河师大量子力学考题
《量子力学》基本概念考查题目以及答案
《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。
河师大量子力学考题
一、填空题1.玻尔的量子化条件为。
2.德布罗意关系为。
3.用来解释光电效应的爱因斯坦公式为。
4.波函数的统计解释:_______________________________________________________________________________________________5.为归一化波函数,粒子在方向、立体角内出现的几率为,在半径为,厚度为的球壳内粒子出现的几率为。
6.波函数的标准条件为。
7.,为单位矩阵,则算符的本征值为__________。
8.自由粒子体系,__________守恒;中心力场中运动的粒子___________守恒。
9.力学量算符应满足的两个性质是。
10.厄密算符的本征函数具有。
11.设为归一化的动量表象下的波函数,则的物理意义为_______________________________________________。
12.______;_______;_________。
28.如两力学量算符有共同本征函数完全系,则___。
13.坐标和动量的测不准关系是____________________________。
14.在定态条件下,守恒的力学量是_______________________。
15.隧道效应是指__________________________________________。
16.量子力学中,原子的轨道半径实际是指____________________。
17.为氢原子的波函数,的取值范围分别为。
18.对氢原子,不考虑电子的自旋,能级的简并度为,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为,如再考虑自旋与轨道角动量的耦合,能级的简并度为。
19.设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__________。
20.力学量算符在态下的平均值可写为的条件为____________________________。
量子力学经典练习题及答案解析
1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。
解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。
( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。
又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。
量子力学试题
量子力学试题
谈及量子力学,我们会想到不可思议的微观世界和奇妙的波粒二象性,其实量子力学还包含着更为丰富和深远的物理现象。
以下是一些与量
子力学相关的试题,包括了基础概念、数学表达式和实验现象等方面:
1. 什么是量子力学?它涉及哪些物理现象?
2. 波粒二象性是指什么?请举例说明。
3. 怎样通过波函数描述量子系统?波函数的性质有哪些?
4. 算符是什么?量子态在算符作用下的变化有何物理意义?
5. 薛定谔方程是如何描述量子系统的演化的?请解释薛定谔方程中各
项的含义。
6. 观测量如何作用于量子系统?测量结果的不确定性体现在哪些方面?
7. 什么是量子纠缠?量子纠缠的实验现象有哪些?
8. 量子隧穿现象是什么?它对于电子显微镜的分辨率提升有何意义?
9. 什么是量子计算?量子计算相对于经典计算的优势在哪些方面?
10. 量子力学受到了哪些哲学思考的挑战?有哪些纠缠现象可以支持
“超距作用”假设?
以上试题所涉及的知识点广泛,有些问题需要基于数学表达式进行解释,有些则需要运用实验现象进行解答。
掌握量子力学的基础知识,
对于深入理解本质微观世界和实现更加前沿的技术应用都具有重要意义。
量子力学期末考试试卷及答案集
1
s
[ (1) (2)
2
(2) (1)]
是什么性质: C
D. z 本征值为 1. 二 填空题(每题 4 分共 24 分)
En
1.如果已知氢原子的电子能量为
13.6 n 2 eV ,则电子由 n=5 跃迁到 n=4 能级时,发出的光子
二、(15 分)已知厄密算符 A?, B?,满足 A?2 B?2 1 ,且 A?B? B?A? 0 ,求
1、在 A 表象中算符 A? 、 B? 的矩阵表示;
2、在 A 表象中算符 B? 的本征值和本征函数;
3、从 A 表象到 B 表象的幺正变换矩阵 S。
三、(15 分)线性谐振子在 t 0 时处于状态
5 2 , E3 3 2
92
( 0) 1
先求出 H?0 属于本征值 1、2 和 3 的本征函数分别为:
1
0
(0 ) 2
0,
0
1
(0) 3
0,
0 0 1,
(1) k
利 用波函数的一级修正公式
H ik
(0 )
E( 0)
ik
k
E (0) i
i
, 可求 出波函 数的 一级 修正为:
0
(1) 1
21
(1) 2
0,
2
0
0
(1) 3
3
1
3,
0
1
近似到一级的波函数为:
1
2
2
0,
2
0
1
33
3,
1
五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数。以 子的坐标,根据题设,体系可能的状态有以下四个:
量子力学习题
e x e x ,问能否得到 G 3、知 G
d 的过程。 5、简单 Zeemann 效应是否可以证实自旋的存在?
