2019届高三数学(文科)二轮复习教案:第二篇 专题一客观题的快速解法Word版含答案
2019-2020年高三数学第二轮专题复习专题一选择题的解法教案
2019-2020年高三数学第二轮专题复习专题一选择题的解法教案【专题目标】:数学选择题在当今高考试卷中,不但题目数量多,且占分比例高,xx年为50分,占总分的33%,高考中数学选择题具有概括性强,知识覆盖面宽,小巧灵活,有一定的综合性和深度的特点,考生能否迅速、准确、全面、简捷地解好选择题成为得分的关键。
【知识网络】:数学选择题的求解,一般有两种思路,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件。
由于选择题提供了备选答案,又不要求写出解题过程,因此出现了一些特有的解法,在选择题求解中很适用,常用解答选择题的方法主要为:直接法、特例法、排除法、分析法、验证法、估算法、图解法、极限法、反例法、逆推法、变更问题法等等。
下面分别介绍几种常用方法。
【经典例题】:一、直接法:就是从题设条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照,从而作出判断选择的一种方法。
例1.已知,则等于( )A:0 B:-4 C:-2 D:2例2.一个直角三角形三个内角的正弦值成等比数列,其最小内角为( )A: B: C: D:例3.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( ) A: B: C: D:例4.在边长为1的等边三角形ABC,设,则等于A: B: C:0 D:3 ( )例5.双曲线的离心率,点A与点F分别是双曲线的左顶点和右焦点,,则等于( )A: B: C: D:二、筛选法(也叫排除法,淘汰法):使用筛选法的前提是“答案唯一”,具体做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰逐一排除,从而获利正确结论。
例6.已知,,则的值是( )A: B: C: D:例7.在下图中直线与圆的图象只能是( )三、特例法(也叫特殊值法):就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选择支进行检验或推理,从而辩明真伪。
2019-高考数学第二轮高效复习方法介绍-推荐word版 (2页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考数学第二轮高效复习方法介绍时下,高三数学进入第二轮复习阶段,考生应该如何在短短的时间内,科学安排复习,提高效率呢?一、研究考纲,把准方向为更好地把握高考复习的方向,教师应指导考生认真研读《课程标准》和《考试说明》,明确考试要求和命题要求,熟知考试重点和范围,以及高考数学试题的结构和特点。
以课本为依托,以考纲为依据,对于支撑学科知识体系的重点内容,复习时要花大力气,突出以能力立意,注重考查数学思想,促进数学理性思维能力发展的命题指导思想。
二、重视课本,强调基础近几年高考数学试题坚持新题不难,难题不怪的命题方向。
强调对通性通法的考查,并且一些高考试题能在课本中找到“原型”。
尽管剩下的复习时间不多,但仍要注意回归课本,只有透彻理解课本例题,习题所涵盖的数学知识和解题方法,才能以不变应万变。
例如,高二数学(下)中有这样一道例题:求椭圆中斜率为平行弦的中点的轨迹方程。
此题所涉及的知识点、方法在201X年春季高考、201X年秋季高考、201X年秋季高考的压轴题中多次出现。
加强基础知识的考查,特别是对重点知识的重点考查;重视数学知识的多元联系,基础和能力并重,知识与能力并举,在知识的“交汇点”上命题;重视对知识的迁移,低起点、高定位、严要求,循序渐进。
有些题目规定了两个实数之间的一种关系,叫做“接近”,以递进式设问,逐步增加难度,又以学生熟悉的二元均值不等式及三角函数为素材,给学生亲近之感。
将绝对值不等式、均值不等式、三角函数的主要性质等恰如其分地涵盖。
注重对资料的积累和对各种题型、方法的归纳,以及可能引起失分原因的总结。
同时结合复习内容,引导学生自己对复习过程进行计划、调控、反思和评价,提高自主学习的能力。
三、突破难点,关注热点在全面系统掌握课本知识的基础上,第二轮复习应该做到重点突出。
高三数学(文科)二轮复习教学计划
高三数学(文科)二轮复习教学计划一、复习思路:如果把高三复习的教学比作捕鱼,一轮复习用密网,大小鱼虾一网打;二轮复习用鱼叉,瞄准大的把它拿;如果把一轮复习比作"火力覆盖"的话,二轮复习应叫做"重点打击"。
这轮复习是使知识系统化、条理化,促进灵活应用的关键时期,启到了承上启下的作用。
我们高三文科备课组将以全品二轮复习专题训练为主线,穿插各模拟卷和针对性练习。
结合学生特点,建立以“强化基础夯实,重点突出,难点分解,各个击破,综合提高。
”的二轮复习思路,确保数学学科在高考中取得好成绩!二、课程目标(一)知识目标1.系统性:贯通各模块相关知识。
通过纵向延伸和连接,构建完整、系统的知识结构。
2.综合性:建立不同知识,不同方法、不同学科之间联系。
通过横向拓展、问题解决等,综合所学知识。
3.灵活性:通过对重点知识的讲解和变式训练,加深理解,掌握本质和内在联系,能灵活应用知识解决问题。
4.严谨性:通过讲解、讨论、辨析,克服学习难点、易错点和容易混淆的知识点,形成严谨、准确的知识体系。
(二)能力目标核心为数学思维能力:会对问题和资料进行观察、比较、分析、综合、抽象与概括,会用类比、归纳和演绎进行推理,能合乎逻辑地、准确地表达。
1.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
是思维能力和运算技能的结合。
2.空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。
3.抽象概括能力:对具体、生动的实例能在抽象、概括的过程中,发现对象的本质;从给定的大量信息材料中,能概括出一些结论,并能将其用于解决问题或做出判断。
4.推理论证能力:能根据已知事实或命题,论证教学命题的真实性。
2019年高考文科数学二轮练习考案算法与程序框图_图文
考纲解读 典例精析
命题预测 技巧归纳
知识盘点 真题探究
基础拾遗 例题备选
题型4循环结构的应用
例4 执行如下的程序框图, 若p=0.8,则输出的n=
.
考纲解读 典例精析
命题预测 技巧归纳
知识盘点 真题探究
基础拾遗 例题备选
【分析】观察程序框图,明确是何种循环结构,明确循环体与循环变 量是解决问题的关键.
出a,b,c.运行结果a,b,c的大小关系为
.
【解析】由算法的含义知a<b<c.
【答案】a<b<c
考纲解读 典例精析
命题预测 技巧归纳
知识盘点 真题探究
基础拾遗 例题备选
3.(2011年广东省实验中学月考题)下列程序框图运行的结果为 .
第1题图
第3题图
【解析】第一步,s=1,i=2;
考纲解读 典例精析
知识盘点 真题探究
基础拾遗 例题备选
变式训练4 在如下程序框图中,输入f0(x)=cos x,则输出的是 .
【解析】运行程序框图,第一步运行结果是i=1,f1(x)=-sin x;第二步运 行结果是i=2,f2(x)=-cos x;第三步运行结果是i=3,f3(x)=sin x;第四步运 行结果是i=4,f4(x)=cos x;…;结合sin x与cos x的导数情况,可以看出:f4k (x)=cos x、f4k+1(x)=-sin x、f4k+2(x)=-cos x、f4k+3(x)=sin x.于是本题输出 结果为cos x. 【答案】cos x
考纲解读 典例精析
命题预测 技巧归纳
知识盘点 真题探究
基础拾遗 例题备选
条件结构,在一个算法中,经常会遇到一些条件的判断,算法的流程根 据条件是否成立有不同的流向,条件结构就是处理这种过程的结构.
2019届高考数学大二轮复习教师用书(文理通用版)
专题强化突破专题一集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式及线性规划第一讲集合与常用逻辑用语本部分内容在备考时应注意以下几个方面:(1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决问题.(2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命题的区别.(3)掌握必要条件、充分条件与充要条件的概念及应用. 预测2019年命题热点为:(1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、值域、方程的解集等知识结合在一起考查.(2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一起考查.Z 知识整合hi shi zheng he1.集合的概念、关系及运算(1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C . (3)空集是任何集合的子集.(4)含有n 个元素的集合的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个. (5)重要结论:A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.充要条件设集合A ={x |x 满足条件p },B ={x |x 满中条件q },则有A B B A3.简单的逻辑联结词(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 4.全(特)称命题及其否定(1)全称命题p :∀x ∈M ,p (x ).它的否定綈p :∃x 0∈M ,綈p (x 0).(2)特称命题p :∃x 0∈M ,p (x ).它的否定綈p :∀x ∈M ,綈p (x ).,Y 易错警示i cuo jing shi1.忽略集合元素互异性:在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根. 2.忽略空集:空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则.3.混淆命题的否定与否命题:在求解命题的否定与否命题时,一定要注意命题的否定是只对命题的结论进行否定,而否命题既对命题的条件进行否定,又对命题的结论进行否定.1.(文)(2018·全国卷Ⅰ,1)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( A ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}[解析] A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A .(理)(2018·全国卷Ⅰ,2)已知集合A ={x |x 2-x -2>0},则∁R A =( B ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}[解析] ∵ x 2-x -2>0,∴ (x -2)(x +1)>0,∴ x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B .2.(文)(2018·全国卷Ⅲ,1)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( C ) A .{0} B .{1} C .{1,2}D .{0,1,2}[解析] ∵ A ={x |x -1≥0}={x |x ≥1},∴ A ∩B ={1,2}. 故选C .(理)(2018·全国卷Ⅱ,2)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( A )A .9B .8C .5D .4[解析] 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A .3.(文)(2018·天津卷,3)设x ∈R ,则“x 3>8”是“|x |>2”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由x 3>8⇒x >2⇒|x |>2,反之不成立, 故“x 3>8”是“|x |>2”的充分不必要条件. 故选A .(理)(2018·天津卷,4)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由“⎪⎪⎪⎪x -12<12”得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由“x 3<1”得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”/⇒“⎪⎪⎪⎪x -12<12”.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A.4.(2018·浙江卷,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( A )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析]∵若m⊄α,n⊂α,且m∥n,则一定有m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.故选A.5.(文)(2018·北京卷,4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( B )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析]a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.故选B.(理)(2018·北京卷,6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( C ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析]由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.又a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 故选C .6.(文)(2017·全国卷Ⅰ,1)已知集合A ={x |x <2},B ={x |3-2x >0},则( A ) A .A ∩B ={x |x <32}B .A ∩B =∅C .A ∪B ={x |x <32}D .A ∪B =R[解析] 由3-2x >0,得x <32,∴B ={x |x <32},∴A ∩B ={x |x <2}∩{x |x <32}={x |x <32},故选A .(理)(2017·全国卷Ⅰ,1)已知集合A ={x |x <1},B ={x |3x <1},则( A ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1} D .A ∩B =∅ [解析] 由3x <1,得x <0, ∴B ={x |3x <1}={x |x <0}.∴A ∩B ={x |x <1}∩{x |x <0}={x |x <0},故选A .7.(2017·全国卷Ⅱ,2)设集合A ={1,2,4},B ={x |x 2-4x +m =0},若A ∩B ={1},则B =( C )A .{1,-3}B .{1,0}C .{1,3}D .{1,5} [解析] ∵A ∩B ={1},∴1∈B , ∴1是方程x 2-4x +m =0的根, ∴1-4+m =0,∴m =3.由x 2-4x +3=0,得x 1=1,x 2=3, ∴B ={1,3}.8.(文)(2017·山东卷,5)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,∴x2-x+1>0恒成立,∴p为真命题,綈p为假命题.∵当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,∴q为假命题,綈q为真命题.根据真值表可知p∧(綈q)为真命题,p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题.故选B.(理)(2017·山东卷,3)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.命题方向1集合的概念及运算例1 (1)(文)设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( A ) A.[1,2)B.[1,2]C.(2,3] D.[2,3][解析]∵M={x|-3<x<2},N={x|1≤x≤3},∴M∩N={x|1≤x<2},故选A.(理)已知集合A={x|x>2},B={x|x<2m},且A⊆∁R B,那么m的值可以是( A )A.1 B.2C.3 D.4[解析]∵B={x|x<2m},∴∁R B={x|x≥2m},又∵A⊆∁R B,∴有2m≤2,即m≤1.由选项可知选A.(2)(文)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( B )A.1 B.2C.3 D.4[解析]A∩B={1,2,3,4}∩{2,4,6,8}={2,4},∴A∩B中共有2个元素,故选B.(理)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( B ) A.3 B.2C.1 D.0[解析]集合A表示以原点O为圆心,半径为1的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.结合图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.(3)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( C ) A.77 B.49C.45 D.30[解析] 由题得A ={(-1,0),(0,0),(1,0),(0,1),(0,-1)},如下图所示:因为B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },由A ⊕B 的定义可得,A ⊕B 相当于将A 集合中各点上下平移或左右平移0,1,2个单位,如下图所示:所以A ⊕B 中的元素个数为7×7-4=45. 故选C . 『规律总结』(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.G 跟踪训练en zong xun lian1.(文)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( C ) A .3 B .4 C .5D .6[解析] 由集合A ={x |-2≤x ≤2},易知A ∩Z ={-2,-1,0,1,2},故选C . (理)设集合M ={x |-2<x <3},N ={x |2x +1≤1}则M ∩(∁R N )=( D )A .(3,+∞)B .(-2,-1]C .[-1,3)D .(-1,3)[解析] 集合N ={x |2x +1≤1}={x |x +1≤0}={x |x ≤-1}.故∁R N ={x |x >-1},故M ∩∁R N ={x |-1<x <3}.故选D .2.(文)已知集合U =R ,A ={x |x ≤1},B ={x |x ≥2},则集合∁U (A ∪B )=( A ) A .{x |1<x <2}B .{x |1≤x ≤2}C .{x |x ≤2}D .{x |x ≥1}[解析] A ∪B ={x |x ≤1}∪{x |x ≥2}={x |x ≤1或x ≥2},所以∁U (A ∪B )={x |1<x <2}. (理)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( A ) A .{-1,0} B .{0,1} C .{-1,0,1}D .{0,1,2}[解析] 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0},故选A .3.(文)已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( B ) A .1个 B .2个 C .4个D .8个[解析] |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个.(理)已知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( D )A .A ⊆B B .B ⊆AC .A ∩∁R B =RD .A ∩B =∅[解析] 因为x 2-3x +2<0, 所以1<x <2,又因为log 4x >12=log 42,所以x >2, 所以A ∩B =∅.命题方向2 命题及逻辑联结词例2 (1)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( B )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 [解析] 若z 1=a +b i ,则z 2=a -b i. ∴|z 1|=|z 2|,故原命题正确、逆否命题正确. 其逆命题为:若|z 1|=|z 2|,则z 1,z 2互为共轭复数,若z 1=a +b i ,z 2=-a +b i ,则|z 1|=|z 2|,而z 1,z 2不为共轭复数.∴逆命题为假,否命题也为假. (2)已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是假命题; ③命题“(綈p )∨q ”是真命题; ④命题“(綈p )∨(綈q )”是假命题. 其中正确的结论是( A ) A .②③ B .②④ C .③④ D .①②③[解析] ∵52>1,∴命题p 是假命题. ∵x 2+x +1=(x +12)2+34≥34>0,∴命题q 是真命题,由真值表可以判断“p ∧q ”为假,“p ∧(綈q )”为假,“(綈p )∨q ”为真,“(綈p )∨(綈q )”为真,所以只有②③正确,故选A .『规律总结』(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断依据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无关.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可,否则,这一特称(存在性)命题就是假命题.G 跟踪训练en zong xun lian1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( A )A .p ∨qB .p ∧qC.(綈p)∧(綈q) D.p∨(綈q)[解析]由题意知命题p为假命题,命题q为真命题,所以p∨q为真命题.故选A.2.以下四个命题中,真命题的个数是( C )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题;②存在正实数a,b,使得lg(a+b)=lg a+lg b;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC中,A<B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3[解析]对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a =2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,故③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知A<B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R为△ABC外接圆的半径)⇔sin A<sinB,故A<B是sin A<sin B的充要条件,故④是假命题,选C.3.(2018·北京卷,1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( A )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}[解析]∵A={x||x|<2}={x|-2<x<2},∴A∩B={0,1}.故选A.命题方向3充要条件的判断例3 (1)设θ∈R,则“|θ-π12|<π12”是“sinθ<12”的( A )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析]∵|θ-π12|<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A .(2)若p 是q 的充分不必要条件,则下列判断正确的是( C ) A .綈p 是q 的必要不充分条件 B .綈q 是p 的必要不充分条件 C .綈p 是綈q 的必要不充分条件 D .綈q 是綈p 的必要不充分条件[解析] 由p 是q 的充分不必要条件可知p ⇒q ,q ⇒ / p ,由互为逆否命题的两命题等价可得綈q ⇒綈p ,綈p ⇒ / 綈q ,∴綈p 是綈q 的必要不充分条件,故选C .(3)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] 设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要而不充分条件.故选C .(4)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( A ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1][解析] 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.『规律总结』1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p⇒q ,且q ⇒/ p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件):若A =B ,则是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.提醒:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .G 跟踪训练en zong xun lian1.(文)(2018·娄底二模)“a <-1”是“直线ax +y -3=0的倾斜角大于π4”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 设直线ax +y -3=0的倾斜角为θ,则tan θ=-a ,若a <-1,得θ角大于π4,由倾斜角θ大于π4得-a >1,或-a <0即a <-1或a >0.