2})=2/3,v({1,3})=7/12,v({2,3})=1/2,v({1,2,3})=1。

求出该联盟博弈的核心,并用图形表示出来。

解:博弈G 的核心C(v)。

博弈G 的转归集I[N,v]为:123123123[,]{(,,)0,0,0,1}I N v x x x x x x x x x x ==≥≥≥++=若,则的充分条件为:],[),,(321v N I x x x x ∈=)(v C x ∈x 1≥0;x 2≥0;x 3≥0;x 1+x 2≥2/3;x 1+x 3≥7/12;x 2+x 3≥1/2;x 1+x 2+x 3=1由后面几个不等式得到x 1≤1/2;x 2≤5/12,x 3≤1/3.该联盟博弈的核心C(v)={(x 1,x 2,x 3)|0≤x 1≤1/2,0≤x 2≤5/12,0≤x 3≤1/3,x 1+x 2+x 3=1}核心C(v)是图中阴影区域(含边界)。

2.假设有一3人合作博弈,其特征函数为:v({1,2,3})=200,v({1,2})=150,v({1,3})=110,v({2,3})=20,v({1})=100,v({2})=10,v({3})=0。

计算该合作博弈的Shapley 值,核心,最小ε-核心,稳定集,内核和核仁。

1、Shapley 值φ1(v)=1/3(100-0)+1/6(150-10)+1/6(110-0)+1/3(200-20)=135φ2(v)=1/3(10-0)+1/6(150-100)+1/6(20-0)+1/3(200-110)=45φ3(v)=1/3(0-0)+1/6(20-10)+1/6(110-100)+1/3(200-150)=20所以该博弈的Shapley 值φ(v)=(135,45,20)2、博弈G 的核心C(v)。

博弈G 的转归集I[N,v]为:}200,0,10,100),,({],[321321321=++≥≥≥==x x x x x x x x x x v N I 若,则的充分条件为:],[),,(321v N I x x x x ∈=)(v C x ∈x 1≥100;x 2≥10;x 3≥0;x 1+x 2≥150;x 1+x 3≥110;x 2+x 3≥20;x 1+x 2+x 3=200对此可作高为200的重心三角形Δ123。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论谢识予第四五章参考答案————————————————————————————————作者:————————————————————————————————日期:2第四章参考答案2、火车站和机场餐饮商业服务的顾客往往都是一次性的,回头客、常客比较少,这些经济交易具有一次性博弈的特征,它们的价格总是较高而质量又会差一些,顾客也会尽量不在这些地方购买商品和消费。

在一般商业区和居民区的餐饮商业服务则回头客和常客较多,有明显的重复博弈特征,在居民区购买商品和消费的老顾客一般能得到比较公平、优惠的价格,还能得到较好的服务,甚至有些还可以信用消费(赊账),因此消费者一般会比较放心地消费。

这就是现实生活中重复博弈和一次性博弈效率不同的典型例子之一。

3、从研究对象和问题特征看,有限次重复博弈研究的主要是有明确结束时间的(合作、竞争等)关系,无限次重复博弈研究的主要是没有明确结果时间,或者较长期的关系。

从分析方法的角度,动态博弈和重复博弈分析中常用的逆推归纳法在无限次16重复博弈中无法直接运用,因为没有最后一次重复。

因此无限次重复博弈分析的主要方法是构造法,即根据特定效率意义等构造了博弈完美纳什均衡。

此外,也可以运用某些技巧解决问题,如教材中利用三阶段讨价还价博弈分析无限阶段讨价还价博弈的技巧。

从博弈的结果看,无限次重复博弈的效率往往高于有限次重复博弈,有些在有限次重复博弈中无法实现的效率较高的结果,在无限次重复博弈中有可能实现。

例如囚徒的困境型博弈的无限次重复博弈和有限次重复博弈就体现了这种差别。

两类重复博弈民间定理的差异也说明了这一点。

最后,在重复次数不多的有限次重复博弈中不一定要考虑得益贴现问题,在我限次重复博弈问题中这是必须考虑的。

上述区别在理论方面最主要的启发是重视有限次和无限次重复博弈的区别,区分研究这两类博弈问题是非常重要的,在实践方面的主要启发是促进和保持经济关系的长期稳定性,对于提高社会经济效率等常常有非常重要的意义。

6、用画线法容易找出该博弈的两个纯策略纳什均衡(T,L)和(M,R)。

这两个纳什均衡的得益都帕累托劣于(B,S)。

一次性博弈中效率较高的(B,S)不可能实现。

但该博弈的结构表明存在双方合作的利益,在两次重复博弈中也有构造惩罚机制的条件,因此我会考虑运用试探合作的触发策略争取部分实现(B,S),提高博弈的效率。

我作为博弈方1会采用这样的触发策略:第一次重复采用B;第二次重复时,如果前一次的结果是(B,S),则采用M,如果前一次的结果是其他,则采用T。

如果另一个博弈方有同样的分析能力,或者比较有经验,那么他(或她)也会采用相似的触发策略:在第一次重复时采用S;第二次重复时,如果前一次的结果是(B,S),则采用R,否则采用L。