0 二(20 分)求在辏力场势 U r ra ra
中运动的粒子,当 l=0 时的定态能级
数。
三(20 分)氢原子处于基态。求(1) r 的平均值;(2) 动量 P 的平均值 0 1 0 四(20 分)已知哈密顿算符 H 0 2 ai 0 ai 3
求: (1)能量本征值; (2)当 a 很小时,能量修正至二级。
五(20 分)设 F l 1 1 ) L (l 1 2l 1
表象下, S 五(20 分)求在 S n z
系处于 1 (sz ) 态时,求 S n
2
1 ( x 2 2
3 2
z ) 的本征值及本征函数。当体
的几率为多少? 2
C—1—1
河 北 大 学 课 程 考 核 试 卷
— 学年第 学期 级 专业(类) 考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 D
ˆ n n n ,证明:a ˆ a ˆ ]=1, N ˆ ,a ˆn ˆa ˆ ,N 3、据[ a
n n 1 。
4、非简并定态微扰论的计算公式是什么?写出其适用条件。
是否厄米算符? 是否一种角动量算符? ,问 5、自旋 S 2 二(20 分)粒子在势场 U x 1 2 x a2 2 xa 中运动,求其定态能级及波函 xa
ˆ 在自身表象中的矩阵表示有何特点? 3、力学量 G
4、简述能量的测不准关系;
1 ( x, y , z ) ˆ 表象下,波函数 5、电子在位置和自旋 S z ( x, y, z ) 如何归一化?解释 2
量子力学期末考试试卷及答案集
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
河南师范大学804量子力学
2018年攻读硕士学位研究生入学考试试题科目代码与名称:804量子力学适用专业或方向:物理学汲考试时间:3小时满分:150分试题编号:B 卷(必须在答题纸上答题,在试卷上答题无效,答题纸可向监考老师索要)一、简答题(每题6分,共计30分)(在答题纸上写明题号,将答案写在题号后)1.写出Planck常数力的数值。
2.在量子力学中,用什么来描述微观体系的状态?它满足的数学要求是什么?3.在量子力学中,当粒子的能量E小于势垒高度时会发生什么现象?4.什么是量子力学中的守恒量?试给出一个例子。
5.自旋算符宁有对应的经典力学量吗?为什么?二、填空题(每空3分,共计21分)(在答题纸上写明题号,将答案写在题号后)1.已知一维线性谐振子的状态波函数"(X),能量为势能为!日刃2注,则它的薛定造方程可表示为O 2.已知氢原子的归一化波函数为r = -^y21 + cr I0,匕为球谐函数,则系数c的值为,电子的角动量Z分量4的可能值为、电子的角动量平方算符云的本征值为6护的儿率为。
3.已知L±^L x±iL y,贝Ij[f,£±]= o 4,泡利不相容原理是指__ 三、选择题(每题3分,共计12分)(在答题纸上写明题号,选择一个正确答案写在题号后)1.下列说法正确的是:()A.线性谐振子的能量和动量都是量子化的。
B.房和少不对易,它们没有共同本征态。
第1页,共2页第2页,共2页C. 力学量的表示形式和表象变换有关。
D. 4•是厄密算符。
dx对于一维无限深势阱中的粒子,它的哪个力学量是守恒量?(A.势能B.速度C.能量D.坐标 若厄米算符九W 满足[A,B] =ih,贝!J(A Z 4)2»(A5)2> (1.证明在定态W 侦,t )中,儿率流密度"=挡(内与时间无关。
(12分) 2"2. 证明 & & = Z CT . o (15分)A y *五、 计算题(20分)(在答题纸上写明题号,将答案写在题号后)已知粒子在一维势阱r (x )= 0, 中运动,试求粒子的能级和波函数。
河北大学研究生入学考试量子力学题库
河北⼤学研究⽣⼊学考试量⼦⼒学题库考核科⽬量⼦⼒学课程类别必修课考核类型考试考核⽅式闭卷卷别 A⼀、概念题:(共20分,每⼩题4分)1、简述波函数的统计解释;2、对“轨道”和“电⼦云”的概念,量⼦⼒学的解释是什么?3、⼒学量G在⾃⾝表象中的矩阵表⽰有何特点? 4、简述能量的测不准关系;5、电⼦在位置和⾃旋z S ?表象下,波函数=ψ),,(),,(21z y x z y x ψψ如何归⼀化?解释各项的⼏率意义。
⼆(20分)设⼀粒⼦在⼀维势场c bx ax x U ++=2)(中运动(0>a )。
求其定态能级和波函数。
三(20分)设某时刻,粒⼦处在状态)cos (sin )(212kx kx B x +=ψ,求此时粒⼦的平均动量和平均动能。
四(20分)某体系存在⼀个三度简并能级,即E E E E ===)0(3)0(2)0(1。
在不含时微扰H'?作⽤下,总哈密顿算符H在)0(?H 表象下为=**21100E E E H βαβα。
求受微扰后的能量⾄⼀级。
五(20分)对电⼦,求在x S ?表象下的xS ?、y S ?、z S ?的矩阵表⽰。
