尼曼-半导体物理与器件@第四版@对应PPT@第二章
半导体物理与器件(尼曼第四版)答案
半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。
它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。
2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。
3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。
自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。
空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。
4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。
掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。
1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。
晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。
晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。
2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。
3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。
晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。
2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。
3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。
1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。
它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。
晶体生长是将半导体材料从溶液或气相中生长出来的过程。
常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。
掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。
常用的掺杂方法包括扩散法、离子注入和分子束外延法等。
半导体物理第二章ppt课件
引进有效质量,半导体中的电子所受的外力与
加速的关系和牛顿第二定律类似。
3、引进有效质量的意义:
由
a= f
m
* n
可以看出有效质量概括了半导体内
部势场的作用,使得在解决半导体中电子在
外力作用下的运动规律时,可以不涉及半导
体内部势场的作用。
课堂练习:习题3(P58)
2.6.3 状态密度、态密度有效质量、电导有效质量
近出现了一些空的量子状态,在外电场的作用下, 停留在价带中的电子也能够起导电的作用,把价带 中这种导电作用等效于把这些空的量子状态看做带 正电荷的准粒子的导电作用,常称这些空的量子状 态为空穴
2.3.2 金属、半导体、绝缘体的能带
2.4 半导体的带隙结构
间接能隙结构—即价带的最高 点与导带的最低点处于K空间 的不同点
3、 测不准关系
当微观粒子处于某一状态时,它的力学量(坐 标、动量、能量等)一般不具有确定的数值。
如: p g xh 同 一 粒 子 不 可 能 同 时 确 定 其 坐 标 和 动 量
测不准原理告诉我们,对微观粒子运动状态分 析,需用统计的方法。
4、 波函数
波函数 r ,t 描述量子力学的状态
= hk m
h2k 2 E
2m
对于波矢为k的运动状态,自由电子的能量E和动
量P,速度v均有确定的数值,因此,波矢量 k可
用以描述自由电子的运动状态,不同的k值标致
自由电子的不同状态。
6、 单原子电子
电子的运动服从量子力学,处于一系列特定的 运动状态---量子态,要完全描述原子中的一个电 子的运动状态,需要四个量子数。
氧的电子组态表示的意思:第一主轨道上有两个电子 ,这两个电子的亚轨道为s,(第一亚层);第二主轨 道有6个电子,其中有2个电子分布在s 亚(第一亚层) 轨道上,有4个电子分布在p亚轨道上(第二亚层)
半导体器件物理 课件 第二章
