第六章 纯晶体的凝固

合集下载

第6章 单组元相图及纯晶体的凝固 笔记及课后习题详解 (已整理 袁圆 2014.8.6)

第6章 单组元相图及纯晶体的凝固 笔记及课后习题详解 (已整理 袁圆 2014.8.6)

第6章单组元相图及纯晶体的凝固6.1 复习笔记一、单元系相变的热力学及相平衡1.相平衡条件和相律组元:组成一个体系的基本单元,如单质(元素)和稳定化合物,称为组元。

相:体系中具有相同物理与化学性质的且与其他部分以界面分开的均匀部分,称为相。

相律:F=C-P+2;式中,F为体系的自由度数,它是指不影响体系平衡状态的独立可变参数(如温度、压力、浓度等)的数目;C为体系的组元数;P为相数。

常压下,F=C-P+1。

2.单元系相图单元系相图是通过几何图像描述由单一组元构成的体系在不同温度和压条件下可能存在的相及多相的平衡。

图6-1 水的相图图6-2 Fe在温度下的同素异构转变上述相图中的曲线所表示的是两相平衡时温度和压力的定量关系,可由克劳修斯(Clausius)一克拉珀龙(Clapeyron)方程决定,即式中,为相变潜热;为摩尔体积变化;T是两相平衡温度。

有些物质在稳定相形成前,先行成自由能较稳定相高地亚稳定相。

二、纯晶体的凝固1.液态结构(1)液体中原子间的平均距离比固体中略大;(2)液体中原子的配位数比密排结构晶体的配位数减小;(3)液态结构的最重要特征是原子排列为长程无序,短程有序,存在结构起伏。

2.晶体凝固的热力学条件(6.1)式中,,是熔点T m与实际凝固温度T之差;L m是熔化热。

晶体凝固的热力学条件表明,实际凝固温度应低于熔点T m,即需要有过冷度△T。

3.形核晶体的凝固是通过形核与长大两个过程进行的,形核方式可以分为两类:均匀形核和非均匀形核。

(1)均匀形核①晶核形成时的能量变化和临界晶核新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时,总的自由能变化:(6.2)由,可得晶核临界半径:(6.3)代入公式(1),可得:(6.4)由式可知,过冷度△T越大,临界半径则越小,则形核的几率越大,晶核数目增多。

纯晶体凝固与晶体长大 知识点解释

纯晶体凝固与晶体长大  知识点解释

1. 2.
3. 4. 5. 6. 7. 8.
9.