(理)“a 2=1”是“函数f (x )=lg(21-x +a )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] a 2=1⇒a =±1,f (x )=lg(21-x +a )为奇函数等价于f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=0⇔(21-x +a )(21+x +a )=1化简得a =-1,故选B . 2.(文)若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( C ) A .a >-2 B .a ≤-2 C .a >-1D .a ≥-1[解析] 由x 2-x -2<0知-1<x <2, 即A ={x |-1<x <2}.又B={x|-2<x<a}及A∩B≠∅知a>-1.(理)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( B ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[解析]由3a>3b>3,知a>b>1,所以log3a>log3b>0,所以1log3a<1log3b,即log a3<log b3,所以“3a>3b>3”是“log a3<log b3”的充分条件;但是取a=13,b=3也满足log a3<log b3,不符合a>b>1.所以“3a>3b>3”是“log a3<log b3”的充分不必要条件.A组1.(文)(2018·天津卷,1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( C )A.{-1,1}B.{0,1}C.{-1,0,1} D.{2,3,4}[解析]∵A={1,2,3,4},B={-1,0,2,3},∴A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.故选C.(理)(2018·天津卷,1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( B ) A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}[解析]全集为R,B={x|x≥1},则∁R B={x|x<1}.∵集合A={x|0<x<2},∴A∩(∁R B)={x|0<x<1}.故选B.2.(2018·蚌埠三模)设全集U={x|e x>1},函数f(x)=1x-1的定义域为A,则∁U A=( A )A.(0,1] B.(0,1)C.(1,+∞) D.[1,+∞)[解析]全集U={x|x>0},f(x)的定义域为{x|x>1},所以∁U A={x|0<x≤1}.3.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( C ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0[解析] 全称命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是特称命题“∃x 0∈[0,+∞),x 30+x 0<0”.4.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( B ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4[解析] 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题. 对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R , 则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题. 5.已知命题p :在等差数列{a n }中,若a m +a n =a p +a q (m ,n ,p ,q ∈N *),则有m +n =p +q ,命题q :∃x 0>0,2-x 0=e x 0,则下列命题是真命题的是( C )A .p ∧qB .p ∧綈qC .p ∨qD .p ∨綈q[解析] 命题p 是假命题,因为当等差数列{a n }是常数列时显然不成立,根据两个函数的图象可得命题q 是真命题,∴p ∨q 是真命题,故选C .6.设集合M ={x |x 2+3x +2<0},集合N ={x |(12)x ≤4},则M ∪N =( A )A .{x |x ≥-2}B .{x |x >-1}C .{x |x ≤-1}D .{x |x ≤-2}[解析] 因为M ={x |x 2+3x +2<0}={x |-2<x <-1},N =[-2,+∞),所以M ∪N =[-2,+∞),故选A .7.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( D ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] 取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |,得|a +b |2=|a -b |2,整理得a·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D .8.下列四个命题中正确命题的个数是( A )①对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1>0; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件; ③已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则线性回归方程为y ^=1.23x +0.08;④若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4.A .1B .2C .3D .4[解析] ①错,应当是綈p :∀x ∈R ,均有x 2+x +1≥0;②错,当m =0时,两直线也垂直,所以m =3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4.9.(文)已知全集U =R ,集合A ={x |0<x <9,x ∈R }和B ={x |-4<x <4,x ∈Z }关系的Venn 图如图所示,则阴影部分所求集合中的元素共有( B )A .3个B .4个C .5个D .无穷多个[解析] 由Venn 图可知,阴影部分可表示为(∁U A )∩B .由于∁U A ={x |x ≤0或x ≥9},于是(∁U A )∩B ={x |-4<x ≤0,x ∈Z }={-3,-2,-1,0},共有4个元素.(理)设全集U =R ,A ={x |x (x -2)<0},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( B )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 分别化简两集合可得A ={x |0<x <2}, B ={x |x <1},故∁U B ={x |x ≥1}, 故阴影部分所示集合为{x |1≤x <2}. 10.下列命题的否定为假命题的是( D ) A .∃x ∈R ,x 2+2x +2≤0 B .任意一个四边形的四顶点共圆 C .所有能被3整除的整数都是奇数 D .∀x ∈R ,sin 2x +cos 2x =1[解析] 设命题p :∀x ∈R ,sin 2x +cos 2x =1,则綈p :∃x ∈R ,sin 2x +cos 2x ≠1,显然綈p 是假命题.11.已知全集U =R ,设集合A ={x |y =ln(2x -1)},集合B ={y |y =sin(x -1)},则(∁U A )∩B 为( C )A .(12,+∞)B .(0,12]C .[-1,12]D .∅[解析] 集合A ={x |x >12},则∁U A ={x |x ≤12},集合B ={y |-1≤y ≤1},所以(∁U A )∩B ={x |x ≤12}∩{y |-1≤y ≤1}=[-1,12].12.给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x -1e x +1为偶函数,下列说法正确的是( B )A .p ∨q 是假命题B .(綈p )∧q 是假命题C .p ∧q 是真命题D .(綈p )∨q 是真命题[解析] 对于命题p :y =f (x )=ln[(1-x )(1+x )], 令(1-x )(1+x )>0,得-1<x <1.所以函数f (x )的定义域为(-1,1),关于原点对称, 因为f (-x )=ln[(1+x )(1-x )]=f (x ),所以函数f (x )为偶函数,所以命题p 为真命题;对于命题q :y =f (x )=e x -1e x +1,函数f (x )的定义域为R ,关于原点对称,因为f (-x )=e -x -1e -x+1=1e x -11e x +1=1-e x 1+e x =-f (x ),所以函数f (x )为奇函数,所以命题q 为假命题,所以(綈p )∧q 是假命题.13.已知命题p :x ≥1,命题q :1x <1,则綈p 是q 的既不充分也不必要条件.[解析] 由题意,得綈p 为x <1,由1x <1,得x >1或x <0,故q 为x >1或x <0,所以綈p是q 的既不充分也不必要条件.14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.[解析]全称命题的否定为特称命题,綈p:∃a0>0,a0≠1,函数f(x)=a x0-x-a0没有零点.15.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于3.[解析]A={x∈R||x-1|<2}={x∈R|-1<x<3},集合A中包含的整数有0,1,2,故A∩Z={0,1,2}.故A∩Z中所有元素之和为0+1+2=3.16.已知命题p:∀x∈R,x2-a≥0,命题q:∃x0∈R,x20+2ax0+2-a=0.若命题“p 且q”是真命题,则实数a的取值范围为(-∞,-2].[解析]由已知条件可知p和q均为真命题,由命题p为真得a≤0,由命题q为真得a≤-2或a≥1,所以a≤-2.B组1.设集合A={x|x2-x-2≤0},B={x|x<1,且x∈Z},则A∩B=( C )A.{-1} B.{0}C.{-1,0} D.{0,1}[解析]本题主要考查一元二次不等式的解法与集合的表示方法、集合间的基本运算.依题意得A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},因此A∩B={x|-1≤x<1,x∈Z}={-1,0},选C.2.已知全集U=R,集合A={x|y=lg(x-1)},集合B={y|y=x2+2x+5},则A∩B=( C )A.∅B.(1,2]C.[2,+∞) D.(1,+∞)[解析]由x-1>0,得x>1,故集合A=(1,+∞),又y=x2+2x+5=(x+1)2+4≥4=2,故集合B=[2,+∞),所以A∩B=[2,+∞),故选C.3.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+log x2≥2,则x>1;③“若a>b>0且c<0,则ca>cb”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题的是( A )A .①②③B .①②④C .①③④D .②③④[解析] ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.4.设x 、y ∈R ,则“|x |≤4且|y |≤3”是“x 216+y 29≤1”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“x 216+y 29≤1”表示的平面区域N 为椭圆x 216+y 29=1及其内部,显然NM ,故选B .5.(文)若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当a =1时,B ={x |-2<x <1},∴A ∩B =∅,则“a =1”是“A ∩B =∅”的充分条件;当A ∩B =∅时,得a ≤2,则“a =1”不是“A ∩B =∅”的必要条件,故“a =1”是“A ∩B =∅”的充分不必要条件.(理)设x ,y ∈R ,则“x ≥1且y ≥1”是“x 2+y 2≥2”的( D ) A .既不充分又不必要条件 B .必要不充分条件 C .充要条件 D .充分不必要条件[解析] 当x ≥1,y ≥1时,x 2≥1,y 2≥1,所以x 2+y 2≥2;而当x =-2,y =-4时,x 2+y 2≥2仍成立,所以“x ≥1且y ≥1”是“x 2+y 2≥2”的充分不必要条件,故选D .6.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },则集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素个数是( B )A .3B .4C .8D .9[解析] 用列举法求解.由给出的定义得A ×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log 22=1,log 24=2,log 28=3,log 44=1,因此,一共有4个元素,故选B .7.(2018·东北三省四市一模)已知命题p :函数y =lg(1-x )在(-∞,1)内单调递减,命题q :函数y =2cos x 是偶函数,则下列命题中为真命题的是( A )A .p ∧qB .(綈p )∨(綈q )C .(綈p )∧qD .p ∧(綈q )[解析] 命题p :函数y =lg(1-x )在(-∞,1)上单调递减,是真命题; 命题q :函数y =2cos x 是偶函数,是真命题. 则p ∧q 是真命题.故选A .8.已知条件p :x 2-2x -3<0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围为( D )A .a >3B .a ≥3C .a <-1D .a ≤-1[解析] 由x 2-2x -3<0得-1<x <3,设A ={x |-1<x <3},B ={x |x >a },若p 是q 的充分不必要条件,则A B ,即a ≤-1. 9.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的a 的取值范围为( D )A .(1,9)B .[1,9]C .[6,9)D .(6,9] [解析] 依题意,P ∩Q =Q ,Q ⊆P , 于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9]. 10.下列说法正确的是( D )A .命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018<0”B .两个三角形全等是这两个三角形面积相等的必要条件C .函数f (x )=1x在其定义域上是减函数D .给定命题p ,q ,若“p 且q ”是真命题,则綈p 是假命题[解析] 对于A ,特称命题的否定为全称命题,所以命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018≤0”,故A 不正确.对于B ,两个三角形全等,则这两个三角形面积相等;反之,不然.即两个三角形全等是这两个三角形面积相等的充分不必要条件,故B 不正确.对于C ,函数f (x )=1x 在(-∞,0),(0,+∞)上分别是减函数,但在定义域(-∞,0)∪(0,+∞)内既不是增函数,也不是减函数,如取x 1=-1,x 2=1,有x 1<x 2,且f (x 1)=-1,f (x 2)=1,则f (x 1)<f (x 2),所以函数f (x )=1x 在其定义域上不是减函数,故C 不正确.对于D ,因为“p 且q ”是真命题,则p ,q 都是真命题,所以綈p 是假命题,故D 正确.11.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B ={0,6}.[解析] 由题意可知,-2x =x 2+x , 所以x =0或x =-3,而当x =0时,不符合元素的互异性,舍去; 当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.12.命题“∀x ∈[1,2],使x 2-a ≥0”是真命题,则a 的取值范围是(-∞,1]. [解析] 命题p :a ≤x 2在[1,2]上恒成立,y =x 2在[1,2]上的最小值为1, 所以a ≤1.13.设p :(x -a )2>9,q :(x +1)(2x -1)≥0,若綈p 是q 的充分不必要条件,则实数a 的取值范围是(-∞,-4]∪[72,+∞).[解析] 綈p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12,因为綈p 是q 的充分不必要条件, 所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.14.给出下列结论:①若命题p :∃x 0∈R ,x 20+x 0+1<0,则綈p :∀x ∈R ,x 2+x +1≥0;②“(x -3)(x -4)=0”是“x -3=0”的充分而不必要条件;③命题“若b =0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是偶函数”的否命题是“若b ≠0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是奇函数”;④若a >0,b >0,a +b =4,则1a +1b 的最小值为1.其中正确结论的序号为①④.[解析] 由特称命题的否定知①正确;(x -3)(x -4)=0⇒x =3或x =4,x =3⇒(x -3)(x -4)=0,所以“(x -3)·(x -4)=0”是“x -3=0”的必要而不充分条件,所以②错误;函数可能是偶函数,奇函数,也可能是非奇非偶的函数,结论③中“函数是偶函数”的否定应为“函数不是偶函数”,故③不正确;因为a >0,b >0,a +b =4,所以1a +1b =a +b 4·(1a +1b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1,当且仅当a =b =2时取等号,所以④正确.第二讲向量运算与复数运算、算法、推理与证明本部分内容在备考时应注意以下几个方面:(1)加强对向量加法、减法的平行四边形法则与三角形法则的理解、掌握两向量共线与垂直的条件,熟记平面向量的相关公式,掌握求模、夹角的方法.(2)掌握复数的基本概念及运算法则,在备考时注意将复数化为代数形式再进行求解,同时注意“分母实数化”的运用.(3)关注程序框图和基本算法语句的应用与判别,尤其是含循环结构的程序框图要高度重视.(4)掌握各种推理的特点和推理过程,同时要区分不同的推理形式,对归纳推理要做到归纳到位、准确;对类比推理要找到事物的相同点,做到类比合,对演绎推理要做到过程严密.预测2019年命题热点为:(1)利用平面向理的基本运算解决数量积、夹角、模或垂直、共线等问题,与三角函数、解析几何交汇命题.(2)单独考查复数的四则运算,与复数的相关概念、复数的几何意义等相互交汇考查. (3)程序框图主要是以循环结构为主的计算、输出、程序框图的补全,与函数求值、方程求解、不等式求解数列求和、统计量的计算等交汇在一起命题.(4)推理问题考查归纳推理和类比推理,主要与数列、立体几何、解析几何等结合在一起命题.Z 知识整合hi shi zheng he1.重要公式(1)两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则①a ∥b ⇔a =λb (b ≠0,λ∈R )⇔x 1y 2-x 2y 1=0. ②a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (2)复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R ). (a +b i)(c +d i)=(ac -bd )+(bc +ad )i(a ,b ,c ,d ∈R ). (a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).2.重要性质及结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.. (3)平面向量的三个性质①若a =(x ,y ),则|a |=a ·a②若A (x 1,y 1),B (x 2,y 2),则|AB →|③设θ为a 与b (a ≠0,b ≠0)的夹角,且a =(x 1,y 1),b =(x 2,y 2),则cos θ=a ·b|a ||b |=(4)复数运算中常用的结论:①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i=-i ;④-b +a i =i(a +b i);⑤i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,其中n ∈N *3.推理与证明 (1)归纳推理的思维过程实验、观察→概括、推广→猜测一般性结论 (2)类比推理的思维过程实验、观察→联想、类推→猜测新的结论 (3)(理)数学归纳法证题的步骤①(归纳奠基)证明当n 取第一个值n =n 0(n 0∈N *)时,命题成立;②(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时,命题也成立. 只要完成了这两个步骤,就可以断定命题对于任何n ≥n 0的正整数都成立.Y 易错警示i cuo jing shi1.忽略复数的定义:在解决与复数概念有关的问题时,在运用复数的概念时忽略某一条件而致误. 2.不能准确把握循环次数解答循环结构的程序框图(流程图)问题,要注意循环次数,防止多一次或少一次的错误. 3.忽略特殊情况:两个向量夹角为锐角与向量的数量积大于0不等价;两个向量夹角为钝角与向量的数量积小于0不等价.1.(2018·全国卷Ⅰ,1)设z =1-i1+i+2i ,则|z |=( C ) A .0 B .12C .1D . 2[解析] ∵ z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴ |z |=1. 故选C .2.(2018·全国卷Ⅱ,1)1+2i1-2i =( D )A .-45-35iB .-45+35iC .-35-45iD .-35+45i[解析] 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i 1-(2i )2=-3+4i 5=-35+45i.故选D .3.(2018·全国卷Ⅱ,4)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( B ) A .4 B .3 C .2D .0[解析] a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵ |a |=1,a ·b =-1,∴ 原式=2×12+1=3. 故选B .4.(2018·全国卷Ⅰ,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A ) A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 故选A .5.(2018·北京卷,2)在复平面内,复数11-i 的共轭复数对应的点位于( D )A .第一象限B .第二象限C .第三象限D .第四象限 [解析]11-i =12+i 2,其共轭复数为12-i2,对应点位于第四象限.故选D .6.(2018·全国卷Ⅱ,7)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( B )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 把各循环变量在各次循环中的值用表格表示如下.因为N =N +1i ,由上表知i 是1→3→5,…,所以i =i +2.故选B .7.(2018·天津卷,3)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( B )A .1B .2C .3D .4[解析] 输入N 的值为20,第一次执行条件语句,N =20,i =2,Ni =10是整数,∴ T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴ i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴ T =1+1=2,i =5,此时i ≥5成立,∴ 输出T =2. 故选B .8.(2018·天津卷,9)i 是虚数单位,复数6+7i1+2i =4-i.[解析]6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i.9.(2018·北京卷,9)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =-1. [解析] a =(1,0),b =(-1,m ),则m a -b =(m +1,-m ). 由a ⊥(m a -b )得a ·(m a -b )=0, 即m +1=0,得m =-1.10.(2018·全国卷Ⅲ,13)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=12.[解析] 2a +b =(4,2),因为c ∥(2a +b ),所以4λ=2,得λ=12.命题方向1 平面向量的运算例1 (1)如图,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( B )A .43B .53C .158D .2[解析] 方法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.故选B .方法二:因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ(AB →+12AD →)+μ(-AB →+AD →)=(λ-μ)AB →+(12λ+μ)AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.故选B .(2)在平行四边形ABCD 中,M 为BC 的中点,若AB →=λAM →+μDB →,则λμ=29.[解析] 由图形可得:AM →=AB →+12AD →①,DB →=AB →-AD →②,①×2+②得:2AM →+DB →=3AB →,即AB →=23AM →+13DB →,所以λ=23,μ=13,所以λμ=29.『规律总结』1.平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现.2.正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用.提醒:运算两平面向量的数量积时,务必要注意两向量的方向.G 跟踪训练en zong xun lian1.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A ―→·PB ―→=32.[解析] 圆心为O (0,0),则3,∠OP A =∠OPB =π6,则∠APB =π3,所以cos ∠APB =3·3·cos π3=32.2.已知向量a =(3,1),b =(x ,-2),c =(0,2),若a ⊥(b -c ),则实数x 的值为( A ) A .43B .34C .-34D .-43[解析] 因为b -c =(x ,-4),又a ⊥(b -c ),所以a ·(b -c )=3x -4=0,所以x =43.命题方向2 复数的概念与运算例2 (1)已知复数z 1=3+i1-i的实部为a ,复数z 2=i(2+i)的虚部为b ,复数z =b+a i 的共轭复数在复平面内的对应点在( D )A .第一象限B .第二象限C .第三象限D .第四象限。