(e) 曝光后去掉扩散窗口 (f)腐蚀SiO2后的晶片 胶膜的晶片
10
引言
•采用硅平面工艺制备结的主要工艺过程
SiO2
N Si N+
P Si
N+
SiO2
N Si
(g)完成光刻后去胶的晶片
(h)通过扩散(或离子注入)形成 P-N结
金属
金属
P Si N+
SiO2
N Si
P Si
金 属
(2-2-11) (2-2-12)
在注入载流子的区域,假设电中性条件完全得到满足,则少数载流子由于 被中和,不带电,通过扩散运动在电中性区中输运。这称为扩散近似。于 是稳态载流子输运满足扩散方程
。
28
2.3 理想P-N结的直流电流-电压特性
29
2.3 理想P-N结的直流电流-电压特性
理想的P-N结的基本假设及其意义
硅表面二氧化硅薄膜的生长方法: 热氧化和化学气相沉积方法。
5
•
扩散工艺:
•由于热运动,任何物质都有一种从浓度高处向浓度低 处运动,使其趋于均匀的趋势,这种现象称为扩散。 •常用扩散工艺:液态源扩散、片状源扩散、固 -固扩散、 双温区锑扩散。
•液态源扩散工艺:使保护气体(如氮气)通过含有扩 散杂质的液态源,从而携带杂质蒸汽进入高温扩散炉中。 在高温下杂质蒸汽分解,在硅片四周形成饱和蒸汽压, 杂质原子通过硅片表面向内部扩散。 6
102
101
1.0
10
VR ,V
(a)
VR ,V
(b)
图 2-6 耗尽层宽度随外加反偏压变化的实验结果与计算结果 (a) x j
1m 和(b) x j 10 m 10 20 / cm 3
《半导体物理学》课件
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。
半导体器件物理PPT课件
11
练习 假使面心结构的原子是刚性的小球,且面中心原子与 面顶点四个角落的原子紧密接触,试算出这些原子占此面 心立方单胞的空间比率。
解
12
例1-2 硅(Si)在300K时的晶格常数为5.43Å。请计算出每立方厘米体 积中硅原子数及常温下的硅原子密度。(硅的摩尔质量为 28.09g/mol)
解
13
29
●允带
允许电子存在的一系列准 连续的能量状态
● 禁带
禁止电子存在的一系列能 量状态
● 满带
被电子填充满的一系列准 连续的能量状态 满带不导电
● 空带
没有电子填充的一系列准 连续的能量状态 空带也不导电
图1-5 金刚石结构价电子能带图(绝对零度)
30
●导带
有电子能够参与导电的能带, 但半导体材料价电子形成的高 能级能带通常称为导带。
电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。
27
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;
杂质来源
一)制备半导体的原材料纯度不够高; 二)半导体单晶制备过程中及器件制造过程中的沾污; 三)为了半导体的性质而人为地掺入某种化学元素的原子。
40
金刚石结构的特点
原子只占晶胞体积的34%,还有66%是空隙, 这些空隙通常称为间隙位置。
杂质的填充方式
一)杂质原子位于晶格 间隙式杂质 原子间的间隙位置, 间隙式杂质/填充;
半导体物理第二章能带和载流子课件
E=P2/2mn (p为动量 , mn为电子有效质量)
抛物线 表示:
E
P
注意:电子有效质量由半导体特性决定,但可以由E对P的二次
微分算出:mn=(d2E/dp2)-1
由此得:曲率越小,二次微分越大,有效质量越小
18
第十八页,本课件共有49页
间隙式杂质:杂质原子位于晶格原子间的间隙位置;一般原子比较 小。 替位式杂质:杂质原子取代晶格原子位于晶格处。要求替位式杂质 的大小与被取代的晶格原子的大小相近。
36
第三十六页,本课件共有49页
施主杂质(donor)
37
第三十七页,本课件共有49页
V族: P, As
V族元素取代Si原子后,形成 一个正电中心和一个多余的 价电子。
数
计算值 测量值
e
0.67
0.56m0 0.37m0 1.05x1019 5.7x1018
2.0x1013 2.4x1013
1.12 1.08m0 0.59m0 2.86x1019 2.66x1019 7.8x109 9.65x109
aAs 1.42 0.068m0 0.47m0 4.7x1017 7x1018
金刚石
导电
较高
(热激发 e,h)
导电
低
(n ~1022 cm-3)
导电
金属< 半金属< 半导体
Si, Ge, GaAs
Na: 1s22s2 2p63s1
Mg: 1s22s2 2p63s2
V族 Bi, Sb, As
§2.6 本征载流子浓度
热平衡状态 本征激发与本征半导体 费米分布函数与玻尔慈曼分布函数 本征载流子浓度