考核科⽬量⼦⼒学课程类别必修课考核类型考试考核⽅式闭卷卷别 B⼀、概念题:(共20分,每⼩题4分)1、何为束缚态?2、当体系处于归⼀化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量⼒学量F 的可能值及其⼏率的⽅法。
3、设粒⼦在位置表象中处于态),(t r ψ,采⽤Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采⽤Dirac 符号时,位置表象中的波函数应如何表⽰? 4、简述定态微扰理论。
5、Stern —Gerlach 实验证实了什么?⼆(20分)设粒⼦在三维势场()ax a z y x U <>??∞=x 0,,中运动,求粒⼦定态能量和波函数。
三(20分)⼀维运动的粒⼦在态()00<>=-x x Axe x x 当当λψ中运动,其中0>λ。
量子力学试题附答案
宝鸡文理学院试题课程名称 量子力学 适用时间 2008-7-7 试卷类别 A 适用专业 05级物理学1、2、3班本文档是我在淘宝0.8元购买的,求报销!!!填空题中的1、2、4题,是量子力学基本知识,值得考。
一、填空题 (每小题2分,2×5=10分)1、玻尔原子模型的三个假设是( )。
2、波函数的标准条件为( )。
3、正交归一方程*m n mn u u d τδ=⎰的狄拉克表示为( )。
4、动量表象下的坐标算符表示形式( )。
5、zL L ˆˆ2和的共同本征函数为( )。
选择题中2、4两题亦考察基本知识,可以考,不至于太难。
二、单项选择题(每小题2分,2×5=10分)1、Â与Ĉ对易,则两算符:(1)有组成完全系的共同本征函数; (2)没有组成完全系的共同本征函数; (3) 不能确定。
2、自由粒子能级的简并度为:(1)1 (2) 2 (3) 3 (4)4 3、设线性谐振子处于0113()()()22x x x ψψψ=+描述的状态时,则该态中能量的平均值为(1)0 ; (2)75ω (3)52ω; (4)5ω 4、两个能量本征值相同的定态,它们的线性组合(1)一定是定态 ; (2)不是定态 (3) 不能确定5、 对氢原子体系(不考虑自旋)在电偶极近似下,下列能够实现的跃迁是:(1) Ψ322→Ψ300; (2) Ψ211→Ψ100; (3) Ψ322→Ψ21-1; (4) Ψ322→Ψ200;就题目来讲,简述题中1、2题有些熟悉,知道在书中哪里,可以考。
三、简述(每小题5分,5×4=20分)1、光电效应实验的规律2、量子力学中态的叠加原理3、希尔伯特空间4、辏力场中,偶极跃迁的选择定则第2题,厄米算符的这个证明熟悉四、推导证明题(每小题10分,10×2 = 20分)1、求证在z l ˆ的本征态下0=x l 。
2、设G Fˆˆ和是厄米算符,若[]0ˆ,ˆ=G F ,证明G F ˆˆ也是厄米算府。
量子力学简答100题及答案
1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
【试题】量子力学期末考试题库含答案22套
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
量子力学基础简答题(经典)(完整资料).doc
【最新整理,下载后即可编辑】量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示?9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H'+=ˆˆˆ0的零级近似波函数?15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a N ˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
量子力学期末考试试卷及答案集
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。
量子力学试卷2
学院
专业
年级
姓名
学号
| | | | | | | | | 密 | | | | | | | | | 封 | | | | | | | | | 线线 | | | |4.设氢原子处于ψ来自=⎜⎛⎜
⎜ ⎜⎝
−
1 2
R21
(r )Y11
(θ
,ϕ
)
3 2
R21 (r)Y10
(θ
,ϕ
)
⎟⎞ ⎟ ⎟ ⎟⎠
的状态,求
Lˆ
z
和
1 2
Y10
(θ
,ϕ
)
−
3 2
Y1−1 (θ
,ϕ)
态中,则电子角动量的
z
分量的平均值
为
。
7.已知 Qˆ 具有分立的本征值谱{Qn } ,其相应本征函数系为{un (x)} ,任意归一
∑ 化波函数 Ψ(x,t) 可写为 Ψ(x,t) =
n
an
(t )u n
(x)
,则力学量算符
Fˆ (x,
h i
∂) ∂x
B.