精选-高考数学第二轮备考复习教案
2019届高考数学第二轮备考复习教案【小编寄语】查字典数学网小编给大家整理了2019届高考数学第二轮备考复习教案,希望能给大家带来帮助!教案67 数列的综合应用一、课前检测1.猜想1=1,1-4= - (1+2), 1-4+9=1+2+3,……的第n个式子为。
答案:2.用数学归纳法证明 ,在验证成立时,左边所得的项为( C )A.1B.1+C.D.二、知识梳理1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题。
⑴生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为 .其中第年产量为,且过年后总产量为:⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:注意:“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为 ,则期后本利和为:(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款) 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分期还清.如果每期利率为 (按复利),那么每期等额还款元应满足:(等比数列问题).⑶分期付款应用题:为分期付款方式贷款为a元;m为m 个月将款全部付清; 为年利率.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求an还是求Sn,特别要准确地确定项数n.3.数列与其他知识的综合也是常考的题型,如:数列与函数、不等式、解析几何知识相互联系和渗透,都是常见的题型。
2019届高考数学二轮复习 第二部分专项一 1 第1练 集合、复数、常用逻辑用语 学案 Word版含解析
第1练 集合、复数、常用逻辑用语集 合集合运算的4个性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.集合运算的4个技巧(1)先“简”后“算”.进行集合的基本运算之前要先对其进行化简,化简时要准确把握元素的性质特征,区分数集与点集等.(2)遵“规”守“矩”.定义是进行集合基本运算的依据,交集的运算要抓住“公共元素”,补集的运算要关注“你有我无”的元素.(3)活“性”减“量”.灵活利用交集与并集以及补集的运算性质,特别是摩根定律,即∁U(M∩N)=(∁U M)∪(∁U N),∁U(M∪N)=(∁U M)∩(∁U N)等简化运算,减少运算量.(4)借“形”助“数”.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.[考法全练]1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B.法一:A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2},故选B.法二:因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.2.(2018·郑州第二次质量预测)已知集合P={x|y=-x2+x+2,x∈N},Q={x|ln x<1},则P∩Q=()A.{0,1,2} B.{1,2}C.(0,2] D.(0,e)解析:选B.由-x2+x+2≥0,得-1≤x≤2,因为x∈N,所以P={0,1,2}.因为ln x<1,所以0<x<e,所以Q=(0,e),则P∩Q={1,2},故选B.3.(一题多解)(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8C.5 D.4解析:选A.法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C13C13=9,故选A.法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.4.(一题多解)(2018·太原模拟)已知集合A ={y |y =log 2x ,x >2},B ={y |y =⎝⎛⎭⎫12x,x <1},则A ∩B =( )A .(1,+∞) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1解析:选A.法一:因为A ={y |y =log 2x ,x >2}={y |y >1},B ={y |y =⎝⎛⎭⎫12x,x <1}={y |y >12},所以A ∩B ={y |y >1},故选A. 法二:取2∈A ∩B ,则由2∈A ,得log 2x =2,解得x =4>2,满足条件,同时由2∈B ,得⎝⎛⎭⎫12x=2,x =-1,满足条件,排除选项B ,D ;取1∈A ∩B ,则由1∈A ,得log 2x =1,解得x =2,不满足x >2,排除C ,故选A.5.(2018·惠州第二次调研)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( )A .a <1B .a ≤1C .a >2D .a ≥2解析:选D.集合B ={x |x 2-3x +2<0}={x |1<x <2},由A ∩B =B 可得B ⊆A ,所以a ≥2.故选D.复 数复数代数形式的2种运算(1)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式.复数的除法类似初中所学化简分数常用的“分母有理化”,其实质就是“分母实数化”.复数运算中的4个常见结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. (2)-b +a i =i(a +b i).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.(4)i 4n +i 4n +1+i 4n +2+i 4n +3=0.[考法全练]1.(2018·高考全国卷Ⅱ)1+2i1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i解析:选D.1+2i 1-2i =(1+2i)(1+2i)(1-2i)(1+2i)=-35+45i ,故选D.2.(2018·惠州第二次调研)若z1+i=2-i(i 为虚数单位),则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意知z =(1+i)(2-i)=3+i ,其在复平面内对应的点的坐标为(3,1),在第一象限.故选A.3.(2018·高考全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 2解析:选 C.法一:因为z =1-i 1+i+2i =(1-i)2(1+i)(1-i)+2i =-i +2i =i ,所以|z |=1,故选C.法二:因为z =1-i 1+i +2i =1-i +2i(1+i)1+i =-1+i 1+i ,所以|z |=⎪⎪⎪⎪⎪⎪-1+i 1+i =|-1+i||1+i|=22=1,故选C.4.(2018·昆明调研)设复数z 满足(1+i)z =i ,则z 的共轭复数z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析:选B.法一:因为(1+i)z =i ,所以z =i 1+i =2i2(1+i)=(1+i)22(1+i)=1+i 2=12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.法二:因为(1+i)z =i ,所以z =i1+i =i(1-i)(1+i)(1-i)=1+i 2=12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.法三:设z =a +b i(a ,b ∈R ),因为(1+i)z =i ,所以(1+i)(a +b i)=i ,所以(a -b )+(a +b )i =i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =1,解得a =b =12,所以z =12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.5.(2018·武汉调研)已知复数z 满足z +|z |=3+i ,则z =( ) A .1-i B .1+i C.43-i D.43+i 解析:选D.设z =a +b i ,其中a ,b ∈R ,由z +|z |=3+i ,得a +b i +a 2+b 2=3+i ,由复数相等可得⎩⎪⎨⎪⎧a +a 2+b 2=3,b =1,解得⎩⎪⎨⎪⎧a =43,b =1,故z =43+i ,故选D.命题的真假判断与否定四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.全(特)称命题及其否定(1)全称命题p :∀x ∈M ,p (x ).它的否定﹁p :∃x 0∈M ,﹁p (x 0). (2)特称命题p :∃x 0∈M ,p (x 0).它的否定﹁p :∀x ∈M ,﹁p (x ).含逻辑联结词的命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(﹁p )∧(﹁q )假. (2)p ∧q 假⇔p ,q 均假⇔(﹁p )∧(﹁q )真. (3)p ∧q 真⇔p ,q 均真⇔(﹁p )∨(﹁q )假. (4)p ∧q 假⇔p ,q 至少一个假⇔(﹁p )∨(﹁q )真. (5)﹁p 真⇔p 假;﹁p 假⇔p 真.[考法全练]1.(2018·贵阳模拟)命题p :∃x 0∈R ,x 20+2x 0+2≤0,则﹁p 为( ) A .∀x ∈R ,x 2+2x +2>0 B .∀x ∈R ,x 2+2x +2≥0 C .∃x 0∈R ,x 20+2x 0+2>0 D .∃x 0∈R ,x 20+2x 0+2≥0解析:选A.命题p 为特称命题,所以﹁p 为“∀x ∈R ,x 2+2x +2>0”,故选A. 2.(2018·太原模拟)已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b ,则下列为真命题的是( )A .p ∧qB .p ∧﹁qC .﹁p ∧qD .﹁p ∧﹁q解析:选B.对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题﹁p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b ,所以命题q 为假命题,命题﹁q 为真命题,所以p ∧﹁q 为真命题,故选B.3.(2018·郑州第一次质量预测)下列说法正确的是( ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:选D.对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x ,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.4.(2018·唐山模拟)已知命题p :“a >b ”是“2a >2b ”的充要条件;命题q :∃x ∈R ,|x +1|≤x ,则( )A .﹁p ∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧﹁q 为假命题解析:选B.由函数y =2x 是R 上的增函数,知命题p 是真命题.对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ;当x +1<0,即x <-1时,|x +1|=-x -1,由-x -1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以﹁p ∨q 为假命题,A 错误;p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧﹁q 为真命题,D 错误.故选B.充要条件的判断充分、必要条件的3种判断方法1.(2018·石家庄质量检测(二))设a >0且a ≠1,则“log a b >1”是“b >a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D.由log a b >1得,当a >1时,b >a ;当0<a <1时,b <a .显然不能由log a b >1推出b >a ,也不能由b >a 推出log a b >1,故选D.2.(2018·沈阳模拟)已知向量a =(m ,1),b =(n ,1),则“mn =1”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若mn =1,则m =n ,此时a =b ,显然满足a ∥b ;反之,若a ∥b ,则m ·1-n ·1=0,所以m =n ,但不能推出m n =1.所以“mn=1”是“a ∥b ”的充分不必要条件,故选A.3.(2018·成都第一次诊断性检测)已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sinA >sinB ”是“tan A >tan B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.在锐角△ABC 中,根据正弦定理a sin A =bsin B,知sin A >sin B ⇔a >b ⇔A >B ,而正切函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以A >B ⇔tan A >tan B .故选C.4.(2018·高考天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.由⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A. 5.(2018·湖南湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C.若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0,故选C.一、选择题1.(2018·高考天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B.因为B ={x |x ≥1},所以∁R B ={x |x <1},因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1},故选B.2.(2018·沈阳教学质量监测(一))若i 是虚数单位,则复数2+3i1+i的实部与虚部之积为( )A .-54B.54C.54i D .-54i解析:选B.因为2+3i 1+i =(2+3i)(1-i)(1+i)(1-i)=52+12i ,所以其实部为52,虚部为12,实部与虚部之积为54.故选B.3.(2018·南宁模拟)已知(1+i)·z =3i(i 是虚数单位),那么复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.因为(1+i)·z =3i ,所以z =3i1+i =3i(1-i)(1+i)(1-i)=3+3i 2,则复数z 在复平面内对应的点的坐标为⎝⎛⎭⎫32,32,所以复数z 在复平面内对应的点位于第一象限,故选A. 4.(2018·西安模拟)设集合A ={x |y =lg(x 2+3x -4)},B ={y |y =21-x2},则A ∩B =( )A .(0,2]B .(1,2]C .[2,4)D .(-4,0)解析:选B.A ={x |x 2+3x -4>0}={x |x >1或x <-4},B ={y |0<y ≤2},所以A ∩B =(1,2],故选B.5.(2018·太原模拟)已知全集U =R ,集合A ={x |x (x +2)<0},B ={x ||x |≤1},则如图所示的阴影部分表示的集合是( )A .(-2,1)B .[-1,0]∪[1,2)C .(-2,-1)∪[0,1]D .[0,1]解析:选C.因为集合A ={x |x (x +2)<0},B ={x ||x |≤1},所以A ={x |-2<x <0},B ={x |-1≤x ≤1},所以A ∪B =(-2,1],A ∩B =[-1,0),所以阴影部分表示的集合为∁A ∪B (A ∩B )=(-2,-1)∪[0,1],故选C.6.(2018·洛阳第一次联考)已知复数z 满足z (1-i)2=1+i(i 为虚数单位),则|z |为( ) A.12 B.22C. 2D .1解析:选B.因为z =-1+i 2i =-1+i 2,所以|z |=22,故选B.7.(2018·西安八校联考)在△ABC 中,“AB →·BC →>0”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.法一:设AB →与BC →的夹角为θ,因为AB →·BC →>0,即|AB →|·|BC →|cos θ>0,所以cos θ>0,θ<90°,又θ为△ABC 内角B 的补角,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.法二:由AB →·BC →>0,得BA →·BC →<0,即cos B <0,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.8.(2018·辽宁五校联合体模拟)已知集合P ={x |x 2-2x -8>0},Q ={x |x ≥a },P ∪Q =R ,则a 的取值范围是( )A .(-2,+∞)B .(4,+∞)C .(-∞,-2]D .(-∞,4]解析:选C.集合P ={x |x 2-2x -8>0}={x |x <-2或x >4},Q ={x |x ≥a },若P ∪Q =R ,则a ≤-2,即a 的取值范围是(-∞,-2],故选C.9.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1<0”D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题解析:选D.A 中,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,故A 不正确;B 中,由x 2-5x -6=0,解得x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,故B 不正确;C 中,“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,故C 不正确;D 中,命题“若x =y ,则sin x =sin y ”为真命题,因此其逆否命题为真命题,D 正确,故选D.10.(2018·惠州第一次调研)设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .﹁q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题解析:选C.函数f (x )不是偶函数,仍然可∃x ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2(x ≥0),-x 2(x <0)在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.11.(2018·辽宁五校协作体联考)已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:选D.因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.12.(2018·成都模拟)下列判断正确的是( ) A .若事件A 与事件B 互斥,则事件A 与事件B 对立 B .函数y =x 2+9+1x 2+9(x ∈R )的最小值为2 C .若直线(m +1)x +my -2=0与直线mx -2y +5=0互相垂直,则m =1 D .“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件解析:选D.对于A 选项,若事件A 与事件B 互斥,则事件A 与事件B 不一定对立,反之,若事件A 与事件B 对立,则事件A 与事件B 一定互斥,所以A 选项错误;对于B 选项,y =x 2+9+1x 2+9≥2,当且仅当x 2+9=1x 2+9,即x 2+9=1时等号成立,但x 2+9=1无实数解,所以等号不成立,于是函数y =x 2+9+1x 2+9(x ∈R )的最小值不是2,所以B 选项错误;对于C 选项,由两直线垂直,得(m +1)m +m ×(-2)=0,解得m =0或m =1,所以C 选项错误;对于D 选项,若p ∧q 为真命题,则p ,q 都是真命题,于是p ∨q 为真命题,反之,若p ∨q 为真命题,则p ,q 中至少有一个为真命题,此时p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,所以D 选项正确.综上选D.二、填空题13.已知z 1-i=2+i ,则z -(z 的共轭复数)为________.解析:法一:由z 1-i=2+i 得z =(1-i)(2+i)=3-i ,所以z -=3+i.法二:由z 1-i =2+i 得⎝ ⎛⎭⎪⎫z -1-i =2+i -,所以z -1+i =2-i ,z -=(1+i)(2-i)=3+i. 答案:3+i14.(一题多解)设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a b ,a ∈P ,b ∈Q },若P ={1,2},Q ={-1,0,1},则集合P *Q 中元素的个数为________.解析:法一(列举法):当b =0时,无论a 取何值,z =a b =1;当a =1时,无论b 取何值,a b =1;当a =2,b =-1时,z =2-1=12;当a =2,b =1时,z =21=2.故P *Q =⎩⎨⎧⎭⎬⎫1,12,2,该集合中共有3个元素.法二(列表法):因为a ∈P ,b ∈Q ,所以a 的取值只能为1,2;b 的取值只能为-1,0,1.z =a b 的不同运算结果如下表所示:由上表可知P *Q =⎩⎨⎭⎬1,12,2,显然该集合中共有3个元素. 答案:315.下列命题中,是真命题的有________.(填序号) ①∀x ∈⎝⎛⎭⎫0,π2,x >sin x ;②在△ABC 中,若A >B ,则sin A >sin B ;③函数f (x )=tan x 的图象的一个对称中心是⎝⎛⎭⎫π2,0;④∃x 0∈R ,sin x 0cos x 0=22. 解析:①中,设g (x )=sin x -x ,则g ′(x )=cos x -1<0,所以函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以g (x )<g (0)=0,即x >sin x 成立,故①正确;②中,在△ABC 中,若A >B ,则a >b ,由正弦定理,有sin A >sin B 成立,故②正确;③中,函数f (x )=tan x 的图象的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,0是函数f (x )的图象的一个对称中心,故③正确;④中,因为sin x cos x =12sin 2x ≤12<22,所以④错误.答案:①②③16.已知命题p :∀x ∈[0,1],a ≥2x ;命题q :∃x ∈R ,使得x 2+4x +a =0.若命题“p ∨q ”是真命题,“﹁p ∧q ”是假命题,则实数a 的取值范围为________.解析:命题p 为真,则a ≥2x (x ∈[0,1])恒成立, 因为y =2x 在[0,1]上单调递增,所以2x ≤21=2,故a ≥2,即命题p 为真时,实数a 的取值集合为P ={a |a ≥2}.若命题q 为真,则方程x 2+4x +a =0有解,所以Δ=42-4×1×a ≥0,解得a ≤4. 故命题q 为真时,实数a 的取值集合为Q ={a |a ≤4}.若命题“p ∨q ”是真命题,那么命题p ,q 至少有一个是真命题; 由“﹁p ∧q ”是假命题,可得﹁p 与q 至少有一个是假命题. ①若p 为真命题,则﹁p 为假命题,q 可真可假, 此时实数a 的取值范围为[2,+∞);②若p 为假命题,则q 必为真命题,此时,“﹁p ∧q ”为真命题,不合题意. 综上,实数a 的取值范围为[2,+∞). 答案:[2,+∞)。
2019年高考数学(文科)二轮专题突破课件:专题一 集合、逻辑用语、不等式等1.4 .pdf
-2
+
sin
4π 5
-2
= 43×2×3;
sin
π 7
-2
+
sin
2π 7
-2
+
sin
3π 7
-2
+…+
sin
6π 7
-2
= 43×3×4;
sin
π 9
-2
+
sin
2π 9
-2
+
sin
3π 9
-2
+…+
sin
8π 9
-2
= 43×4×5;
……
照此规律:
sin
π 2������+1
-2
+
sin
2π 2������+1
S=0+(-1)×1=-1,a=1,K=2; S=-1+1×2=1,a=-1,K=3; S=1+(-1)×3=-2,a=1,K=4; S=-2+1×4=2,a=-1,K=5; S=2+(-1)×5=-3,a=1,K=6; S=-3+1×6=3,a=-1,K=7,
此时退出循环,输出S=3.故选B.
(2)k=1,s=1,s=1+(-1)1×1+11=1-12 = 12,k=2;
生 名同乙学,且“成其绩中好至”少,与有已一知条门件成“绩他高们于之中乙没,则有称一“名学同生学甲比比另学一生名乙同成学绩成绩好”.