《半导体器件物理》课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
半导体物理与器件第四版ppt
非平衡载流子的净复合率: 甲:俘获电子过程; 乙:发射电子过程; 丙:俘获空穴过程; 丁:发射空穴过程。 净复合率 = 甲 - 乙 = 丙 - 丁
半导体的界面态和表面态
半导体界面: 半导体晶体和别的物质的交界面。 比如硅表面和SIO2的交界面。
复合中心能级的范畴。从而使晶体表面载 流子复合加剧,这样就使表面附近载流子 寿命减小。
非平衡载流子的扩散运动
非平衡载流子的扩散运 动:自然界任何物质都 有从浓度高处向浓度低 处运动的趋势。
非平衡载流子的扩散
扩散流与浓度差的关系:等式右边的 D表示扩散系数。 dn/dx表示浓度梯 度,即浓度差的大小。
非平衡载流子的复合
载流子寿命的概念
非平衡载流子的寿命:在外界作用 因素停止后,其随时间逐渐减少 以至消失的过程称为衰减。其平 均存在时间称为非平衡载流子的 寿命。
非平衡少数载流子寿命的意义: 其浓度降低到原来的37%(1/e) 的时间。
非平衡载流子的复合机理:
直接复合:电子在导带和价带之间的直接 跃迁造成的电子和空穴的复合。
正极 引线
P型 硅
铝合 金小球 N型 硅
底座 负极 引线
(3) 平面型二极管
PN结面积大,用 于工频大电流整流电路。
用于集成电路制造工艺中。 PN 结面积可大可小,用 于高频整流和开关电路中。
正极 引线
SiO 2
P型 硅 N型 硅
负极 引线
PN结的形成: 合金法; 扩散法; 注入法
两种不同杂质分布的PN结
u 为PN结两端的电压降
当 u>0
u>>UT时
半导体器件原理 绪论
晶体结构----单晶半导体材料
晶体中原子的周期性排列称为晶格,整个晶格可以用
单胞来描述,重复单胞能够形成整个晶格。 三种立方晶体单胞
金属原子分布在立方体 的八个角上,且每个原 子都有六个等距的邻近 原子。
八个原子处于立方体的 角上,一个原子处于立 方体的中心。每一个原 子有八个最邻近原子。
硅、锗都是由单一原子所 组成的元素半导体,均为 周期表第IV族元素。 20世纪50年代初 期,锗曾是最主要的 半导体材料; 60年代初期以后, 硅已取代锗成为半导 体制造的主要材料。
周期 2 3 Mg
镁
II
III B
硼
IV C
炭
V N
氮
VI
Al
铝
Si
硅
P
磷
S
硫
4 5 6
Zn
锌
Ga
镓
Ge
锗
As
砷
Se
导带或者被部分 填充,或者与价 带重叠。很容易 产生电流。
金属:不含禁带,半导体:含禁带,绝缘体:禁带较宽
§1.4 半导体中的载流子
载流子:能够自由移动的电子和空穴;
电子:带负电的导电载流子,是价电子脱离原子束
缚后形成的自由电子,对应于导带中占据的电子。 空穴:带正电的导电载流子,是价电子脱离原子束 缚后形成的电子空位,对应于价带中的电子空位。
§1.1 半导体材料
§1.2 晶体结构
§1.3 能带 §1.4 半导体中的载流子 §1.5 半导体掺杂 §1.6 半导体中的载流子及其输运
§1.7 半导体中的光电特性
半导体物理基础
§1.1 半导体材料
1、什么是半导体? Semiconductor 固体材料从导电特性上分成: 超导体、导体、半导体、绝缘体
半导体物理学第二章ppt课件
B
P型半导体
EA
最新课件
受主能级
EC
EA EV
12
半导体的掺杂
• Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受
主和施主杂质,它们在禁带中引入了能
级;受主能级比价带顶高
E
,施主能级
A
比导带底低 E D ,均为浅能级,这两种
杂质称为浅能级杂质。
• 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
(a)Si原子半径
(b)晶胞中所有Si原子占据晶胞的百分比
解:(a) r1(1 3a) 3a
24
8
(b)
84r3
3 a3
3
16
0.34
最新课件
6
间隙式杂质、替位式杂质
• 杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
– 间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
• V族杂质能够施放(提供)导带电子被称为“施主杂质”或n 型杂质。将施主束缚电子的能量状态称为“施主能级”记 为ED。施主能级离导带底Ec的距离为ED。
• 结论:掺磷(5价),施主,电子导电,n型半导体。
最新课件
9
半导体的掺杂