0,
h;
1 4
,
3 4
.
D.
0,−h;
1 2
,−
3. 2
6.对易关系 [ pˆ y , exp(iy)] 等于
()
A. h exp(iy) .
B. ih exp(iy) .
C. −h exp(iy) .
D. −ih exp(iy) .
7.已知 [xˆ, pˆ x ] = ih ,则 xˆ 和 pˆ x 的测不准关系是
()
4.若 Aˆ 与 Bˆ 对易,且 Bˆ 与 Cˆ 对易,则 Aˆ 与 Cˆ 对易。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.玻尔的量子化条件为。
2.德布罗意关系为。
3.用来解释光电效应的爱因斯坦公式为。
4.波函数的统计解释:_____________________________________
__________________________________________________________
5.为归一化波函数,粒子在方向、立体角内出现的几率
为,在半径为,厚度为的球壳内粒子出现的几率
为。
6.波函数的标准条件为。
7.,为单位矩阵,则算符的本征值为__________。
8.自由粒子体系,__________守恒;中心力场中运动的粒子
___________守恒。
9.力学量算符应满足的两个性质是。
10.厄密算符的本征函数具有。
11.设为归一化的动量表象下的波函数,则的物理意义为_______________________________________________。
12.______;_______;_________。
28.如两力学量算符有共同本征函数完全系,则___。
13.坐标和动量的测不准关系是____________________________。
14.在定态条件下,守恒的力学量是_______________________。
15.隧道效应是指__________________________________________。
16.量子力学中,原子的轨道半径实际是指____________________。
17.为氢原子的波函数,的取值范围分别
为。
18.对氢原子,不考虑电子的自旋,能级的简并度为,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为,如再考虑自旋与轨道角动量的耦合,能级的简并度为。
19.设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符
与态矢量的关系为__________。
20.力学量算符在态下的平均值可写为的条件为____________________________。
21.量子力学中的态是希尔伯特空间的____________;算符是希尔伯特空间的____________。
21.设粒子处于态,为归一化波函数,为球谐函数,则系
数c的取值为,的可能值为
,本征值为出现的几率为。
22.原子跃迁的选择定则为。
23.自旋角动量与自旋磁矩的关系为。
24.为泡利算符,则,,。
25.为自旋算符,则,,。
26.乌伦贝克和哥德斯密脱关于自旋的两个基本假设是 ________________________,
_______________________________。
27.轨道磁矩与轨道角动量的关系是______________;自旋磁矩与自旋角动量的关系是
______________。
27.费米子所组成的全同粒子体系的波函数具有______________,
玻色子所组成的全同粒子体系的波函数具有_________。
27.考虑自旋后,波函数在自旋空间表示为(已归一化),则在态下,
自旋算符对自旋的平均可表示为_______________;对坐标和自旋同时求平均的结果可表示为______________________。
27.考虑自旋后,波函数在自旋空间表示为(已归一化),则
的意义为_____________________;
_________________。
一、计算题
1.在和的共同表象中,算符和的矩阵分别为
,。
求它们的本征值和归一化本征函数,并将矩阵和对角化。
2.一维运动粒子的状态是
其中,求
(1)粒子动量的几率分布函数;(2)粒子的平均动量。
(利用公式)
3.设在表象中,的矩阵表示为
其中,试用微扰论求能级二级修正。
(10分)
4.在自旋态中,求。
(10分)
5.各是厄密算符。
试证明,也是厄密算符的条件是对易。
6.在动量表象中角动量的矩阵元和的矩阵元。
7.求自旋角动量在方向的投影
的本征值和所属的本征函数。
8.转动惯量为,电偶极矩为的空间转子处在均匀电场
中,如果电场很小,用微扰论求转子基态能量的二级修正。
(10分)
(基态波函数,利用公式
)
9.证明下列关系式:
1., 2.