如 好”果相一矛组盾学.因生此中,没没有有任哪意两名名学同生学比数另学一成名绩学是生相成同的绩.好因,为并数且学不成存绩在只语有
文 3种成,因绩而相同同学、数数量学最大成为绩3也.即相3名同同的学两成名绩学分生别,为那(么优这秀组,不学合生格)最、多(合有格,
高三文科数学复习教案5篇最新
高三文科数学复习教案5篇最新为了突出重点、突破难点,各位教师都会提早进行备案,今天小编在这里整理了一些高三文科数学复习教案5篇最新,我们一起来看看吧!高三文科数学复习教案1高三数学二轮专题复习教案——数列一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.(4) 与的关系: .2.等差数列和等比数列的比较(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.(2)递推公式: .(3)通项公式: .(4)性质等差数列的主要性质:①单调性:时为递增数列,时为递减数列,时为常数列. ②若,则 .特别地,当时,有 .③ . ④ 成等差数列. 等比数列的主要性质:①单调性:当或时,为递增数列;当,或时,为递减数列;当时,为摆动数列;当时,为常数列. ②若,则 .特别地,若,则 . ③ . ④ ,…,当时为等比数列;当时,若为偶数,不是等比数列.若为奇数,是公比为的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质例1. (2008深圳模拟)已知数列 (1)求数列的通项公式; (2)求数列解:(1)当 ;、当,、 (2)令当 ; 当综上,点评:本题考查了数列的前n项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。
第二问要分情况讨论,体现了分类讨论的数学思想.例2、(2008广东双合中学)已知等差数列的前n项和为,且, . 数列是等比数列, (其中 ). (I)求数列和的通项公式;(II)记 . 解:(I)公差为d,则 . 设等比数列的公比为, . (II) 作差: . 点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。
2019年高考数学第二轮专题复习教案指导一(二)填空题的解法
(二)填空题的解法填空题是浙江高考试题的第二题型,且分值较高,有单填题和多填题两种.从历年的高考成绩以及平时的模拟考试可以看出,填空题得分率一直不是很高.因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.填空题的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.方法一直接法对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法.它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.【例1】(2018·全国Ⅱ卷改编)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为________.解析如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC =2,由勾股定理得BE= 5.又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB=BE AB =52.答案 52探究提高 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【训练1】 (1)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. (2)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析 (1)∵tan ⎝ ⎛⎭⎪⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,又θ为第二象限角, 解得sin θ=1010,cos θ=-31010.∴sin θ+cos θ=-105.(2)由题意设P (ξ=1)=p ,ξ的分布列如下由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25.答案 (1)-105 (2)25方法二 特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.【例2】 (1)若f (x )=12 019x -1+a 是奇函数,则a =________. (2)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC→=________. 解析 (1)因为函数f (x )是奇函数,且1,-1是其定义域内的值,所以f (-1)=-f (1),而f (1)=12 018+a ,f (-1)=12 019-1-1+a =a -2 0192 018, 故a -2 0192 018=-⎝ ⎛⎭⎪⎫a +12 018, 解得a =12.(2)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC→=18.答案 (1)12 (2)18探究提高 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.【训练2】 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB ,AC 分别交于不同的两点P ,Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________.解析 由题意可知,1λ+1μ的值与点P ,Q 的位置无关,而当直线PQ 与直线BC 重合时,则有λ=μ=1,所以1λ+1μ=2.答案 2方法三 图象分析法对于一些含有几何背景的填空题,若能数中思形,以形助数,通过数形结合,往往能迅速作出判断,简捷地解决问题,得出正确的结果.韦恩图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.【例3】 (1)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |(0<x ≤10),-12x +6(x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.解析 (1)函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.(2)a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),如图所示,由图象可知,0<a <1,1<b <10,10<c <12.∵f (a )=f (b ),∴|lg a |=|lg b |.即lg a =lg 1b ,a =1b .则ab =1.所以abc =c ∈(10,12).答案 (1)⎝ ⎛⎭⎪⎫0,12 (2)(10,12) 探究提高 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【训练3】 设函数f (x )=⎩⎨⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.解析 由f (-4)=f (0),得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2.联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系中,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点.答案 3方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.【例4】 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.答案 6π探究提高 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.【训练4】 已知a =ln 12 017-12 017,b =ln 12 018-12 018,c =ln 12 019-12 019,则a ,b ,c 的大小关系为________.解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x (x >0).当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 017>12 018>12 019>0,∴a>b>c.答案a>b>c方法五综合分析法对于开放性的填空题,应根据题设条件的特征综合运用所学知识进行观察、分析,从而得出正确的结论.【例5】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:①f(2 019)+f(-2 020)的值为0;②函数f(x)在定义域上为周期是2的周期函数;③直线y=x与函数f(x)的图象有1个交点;④函数f(x)的值域为(-1,1).其中正确的命题序号有________.解析根据题意,可在同一坐标系中画出直线y=x和函数f(x)的图象如下:根据图象可知①f(2 019)+f(-2 020)=0正确,②函数f(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f(x)的值域是(-1,1),正确.答案①③④探究提高对于规律总结类与综合型的填空题,应从题设条件出发,通过逐步计算、分析总结探究其规律,对于多选型的问题更要注重分析推导的过程,以防多选或漏选.做好此类题目要深刻理解题意,捕捉题目中的隐含信息,通过联想、归纳、概括、抽象等多种手段获得结论.【训练5】设a∈R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=________.解析对a进行分类讨论,通过构造函数,利用数形结合解决.(1)当a=1时,不等式可化为:x>0时均有x2-x-1≤0,由二次函数y=x2-x-1的图象知,显然不成立,∴a≠1.(2)当a <1时,∵x >0,∴(a -1)x -1<0,不等式可化为:x >0时均有x 2-ax -1≤0.∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能均成立,∴a <1不成立.(3)当a >1时,令f (x )=(a -1)x -1,g (x )=x 2-ax -1,两函数的图象均过定点(0,-1),∵a >1,∴f (x )在x ∈(0,+∞)上单调递增,且与x 轴交点为⎝ ⎛⎭⎪⎫1a -1,0,即当x ∈⎝ ⎛⎭⎪⎫0,1a -1时,f (x )<0,当x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,f (x )>0.又∵二次函数g (x )=x 2-ax -1的对称轴为x =a 2>0,则只需g (x )=x 2-ax -1与x轴的右交点与点⎝ ⎛⎭⎪⎫1a -1,0重合,如图所示,则命题成立,即⎝ ⎛⎭⎪⎫1a -1,0在g (x )图象上,所以有⎝ ⎛⎭⎪⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a =0(舍去). 综上可知a =32.答案 321.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.。
2019届高考数学二轮复习 考前回扣教案 文
考前回扣一、集合、复数与常用逻辑用语知识方法1.集合的概念、关系及运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.复数(1)复数的相等:a+bi=c+di(a,b,c,d∈R)⇔a=c,b=d.(2)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(3)运算:(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=+i(c+di≠0).(4)复数的模:|z|=|a+bi|=r=(r≥0,r∈R).3.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定 p:∃x0∈M, p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定 p:∀x∈M, p(x).易忘提醒1.遇到A∩B=⌀时,注意“极端”情况:A=⌀或B=⌀;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,不要忽略A=⌀的情况.2.区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.3.“A的充分不必要条件是B”是指B能推出A,但A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,但B不能推出A.4.复数z为纯虚数的充要条件是a=0且b≠0(z=a+bi(a,b∈R)).还要注意巧妙运用参数问题和合理消参的技巧.习题回扣(命题人推荐)1.(集合的运算)设U=R,A={x|1≤x≤3},B={x|2<x<4},则A∩B=,A∪B= ,A ∪∁U B= .答案:{x|2<x≤3}{x|1≤x<4}{x|x≤3或x≥4}2.(复数的运算)已知(1+2i)=4+3i,则z= ,= .答案:2-i -i3.(充分必要条件)“a>b”是“a2>b2”的条件.答案:既不充分也不必要4.(命题的否定)已知p:∃x0∈R,-x0+1≤0,则 p为.答案:∀x∈R,x2-x+1>0二、平面向量、框图与合情推理知识方法1.平面向量中的四个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,与a同向的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量).(4)向量的投影:|b|cos<a,b>叫做向量b在向量a方向上的投影.2.平面向量的两个重要定理(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.3.平面向量的两个充要条件若两个非零向量a=(x1,y1),b=(x2,y2),则(1)a∥b⇔a=λb⇔x1y2-x2y1=0;(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4.平面向量的三个性质(1)若a=(x,y),则|a|==.(2)若A(x1,y1),B(x2,y2),则||=.(3)若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cos θ==.易忘提醒1.若a=0,则a·b=0,但由a·b=0,不能得到a=0或b=0,因为a⊥b时,a·b=0.2.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.习题回扣(命题人推荐)1.(平面向量的线性运算)设D,E,F分别是△ABC的边BC,CA,AB上的点,且AF=AB,BD=BC,CE=CA,若记=m,=n,则= (用m,n表示).答案:-m-n2.(平面向量的坐标运算)设向量=(k,12),=(4,5),=(10,k),若A,B,C三点共线,则k= .答案:-2或113.(平面向量的数量积)已知向量a与b不共线,|a|=3,|b|=4,若a+kb与a-kb垂直,则k= .答案:±4.(类比推理)在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b9=1,则有.答案:b1b2…b n=b1b2…b17-n(n<17且n∈N*)三、不等式与线性规划知识方法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.线性规划(1)判断二元一次不等式表示的平面区域的方法在直线Ax+By+C=0的某一侧任取一点(x0,y0),通过Ax0+By0+C的符号来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数取到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.3.五个重要的不等式(1)|a|≥0,a2≥0(a∈R);(2)a2+b2≥2ab(a,b∈R);(3)≥(a>0,b>0);(4)ab≤2(a,b∈R);(5)≥≥≥(a>0,b>0).易忘提醒1.解分式不等式时注意同解变形.2.作可行域时,注意边界线的虚实;及非线性目标函数的几何意义.3.在利用基本不等式求最值时,不要忽略“一正、二定、三相等”.习题回扣(命题人推荐)1.(求线性目标函数的最值)若x,y满足约束条件则z=3x+5y的最大值为,最小值为.答案:17 -112.(不等式的解法)若关于x的一元二次方程mx2-(1-m)x+m=0没有实数根,则m的取值范围为.答案:(-∞,-1)∪,+∞3.(利用基本不等式求最值)函数f(x)=x+的值域是.答案:(-∞,-2]∪[2,+∞)四、函数图象与性质、函数与方程知识方法1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:①若f(x)是偶函数,那么f(x)=f(-x);②若f(x)是奇函数,0在其定义域内,则f(0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①若y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a 的周期函数;②若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;③若y=f(x)是奇函数,其图象又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;④若f(x+a)=-f(x)或f(x+a)=,则y=f(x)是周期为2|a|的周期函数. 2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.3.函数的零点与方程的根(1)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)零点存在性定理注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.易忘提醒1.函数具有奇偶性时,定义域关于原点对称,但定义域关于原点对称的函数不一定具有奇偶性.2.求单调区间时易忽略函数的定义域,切记:单调区间必须是定义域的子集且当同增(减)区间不连续时,不能用并集符号连接.3.忽略函数的单调性、奇偶性、周期性的定义中变量取值的任意性.4.画图时容易忽略函数的性质,图象左右平移时,平移距离容易出错.习题回扣(命题人推荐)1.(奇偶性)若函数f(x)=x2-mx+m+2是偶函数,则m= .答案:02.(单调性)若函数f(x)=x2+mx-2在区间(-∞,2)上是单调减函数,则实数m的取值范围为.答案:(-∞,-4]3.(函数图象)已知函数y=log a(x+b)的图象如图所示,则a= ;b= .答案: 34.(零点的应用)若方程7x2-(m+13)x-m-2=0的一个根在区间(0,1)上,另一个根在区间(1,2)上,则实数m的取值范围是.答案:(-4,-2)五、导数的简单应用知识方法1.导数的几何意义函数y=f(x)在x=x0处的导数f'(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即k=f'(x0).2.导数与函数单调性的关系(1)若可导函数y=f(x)在区间(a,b)上单调递增,则f'(x)≥0在区间(a,b)上恒成立;若可导函数y=f(x)在区间(a,b)上单调递减,则f'(x)≤0在区间(a,b)上恒成立.可导函数y=f(x)在区间(a,b)上为增函数是f'(x)>0的必要不充分条件.(2)可导函数y=f(x)在x=x0处的导数f'(x0)=0是y=f(x)在x=x0处取得极值的必要不充分条件.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.易忘提醒1.求切线方程时,注意“在点A处的切线”与“过点A的切线”的区别.2.利用导数研究函数的单调性时不要忽视函数的定义域.3.函数y=f(x)在区间上单调递增不等价于f'(x)≥0.一般来说,已知函数y=f(x)单调递增,可以得到f'(x)≥0(有等号);求函数y=f(x)的单调递增区间,解f'(x)>0(没有等号)和确定定义域.4.对与不等式有关的综合问题要有转化为函数最值的化归思想;对含参数的综合问题要有分类讨论的思想.习题回扣(命题人推荐)1.(导数的几何意义)曲线y=在点M(π,0)处的切线方程为.答案:y=-+12.(极值)已知函数f(x)=x(x-c)2在x=2处有极大值,则c= .答案:63.(最值)已知函数f(x)=x2+px+q,当x=1时,f(x)有最小值4,则p= ,q= . 答案:-2 54.(单调性)函数f(x)=x+cos x,x∈0,的单调增区间为.答案:0,六、导数的综合应用知识方法1.利用导数求函数最值的几种情况(1)若连续函数f(x)在(a,b)内有唯一的极大值点x0,则f(x0)是函数f(x)在[a,b]上的最大值,min{f(a),f(b)}是函数f(x)在[a,b]上的最小值;若函数f(x)在(a,b)内有唯一的极小值点x0,则f(x0)是函数f(x)在[a,b]上的最小值,max{f(a),f(b)}是函数f(x)在[a,b]上的最大值.(2)若函数f(x)在[a,b]上单调递增,则f(a)是函数f(x)在[a,b]上的最小值,f(b)是函数f(x)在[a,b]上的最大值;若函数f(x)在[a,b]上单调递减,则f(a)是函数f(x)在[a,b]上的最大值,f(b)是函数f(x)在[a,b]上的最小值.(3)若函数f(x)在[a,b]上有极值点x1,x2,…,x n(n∈N*,n≥2),则将f(x1),f(x2),…,f(x n)与f(a),f(b)作比较,其中最大的一个是函数f(x)在[a,b]上的最大值,最小的一个是函数f(x)在[a,b]上的最小值.2.与不等式有关的恒成立与存在性问题(1)f(x)>g(x)对一切x∈I恒成立⇔I是f(x)>g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈I).(2)存在x0∈I使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).(3)对∀x1,x2∈D使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.(4)对∀x1∈D1,∃x2∈D2使得f(x1)≥g(x2)⇔f(x)min≥g(x)min,f(x)定义域为D1,g(x)定义域为D2.3.证明不等式问题不等式的证明可转化为利用导数研究函数的单调性、极值和最值,再由单调性或最值来证明不等式,其中构造一个可导函数是用导数证明不等式的关键.易忘提醒1.不要忽略函数的定义域.2.在需分类讨论时,要做到不重不漏,不要忽略导函数中二次项系数的正负,以及根的大小比较.3.存在性问题与恒成立问题容易混淆,它们既有区别又有联系:若f(x)≤m恒成立,则f(x)max≤m;若f(x)≥m恒成立,则f(x)min≥m.若f(x)≤m有解,则f(x)min≤m;若f(x)≥m有解,则f(x)max≥m.习题回扣(命题人推荐)1.(导数几何意义的应用)如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是( D )2.(比较大小)当x∈(0,π)时,sin x x.答案:<七、三角函数的图象与性质、三角恒等变换知识方法1.“巧记”诱导公式对于“±α,k∈Z的三角函数值”与“角α的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限.2.“牢记”三角公式(1)两角和与差的正弦、余弦、正切公式sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)= .(2)二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=;cos2α=,sin2α=.3.三种三角函数的图象和性质函数y=sin x y=cos x y=tan x图象单调性在-+2kπ,+2kπ(k∈Z)上单调递增;在+2kπ,+2kπ(k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在-+kπ,+kπ(k∈Z)上单调递增续表函数y=sin x y=cos x y=tan x对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:+kπ,0(k∈Z);对称轴:x=kπ(k∈Z)对称中心:,0(k∈Z);无对称轴易忘提醒1.