10. 11. 12. 13. 14. 15. 16.
17. 18. 19. 20. 21. 22. 23. 24.
25.
凝固是指物质由液态至固态的转变过程。若凝固后的物质是晶体则称为结晶。 液体中原子间的平均距离比固体中略大; 液体中原子的配位数比密排结构晶体的配位数减小通常配位数在 8~11 之间。这导致溶化时体积略为增加。但是对于非密排结构的晶体如 Sb、Bi、Ga、Ge 等,液态时配位数增大, 故溶化时体积略为收缩。 液体结构最主要的特征,原子排列为长程无序,短程有序,并且短程有序原子集团不是固定不变的,它是一种 此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏(这有别于晶体的长程有序的稳定结构) 。 过冷:液体实际温度低于理论凝固温度������������ 的现象。这种过冷称为热过冷。 过冷度:理论凝固温度(熔点)������������ 与实际凝固温度 T 之差(Δ T)Δ T=������������ -T 凝固的热力学条件:需要有过冷度。 界面能最低的液固相有两类:粗糙界面和光滑界面。 粗糙界面:固液两相之间的界面从微观上看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半 数的位置被固相原子所占据(另一半位置是空位) 。由于过渡层很薄,因此,宏观上来看,界面显得平直,不 会出现曲折的小平面,故又称非小平面界面。金属结晶时都为这类界面,又称金属型界面。 光滑界面: 界面以上是液相, 以下是固相, 固相表面为基本完整的原子密排面, 空位极少, 液固两相截然分开, 所以从微观上看是光滑的,宏观上由不同位向的小平面组成,故呈折线状,这类晶面称小平面界面。厚度为一 个原子厚。 晶体的凝固是通过形核和长大两个过程,即固相核心的形成和晶核生长至液相耗尽为止。 液相必须处于一定的过冷条件下才能结晶,液体中存在的结构起伏(相起伏)和能量起伏是促进均匀形核的必 要因素。 (凝固的条件) 当温度低于理论凝固温度������������ 时,单位体积液体内,在单位时间所形成的晶核数(形核率)受两个因素的控制, 即形核因子和原子扩散的几率因子。 体系自由能的降低是相变的驱动力,过冷度越大,体系自由能降低越多,越有利于凝固。 结构起伏 (相起伏) : 液体材料中出现的短程有序原子集团的时隐时现现象。 结构起伏的尺寸大小与温度有关, 温度越低,结构起伏的尺寸越大。 能量起伏:体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 均匀形核是在过冷液相中完全依靠相起伏和能量起伏而实现的形核,十分困难。体系自由能和表面自由能的相 对大小,决定着临界晶核半径的大小。 (新相晶核是在母相中均匀地生长的,即晶核由液相中的一些原子团直 接形成,不受杂质粒子或外表面的影响)需要过冷度很大。 形成临界晶核时自由能增高,其增值相当于其表面能的 1/3,即液固之间的体积自由能差值只能补偿形成临界晶 核表面所需能量的 2/3,而不足的 1/3 则需依靠液相中存在的能量起伏来补充。 非均匀形核是依附在液体中的外来固体表面形成晶核,故在相同条件下,比均匀形核更容易。 (新相优先在母 相中存在的异质处形核,即依附于液相中的杂质或外来表面形核) 只有达到临界半径的晶胚才能成为稳定的晶核。 晶体长大涉及长大的形态,长大方式和长大速率。长大的形态常反映出凝固后晶体的性质,长大方式决定了长 大速率,也就是决定晶体动力学的重要因素。晶体长大的形态与液固两相的界面结构有关。 晶体长大与界面结构有关,有连续长大、二维晶核、螺旋位错长大等方式。 连续长大适用于粗糙界面。粗糙界面上约有一半的原子位置空着,故液相中的原子可以进入这些位置与晶体结 合起来,晶体便连续的地向液相中生长,这种长大方式为垂直生长。 动态过冷度:液固界面向液相移动时所需的过冷度。 二维晶核适用于光滑界面。二维晶核是指一定大小的单分子或单原子的平面薄层。平滑界面主要依靠小台阶接 纳原子横向生长方式向前推移;界面光滑,二维晶核在相表面上形成后,液相原子沿着二维晶核侧边所形成的 台阶不断的附着上去,使此薄层很快的扩展到整个表面,这是生长中断,需要在此界面上再形成二维晶核,又 很快的长满一层,如此反复进行。二维晶核长大方式随时间是不连续的。 借螺型位错长大适用于光滑界面,若光滑界面上存在螺型位错时,垂直于位错线的表面呈现螺旋型的台阶,且 不会消失。因为原子很容易填充台阶,而当一个面的台阶被原子进入后,又出现螺旋型的台阶。在最接近位错 处,只需要加入少量原子就完成一周,而离位错较远处需较多的原子加入。这样就使晶体表面呈现由螺旋形台 阶形成的蜷线。由于界面上所提供的缺陷有限,也即是添加原子的位置有限,故长大速率小。

(重要)郑州大学研究生考试大纲

(重要)郑州大学研究生考试大纲

082064《材料科学基础》课程考试大纲一、考试方法和考试时间《材料科学基础》课程考试为闭卷笔试、考试时间为120分钟。

二、考试的基本要求使学生掌握材料基础理论知识,诸如材料的结合键、晶体结构、相结构、晶体结构缺陷、材料的相图、凝固、材料中的扩散,材料的塑性变形与强化等。

重点掌握晶体学基础知识,晶面指数与晶向指数,纯金属的晶体结构及特征,材料的相结构,离子晶体的结构规则,共价晶体的结构,高分子材料的结构;晶体结构缺陷(包括点缺陷、线缺陷和面缺陷)的特征,位错的柏氏矢量、类型、判断、运动、能量及交互作用,各类面缺陷;扩散现象和条件,扩散方程、扩散方程的解及其应用,扩散的微观机制,扩散驱动力,扩散的分类和影响扩散的因素;滑移与孪晶变形,纯金属及合金的变形强化,冷变形金属的回复与再结晶,金属的热变形、动态回复再结晶;相律及应用,纯金属的结晶理论、晶核的形成、晶核的成长;匀晶相图、共晶相图、包晶二元相图的分析;铁碳相图;固溶体的凝固理论、共晶合金的凝固理论;三元相图。