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
• 2.4 缺陷、位错能级
最新课件
• 中性Au0为与周围四个Ge原子形成共价键,还可以依次由价带 再接受三个电子,分别形成EA1,EA2,EA3三个受主能级。价 带激发一个电子给Au0,使之成为单重电受主离化态Au-,电离 能为EA1-Ev ;从价带再激发一个电子给Au-使之成为二重电受 主离化态 Au= ,所需能量为EA2-Ev;从价带激发第三个电子给 使之成为三重电受主离化态Au ,所需能量为 EA3-Ev 。
【半导体物理与器件】【尼曼】【课后小结与重要术语解释】汇总
第一章、固体晶体结构1. 小结1. 硅是最普遍的半导体材料2. 半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。
晶胞是晶体中的一小块体积,用它可以重构出整个晶体。
三种基本的晶胞是简立方、体心立方和面心立方。
3. 硅具有金刚石晶体结构。
原子都被由4 个紧邻原子构成的四面体包在中间。
二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。
4. 引用米勒系数来描述晶面。
这些晶面可以用于描述半导体材料的表面。
密勒系数也可以用来描述晶向。
5. 半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。
少量可控的替位杂质有益于改变半导体的特性。
6. 给出了一些半导体生长技术的简单描述。
体生长生成了基础半导体材料,即衬底。
外延生长可以用来控制半导体的表面特性。
大多数半导体器件是在外延层上制作的。
2. 重要术语解释1. 二元半导体:两元素化合物半导体,如GaAs 。
2. 共价键:共享价电子的原子间键合。
3. 金刚石晶格:硅的原子晶体结构,亦即每个原子有四个紧邻原子,形成一个四面体组态。
4. 掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。
5. 元素半导体:单一元素构成的半导体,比如硅、锗。
6. 外延层:在衬底表面形成的一薄层单晶材料。
7. 离子注入:一种半导体掺杂工艺。
8. 晶格:晶体中原子的周期性排列9. 密勒系数:用以描述晶面的一组整数。
10. 原胞:可复制以得到整个晶格的最小单元。
11. 衬底:用于更多半导体工艺比如外延或扩散的基础材料,半导体硅片或其他原材料。
12. 三元半导体:三元素化合物半导体,如AlGaAs 。
13. 晶胞:可以重构出整个晶体的一小部分晶体。
14. 铅锌矿晶格:与金刚石晶格相同的一种晶格,但它有两种类型的原子而非一种第二章、量子力学初步3. 小结1. 我们讨论了一些量子力学的概念,这些概念可以用于描述不同势场中的电子状态。
了解电子的运动状态对于研究半导体物理是非常重要的。
第二讲-半导体物理及器件基础总结PPT课件
If you can draw one, but don't, then your audience won't know what you are talking about.
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
+ + + + + + + + + + ----------
半导体物理与器件ppt第四版
半导体物理与器件
下图所示为室温(300K)条件下锗单晶材料中电子和空穴
的迁移率随总的掺杂浓度的变化关系曲线。从图中可见,随
着掺杂浓度的提高,锗材料中载流子的迁移率也发生所示为室温(300K)条件下砷化镓单晶材料中电子和空
I eNAvt
Nev v
A
At
E
A
v
eN
V
载流子浓度
单位电量
半导体物理与器件
J drf eNv E
一般说来,在弱场情况下,载流子的定向漂移速度与外
加电场成正比,即:
v E
J drf eNv eN E
其中μ称作载流子的迁移率。
因而有电导率和迁移率的关系: 迁移率的定义表明:载
半导体物理与器件
第五章
载流子输运现象
本章学习要点:
了解载流子漂移运动的机理以及在外电场作用下的漂移电
流;
了解载流子扩散运动的机理以及由于载流子浓度梯度而引
起的扩散电流;
掌握半导体材料中非均匀掺杂浓度带来的影响;
了解并掌握半导体材料中霍尔效应的基本原理及其分析方
法;
半导体物理与器件
输运:载流子的净流动过程称为输运。
获得定向运动动量的速率与通过碰撞失去定向运动动量的
速度保持平衡。
此时晶体中的载流子将在无规则热运动的基础上叠加
一定的定向运动。
半导体物理与器件
我们用有效质量来描述空穴的加速度与外力(电场力)
之间的关系
dv