求单调区间时应先把变量系数化为正值再求解,且不要忘记周期性及k∈Z.2.注意“在区间[a,b]上单调递增(减)”与“单调区间是[a,b]”的区别.3.图象变换时,变换前后的函数名称要一致.4.图象变换时,注意“先相位后周期”与“先周期后相位”图象平移的单位个数的区别.(平移只对“x”而言)5.解三角变换问题的基本思路是:一角、二名、三结构.习题回扣(命题人推荐)1.(同角三角函数间关系)已知sin α+cos α=(0<α<π),则tan α=.答案:-2.(同角三角函数间关系)设tan α=-,则= .答案:-13.(三角函数图象变换)要得到函数y=3sin2x+的图象,只需将y=3sin 2x的图象个单位长度.答案:向左平移4.(三角函数性质)函数y=sin x+的单调递增区间为.答案:2kπ-,2kπ+(k∈Z)八、解三角形知识方法1.正弦定理===2R(2R为△ABC外接圆的直径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C.sin A=,sin B=,sin C=.a∶b∶c=sin A∶sin B∶sin C.2.余弦定理a2=b2+c2-2bccos A,b2=a2+c2-2accos B,c2=a2+b2-2abcos C.推论:cos A=,cos B=,cos C=.3.面积公式S△ABC =bcsin A=acsin B=absin C.4.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.易忘提醒1.已知三角函数值求角时,要注意角的范围的挖掘.2.利用正弦定理解三角形时,注意解的个数的讨论,可能有一解、两解或无解.在△ABC 中,A>B⇔sin A>sin B.3.已知两边和其中一边的对角,利用余弦定理求第三边时,应注意检验,否则易产生增根.4.在判断三角形的形状时,注意等式两边的公因式不要约掉,要移项提取公因式,否则会有漏掉一种形状的可能.习题回扣(命题人推荐)1.(正弦定理)在△ABC中,已知a=6,b=6,B=120°,则c= .答案:62.(余弦定理)在△ABC中,已知(a+b+c)(b+c-a)=3bc,则A= .答案:3.(求三角形面积)在△ABC中,已知c=10,A=45°,C=30°,则b= ,S△ABC= . 答案:5+525(+1)4.(三角形形状判断)在△ABC中,已知a2tan B=b2tan A,则△ABC是三角形.答案:等腰或直角5.(解三角形实际应用问题)在一座20 m高的观测台顶测得对面水塔塔顶的仰角为60°,塔底俯角为45°,则这座水塔的高度是m.答案:20(1+)九、等差数列与等比数列知识方法1.等差、等比数列的通项公式及前n项和公式等差数列等比数列通项公式a n=a1+(n-1)d a n=a1q n-1(q≠0)前n项和S n==na1+ d(1)q≠1,S n==;(2)q=1,S n=na12.等差、等比数列的性质类型等差数列等比数列项的性质2a k=a m+a l (m,k,l∈N*且m,k,l成等差数列)=a m·a l(m,k,l∈N*且m,k,l成等差数列) a m+a n=a p+a q(m,n,p,q∈N*,且m+n=p+q) a m·a n=a p·a q(m,n,p,q∈N*且m+n=p+q)和的性质当n为奇数时,S n=n当n为偶数时,=q(公比)依次每k项的和:S k,S2k-S k,S3k-S2k,…构成等差数列依次每k项的和:S k,S2k-S k ,S 3k-S2k,…构成等比数列(公比q≠-1)3.证明(或判断)数列是等差(比)数列的四种基本方法(1)定义法:a n+1-a n=d(常数)(n∈N*)⇒{a n}是等差数列;=q(q是非零常数)⇒{a n}是等比数列.(2)等差(比)中项法:2a n+1=a n+a n+2(n∈N*)⇒{a n}是等差数列;=a n·a n+2(n∈N*,a n≠0)⇒{a n}是等比数列.(3)通项公式法:a n=pn+q(p,q为常数)⇒{a n}是等差数列;a n=a1·q n-1(其中a1,q为非零常数,n ∈N*)⇒{a n}是等比数列.(4)前n项和公式法:S n=An2+Bn(A,B为常数)⇒{a n}是等差数列;S n=Aq n-A(A为非零常数,q≠0,1)⇒{a n}是等比数列.4.等差、等比数列的单调性(1)等差数列的单调性d>0⇔{a n}为递增数列,S n有最小值.d<0⇔{a n}为递减数列,S n有最大值.d=0⇔{a n}为常数列.(2)等比数列的单调性当或时,{a n}为递增数列.当或时,{a n}为递减数列.易忘提醒1.忽略公式a n=S n-S n-1成立的条件是n≥2,n∈N*.2.证明一个数列是等差或等比数列时,由数列的前几项,想当然得到通项公式,易出错,必须用定义证明.3.应用等比数列的前n项和公式时,应注意条件是否暗示了q的范围,否则,应注意讨论.4.等差数列的单调性只取决于公差d的正负,等比数列的单调性既要考虑公比q又要考虑首项a1.习题回扣(命题人推荐)1.(等差数列综合)等差数列{a n}中,已知a1=,d=-,S n=-5,则a n= .答案:-2.(等差数列最值问题)已知等差数列{a n}中,a1=16,公差d=-,则|a n|最小时,n= . 答案:22十、数列求和及简单应用知识方法1.数列的通项公式数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n=(2)递推关系形如a n+1-a n=f(n),常用累加法求通项公式.(3)递推关系形如=f(n),常用累乘法求通项公式.(4)递推关系形如“a n+1=pa n+q(p,q是常数,且p≠1,q≠0)”的数列求通项公式,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.2.数列求和常用的方法(1)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法(其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列).(2)裂项相消法:将数列的通项分成两个代数式的差,即a n=f(n+1)-f(n)的形式,然后通过累加抵消中间若干项的求和方法.形如(其中{a n}是各项均不为0的等差数列,c为常数)的数列等.(3)错位相减法:形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n.易忘提醒1.求解{a n}的前n项和的最值时,无论是利用S n还是a n,都要注意条件n∈N*.2.运用错位相减法求和时,相减后,要注意右边的n+1项中的前n项,哪些项构成等比数列,以及两边需除以代数式时,注意要讨论代数式是否为零.习题回扣(命题人推荐)1.(分组法求和)(a-1)+(a2-2)+…+(a n-n)= .答案:2.(裂项法求和)数列的前n项和S n= .答案:3.(错位相减法求和)+2×2+3×3+…+n×n= .答案:2-(n+2)×n十一、空间几何体的三视图、表面积与体积知识方法1.棱柱、棱锥(1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形.(2)棱锥的性质棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面上的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形.2.三视图(1)正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的投影图.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高;(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即是棱柱的体对角线.(2)解决柱、锥的内切球问题的关键是找准切点位置,化归为平面几何问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆)(1)表面积公式①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r'2+r2+r'l+rl);④球的表面积S=4πR2.(2)体积公式①柱体的体积V=Sh;②锥体的体积V=Sh;③台体的体积V=(S'++S)h;④球的体积V=πR3.【温馨提示】在有关体积、表面积的计算应用中要注意等积法的应用.易忘提醒1.台体可以看成是由锥体截得的,但要注意截面与底面平行.2.空间几何体以不同位置放置时,对三视图会有影响.3.画三视图的轮廓线时,可见轮廓线在三视图中为实线,不可见轮廓线为虚线.习题回扣(命题人推荐)1.(直线与球的关系)一条直线被一个半径为5的球截得的线段长为8,则球心到直线的距离为.答案:32.(球与几何体的接切问题)已知一个正方体的8个顶点都在同一个球面上,则球的表面积与正方体的全面积之比为.答案:3.(三视图)一几何体按比例绘制的三视图如图所示(单位:m),则它的体积为.答案: m34.(几何体间的关系)正三棱柱的内切圆柱与外接圆柱的体积比为.答案:1∶4十二、点、直线、平面之间的位置关系知识方法1.直线与平面平行的判定和性质(1)判定:①判定定理:a∥b,b⊂α,a⊄α⇒a∥α;②面面平行的性质:α∥β,a⊂α⇒a∥β;③a⊥b,α⊥b,a⊄α,则a∥α.(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.2.直线与平面垂直的判定和性质(1)判定:①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O ⇒a⊥α.②a∥b,a⊥α⇒b⊥α.③l⊥α,α∥β⇒l⊥β.④α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(2)性质:①l⊥α,a⊂α⇒l⊥a.②l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定:①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.②l⊥α,l⊥β⇒α∥β.③α∥γ,α∥β⇒β∥γ.(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.4.两个平面垂直的判定和性质(1)判定:a⊂α,a⊥β⇒α⊥β.(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.易忘提醒1.在应用平行或垂直的判定定理时,常因忽略定理的条件或步骤跳跃而失分.2.“展开”“翻折”问题易忽略展开及翻折前后元素之间的关系.3.将空间问题转化为平面问题时,易忽略挖掘平面图形的几何性质.习题回扣(命题人推荐)1.(两平行平面的性质)已知:如图,α∥β,点P是平面α,β外的一点,直线PA,PD分别与α,β相交于点A,B和C,D.已知PA=4 cm,AB=5 cm,PC=3 cm,则PD= .答案: cm2.(两直线的关系)如图,在三棱锥A BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,则(1)AC与BD 时,四边形EFGH为菱形;(2)AC与BD 时,四边形EFGH为正方形.答案:(1)相等(2)相等且垂直3.(线面垂直的判定)如图,在△ABC中,M为边BC的中点,沿AM将△ABM折起,使点B在平面ACM外.当时,直线AM垂直于平面BMC.答案:AB=AC4.(两平面的关系)已知:如图,平面α⊥平面β,在α与β的交线l上取线段AB=4 cm,AC,BD 分别在平面α和平面β内,它们都垂直于交线l,并且AC=3 cm,BD=12 cm,则CD= . 答案:13 cm十三、直线与圆、圆锥曲线的概念、方程与性质知识方法1.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0) 不含垂直于x轴的直线斜截式y=kx+b 不含垂直于x轴的直线名称方程适用范围两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)=不含垂直于坐标轴和过原点的直线截距式+=1一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用2.直线的两种位置关系(1)两直线平行①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔k1=k2且b1≠b2.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0.(2)两直线垂直①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=-1.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=0.3.三种距离公式(1)点A(x1,y1),B(x2,y2)间的距离:|AB|=.(2)点P(x0,y0)到直线l:Ax+By+C=0的距离:d=.(3)两平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0(C1≠C2)间的距离为d=.【温馨提示】运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线的距离公式时,需先把两平行线方程中x,y的系数化为相同的形式.4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心,r为半径.(2)圆的一般方程:x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,其中圆心为-,-,半径r=.5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,根据圆心到直线的距离与半径的关系判断直线与圆的位置关系.(2)圆与圆的位置关系:相交、相切、相离,根据圆心距离与半径之和差的关系判断两圆的位置关系.6.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2|)|PF|=|PM|,点F不在直线l上,PM⊥l于M标准方程+=1(a>b>0)-=1(a>0,b>0)y2=2px(p>0)图形范围|x|≤a,|y|≤b|x|≥a x≥0顶点(±a,0),(0,±b)(±a,0) (0,0)对称性关于x轴,y轴和原点对称关于x 轴对称焦点(±c,0),0轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(0<e<1)e==(e>1)e=1准线x=-渐近线y=±x【温馨提示】 (1)椭圆、双曲线的很多问题有相似之处,在学习中要注意应用类比的方法,但一定要把握好它们的区别和联系.(2)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(3)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则用一般弦长公式.易忘提醒1.求直线方程时要注意判断直线斜率是否存在;根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.2.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.3.过圆外一定点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.4.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.5.抛物线中出现与焦点有关的问题时,易忽略定义的使用.6.圆锥曲线中焦点位置没有明确给出时,应对焦点位置进行分情况讨论.7.混淆椭圆、双曲线中a,b,c的关系,椭圆:a2=b2+c2,双曲线:c2=a2+b2.习题回扣(命题人推荐)1.(两直线垂直的条件)已知直线l1:(m+2)x-(m-2)y+2=0,直线l2:3x+my-1=0,且l1⊥l2,则m 的值为.答案:-1或62.(圆的方程)已知半径为5的圆过点P(-4,3),且圆心在直线2x-y+1=0上,则该圆的方程为.答案:(x-1)2+(y-3)2=25或(x+1)2+(y+1)2=253.(椭圆的方程)若椭圆+=1(a>b>0)过点(3,-2),离心率为,则a= ,b= .答案:4.(双曲线的性质)已知双曲线的方程为-=1,过点(a,0),(0,b)的直线的倾斜角为150°,则双曲线的离心率为.答案:5.(抛物线定义的应用)抛物线y2=4x上一点到焦点的距离为5,则该点的坐标为. 答案:(4,4)或(4,-4)6.(双曲线的方程)双曲线的离心率等于,且与椭圆+=1有公共焦点,则双曲线的方程为.答案:-y2=1十四、直线与圆锥曲线的位置关系知识方法1.直线与圆锥曲线的位置关系的判定方法将直线方程与圆锥曲线方程联立,由方程组解的组数确定直线与圆锥曲线的位置关系,特别地,当直线与双曲线的渐近线平行时,该直线与双曲线只有一个交点;当直线与抛物线的对称轴平行时,该直线与抛物线只有一个交点.2.有关弦长问题有关弦长问题应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=或|P1P2|=.(2)当斜率k不存在时,可求出交点坐标,直接计算弦长.3.弦的中点问题。
2019年高考数学(文科)二轮专题突破课件:专题一 集合、逻辑用语、不等式等1.1 .pdf
专题一 集合、逻辑用语、不等式、 向量、复数、算法、推理
1.1 集合与常用逻辑用语
考情分析
高频考点
核心归纳
-4-
试题统计
题型
(2014 全国Ⅰ,文 1)
(2014 全国Ⅱ,文 1)
(2014 全国Ⅱ,文 3)
(2015 全国Ⅰ,文 1)
(2015 全国Ⅱ,文 1)
(2016 全国Ⅰ,文 1)
例2(1)下列命题错误的是( ) A.对于命题p:“∃x0∈R,使得 ������02 +x0+1<0”,则������p:“∀x∈R,均有 x2+x+1≥0”
B.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
C.若p∧q是假命题,则p,q均为假命题
D.“x>2”是“x2-3x+2>0”的充分不必要条件
(2)∵C.{A2=,4{,15,}3},U={1D,2.{,31,,42,,53},4, ,5}
∴(1)∁AUA=({22)C,4,5},故选 C.
关闭
)
关闭
解析 答案
考情分析高频考点源自核心归纳-6-命题热点一 命题热点二 命题热点三 命题热点四
题后反思解答集合间的关系与运算问题的基本思路:先正确理解 各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采 用不同的方法对集合进行化简求解.常用技巧有:
考情分析
高频考点
核心归纳
-16-
命题热点一 命题热点二 命题热点三 命题热点四
对点训练4已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若������p是������q的充分
2019年高考数学(文科)二轮复习:指导2 透视高考数学,解题模板示范,规范拿高分
题型概述 1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写. 2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点. 3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分. 4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题及选考不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板一 三角函数及解三角形【例1】 (本小题满分12分)(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C(acos B +bcos A)=c. (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 规范解答 (1)由已知及正弦定理得2cos C(sin A·cos B+sin B·cos A)=sin C 1分得分点① 即2cos C·sin(A+B)=sin C , 3分得分点② 因为A +B +C =π,A ,B ,C∈(0,π), 所以sin(A +B)=sin C>0,所以2cos C =1,cos C =12. 5分得分点③所以C =π3. 6分得分点④(2)由余弦定理及C =π3得7=a 2+b 2-2ab·12,即(a +b)2-3ab =7,8分得分点⑤又S =12ab·sin C=34ab =332,所以ab =6,10分得分点⑥所以(a +b)2-18=7,a +b =5,11分得分点⑦ 所以△ABC 的周长为a +b +c =5+7. 12分得分点⑧ 高考状元满分心得1.牢记公式,正确求解:在三角函数及解三角形类解答题中,通常涉及三角恒等变换公式、诱导公式及正弦定理和余弦定理,这些公式和定理是解决问题的关键,因此要牢记公式和定理.如本题第(2)问要应用到余弦定理及三角形的面积公式.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上求解.3.写全得分关键:在三角函数及解三角形类解答题中,应注意解题中的关键点,有则给分,无则不给分,所以在解答题时一定要写清得分关键点,如第(1)问中,没有将正弦定理表示出来的过程(即得分点①),则不得分;第(2)问中没有将面积表示出来则不得分,只有将面积转化为得分点⑦才得分. 解题程序第一步:利用正弦定理将已知的边角关系式转化为角的关系式; 第二步:利用三角恒等变换化简关系式; 第三步:求C 的余弦值,求角C 的值.第四步:利用三角形的面积为332,求出ab 的值;第五步:根据c =7,利用余弦定理列出a ,b 的关系式; 第六步:求(a +b)2的值,进而求△ABC 的周长.【训练1】 (2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知△ABC 的面积为a23sin A .(1)求sin Bsin C ;(2)若6cos Bcos C =1,a =3,求△ABC 的周长. 解 (1)∵△ABC 面积S =a 23sin A ,且S =12bcsin A ,∴a 23sin A =12bcsin A ,∴a 2=32bcsin 2A. ∵由正弦定理得sin 2A =32sin Bsin Csin 2A ,由sin A≠0得sin Bsin C =23.(2)由(1)得sin Bsin C =23,cos Bcos C =16,∵A+B +C =π,∴cos A =cos(π-B -C)=-cos(B +C) =sin Bsin C -cos Bcos C =12,又∵A∈(0,π),∴A=π3,sin A =32,由余弦定理得a 2=b 2+c 2-bc =9,①由正弦定理得b =a sin A ·sin B,c =asin A ·sin C,∴bc=a2sin 2A ·sin Bsin C=8,②由①②得b +c =33,∴a+b +c =3+33,即△ABC 周长为3+33.模板二 数列【例2】 (本小题满分12分)(2016·全国Ⅰ卷)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.规范解答 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,∴a 1=2,3分得分点①所以数列{a n }是首项为2,公差为3的等差数列, 4分得分点②因此{a n }的通项公式a n =2+3(n -1)=3n -1. 6分得分点③(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=nb n 1+a n =b n 3≠0,则b n +1b n =13,9分得分点④因此数列{b n }是首项为1,公比为13的等比数列,10分得分点⑤设数列{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n1-13=32-12×3n -1.12分得分点⑥ 高考状元满分心得1.牢记等差、等比数列的定义:在判断数列为等差或等比数列时,应根据定义进行判断,所以熟练掌握定义是解决问题的关键,如本题第(2)问,要根据定义判断b n +1b n =13.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上求得b n +1与b n 的关系.3.写全得分关键:写清解题过程的关键点,有则给分,无则没有分,同时解题过程中计算准确,是得分的根本保证.