三、考试内容和要求第一章原子的结构与键合原子间的结合键的类型和特点,原子间的结合键对材料性能的影响。

第二章固体结构(以金属材料为主)一些概念和术语,晶体学基础知识,晶面指数、晶向指数的标注,晶面间距和晶带定理,三种典型晶体结构(bcc、fcc、hcp)的特征;固溶体的分类、特点和性质,影响固溶体固溶度的因素,中间相的类型和特点;离子(硅酸盐晶体)晶体、共价晶体的特点。

第三章晶体缺陷一些概念和术语,晶体结构缺陷(包括点缺陷、线缺陷和面缺陷)的特征,点缺陷的类型、特征和平衡浓度公式;位错类型(刃型、螺型、混合型位错)的判断及其特征,柏氏矢量的意义及特征,位错的运动、交割和增殖(F-R源、双交滑移机制等),位错分解与合成,位错的能量及交互作用;各类面缺陷的类型和特征。

第四章固体中原子和分子的运动一些概念和术语,扩散条件,扩散方程、扩散方程的解及其应用,扩散的原子理论(微观机制),扩散驱动力,扩散的分类和影响扩散的因素;离子晶体中的扩散的特点。

第六章单组元相图及纯晶体的凝固

第六章单组元相图及纯晶体的凝固
下所可能存在的相及多相平衡的几何图形。
吉布斯相律对于单元系统(C=1)的应用 :
●压力可变(相图是由温度和压力两个变量组成的二维平面) 0≤ f≤2 f= 0时,由公式f =C-P+2,可知P = 3 意味着单元系统最多可以有三相共存。
●压力不变(相图是由温度一个变量组成的直线) 0≤ f≤1 f= 0时,由公式f =C-P+1,可知P = 2 意味着单元系统最多只能有二相同时存在。
纯水的相图
纯铁的相图(具有同素异构转变)
6.2 纯晶体的凝固 6.2.1 液态结构
固态下为晶体的材料,液态时结构介于晶态与气态之间 对液态结构X射线研究表明: 1)液体中原子之间的平均距离比固体中略大; 2)液体中原子的配位数比密排结构的固体的配位数减少,熔化
时体积略微膨胀,但对一些非密排结构(如Sb、Bi、Ga、Ge 等)的晶体例外; 3)液态中原子排列混乱的程度增加。
第六章 单组元相图及纯晶体的凝固
纯水的相图
纯铁的(PT)平衡相图
铜-银合金相图
基本概念 ●组元:组成一个体系的,且相互独立的基本单元。
可以是单质也可以是化合物( 如:Fe3C)
●单组元系统(单元系):由一种元素或化合物组成的材料或体系 金刚石、 二氧化碳(CO2)、石英(SiO2)、纯铁、纯铜……
dG
2ba2d来自2b0即,2b 2a 0
当dG=0,即 2b 2a ,a相和b相处于平衡状态,此时体系
内没有物质传输。
同理,其他组元也应有同样的属性。 对于多元系的多相平衡条件可普遍写成:
1a 1b 1 1P 2a 2b 2 2P
Ca Cb C CP
相平衡条件:处于平衡状态下的多相(P个相)体系,每个组 元(共有C个组元)在各相中的化学势都必须彼此相等。