双方采用上述触发策略构成一个子博弈完美纳什均衡,因此是稳定的。

这时候前一次重复实现了(B,S),提高了博弈的效率。

当然,上述触发策略也是有风险的,因为当另一个博弈方不理解和没有采用上述策略时,我的得益会较低。

当然如果考虑到人们具有学习进步的能力,而且缺乏分析和学习能力,采用效率较低策略的博弈方长期中会逐步被淘汰掉,那么采用上述触发策略的合理性就得到了进一步的支持。

8、可以消去,消去博弈方1的D策后四个策略组合中不存在纯策略纳什均衡。

根据混合策略纳什均衡的计算方法,不难算出混合策略纳什均衡为:博弈方1概率分布(1/2,1/2)在T和M中随机选择,博弈方2则以概率分布(1/3,2/3)在L 和R中随机选择。

由于上述静态博弈是没有纯策略纳什均衡的严格竞争博弈,因此在有限次重复博弈和无限次重复博弈中,两博弈方的均衡策略都是简单复重原博弈的混合策略纳什均衡。

补充习题:1. 判断下列表述是否正确,并简单讨论:a) 有限次重复博弈的子博弈完美纳什均衡的最后一次重复必定是原博弈的一个纳什均衡。

参考答案:正确。

因为最后一次重复就是动态博弈的最后一个阶段,根据子博弈完美纳什均衡的要求,博弈方在该阶段的选择必须构成纳什均衡。

因为最后一次重复就是原博弈本身,因此该纳什均衡就是原博弈的一个纳什均衡。

b) 无限次重复博弈均衡解的得益一定优于原博弈的均衡解的得益。

参考答案:错误。

对于严格竞争的零和博弈,或者不满足合作条件的其它许多博弈来说,无限制重复博弈并不意味着效率的提高,得益不一定高于原博弈的得益。

2. 寡头的古诺产量博弈中,如果市场需求P=130-Q,边际成本c=30且没有固定成本,贴现因子δ=0.9,如果该市场有长期的稳定性,问两个厂商能否维持垄断产量?参考答案:因为市场有长期稳定性,因此可以把两寡头之间的产量博弈看作无限次重复博弈,讨论能否构造双方在垄断产量上合作的子博弈完美纳什均衡。

首先分析上述产量博弈的一次性博弈的纳什均衡。

根据假设,两个厂商的利润函数为:利用反应函数法不难求出纳什均衡产量(古诺产量)为此时两个厂商的利润为现在分析垄断产量。

市场总利润函数是:很容易求得市场总利润最大化的总产量是:垄断利润为由于市场是长期稳定的,因此我们把两个厂商的产量博弈看作无限次重复博弈。

假设两厂商都采用开始时生产垄断产量的一半,一旦一方偏离就永远生产古诺产量的触发策略。

这样如果两个厂商都坚持合作,那么两个厂商每阶段各得1250,长期总利润的现在值是:如果有一个厂商(设为厂商1)偏离,那么因为它的利润函数为:因此它会产生产量:而此后每阶段都只能产生古诺产量和得到利润10000/9。

因此偏离的长期总利润现在值为:因此12500>11406.25,因此坚持垄断产量显然是正确的选择。

这说明在模型假设下,双方都采用上述触发策略是本博弈的子博弈完美纳什均衡,长期维持垄断产量是可能的。

第六章补充习题1. 判断下列表述是否正确,并简单分析:a) 完全不完美信息动态博弈中各博弈方都不清楚博弈的得益。

b) 在完全但不完美信息博弈中,若不存在混合策略,并且个博弈方都是主动选择且行为理性的,则不完美信息从本质上说是假的。

c) 子博弈可以从一个多节点信息集开始。

参考答案:a) 错误。

不完美信息博弈中不一定所有博弈方都不清楚博弈进程,只要部分或者一个博弈方不完全清楚其行为之前的博弈进程,就是不完美信息动态博弈。

b) 正确。

因为对于只包含理性博弈方的主动选择行为,利益结构明确,而且不同路径有严格优劣之分,从不需要用混合策略的动态博弈来说,所有博弈方选择的路径都可以通过分析加以确定和预测,根本无须观察。

从这个意义上说,这个博弈的不完美信息实际上都是“假的”。

c) 错误。

在一个子博弈中出现的信息集必须是完整的,由于从多节点信息集开始的博弈必须分割一个信息集,因此不可能是一个子博弈。

2. 如果一种商品的质量很难在购买时正确判断,出售在这种商品的卖方又可以“售出商品,概不退换”。

问这种商品的市场最终会趋向于怎样的情况?参考答案:从短期市场均衡的角度,如果消费者对商品质量缺乏判断能力,而且厂商又不提供任何质量保证,那么消费者是否会购买取决于购买的期望利益。