如本题第(1)问要写出a 1b 2+b 2=b 1,b 1=1,b 2=13,才能得出a 1,并指出数列{a n }的性质,否则不能得全分.第(2)问中一定要写出求b n +1=b n3的步骤并要指明{b n }的性质;求S n 时,必须代入求和公式而不能直接写出结果,否则要扣分. 解题程序第一步:将n =1代入关系式a n b n +1+b n +1=nb n ,求出a 1的值; 第二步:利用等差数列的通项公式求出a n ;第三步:将第(1)问中求得的a n 代入关系式a n b n +1+b n +1=nb n ,求得b n +1与b n 的关系; 第四步:判断数列{b n }为等比数列; 第五步:代入等比数列的前n 项和公式求S n . 第六步:反思检验,规范解题步骤.【训练2】 (2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,同时a 2=3a 1, ∴数列{a n }的通项公式为a n =3n -1,n∈N *.(2)设b n =|3n -1-n -2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n≥3.设数列{b n }的前n 项和为T n , 则T 1=2,T 2=3,当n≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n-n 2-5n +112,此时T 2符合,T 1不符合,∴T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n≥2,n∈N *. 模板三 立体几何【例3】 (本小题满分12分)(2017·全国Ⅱ卷)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积. 规范解答 (1)证明 在平面ABCD 中, 因为∠BAD=∠ABC=90°. 所以BC∥AD,1分得分点① 又BC ⊄平面PAD ,AD ⊂平面PAD. 所以直线BC∥平面PAD.3分得分点② (2)解 如图,取AD 的中点M ,连接PM ,CM ,由AB =BC =12AD 及BC∥AD,∠ABC=90°得四边形ABCM 为正方形,则CM⊥AD.5分得分点③因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD∩平面ABCD =AD , 所以PM⊥AD,PM⊥底面ABCD ,7分得分点④ 因为CM ⊂底面ABCD ,所以PM⊥CM. 8分得分点⑤设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x , 如图,取CD 的中点N ,连接PN.则PN⊥CD, 所以PN =142x. 因为△PCD 的面积为27, 所以12×2x×142x =27,解得x =-2(舍去)或x =2.10分得分点⑥ 于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P -ABCD 的体积V =13×2(2+4)2×23=4 3.12分得分点⑦高考状元满分心得1.写全得分步骤:在立体几何类解答题中,对于证明与计算过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写.如第(1)问中的BC∥AD,第(2)问中CM⊥AD,PM⊥CM,PN =142x 等. 2.注意利用第(1)问的结果:在题设条件下,在第(2)问的求解过程中,证明CM⊥AD 时,利用第(1)问证明的结果BC∥AD.3.写明得分关键:对于解题过程中的关键点,有则给分,无则没分.所以在解立体几何类解答题时,一定要写清得分关键点,如第(1)问中一定要写出BC ⊄平面PAD ,AD ⊂平面PAD 两个条件,否则不能得全分.在第(2)问中,证明PM⊥平面ABCD 时,一定写全三个条件,如平面PAD∩平面ABCD =AD ,PM⊥AD 一定要有,否则要扣分.再如第(2)问中,一定要分别求出BC ,AD 及PM ,再计算几何体的体积. 解题程序第一步:根据平面几何性质,证BC∥AD.第二步:由线面平行判定定理,证线BC∥平面PAD. 第三步:判定四边形ABCM 为正方形,得CM⊥AD. 第四步:证明直线PM⊥平面ABCD. 第五步:利用面积求边BC ,并计算相关量. 第六步:计算四棱锥P -ABCD 的体积.【训练3】 (2016·北京卷)如图,在四棱锥P -ABCD 中,PC⊥平面ABCD ,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.(1)证明因为PC⊥平面ABCD,所以PC⊥DC.又因为AC⊥DC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明因为AB∥CD,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)解棱PB上存在点F,使得PA∥平面CEF.理由如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF.模板四概率与统计【例4】(本小题满分12分)(2016·全国Ⅰ卷)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 关于x 的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?规范解答 (1)当x≤19时,y =3 800;当x>19时,y =3 800+500(x -19)=500x -5 700. 2分得分点①所以y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x≤19,500x -5 700,x>19(x∈N).3分得分点② (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19. 5分得分点③(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800, 因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+ 4 300×20+4 800×10)=4 000, 8分得分点④若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.11分得分点⑤比较两个平均数可知,购买1台机器的同时应购买19个易损零件.12分得分点⑥ 高考状元满分心得1.正确阅读理解,弄清题意:与概率统计有关的应用问题经常以实际生活为背景,且常考常新,而解决问题的关键是理解题意,弄清本质,掌握知识间的联系,本题第(1)问与函数问题相结合,求分段函数解析式,要注意分段求x≤19,x>19时的解析式.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题第(3)问在第(1)的基础上来正确理解题意,才能顺利求解.3.计算要准确,步骤要规范:在(3)问中,分别求出购买19个易损零件,20个易损零件的相关费用及平均数,且结果正确,才能得分;通过比较,准确下结论,否则会失去最后1分.解题程序第一步:分别求出x≤19,x>19时的函数关系式.第二步:写出y关于x的函数解析式.第三步:通过柱状图求n的最小值.第四步:求购买19个易损零件时,所需费用的平均数.第五步:求购买20个易损零件时,所需费用的平均数.第六步:作出判断,反思检验,规范解题步骤.【训练4】(2017·安庆联考)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4.所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=110.模板五圆锥曲线【例5】(本小题满分12分)(2016·全国Ⅰ卷)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.规范解答(1)证明因为|AD|=|AC|,EB∥AC,所以∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|. 又圆A 的标准方程为(x +1)2+y 2=16, 从而|AD|=4,所以|EA|+|EB|=4.2分得分点①由题设得A(-1,0),B(1,0),所以|AB|=2, 由椭圆定义可得点E 的轨迹方程为:x 24+y23=1(y≠0).4分得分点②(2)解 当l 与x 轴不垂直时,设l 的方程为y =k(x -1)(k≠0),M(x 1,y 1),N(x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN|=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 6分得分点③过点B(1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1,所以|PQ|=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 8分得分点④故四边形MPNQ 的面积 S =12|MN||PQ|=121+14k 2+3.9分得分点⑤ 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 10分得分点⑥当l 与x 轴垂直时,其方程为x =1,|MN|=3,|PQ|=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 12分得分点⑦高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E 的轨迹方程x 24+y 23=1(y≠0). 第三步:联立方程,用斜率k 表示|MN|.第四步:用k 表示出|PQ|,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围.第六步:求出斜率不存在时面积S 的值,正确得出结论.【训练5】 (2017·惠州调研)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM → =NQ →?若存在,求出直线的方程;若不存在,说明理由. 解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1. 故椭圆C 的方程为x 22+y 2=1. (2)不存在满足条件的直线,理由如下:设直线的方程为y =2x +t ,设M(x 1,y 1),N(x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q(x 4,y 4),MN 的中点为D(x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9,且-3<t<3. 由PM → =NQ → 得⎝⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. (也可由PM → =NQ →知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159) 又-3<t<3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.因此不存在满足条件的直线.模板六 函数与导数【例6】 (本小题满分12分)(2016·全国Ⅰ卷)已知函数f(x)=(x -2)e x +a(x -1)2有两个零点.(1)求a 的取值范围.(2)设x 1,x 2是f(x)的两个零点,证明:x 1+x 2<2.规范解答 (1)f′(x)=(x -1)e x +2a(x -1)=(x -1)(e x +2a).1分得分点①①设a =0,则f(x)=(x -2)e x ,f(x)只有一个零点;2分得分点②②设a>0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e ,f(2)=a ,取b 满足b<0且b<ln a 2, 则f(b)>a 2(b -2)+a(b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0, 故f(x)存在两个零点;4分得分点③③设a<0,由f′(x)=0得x =1或x =ln(-2a).若a≥-e 2,则ln(-2a)≤1,故当x∈(1,+∞)时, f′(x)>0,因此f(x)在(1,+∞)上单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e 2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f′(x)<0; 当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.6分得分点④又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a 的取值范围为(0,+∞).7分得分点⑤(2)不妨设x 1<x 2,由(1)知x 1∈(-∞,1),x 2∈(1,+∞),8分得分点⑥2-x 2∈(-∞,1),f(x)在(-∞,1)上单调递减,所以x 1+x 2<2等价于f(x 1)>f(2-x 2),即f(2-x 2)<0.由于f(2-x 2)=-x 2e2-x 2+a(x 2-1)2,又f(x 2)=(x 2-2)ex 2+a(x 2-1)2=0,所以f(2-x 2)=-x 2e2-x 2-(x 2-2)ex 2,10分得分点⑦设g(x)=-xe 2-x -(x -2)e x ,则g′(x)=(x -1)(e 2-x -e x).11分得分点⑧ 所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x 2)=f(2-x 2)<0,故x 1+x 2<2.12分得分点⑨高考状元满分心得 1.牢记求导法则,正确求导:在函数与导数类解答题中,通常都会涉及求导,正确的求导是解题关键,因此要牢记求导公式,做到正确求导,如本题第(1)问就涉及对函数的求导.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上求解.3.注意分类讨论:高考函数与导数解答题,一般都会涉及分类讨论,并且讨论的步骤也是得分点,所以一定要重视分类讨论.4.写全得分关键:在函数与导数问题中,求导的结果、分类讨论的条件、极值、最值、题目的结论等一些关键式子和结果都是得分点,在解答时一定要写清楚,如本题中的得分点②③④⑦⑧等.解题程序第一步,准确求出函数f(x)的导数.第二步,讨论a 的取值,分情况讨论函数的单调性、极值,从而判断函数零点,确定a 的取值范围.第三步,将结论x 1+x 2<2转化为判定f(2-x 2)<0=f(x 1).第四步,构造函数g(x)=-xe 2-x -(x -2)e x,判定x>1时,g(x)<0. 第五步,写出结论,检验反思,规范步骤.【训练6】 (2017·西安调研)已知函数f(x)=ln x +a 2x 2-(a +1)x. (1)若曲线y =f(x)在x =1处的切线方程为y =-2,求f(x)的单调区间;(2)若x>0时,f (x )x <f′(x )2恒成立,求实数a 的取值范围. 解 (1)由已知得f′(x)=1x+ax -(a +1),则f′(1)=0. 而f(1)=ln 1+a 2-(a +1)=-a 2-1, ∴曲线y =f(x)在x =1处的切线方程为y =-a 2-1. ∴-a 2-1=-2,解得a =2. ∴f(x)=ln x +x 2-3x ,f′(x)=1x+2x -3. 由f′(x)=1x +2x -3=2x 2-3x +1x>0, 得0<x<12或x>1, 由f′(x)=1x +2x -3=2x 2-3x +1x <0,得12<x<1, ∴f(x)的单调递增区间为⎝ ⎛⎭⎪⎫0,12和(1,+∞),f(x)的单调递减区间为⎝ ⎛⎭⎪⎫12,1. (2)若f (x )x <f′(x )2, 则ln x x +a 2x -(a +1)<12x +ax 2-a +12, 即ln x x -12x <a +12在区间(0,+∞)上恒成立. 设h(x)=ln x x -12x ,则h′(x)=1-ln x x 2+12x 2=3-2ln x 2x 2, 由h′(x)>0,得0<x<e 32,因而h(x)在⎝ ⎛⎭⎪⎫0,e 32上单调递增, 由h′(x)<0,得x>e 32,因而h(x)在⎝ ⎛⎭⎪⎫e 32,+∞上单调递减.∴h(x)的最大值为h ⎝ ⎛⎭⎪⎫e 32=e -32,∴a +12>e -32, 故a>2e -32-1.从而实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a>2e -32-1.。
2019届高考数学二轮复习专项二专题一5高考解答题的审题与答题示范(一)学案(含解析)
点 处的切线方程为 所以曲线 y=f(x)在点(0, f(0)) y=1. ③ (2)设 h(x)=ex(cos x-sin x)-1, 则 h′(x)=ex(cos x-sin x-sin x-cos x) =-2exsin x.④ π 当 x∈0, 时,h′(x)<0,⑤ 2 π 所以 h(x)在区间0, 上单调递减.⑥ 2 π 所以对任意 x∈0, 有 h(x)≤h(0)=0, 2 即 f′(x)≤0,⑦ π 所以函数 f(x)在区间0, 上单调递减,⑧ 2 π 因此 f(x)在区间0, 上的最大值为 f(0)= 2
高考解答题的审题与答题示范(一) 函数与导数类解答题 [审题方法]——审结论 问题解决的最终目标就是求出结论或说明已给结论正确或错误.因而解决问题时的思维过程大多都是围绕着 结论这个目标进行定向思考的.审视结论,就是在结论的启发下,探索已知条件和结论之间的内在联系和转化规 律.善于从结论中捕捉解题信息,善于对结论进行转化,使之逐步靠近条件,从而发现和确定解题方向. (本题满分 12 分)已知函数 f(x)=excos x-x. 典例 (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; π (2)求函数 f(x)在区间0, 上的最大值和最小值. 2 (1)要求曲线 y=f(x)在点(0,f(0))处的切线方程⇒需求 f′(0)及 f(0)的值⇒利用点斜式 求切线方程. 审题路 线 π π (2)要求函数 f(x)在区间0, 上的最大值和最小值⇒需求函数 f(x)在区间0, 2 2 上的极值及端点处的函数值⇒比较极值与端点处的函数值即可求出最大值和最小 值. 标准答案 (1)因为 f(x)=excos x-x, 所以 f′(x)=ex(cos x-sin x)得 -1,① ① 又因为 f(0)=1,f′(0)=0分 ,② 2 第(1)问 ② 1 4分 第(1)问踩点得分说明 ①有正确的求导式子得 2 分; ②得出 f′(0)=0 得 1 分; ③写出切线方程 y=1 得 1 分. 第(2)问踩点得分说明 ④对新函数 h(x)=ex(cos x-sin x)-1 求导正 确得 2 分; π ⑤得出 x∈0, 时,h′(x)<0 得 1 分,求 2 导出错不得分; ⑥正确判断出函数 h(x)的单调性得 1 分; ⑦得出 f′(x)≤0 得 1 分; π ⑧判断出函数 f(x)在区间0, 的单调性得 2 1 分; ③ 1 ④ 2 ⑤ 1 ⑥ 1 阅卷现场 第(2)问 ⑦ 1 8分 ⑧ 1 ⑨ 1
2019年高考数学(文科)二轮专题辅导教师用书:第一部分 第三层级 难点、自选板块
难点自选专题一“选填”压轴小题命题的4大区域[全国卷3年考情分析]命题区域(一) 函数与导数本类压轴题常以分段函数、抽象函数等为载体,考查函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等.要注意函数y =f (x )与方程f (x )=0以及不等式f (x )>0的关系,进行彼此之间的转化是解决该类题目的关键.解决该类问题的途径往往是构造函数,进而研究函数的性质,利用函数性质去求解问题是常用方法.其间要注意导数的应用:利用导数研究可导函数的单调性,求可导函数的极值和最值,以及利用导数解决实际应用题是导数在中学数学中的主要应用.[例1] 已知函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a ,若f (x )无最大值,则实数a 的取值范围是________.[技法演示]法一:分段处理,分类讨论记g (x )=x 3-3x ,h (x )=-2x ,同时作出函数g (x )与h (x )的图象,如图所示,则h (x )在(-∞,+∞)上单调递减,下面分析g (x )的单调性.因为g ′(x )=3x 2-3=3(x +1)(x -1),当x 变化时,g ′(x )和g (x )变化如下:下面分析f (x )的单调性,注意到f (x )=⎩⎪⎨⎪⎧gx ,x ≤a ,h x ,x >a ,结合前面g (x )与h (x )的单调性,我们可以按下述三种情况讨论:①若a <-1,则f (x )在(-∞,a ]上的最大值为f (a ),由g (x )在(-∞,-1)上单调递增,f (a )=g (a )<g (-1)=2,而f (x )在(a ,+∞)上无最大值,取值范围是(-∞,-2a ),由于-2a >2,此时函数f (x )无最大值,符合题意.②若-1≤a <1,则f (x )在(-∞,a ]上的最大值为f (-1)=2,且当x >a 时,f (x )=h (x )<h (a ) ≤h (-1)=2,则当x =-1时,f (x )取得最大值,不符合题意.③若a ≥1,由g (x )的单调性可得,f (x )在(-∞,a ]上的最大值为f (-1)或f (a ),令M =max{f (-1),f (a )},则有M ≥f (-1)=2,而当x >a 时,f (x )=h (x )<h (a )≤h (1)=-2,则f (x )有最大值M ,不符合题意.综上,若f (x )无最大值,则实数a 的取值范围是(-∞,-1). 法二:整体考虑,正难则反记g (x )=x 3-3x ,h (x )=-2x ,由解法一知h (x )在(-∞,+∞)上单调递减,且当x 变化时,g ′(x )和g (x )变化如下:由于h (x )在(a ,+∞)上单调递减,无最大值,若f (x )有最大值,也只可能在x =-1或x =a 处取得,同时作出函数g (x )与h (x )的图象,如图所示,容易求得它们的交点分别是(-1,2),(0,0)和(1,-2).注意到g (-1)=h (-1)=2,由图象可见,若f (x )在x =-1处取得最大值,实数a 的取值范围是 [-1,2],若f (x )在x =a 处取得最大值,实数a 的取值范围是[2,+∞).综上,若f (x )有最大值,则实数a 的取值范围是[-1,+∞),从而,若f (x )无最大值,则实数a 的取值范围是(-∞,-1).法三:平移直线x =a ,直接秒杀根据题意,将函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a采用分离的方式,记g (x )=x 3-3x ,h (x )=-2x ,同时在同一平面直角坐标系中作出函数g (x )与h (x )的图象,将直线x =a 在图象中沿着x 轴左右平移,观察直线x =a 与函数g (x ),h (x )的图象的交点(曲线点实,直线点虚)变化,如图所示,当直线x =a 在直线x =-1左边时满足条件“f (x )无最大值”,所以实数a 的取值范围是(-∞,-1).[答案] (-∞,-1)[系统归纳]“三招”破解分段函数最值问题[应用体验]1.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或8解析:选D 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a2,如图1可知,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=a2-1=3,可得a =8;当a <2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=-a 2+1=3,可得a =-4.[例2] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) [技法演示]法一:分类讨论,各个击破分类讨论就是将数学问题进行分类,然后对划分的每一类分别进行研究,最后整合获解,其基本思路是化整为零,各个击破.由已知得a ≠0,f ′(x )=3ax 2-6x , 令f ′(x )=0,得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫0,2a ,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫2a ,+∞,f ′(x )>0. 所以函数f (x )在(-∞,0)和⎝ ⎛⎭⎪⎫2a,+∞上单调递增,在⎝⎛⎭⎪⎫0,2a 上单调递减,且f (0)=1>0, 故f (x )有小于零的零点,不符合题意. 