3. ,
4.
(其中为角动量算符,,为泡利算符,为动量算符)
10.设时,粒子的状态为,求此时粒子的平均动量和平均动能。
11.为厄密算符,(为单位算符),。
(1)求算符
的本征值;(2)在A表象下求算符的矩阵表示。
12.已知体系的哈密顿量,试求出(1)体系能量本征值及相应的归一化本征矢量。
(2)将H对角化,并给出对角化的么正变换矩阵。
13.一质量为m的粒子在一维无限深势阱中运动,
, b为小量,用微扰法求粒子的能级(近似到一级)。
14.证明下列算符的对易关系。
1.;
2. ()
3.设算符与它们的对易式对易,即:,
证明:
15.设有两个电子,自旋态分别
,,证明两个电子处于自旋单态()及三重态()
的几率分别为:(20分)。
16.求自旋角动量在方向的投影的本征值和所属的本征函数(20分)。
17.由任意一对已归一化的共轭右矢和左矢构成的投影算符 。
试证明(1)
是
厄密算符;(2)有
;(3)
的本征值为0和1(20分)。
18. 设在 表象中, 的矩阵表示为 ,其中 ,试用微扰
论求能级二级修正(14分)。
19.证明下列算符的对易关系(24分):
1.
2.
(
)
3. 设算符 与它们的对易式 对易,即: ,证明:
20.一体系由三个全同的玻色子组成,玻色子之间无相互作用。
玻色子只有
两个可能的单粒子态。
问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?
21.求证在 的共同本征态下,角动量沿与z 轴成 角的方向 的分量
的平
均值为。
22.证明如算符
有共同的本征函数完备集,则
对易。
23.求 及
的本征值和所属的本征函数。
1.电子在均匀电场中运动,哈密顿量为,试判断各量中哪些是守恒量,为什么?
2.经典的波和量子力学中的几率波有什么本质区别?
3.量子力学中的力学量用什么算符表示?为什么?力学量算符在自身表象中的矩阵是什么形式?
4.什么是全同性原理和泡利不相容原理,二者是什么关系?
5.表明电子有自旋的实验事实有哪些?自旋有什么特征?
6.乌伦贝克关于自旋的的基本假设是什么?
7.什么是塞曼效应,对简单塞曼效应,没有外磁场时的一条谱线在外磁场中分裂为几条?
8.什么是光谱的精细结构?产生精细结构的原因是什么?考虑精细结构后能级的简并度是多少?
9.什么是斯塔克效应?
10.不同表象之间的变换是一种什么变换?在不同表象中不变的量有哪些?
11.量子力学中如何判断一个力学量是否是守恒量,量子力学中的守恒量和经典力学的守恒量定义有什么不同?
12.什么是定态?定态有什么性质?
13.量子力学中的守恒量是如何定义的?守恒量有什么性质?
14.简述力学量与力学量算符的关系?
15.轨道角动量和自旋角动量有什么区别和联系?
16.简述量子力学的五个基本假设。
17.简述量子力学中的态叠加原理,它反映了什么?
18.什么是光电效应?光电效应有什么规律?
19.什么是光电效应?爱因斯坦是如何解释光电效应的。
20.简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的。
21.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。
22.能量的本征态的叠加还是能量本征态吗?为什么?
23.原子的轨道半径在量子力学中是如何解释的。