F m
eE
dt
*
p
v表示电场作用下的粒子速度(漂移速度,不包括热运
半导体物理与器件(吕淑媛)课件章 (2)
第 2 章 平衡半导体中的载流子浓度 类似地,也可以推出价带空穴的状态密度函数,在价带的
空穴,其 E-k 关系为 价带的状态密度函数为
同样,式(2. 11 )只在 E ≤ E v 时有效。
第 2 章 平衡半导体中的载流子浓度 图 2.2 导带和价带的状态密度函数随能量 E 的变化
第 2 章 平衡半导体中的载流子浓度
[例 2.1 ] 当室温 T =300K 时,在半导体材料硅中,计 算从 E c 到 E c + kT 之间包含的量子态总数。
解:根据导带电子的状态密度公式
第 2 章 平衡半导体中的载流子浓度
当 E < E F 时,费米分布函数 f ( E ) >1 / 2 ,也就 是说对于 E < E F 的能级,其被电子占据的概率大于其空着 的概率,并且随着 E 的减小,电子占据能量为 E 的量子态的 概率趋近于 1 。
第 2 章 平衡半导体中的载流子浓度
通过上面的描述可以认为费米能级是电子占据能级水平高 低的度量。费米能级低,电子占据高能级的概率较低,在高能 级上的电子数较少;费米能级高,电子占据高能级的概率较大, 在高能级上的电子数较多。
第 2 章 平衡半导体中的载流子浓度 图 2.6 不同温度下费米分布函数随能量变化的关系曲线
第 2 章 平衡半导体中的载流子浓度 图 2.7 不同温度下 1- f ( E )随能量变化的关系曲线
第 2 章 平衡半导体中的载流子浓度
近似后的函数形式就是麦克斯韦 玻尔兹曼分布函数,把 近似后的函数称为麦克斯韦 玻尔兹曼近似下的费米分布函数, 简称玻尔兹曼近似,如图 2.8 所示。实际中,为了确定量子 态的能量比费米能级高多少才可以应用玻尔兹曼近似,我们做 了一个简单的估算。一般来说由于近似而引起的误差为 0~5% 即可。在前面的例 2.2 中,当 E - E F =3 kT 时,费米分布 函数计算的结果为 4.7% ,如果采用玻尔兹曼近似下的费米分 布函数,把分母的 1 略去,则计算的结果为 4.97% ,由此引 发的误差( 4. 97-4. 74 )/ 4. 74=4. 8%<5% ,故一般认为 E - E F =3 kT 就满足了 E - E F ≫ kT 的条件。
半导体的能带结构 ppt课件
a1
设此晶面与三个座标轴的交点的位矢分别为ra1 、sa2、 ta3,代入上式,则有
ra1cos(a1,n)=d
sa2cos(a2,n)=d
ta3cos(a3,n)=d a1 、 a2、a3取单位长度,则得 cos(a1,n): cos(a2,n) :cos(a3,n)=1\r:1\s:1\t 结论:晶面的法线方向n与三个坐标轴(基矢)的夹角 的余弦之比等于晶面在三个轴上的截距的倒数1. 晶列的特点
(1)一族平行晶列把所有点 包括无遗。
(2)在一平面中,同族的相邻晶列之间的距离相等。
(3)通过一格点可以有无限 多个晶列,其中每一晶列都有一 族平行的晶列与之对应。
(4 )有无限多族平行晶列。
ppt课件
49
二、晶面
-
。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。
第二章: 半导体的能带结构
2.1 半导体的结构
2. 2 半导体的能带结构
ppt课件
1
2.1 半导体的结构
**半导体简介
从导电性(电阻):
固体材料可分成:超导体、导体、
半导体、绝缘体
电阻率ρ介于导体和绝缘体之间,并且具有 负的电阻温度系数→半导体
ppt课件 2
●电阻率
导体: ρ<10-3Ωcm 例如:ρCu~10-6Ωcm
ppt课件
6
*无机半导体晶体材料
元素半导体 无机半导体晶体材料 化合物半导体 固溶体半导体
ppt课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 波粒二相性是利用波理论描述晶体中电子运动和 状态的基础。
例2.2:计算一个粒子的德布罗意波长,电子的运动速度为 107cm/s。
解:电子动量
p mv 9.111031 105 9.111026 kg m s
德布罗意波长为
h 6.6251034 7.27 109 m 72.7 A
• 量子力学的波理论是半导体物理 学理论的基础。
• 量子力学的三个基本原理
– 能量量子化原理 – 波粒二相性原理 – 不确定原理
资源整合,共享知识
2
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
2.811015 J
2.811015 1.6 1019
1.75104 eV
资源整合,共享知识