当a <0时,x ∈⎝ ⎛⎭⎪⎫-∞,2a ,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫2a ,0,f ′(x )>0; x ∈(0,+∞),f ′(x )<0.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上单调递减,在⎝ ⎛⎭⎪⎫2a ,0上单调递增,所以要使f (x )有唯一的零点x 0,且x 0>0,只需f ⎝ ⎛⎭⎪⎫2a >0,即a 2>4,解得a <-2.法二:数形结合,曲曲与共函数f (x )的零点,亦即函数f (x )的图象与x 轴的交点的横坐标,是数形结合思想应用的联结点,因此用图象来揭开函数零点的神秘面纱成为我们解决函数零点问题常用而最有效的策略.令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯一的交点,且交点横坐标大于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点; 当a >0时,如图(1)所示,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图象可知当a <-2时,满足题意.法三:参变分离,演绎高效参变分离法,亦即将原函数中的参变量进行分离,转化成求函数值域问题加以解决.巧用参数分离求解零点问题,既可以回避对参数取值的分类讨论,又形象直观,一目了然.易知x ≠0,令f (x )=0,则a =3x -1x 3,记g (x )=3x -1x 3,g ′(x )=-3x 2+3x4=-x 2-x 4,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数大致图象如图所示,平移直线y =a ,结合图象,可知a <-2.[答案] B[系统归纳]“三招”破解含参零点问题[应用体验]2.已知函数f (x )=|x2+3x |(x ∈R).若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.解析:法一:画出函数f (x )=|x 2+3x |的大致图象,如图,令g (x )=a |x -1|,则函数f (x )的图象与函数g (x )的图象有且仅有4个不同的交点,显然a >0.联立⎩⎪⎨⎪⎧y =-x 2-3x ,y =a -x 消去y ,得x 2+(3-a )x +a =0,由Δ>0,解得a <1或a >9;联立⎩⎪⎨⎪⎧y =x 2+3x ,y =a-x 消去y ,得x 2+(3+a )x -a =0,由Δ>0,解得a >-1或a <-9.综上,实数a 的取值范围为(0,1)∪(9,+∞). 法二:易知a >0,且x =1不是方程的根.故有a =⎪⎪⎪⎪⎪⎪x 2+3x x -1=x -1+4x -1+5. 设h (x )=⎪⎪⎪⎪⎪⎪x -1+4x -1+5, 则问题等价于曲线y =h (x )与直线y =a 有4个不同交点.作出图象如图所示. 显然y =9,y =1是y =h (x )的两条切线,此时都只有3个交点. 于是,结合图形知,当0<a <1或a >9时, 直线y =a 与曲线y =h (x )均有4个交点. 所以a 的取值范围为(0,1)∪(9,+∞). 答案:(0,1)∪(9,+∞)[例3] 设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) [技法演示]法一:构造抽象函数法观察xf ′(x )-f (x )<0这个式子的特征,不难想到商的求导公式,设F (x )=f xx.因为f (x )是奇函数,故F (x )是偶函数,F ′(x )=xfx -f xx 2,易知当x >0时,F ′(x )<0,所以函数F (x )在(0,+∞)上单调递减.又f (-1)=0,则f (1)=0,于是F (-1)=F (1)=0,f (x )=xF (x ),解不等式f (x )>0,即找到x 与F (x )的符号相同的区间,易知当x ∈(-∞,-1)∪(0,1)时,f (x )>0,故选A.法二:构造具体函数法题目中没有给出具体的函数,但可以根据已知条件构造一个具体函数,越简单越好,因此考虑简单的多项式函数.设f (x )是多项式函数,因为f (x )是奇函数,所以它只含x 的奇次项.又f (1)=-f (-1)=0,所以f (x )能被x 2-1整除.因此可取f (x )=x -x 3,检验知f (x )满足题设条件.解不等式f (x )>0,得x ∈(-∞,-1)∪(0,1),故选A.[答案] A[系统归纳]1.利用和差函数求导法则构造函数(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x ); (2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx .2.利用积商函数求导法则构造函数(1)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (2)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(3)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (4)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx (x ≠0); (5)对于不等式xf ′(x )-nf (x )>0(或<0),构造函数F (x )=f xx n(x ≠0); (6)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e xf (x ); (7)对于不等式f ′(x )-f (x )>0(或<0),构造函数F (x )=f xex.[应用体验]3.定义在R 上的函数f (x )的导函数为f ′(x ),若对任意实数x ,有f (x )>f ′(x ),且f (x )+2 019为奇函数,则不等式f (x )+2 019e x <0的解集是( )A .(-∞,0)B .(0,+∞)C.⎝⎛⎭⎪⎫-∞,1e D.⎝ ⎛⎭⎪⎫1e ,+∞解析:选B 设g (x )=f xex,则g ′(x )=f x -f xex<0,所以g (x )是R 上的减函数,由于f (x )+2 019为奇函数,所以f (0)=-2 019,g (0)=-2 019,因为f (x )+ 2 019e x<0⇔f xex<-2 019,即g (x )<g (0),结合函数的单调性可知不等式f (x )+2 019e x<0的解集是(0,+∞),故选B.命题区域(二) 三角函数、平面向量本类压轴题主要考查三角恒等变换与三角函数、解三角形相结合的综合问题.其中三角函数的图象与性质、三角形的面积问题是重点考查内容;平面向量主要考查与解析几何、函数、不等式等相结合的有关数量积问题.解决此类问题的关键是转化与化归思想的灵活运用.[例1] 已知函数f (x )=sin(ωx +φ)ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5 [技法演示]法一:综合法由f ⎝ ⎛⎭⎪⎫-π4=0,得-π4ω+φ=k π(k ∈Z),φ=k π+π4ω, 则f (x )=sin ⎝ ⎛⎭⎪⎫ωx +k π+π4ω=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫ωx +π4ω,k =2n ,-sin ⎝ ⎛⎭⎪⎫ωx +π4ω,k =2n +1,(n ∈Z).由f ⎝ ⎛⎭⎪⎫π4=±1,即sin ⎝ ⎛⎭⎪⎫π4ω+π4ω=sin π2ω=±1,可知ω为正奇数(ω>0). 由⎩⎪⎨⎪⎧-π2<k π+π4ω<π2,2πω≥2⎝ ⎛⎭⎪⎫5π36-π18得⎩⎪⎨⎪⎧-2-4k <ω<2-4k ,ω≤12.又由于ω>0,所以k 只能取0,-1,-2,-3. 当k =0时,ω∈(-2,2);当k =-1时,ω∈(2,6); 当k =-2时,ω∈(6,10);当k =-3时,ω∈(10,14). 因为ω是正奇数(不超过12),所以ω∈{1,3,5,7,9,11}.当ω=11时,x ∈⎝ ⎛⎭⎪⎫π18,5π36,ωx +π4ω=11x +11π4∈⎝ ⎛⎭⎪⎫121π36,154π36,里面含有7π2,则f (x )在⎝ ⎛⎭⎪⎫π18,5π36上不可能单调,不符合题意.当ω=9时,x ∈⎝ ⎛⎭⎪⎫π18,5π36,ωx +π4ω=9x +9π4∈⎝ ⎛⎭⎪⎫99π36,126π36,里面不含2n +12π(n ∈Z)中的任何一个,即f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,符合题意.综上,ω的最大值为9.故选B. 法二:分类讨论 由题意5π36-π18≤T 2⇒T ≥π6, 即2πω≥π6⇒0<ω≤12.① 又由题意可得⎩⎪⎨⎪⎧-π4ω+φ=k π,π4ω+φ=π2+n π,(n ,k ∈Z),所以φ=π4+k +n2π(n ,k ∈Z).又|φ|≤π2,所以-32≤k +n ≤12. (1)当k +n =0时,φ=π4,ω=1-4k .②由①②可得,当k =-2时,ω=9, 此时函数f (x )=sin ⎝⎛⎭⎪⎫9x +π4在⎝ ⎛⎭⎪⎫π18,5π36上单调递减,符合题意; 当k =-1时,ω=5,此时函数f (x )=sin ⎝ ⎛⎭⎪⎫5x +π4在⎝ ⎛⎭⎪⎫π18,5π36上单调递减,符合题意;当k =0时,ω=1,此时f (x )=sin ⎝⎛⎭⎪⎫x +π4在⎝ ⎛⎭⎪⎫π18,5π36上单调递增,符合题意; (2)当k +n =-1时,φ=-π4,ω=-1-4k .③ 由①③可得,当k =-1时,ω=3,此时函数f (x )=sin ⎝⎛⎭⎪⎫3x -π4在⎝ ⎛⎭⎪⎫π18,5π36上单调递增,符合题意; 当k =-2时,ω=7,此时函数f (x )=sin ⎝ ⎛⎭⎪⎫7x -π4在⎝ ⎛⎭⎪⎫π18,5π36上不单调,舍去;当k =-3时,ω=11,此时f (x )=sin ⎝⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,5π36上不单调,舍去. 综上,ω=1,3,5,9,此法求出了ω的所有可能值. [答案] B[系统归纳]三角函数图象与性质问题的解题策略(1)函数y =A sin(ωx +φ)(ω>0,A >0)的图象的单调性、对称性、周期、零点等问题中涉及的结论:①若函数y =A sin(ωx +φ)(ω>0,A >0)有两条对称轴x =a ,x =b ,则有|a -b |=T2+kT2(k ∈Z);②若函数y =A sin(ωx +φ)(ω>0,A >0)有两个对称中心M (a,0),N (b,0),则有|a -b |=T 2+kT2(k ∈Z);③若函数y =A sin(ωx +φ)(ω>0,A >0)有一条对称轴x =a ,一个对称中心M (b,0),则有|a -b |=T 4+kT2(k ∈Z).(2)研究函数在某一特定区间的单调性,若函数仅含有一个参数的时候,利用导数的正负比较容易控制,但对于函数y =A sin(ωx +φ)(ω>0,A >0)含多个参数,并且具有周期性,很难解决,所以必须有合理的等价转化方式才能解决.解法一尝试正面求解ω的可能值,但因单调区间的条件不好使用,仍然采取代入验证的方法解决.[应用体验]1.若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.解析:法一:导数法对f (x )=cos 2x +a sin x 求导,得f ′(x )=-2sin 2x +a cos x .因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,所以f ′(x )≤0在⎝ ⎛⎭⎪⎫π6,π2上恒成立,即a cos x ≤2sin 2x =4sin x cos x ,而cos x >0,所以a ≤4sin x .在区间⎝⎛⎭⎪⎫π6,π2上,12<sin x <1,于是a ≤2.法二:图象法f (x )=cos 2x +a sin x =1-2sin 2x +a sin x =-2⎝⎛⎭⎪⎫sin x -a 42+a 28+1,设t =sin x ,由x ∈⎝ ⎛⎭⎪⎫π6,π2,知t ∈⎝ ⎛⎭⎪⎫12,1.要使g (t )=-2⎝ ⎛⎭⎪⎫t -a 42+a 28+1在⎝ ⎛⎭⎪⎫12,1上是减函数,只要a 4≤12即可,所以a ∈(-∞,2]. 答案:(-∞,2][例2] 已知2,且(2+b )(sinA -sinB )=(c -b )sinC ,则△ABC 的面积的最大值为________.[技法演示]法一:综合运用正、余弦定理由正弦定理知(2+b )(sin A -sin B )=(c -b )sin C 可化为(2+b )(a -b )=c (c -b ), 将a =2代入整理,得b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,故A =π3,则△ABC 的面积S =12bc sin A =34bc .而b 2+c 2-a 2=bc ≥2bc -a 2⇒bc ≤4,所以S =34bc ≤3,当且仅当b =c =2时取到等号, 故△ABC 的面积的最大值为 3.法二:正、余弦定理与数形结合 由法一得A =π3,可知△ABC 的边a =2为定长,A =π3为定值,作出示意图如图所示,满足条件的点A 在圆周上的运动轨迹为优弧BC (不包括两个端点B ,C ),易知当点A 位于优弧中点时,此时△ABC 的面积最大,由于A =π3,则此时的△ABC 是等边三角形,面积为 3.法三:正、余弦函数的有界性 由法一知A =π3,则由正弦定理得,b =asin A·sin B =433sin B ,c =433sin C , 则S △ABC =12bc sin A =34bc=433sin B ·sin C =433·12[cos(B -C )-cos(B +C )] =233cos(B -C )+12≤233·⎝ ⎛⎭⎪⎫1+12=3, 当且仅当cos(B -C )=1,即B =C 时,△ABC 的面积取得最大值 3. 法四:函数思想由法三得S △ABC =433sin B ·sin C =433sin B ·sin 2π3-B , 令g (B )=sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B =sin B 32cos B +12sin B =12sin ⎝ ⎛⎭⎪⎫2B -π6+14.由0<B <2π3,易得g (B )max =34,当且仅当B =π3时取等号, 所以△ABC 的面积的最大值为 3. [答案]3[系统归纳]三角形面积最值问题的解题策略(1)借助正、余弦定理,把三角形面积这个目标函数转化为边或角的形式,然后借助基本不等式或函数性质来解决;(2)结合问题特征,构造几何图形来求得最值,直观迅速;(3)利用结论:已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若a =m (m >0),且∠A =θ,θ∈(0,π),则△ABC 的面积的最大值是m 24tanθ2,当且仅当另外两个角相等时取等号.[应用体验]2.(2018·潍坊统一考试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb,则△ABC 面积的最大值为________.解析:因为tan A tan B =2c -bb ,所以b sin A cos A =(2c -b )sin B cos B, 由正弦定理得sin B sin A cos B =(2sin C -sin B )sin B cos A , 又sin B ≠0,所以sin A cos B =(2sin C -sin B )cos A , 所以sin A cos B +sin B cos A =2sin C cos A , sin(A +B )=2sin C cos A , 即sin C =2sin C cos A ,又sin C ≠0,所以cos A =12,sin A =32,设外接圆的半径为r ,则r =1,由余弦定理得bc =b 2+c 2-a 22cos A=b 2+c 2-a 2=b 2+c 2-(2r sin A )2=b 2+c 2-3≥2bc -3(当且仅当b =c 时,等号成立),所以bc ≤3,所以S △ABC =12bc sin A =34bc ≤334.答案:334[例3] =60°,动点E 和F 分别在线段BC 和DC 上,且BE ―→=λBC ―→,DF ―→=19λDC ―→,则AE ―→·AF ―→的最小值为________.[技法演示]法一:基底法选取{AB ―→,BC ―→}为一组基底,由题意易求DC =1,|AB ―→|=2,|BC ―→|=1,AB ―→·BC ―→=2×1×cos 120°=-1,AE ―→=AB ―→+BE ―→=AB ―→+λBC ―→,AF ―→=AB ―→+BC ―→+CF ―→=AB ―→+BC ―→-12⎝ ⎛⎭⎪⎫1-19λAB ―→=12⎝ ⎛⎭⎪⎫1+19λAB ―→+BC ―→. 于是AE ―→·AF ―→=(AB ―→+λBC ―→)·12⎝ ⎛⎭⎪⎫1+19λAB ―→+BC ―→ =12⎝ ⎛⎭⎪⎫1+19λ×4-1-λ2⎝ ⎛⎭⎪⎫1+19λ+λ=1718+λ2+29λ≥1718+2 λ2·29λ=2918(λ>0),当且仅当λ2=29λ,即λ=23时等号成立,故AE ―→·AF ―→的最小值为2918.法二:坐标法以A 为坐标原点建立如图所示的平面直角坐标系,因为AB ∥DC ,AB =2,BC =1,∠ABC =60°, 所以DC =1,即B (2,0),D ⎝ ⎛⎭⎪⎫12,32,C ⎝ ⎛⎭⎪⎫32,32.因为BE ―→=λBC ―→,DF ―→=19λDC ―→,所以E ⎝ ⎛⎭⎪⎫2-λ2,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,AE ―→=⎝ ⎛⎭⎪⎫2-λ2,32λ,AF ―→=⎝ ⎛⎭⎪⎫12+19λ,32.所以AE ―→·AF ―→=⎝⎛⎭⎪⎫2-λ2⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+λ2+29λ≥1718+219=2918. 当且仅当λ2=29λ,即λ=23时等号成立,故AE ―→·AF ―→的最小值为2918.[答案]2918[系统归纳]向量数量积问题的解题策略[应用体验]3.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ―→·CB ―→=________;DE ―→·DC ―→的最大值为________.解析:法一:如图,以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),则E (t,0),t ∈[0,1],DE ―→=(t ,-1),CB ―→=(0,-1),所以DE ―→·CB ―→=(t ,-1)·(0,-1)=1.因为DC ―→=(1,0),所以DE ―→·DC ―→=(t ,-1)·(1,0)=t ≤1,故DE ―→·DC ―→的最大值为1.法二:由图知,无论E 点在哪个位置,DE ―→在CB ―→方向上的投影都是|CB ―→|=1,所以DE ―→·CB ―→=|CB ―→|·1=1,当点E 运动到B 点时,DE ―→在DC ―→方向上的投影最大即为|DC ―→|=1,所以(DE ―→·DC ―→)max =|DC ―→|·1=1.答案:1 1命题区域(三) 立体几何此类压轴题主要考查以立体几何为背景的新颖问题.以立体几何为背景的新颖问题常见的有折叠问题、与函数图象相结合问题、最值问题、探索性问题等.(1)对探索、开放、存在型问题的考查:探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何中.(2)对折叠、展开问题的考查:图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维”的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辨,考查空间想象能力和分析辨别能力,是立体几何中的重要题型.[例1] 11111D 1,平面α∩平面ABCD =m ,平面α∩平面ABB 1A 1=n ,则直线m ,n 所成角的正弦值为( )A.32 B.22C.33D.13[技法演示]法一:割补法我们先尝试把m ,n 这两条直线都作出来,易知这个平面α一定在正方体外,所以要往上补形,如图所示,过点A 在正方体ABCD A 1B 1C 1D 1的上方补作一个与正方体ABCD A 1B 1C 1D 1相同棱长的正方体ABCD A 2B 2C 2D 2,可证平面AB 2D 2就是平面α,n 就是AB 2.因为平面ABCD ∥平面A 2B 2C 2D 2,所以B 2D 2∥m ,说明m 应该是经过点A 且在平面ABCD 内与B 2D 2平行的直线,则直线m ,n 所成的角就是∠AB 2D 2,因为△AB 2D 2为等边三角形,所以 sin ∠AB 2D 2=sinπ3=32,故选A. 法二:平移法1事实上对法一可进行适当简化,无须补形也可以.设平面CB 1D 1∩平面ABCD =m ′,因为平面α∩平面ABCD =m ,平面α∥平面CB 1D 1,所以m ∥m ′.又平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥m ′,所以B 1D 1∥m .同理可得CD 1∥n ,故直线m ,n 所成角即为直线B 1D 1,CD 1所成的角∠CD 1B 1.在正方体ABCD A 1B 1C 1D 1中,B 1C =B 1D 1=CD 1,所以∠CD 1B 1=π3,所以sin ∠CD 1B 1=32,故选A. 法三:平移法2与法二类似,我们尝试在正方体内部构造一个平面与平面α平行,也即与平面CB 1D 1平行.如图所示,让点A 在平面ABCD 内运动,不妨让点A 在对角线AC 上运动,易知平面BA 1D 与平面CB 1D 1平行,则直线m ,n 所成的角就是∠DBA 1,其正弦值为32,故选A. [答案] A[系统归纳]异面直线所成角问题的解题策略平移化归是关键:求异面直线所成角,关键是将两条异面的直线平移到相交状态,作出等价的平面角,再解三角形即可,常规步骤是“一作二证三计算”,而第一步最为关键,平移谁,怎么平移都要视题目条件而定.[应用体验]1.已知四面体ABCD 的每个顶点都在球O 的表面上,AB =AC =5,BC =8,AD ⊥底面ABC ,G 为△ABC 的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为________.解析:在等腰△ABC 中,AB =AC =5,BC =8,取BC 的中点E ,连接AE ,重心G 为AE 的三等分点,AE =AB 2-BE 2=3,AG =2,由于AD ⊥底面ABC ,直线DG 与底面ABC 所成角的正切值为12,所以tan ∠DGA=DA AG =12,DA =1,在等腰△ABC 中,cos ∠ACB =52+82-522×5×8=45,sin ∠ACB =35,所以△ABC 的外接圆直径2r =ABsin C =535=253,r =256,设 △ABC 的外接圆圆心为O 1,四面体ABCD 的球心为O ,在Rt △AOO 1中,R 2=OA 2=AO 21+⎝ ⎛⎭⎪⎫AD 22=⎝ ⎛⎭⎪⎫2562+⎝ ⎛⎭⎪⎫122=63436,球的表面积为S =4πR 2=6349π.答案:6349π[例2] 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P BCD 的体积的最大值是________.[技法演示]法一:平面几何法由题意可知四面体P BCD 的体积最大时,应有平面PBD ⊥平面BCD .如图,过点P 作PF ⊥BD ,垂足为F ,则PF ⊥平面BCD ,则V P BCD =13S △BCD ·PF .由翻折过程可知AF =PF ,则V P BCD =13S △BCD ·AF ,这样就将空间问题转化为△ABC 内的问题.等腰△ABC 的底边AC 边上的高h =AB ·sin 30°=1,V P BCD =13×12×DC ×h ×AF =16DC ·AF .DC 与AF 不在同一个三角形中,用哪个变量能表示两者呢?注意到当点D 在AC 上运动时,∠ADB 也是在变化的,因此可以取∠ADB 为自变量,产生下面的解法.如图,因为S △ABD =12BD ·AF =12AD ·h ,则AF =AD BD ,得V P BCD =16DC ·ADBD .设∠ADB =α,由正弦定理得ADDB=2sin(150°-α),DC =α-sin α,则V P BCD =23×-αα-sin α=-cos 2α+cos 120°3sin α=23⎝ ⎛⎭⎪⎫sin α-14sin α,易知函数f (x )=x -14x 在区间(0,1]上单调递增,于是V P BCD ≤23⎝ ⎛⎭⎪⎫1-14=12.