如果商品对消费者来说并不是必需品,市场上劣质品比例很高,而且买到劣质品损失很大,从而购买的期望利益、效用很小,还不如不买,那么短期均衡中消费者就不会选择购买。

这是市场短期中就会崩溃。

长期中只有厂商的经营策略和市场情况改善以后才可能重新恢复和发展。

如果反过来商品对消费者来是必须的,消费效用比较大,买到劣质商品的损失也不是很大,或者市场上劣质品的比例不大,从而购买的期望利益、效用比较大,那么消费者在短期均衡终会选择购买,市场能够存在。

但能够短期存在不等于能够长期维持和发展。

事实上,除非该商品市场是消费需求严重缺乏弹性,市场结构又属于完全垄断的极端情况,否则是总部对消费者做出质量承诺的厂商和市场肯定是不能长期维持的,否则会走向消亡,被其它商品、其它厂商所替代。

3. 假设在一价二手车模型中V=5000元,W=1000元,P=3000元,差车的概率是0.6。

再假设政府可以控制厂商的伪装成本C,但每一单位C政府自己有0.5单位成本,而政府的效用是交易中卖方的利益减去政府自己的成本。

问该博弈的完美贝叶斯均衡是什么?参考答案:为了简单期间我们仍然根据只有买方卖方两个博弈方的一价模型的扩展形进行分析。

根据上述扩展形我们不难清楚,假设政府选择的C<3000,那么买卖双方博弈的市场均衡一定是市场失败类型或接近失败的,因此差车伪装出售有利可图,而在好车差车都卖的情况下买方选择买的期望利益为0.4×2000+0.6×(-2000)=-400<0。

在市场完全失败时因为买方的利益为0,因此政府的效用肯定是非正的;在市场接近失败时买方的利益(期望得益)同样也是0,因此政府的效用肯定也是非正的。

现在假设政府选择的C正好满足C>3000,例如3001等。

这时候买卖双方的博弈均衡是市场完全成功类型的,也就是好车全卖,差车不会卖,买方则会买。

这时候交易买方的利益是2000,而政府提高C的成本只需要1500左右,因此政府有正的效用。

根据上述分析不难得出结论,在上述存在政府选择的二手车交易模型中,政府选择把C提高到3000以上,好车的卖方选择卖,差车的卖方选择不卖,买方选择买,构成该博弈的一个市场完全成功类型的完美贝叶斯均衡。

4、简述完全但不完美信息动态博弈的完美贝叶斯均衡必须满足的要求。

参考答案:完美贝叶斯均衡必须满足下列四个要求:要求1:在各个信息集,轮到选择的博弈方必须具有一个关于博弈达到该信息集中每个节点可能性的“判断”。

要求2:给定各博弈方的“判断”,他们的策略必须是“序列理性”的。

要求3:在均衡路径上的信息集处,“判断”由贝叶斯法则和各博弈方的均衡策略所决定。

要求4:在不处于均衡路径上的信息集处,“判断”由贝叶斯法则和各博弈方在此处可能有的均衡策略所决定。

不完全信息部分1.直接机制在拍卖规则没计中有什么意义?(7--3)2.古玩市场的交易中买卖双方的后悔都来自于自己对古玩价值判断的失误,若预先对价值的判断是正确的,那么交易者肯定不会后悔。

3.从不完全信息博弈的角度,从高到低叫价的荷兰式拍卖和暗标拍卖之间是否有相似性?4.运用海萨尼转换以后,不完全信息动态博弈与完全但不完美信息动态博弈基本上是相同的吗?5.在位者公司和可能进入者的盈利矩阵如下:将其进行Harsanyi转换。

并求在高成本概率为1/3时,该博弈的Nash均衡。

6.两户居民同时决定是否维护某合用的设施。

如果只要有一户人家维护,两户人家就都能得到1单位好处;没有人维护则两户人家均没有好处。

设两户人家维护的成本不同,分别为C1和C2。

(1)如果假设C1和C2分别是0.1和0.5,该博弈的纳什均衡是什么?博弈结果会如何?(2)如果C1和C2都是独立均匀分布在[0,1]上的随机变量,且真实水平只有每户人家自己知道,该博弈的贝叶斯纳什均衡是什么?7.(7--7)若(1)“自然”以均等的概率决定得益是下述得益矩阵1的情况还是得益矩阵2的情况,并让博弈方1知道而不让博弈方2知道;(2)博弈方1在T 和B中选择,同时博弈方2在L和R中进行选择。

相关文档
最新文档