3
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
(2)波粒二相性原理
• 1924,德布罗意,物质波:p=h/λ→λ=h/p
本章内容
1. 量子力学的基本原理
2. 薛定谔波动方程
3. 薛定谔波动方程的应用
4.原子波动理论的延伸
5. 小结
资源整合,共享知识
1
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
2.1 量子力学的基本原理
(1)能量量子化原理
• 1900,普朗克,量子概念,量子能量E=hν ; • 1905,爱因斯坦,光波由分立的粒子组成,解释
了光电效应;光子是粒子化的能量,能量E=hν。
例2.1:计算对应某一粒子波长的光子能量。考虑一种X射线, 其波长为λ=0.708×10-8cm。
解:
E h hc
6.6251034 31010 0.708 108
p 9.111026
资源整合,共享知识
4
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
(3)不确定原理
• 1927,海森伯不确定原理:描述共轭变量 间的基本关系。
① ΔpΔx≥ħ ② ΔEΔt≥ħ
• 无法确定一个电子的准确坐标,将其替换 为确定某个坐标位置可能发现电子的概率, 概率(密度)函数。
资源整合,共享知识
5
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
2.2 薛定谔波动方程
• 1926,薛定谔,波动力学理论,结合量子化和波 粒二相性。
B
exp
j
x
2mE
Et
自由空间中的粒子运动表现为行波。
假设某一时刻,粒子沿+x方向运动,则
x,t Aexp j kx t
因此,
h 2mE k 2
概率密度为AA*,与坐标无关:具有明确动量定义的自由粒子 在空间任意位置出现的概率相当。
资源整合,共享知识
9
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
(2)无限深势阱
粒子被局限在有限的区域内, 如下图中的区域Ⅱ。
与时间无关的薛定谔波动方程:
2 x
x2
ห้องสมุดไป่ตู้
2m
2
E
V
x
x
0
区域Ⅱ中,V=0,波函数Ψ(x)连续的边界条件,可得
波函数: x
2 a
sin
n
a
x
总能量:E En
2n2 2
2ma2
n
N
粒子的能量只能是 特定的分立值!
资源整合,共享知识
(1)波动方程:用于描述电子运动的波理论,
通过薛定谔波动方程描述。
– 一维非相对论的薛定谔波动方程
2m
2 x,t
x2
V
x
x,t
j
x,t
t
– 分离变量法,薛定谔波动方程中与时间无关的项
2
x2
x
2m
2
E
V
x
x
0
资源整合,共享知识
6
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
(3)边界条件
|Ψ(x, t)|2——概率密度,对于单电子:
x 2 dx 1
上式对Ψ(x, t)进行了归一化,是一个边界条件。
当E和V(x)在任何位置均为有限值时,还有一下的边 界条件: 1)Ψ(x, t)必须有限、单值和连续, 2)əΨ(x, t)/əx必须有限、单值和连续。
资源整合,共享知识
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
半导体物理与器件
第二章 量子力学初步
资源整合,共享知识
0
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
8
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
2.3 薛定谔波动方程的应用
(1)自由空间中的电子
势函数V(x)为常量,且有E>V(x)=0,求解可得
x, t
A
exp
j
x
2mE Et
(2)波函数的物理意义
• 波函数Ψ(x, t)用以描述粒子或系统的状态, 本身是一个复函数,不具有物理意义。
• 波函数的模平方是概率密度函数
x,t 2 x x x 2
• 概率密度函数代表在空间中某一点发现粒 子的概率。
资源整合,共享知识
7
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
10
半导体物理与器件 第四版对应课件 Semiconductor Physics and Devices Basic Principles by Reamen
前四级能量
资源整合,共享知识
对应的波函数
对应的概率函数