法二:构造法换个角度看问题,我们把△ABC “立起来”,如图,设BO ⊥平面ACP ,考虑以B 为顶点,△ACP 的外接圆⊙O 为底面的圆锥,易得AC =23,则OB =BA 2-OA 2≤4-⎝ ⎛⎭⎪⎫12AC 2=1.设∠PDA =θ,θ∈(0,π),AD =x (0<x <23),则S △PCD =12x ·(23-x )sin θ≤12x ·(23-x )≤12⎝ ⎛⎭⎪⎫2322=32,所以四面体P BCD 的体积V P BCD =13·S △PCD ·OB ≤12,当且仅当OA =12AC =3,且θ=π2时取等号(此时D 点与圆心O 重合,PD 垂直平分AC ,进而可得BD ⊥PD ).法三:解析法由于△ABC 是顶角为120°的等腰三角形,故建系非常方便.如图,取AC 的中点O 为原点,以AC 所在的直线为x 轴建立平面直角坐标系,则A (-3,0),B (0,-1),C (3,0),设D (t,0),t ∈(-3,3),易知直线BD 的方程为x -ty -t =0,则点A 到直线BD 的距离AF =3+t 1+t2,又DC =3-t ,于是V P BCD =16DC ·AF =16·3-t 21+t 2,令f (t )=16·3-t 21+t 2=1641+t2-1+t 2,t 2∈[0,3),易知该函数在[0,3)上单调递减,故V P BCD ≤f (0)=12,此时D 在原点.[答案]12[系统归纳] 空间最值问题的解题关键(1)要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,如本题一定要分析出“当四面体P BCD 的体积取最大值时,必有平面PBD ⊥平面BCD ”,要判断出△PBD 与△ABD 是翻折关系(全等),这样才能进一步将空间问题转化为平面内的问题;(2)转化后的运算:因为已经是平面内的问题,那么方法就比较多了,如三角函数法、均值不等式,甚至导数都是可以考虑使用的工具.[应用体验]2.表面积为60π的球面上有四点S ,A ,B ,C 且△ABC 是等边三角形,球心O 到平面ABC 的距离为3,若平面SAB ⊥平面ABC ,则棱锥S ABC 体积的最大值为________.解析:因为球的表面积为60π,所以球的半径为15,设△ABC 的中心为D ,则OD =3,所以DA =23,则AB =6,棱锥S ABC 的底面积S =34×62=93为定值,欲使其体积最大,应有S 到平面ABC 的距离取最大值,又平面SAB ⊥平面ABC ,所以S 在平面ABC 上的射影落在直线AB 上,而SO =15,点D 到直线AB 的距离为3,则S 到平面ABC 的距离的最大值为33,所以V =13×93×33=27.答案:27命题区域(四) 解析几何本类压轴题主要考查圆锥曲线的几何性质、特定字母的取值范围以及圆锥曲线中的最值问题.圆锥曲线的几何性质是高考考查圆锥曲线的重点内容之一.在选择、填空题中主要考查椭圆和双曲线的离心率、参数的值(范围)、双曲线的渐近线方程以及抛物线的焦点弦.圆锥曲线中的弦长是直线与圆锥曲线相交时产生的,面积也以弦长的计算为基础,高考重点考查直线与圆锥曲线的位置关系,它是命制压轴题时的一个重要命题方向.[例1] 已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点M 在双曲线E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则双曲线E 的离心率为( )A. 2B.32C. 3D .2 [技法演示]法一:定义法因为△MF 1F 2是直角三角形,且sin ∠MF 2F 1=13,所以|MF 1|=|MF 2|sin ∠MF 2F 1=13|MF 2|,即|MF 2|=3|MF 1|.①由双曲线的定义可知|MF 2|-|MF 1|=2a .② 由①和②可求得|MF 1|=a ,|MF 2|=3a .在Rt △MF 1F 2中,由勾股定理得|MF 2|2-|MF 1|2=|F 1F 2|2,即(3a )2-a 2=(2c )2,化简得2a 2=c 2,即⎝ ⎛⎭⎪⎫c a2=2,从而可知e = 2.故选A.法二:利用正弦定理在Rt △MF 1F 2中,sin ∠F 1MF 2=sin(90°-∠MF 2F 1)=cos ∠MF 2F 1=223,sin ∠MF 1F 2=1.由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选 A.法三:利用直角三角形的三角函数 设点M (-c ,y 0),则-c2a 2-y 20b2=1,由此解得y 2=|MF 1|2=b 2⎝ ⎛⎭⎪⎫c 2-a 2a 2=c 2-a 22a 2.∵△MF 1F 2是直角三角形,且sin ∠MF 2F 1=13,∴cos ∠MF 2F 1=223,tan ∠MF 2F 1=24, 从而可得|MF 1||F 1F 2|=24⇒|MF 1|2|F 1F 2|2=18⇒|F 1F 2|2|MF 1|2=4c 2y 20=8,即4c2c 2-a 22a 2=8,化简整理得2c 4-5a 2c 2+2a 4=0, 两边同除以a 4,得2⎝ ⎛⎭⎪⎫c a 4-5⎝ ⎛⎭⎪⎫c a 2+2=0, 即⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫c a 2-1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫c a 2-2=0, ∵c a>1,∴⎝ ⎛⎭⎪⎫c a 2=2,即e = 2. [答案] A[系统归纳]圆锥曲线离心率问题的求解策略(1)双曲线(椭圆)的定义可直接建立“焦点三角形”的两边关系.用好这一隐含条件,可为三角形的求解省下不少功夫.法二便充分利用了双曲线的定义将离心率e 写成|F 1F 2||MF 2|-|MF 1|,转化为“焦点三角形”的三边关系,从而利用正弦定理再转化到已知的角上去.(2)在求解圆锥曲线(主要指的是椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a 与c 的关系式.[注意] 在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量 关系式.[应用体验]1.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,抛物线C :y 2=8ax 的焦点为F ,若在E 的渐近线上存在点P ,使得PA ⊥FP ,则E 的离心率的取值范围是( )A .(1,2)B.⎝ ⎛⎦⎥⎤1,324C .(2,+∞)D.⎣⎢⎡⎭⎪⎫324,+∞解析:选B 双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A (a,0),抛物线C :y 2=8ax的焦点为F (2a,0),双曲线的渐近线方程为y =±b ax ,可设P ⎝ ⎛⎭⎪⎫m ,b am ,则有AP ―→=⎝ ⎛⎭⎪⎫m -a ,b a m ,FP ―→=⎝ ⎛⎭⎪⎫m -2a ,b a m ,由PA ⊥FP ,得AP ―→·FP ―→=0,即(m -a )(m -2a )+b 2a 2m 2=0,整理得⎝ ⎛⎭⎪⎫1+b 2a 2m 2-3ma +2a 2=0,由题意可得Δ=9a 2-41+b 2a 2·2a 2≥0,即a 2≥8b 2=8(c 2-a 2),即8c 2≤9a 2,则e =c a ≤324.又e >1,所以1<e ≤324.[例2] 设A ,B 是椭圆C :3+m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)[技法演示]法一:几何性质法如图,设椭圆方程为x 2a 2+y 2b2=1(a >b >0).过点M 作MN ⊥AB ,垂足为N ,设M (x ,y ). 根据椭圆的对称性,不妨令y >0, 设∠AMN =α,∠BMN =β, 则tan α=x +a y ,tan β=a -xy. 又点M 在椭圆上,所以x 2=a 2-a 2y 2b2.则tan(α+β)=tan α+tan β1-tan αtan β=x +a y +a -xy 1-a 2-x 2y=2ay x 2+y 2-a 2y 2=2ay x 2+y 2-a 2=2aya 2-a 2b2y 2+y 2-a2=2ab 2-c 2y . 又y ∈[-b ,b ],所以当y =b 时,α+β取最大值,即M 为椭圆短轴顶点P 时,∠APB 最大.由此,我们可以得到本题的如下解法.先考虑椭圆的焦点在x 轴上的情况,则0<m <3.设椭圆一个短轴的顶点为P ,要使椭圆C 上存在点M 满足∠AMB =120°,则∠APB ≥∠AMB ,即∠APB ≥120°,所以∠APO ≥60°.而tan ∠APO =3m ,所以3m≥3,解得0<m ≤1.同理:当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°,则m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 法二:二级结论法椭圆上任意一点与椭圆长轴的两个端点连线的斜率之积为定值-b 2a2.这一结论不难证明:设M (x ,y )为椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,A ,B 分别为椭圆的左、右两个端点,则k MA ·k MB =yx +a ·yx -a =y 2x 2-a 2.因为点M 在椭圆上,所以y 2=b 2a2(a 2-x 2),从而k MA ·k MB =b 2a2a 2-x 2x 2-a 2=-b 2a2.由此可以得到本题的如下解法.当0<m <3时,椭圆的焦点在x 轴上,如图,设∠MAB =α, ∠MBx =β,设直线MA ,MB 的斜率分别为k 1,k 2,则k 1·k 2=-m3,k 1=tan α,k 2=tan β.因为∠AMB =120°,由三角形的一个外角等于不相邻的两内角之和, 所以tan(β-α)=tan 120°=- 3.根据两角差的正切公式tan(β-α)=tan β-tan α1+tan αtan β,可得tan β-tan α=-3⎝ ⎛⎭⎪⎫1-m 3, 即k 2-k 1=33m - 3.结合k 1·k 2=-m 3,将两式变形为k 2+(-k 1)=33m -3,k 2·(-k 1)=m 3,故可将k 2,-k 1看作是关于t 的方程t 2-⎝ ⎛⎭⎪⎫33m-3t +m3=0的两个根,则Δ=⎝ ⎛⎭⎪⎫33m -32-4·m 3=13(m 2-10m +9)≥0,所以m 2-10m +9≥0,解得m ≤1或m ≥9(舍去),所以0<m ≤1.同理可得当焦点在y 轴上时,m ≥9.综上所述,m 的取值范围是(0,1]∪[9,+∞).故选A.法三:向量法当椭圆的焦点在x 轴上时,设A ,B 分别为椭圆的左、右两个端点,M (x ,y ),设直线MA ,MB 的斜率分别为k 1,k 2,则k 1·k 2=-m 3.又AM ―→=(x +3,y ),BM ―→=(x -3,y ),此时如果直接应用数量积进行计算,显然计算量较大,这里我们可以考虑利用直线的方向向量来简化运算.分别取与AM ―→,BM ―→相同方向的向量n 1=(1,k 1),n 2=(1,k 2).又∠AMB =120°,所以向量n 1,n 2的夹角为60°,由向量的数量积公式可得,cos 60°=n 1·n 2|n 1|·|n 2|=1+k 1k 21+k 21·1+k 22=1+k 1k 21+k 21k 22+k 21+k 22, 即12=1-m31+m 29+k 21+k 22.由k 1·k 2=-m3<0,结合均值不等式a 2+b 2≥2ab ,可得k 21+k 22=k 21+(-k 2)2≥2k 1·(-k 2)=23m ,所以1-m31+m 29+k 21+k 22≤1-m31+m 29+23m,即12≤1-m3⎝ ⎛⎭⎪⎫m3+12,所以12⎝ ⎛⎭⎪⎫m 3+1≤1-m 3,解得m ≤1. 又0<m <3,所以0<m ≤1.当焦点在y 轴上时,此时k 1·k 2=-3m<0.同理,12=1-3m1+9m2+k 21+k 22≤1-3m1+9m 2+6m,即12⎝ ⎛⎭⎪⎫3m +1≤1-3m ,解得m ≥9.综上所述,m 的取值范围是(0,1]∪[9,+∞). [答案] A[系统归纳]圆锥曲线中特定字母的值(范围)问题的解题策略[应用体验]2.若过点M (2,0)的直线与椭圆x 22+y 2=1相交于A ,B 两点,|AB |=253,设P 为椭圆上一点,且满足OA ―→+OB ―→=t OP ―→(O 为坐标原点),则实数t 的值为( )A .±33B .±263 C .±523D .±325解析:选B 由题意知,直线AB 的斜率存在,设直线AB 的方程为y =k (x -2). 显然,当k =0时,|AB |=22,与已知不符,∴k ≠0. 设A (x 1,y 1),B (x 2,y 2),P (x ,y ),联立⎩⎪⎨⎪⎧y =k x -,x 22+y 2=1消去y ,得(1+2k 2)x 2-8k 2x +8k 2-2=0,则Δ=(-8k 2)2-4(1+2k 2)(8k 2-2)=8-16k 2>0, x 1+x 2=8k 21+2k ,x 1·x 2=8k 2-21+2k ,∵|AB |=253,∴ 1+k 2|x 1-x 2|=253, 即(1+k 2)[(x 1+x 2)2-4x 1x 2]=209, ∴(4k 2-1)(14k 2+13)=0,解得k 2=14.又OA ―→+OB ―→=t OP ―→,即(x 1+x 2,y 1+y 2)=t (x ,y ),且k ≠0,t ≠0,∴x =x 1+x 2t =8k2t +2k2,y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4kt+2k2. ∵点P 在椭圆上,∴k 22t 2+2k22+2×-4k2t 2+2k22=2,又k 2=14,解得t =±263.[例3] 已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ―→·OB ―→=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10 [技法演示]法一:利用基本不等式依题意,不妨设点A (x 1,y 1),B (x 2,y 2),其中y 1>0,y 2<0.由OA ―→·OB ―→=2,得x 1x 2+y 1y 2=(y 1y 2)2+y 1y 2=2,由此解得y 1y 2=-2,△ABO 与△AFO 面积之和等于12|x 1y 2-x 2y 1|+12×14y 1=12|y 21y 2-y 22y 1|+18y 1=12×2(y 1-y 2)+18y 1=98y 1+(-y 2)≥2-98y 1y 2=3,当且仅当 98y 1=-y 2=32时取等号,因此△ABO 与△AFO 面积之和的最小值是3,选B.该方法中用到这样一个公式:设A (x 1,y 1),B (x 2,y 2), 则S △AOB =12|x 1y 2-x 2y 1|,证明如下:设∠AOB =θ,则S △AOB =12|OA ―→|·|OB ―→|sin θ=12 |OA ―→|·|OB ―→|2-|OA ―→|·|OB ―→|cos θ2=12 |OA ―→|·|OB ―→|2-OA ―→·OB―→2=12 x 21+y 21x 22+y 22-x 1x 2+y 1y 22=12x 1y 2-x 2y 12=12|x 1y 2-x 2y 1|. 法二:双根法 设直线AB的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),y 1y 2<0,由⎩⎪⎨⎪⎧x =ty +m ,y 2=x 得y2-ty -m =0,y 1y 2=-m ,又OA ―→·OB ―→=2,因此x 1x 2+y 1y 2=(y 1y 2)2+y 1y 2=2,m 2-m -2=0,解得m =2或m =-1.又y 1y 2=-m <0,因此y 1y 2=-m =-2,m =2,直线AB :x =ty +2过定点(2,0),S △ABO =12×2×|y 1-y 2|=⎪⎪⎪⎪⎪⎪y 1+2y 1,S △AFO =12×14|y 1|=18|y 1|,S △ABO +S △AFO =⎪⎪⎪⎪⎪⎪y 1+2y 1+18|y 1|=98|y 1|+⎪⎪⎪⎪⎪⎪2y 1≥298|y 1|×⎪⎪⎪⎪⎪⎪2y 1=3,当且仅当98|y 1|=⎪⎪⎪⎪⎪⎪2y 1,即|y 1|=43时取等号,因此△ABO 与△AFO 面积之和的最小值是3,选B. [答案] B[系统归纳]圆锥曲线中与面积相关问题的解题规律(1)三角形面积的向量公式:若AB ―→=(x 1,y 1),AC ―→=(x 2,y 2),则S △ABC =12|x 1y 2-x 2y 1|,用此公式便于建立目标函数求最值;(2)直线方程的选择:对于不同的直线方程,其中所含的参数意义不同,形成不同的解题长度.为了消元、计算的方便,可将经过定点(m,0)的动直线设为x =ty +m 的形式,避免了对斜率存在性的讨论.如本题法二.[应用体验]3.已知椭圆E 的方程为x 24+y 2=1,O 为坐标原点,直线l 与椭圆E 交于A ,B 两点,M为线段AB 的中点,且|OM |=1,则△AOB 面积的最大值为________.解析:设直线l :x =my +n ,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x =my +n ,x 24+y 2=1,整理得(4+m 2)y 2+2mny +n 2-4=0.①所以y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,x 1+x 2=8n 4+m 2.由中点坐标公式可知x 0=x 1+x 22,y 0=y 1+y 22,即M ⎝ ⎛⎭⎪⎫4n 4+m2,-mn 4+m 2.因为|OM |=1,所以n 2=+m 2216+m2.② 设直线l 与x 轴的交点为D (n,0),则△AOB 的面积S =12|OD ||y 1-y 2|=12|n ||y 1-y 2|.S 2=14n 2(y 1-y 2)2=+m 2m 2+2,设t =m 2+4(t ≥4), 则S 2=48×tt 2+24t +144=48t +144t+24≤482t ·144t+24=1,当且仅当t =144t,即t =12时,等号成立,此时m 2=8,n 2=6, 即S 2取得最大值1.故△AOB 的面积的最大值为1. 答案:1[专题过关检测]A 组——选择压轴小题命题点专练1.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一客观题的快速解法
(对应学生用书第62~63页)
概述:客观题包括选择题与填空题,全国卷中共设置12道选择题、4道填空题,每题均5分,共80分,占总分的53.3%.因此能否迅速、准确解答,成为全卷得分的关键.客观题是只看结果,不要解答过程,特别是选择题还提供了供选择的多个选择支(只有一个正确),所以解答客观题时尽量“不择手段”地采用最简捷方法快速地作答,尽量避免小题大做.解客观题的主要策略有直接法和间接法.
策略一直接法
直接法是从题设条件出发,运用有关概念、性质、定理、法则或公式等知识,通过严密的推理和准确的运算,从而得出正确结论的做题方法.
【例1】(2018·全国Ⅱ卷)已知F
,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在
1
过A且斜率为的直线上,△PF
F2为等腰三角形,∠F1F2P=120°,则C的离心率为()
1
(A) (B) (C) (D)
解析:
由题意可得椭圆的焦点在x轴上,如图所示,
设|F
F2|=2c,
1
因为△PF
F2为等腰三角形,且∠F1F2P=120°,
1
所以|PF
|=|F1F2|=2c,
2
因为|OF
|=c,
2
所以点P坐标为(c+2ccos 60°,2csin 60°),
即点P(2c,c),
因为点P在过点A,且斜率为的直线上,
所以=,
解得=,
所以e=,故选D.
强化训练1:(2018·全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点
A(1,a),B(2,b),且cos 2α=,则|a-b|等于()
(A) (B)(C)(D)1
解析:由题意知cos α>0.因为cos 2α=2cos2α-1=,
所以cos α=,sin α=±,
得|tan α|=.
由题意知|tan α|=,
所以|a-b|=.故选B.
强化训练2:(2018·全国Ⅲ卷)已知函数f(x)=ln(-x)+1,f(a)=4,则f(-a)=.
解析:因为f(x)+f(-x)=ln(-x)+ln(+x)+2
=ln[(-x)(+x)]+2
=ln 1+2=2,
所以f(a)+f(-a)=2,
所以f(-a)=2-f(a)=-2.
答案:-2
策略二间接法
根据客观题不用求过程,只要结果的特点,解客观题无论用什么办法选出或得出正确的结论或结果即可.常用的方法有数形结合法、特例法、验证排除法、估值法等.
方法一数形结合法
【例2】(2018·湖南省湘东五校联考)已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,点P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为()
(A)(B)
(C)+1 (D)-1
解析:
法一如图,依题意知A(0,-1),B(0,1),不妨设P x,,抛物线的准线为l,过P作PC⊥l于点C,由抛物线的定义得|PB|=|PC|,
所以m==,
令t=1+,
由题易得点P异于点O,
所以x≠0,则t>1,
m==,
当=,
即x=±2时,m
=.
max
此时,|PB|=2,|PA|=2.
设双曲线的实轴长为2a,焦距为2c,离心率为e.
依题意得2a=|PA|-|PB|=2-2,2c=2,
则e===+1.故选C.
法二
由题意得点P异于点O,记抛物线的准线为l,过P作PC⊥l于点C,如图,由抛物线的定义得|PC|=|PB|,
所以m==,
当∠PAC最小,即PA与抛物线相切时,m最大.
设切点P x
,.
1
由题意得A(0,-1),B(0,1),
则切线的斜率为=,
解得x
=±2.
1
取P(2,1),此时,|PB|=2,|PA|=2.
设双曲线的实轴长为2a,焦距为2c,离心率为e.
依题意得2a=|PA|-|PB|=2-2,2c=2,
则e===+1.故选C.
强化训练3:(2018·郑州一中测试)设函数f(x)=若关于x的方程f(x)=a有四个不同的解x
,x2,x3,x4,且x1<x2<x3<x4,则+的取值范围是()
1
(A)(-3,+∞)(B)(-∞,3)
(C)[-3,3) (D)(-3,3]
解析:
在坐标平面内画出函数y=f(x)的大致图象如图所示,结合图象可知,当且仅当a∈(0,2]时,直线y=a与函数y=f(x)的图象有4个不同的交点,即方程f(x)=a有四个不同的解,此时有
x1+x2=-4,|log2x3|=|log2x4|(0<x3<1<x4≤4),即有-log2x3=log2x4,x3x4=1,所以+=x4-(1<x4≤4),易
知函数y=x
-在区间(1,4]上是增函数,因此其值域是(-3,3].故选D.
4
方法二特例法
【例3】(2018·全国Ⅱ卷)已知F
,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,
1
则C的离心率为()
(A)1-(B)2-(C)(D)-1
解析:由题设知|PF
|∶|PF1|∶|F1F2|=1∶∶2,
2
不妨设|PF
|=1,|PF1|=,|F1F2|=2,
2
则2a=|PF
|+|PF2|=1+,2c=2,
1
所以e===-1.故选D.
强化训练4:(2018·全国Ⅱ卷)已知f(x)是定义域为(-∞,+∞) 的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()
(A)-50 (B)0 (C)2 (D)50
解析:法一(直接法)
因为f(x)是定义域为(-∞,+∞)的奇函数,
因为f(-x)=-f(x),f(0)=0,
又f(1-x)=f(1+x),
所以f(2+x)=f[1+(1+x)]=f[1-(1+x)]
=f(-x)=-f(x),
所以f(4+x)=-f(2+x)=f(x),
所以f(x)是以4为周期的周期函数,
又f(2)=-f(0)=0,f(3)=-f(1)=-2,
所以f(1)+f(2)+f(3)+f(4)=0,
所以f(1)+f(2)+f(3)+…+f(50)=12×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)
=f(1)+f(2)=2+0=2.故选C.
法二(特例法)
取一个符合题意的函数f(x)=2sin ,则结合该函数的图象易知数列{f(n)}(n∈N*)是以4为周期的周期数列.
故f(1)+f(2)+f(3)+…+f(50)=12×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)=12×[2+0+(-2)+0]+2+0=2.故选C.
方法三验证排除法(适应选择题)
【例4】(2018·全国Ⅲ卷)函数y=-x4+x2+2的图象大致为()。