大学材料科学基础第六章材料的凝固

大学材料科学基础第六章材料的凝固

液- 固界面的微观结构
(a) 粗糙界面
(b) 光滑界面
宏观上看,两者却反过来: 光滑界面是由多个小平面组成(又称小平面界面、结晶学 界面),是不平整的; 粗糙界面却是平整光滑的。
常见金属的液固界面为粗糙界面,一些非金属、亚 金属、金属化合物的液固界面多为光滑界面。
动态过冷度比形核过冷度小。不同类型界面, 其长大机制不同。具有粗糙界面的物质,△Tk 仅为 0.01~0.05℃,具有光滑界面的物质,△Tk约为1~ 2℃。 晶体生长时液- 固界面的微观结构 (Microstructure of the solid-liquid interface)
1.粗糙界面 从微观尺度观察时,这种界面上并存在着厚度为几个原 子间距的过渡层。从原子尺度观察,这种界面粗糙的, 高低不平的(又称非小平面界面、非结晶学界面)。 2.光滑界面 从微观尺度观察时,界面两侧的固液两相是截然分开的; 从原子尺度观察,这种界面是光滑平整的。
同样,把临界晶核半径代入总自由能变化 的表达式,可求出形核功:
ΔGk 非 =
16 πσ
3 2
3( ΔGV )
(
2-3 cos θ + cos3 θ 4
)
ΔGk 非 / ΔGk均 = (
2-3 cos θ + cos3 θ 4
)
θ只能在0 ~π间变化,cosθ相应在0 ~ 1之间变化。
ΔGk 非 / ΔGk均 ≤ 1
过冷现象 冷却曲线上出现平台时,液态金属正在结 晶,这时对应的温度就是纯金属的实际结晶温度。 实验表明,纯金属的实际结晶温度总是低于其平 衡结晶温度(熔点),这种现象称为过冷。两者之 间的差值叫过冷度,过冷是金属结晶的必要
条件。
△T = Tm - Ts

材料结构习题纯晶体凝固答案

材料结构习题纯晶体凝固答案

《材料结构》习题:纯晶体的凝固1. 设均匀形核时其晶核为球形,试证明临界形核功ΔG c 与临界晶核体积V c 的关系为:12c c V G V G ∆=-∆ 2. 设非均匀形核时其晶核为球冠形,试证明临界形核功*c G ∆与临界晶核体积*c V 也存在上列关系式。

3. 当临界晶核为球形和小立方体形时,试分别求出各临界晶核中的原子数n 的表达式:n =f (ΔG V , σ,V)式中V 为每个原子的体积。

4. 试说明金属结晶时粗糙型液-固界面的微观结构特点,指出该界面在结晶过程中的作用。

5. 综述金属结晶的热力学条件、动力学条件、能量条件和结构条件。

6. 已知金的熔点Tm 为1063℃,熔化潜热Lm 为12.8kJ/mol ,密度为19.3g/cm3,摩尔质量为197g/mol 。

若液态金在1000℃均匀形核时的临界晶核半径r =43.3×10-10m ,试计算金的液固界面能σ和临界形核功。

7. 根据克拉珀龙方程可以推导出液-固或固-固相变温度与压力的关系式: T V T H P mm m ∆∆∆=∆ 式中,ΔH m 为相变潜热;T m 为相变温度;ΔV m 为摩尔体积变化。

试分别计算:(1) 已知α-F e →γ-Fe 在1大气压下T m =912℃,若外加压力增加到1000大气压时,转变温度应是多少(已知ΔH m =920.5J/mol ,α-F e 的密度为7.57g/cm 3,γ-Fe 的密度为7.63g/cm 3,Fe 的摩尔质量为55.85g/mol )。

(2) 已知纯铁熔化时体积变化为膨胀3%,求10个大气压下的熔点(已知L m =15.2kJ/mol ,T m =1803K ,密度为7.6g/cm 3,摩尔质量为55.85g/mol )。

习题答案1. 证明:设均匀形核时其球形晶核半径为r ,则32232344304802242143232V V V c Vc V c V c c V c c V c V G V G A r G r G r G rr G r G r G G r G r r G V G σππσππσσσπππ∆=∆+=∆+∂∆=⇒∆+∂∆∴=-=-∆∆∴∆=∆-=-∆=-∆令 = 即2.证明:设非均匀形核时其球冠状晶核的曲率半径为r ,高为h ,则系统总表面自由能的增量ΔG S 为S L L W W LW LW G A A A A αααασσσσ∆==+-∑因为晶核周边表面张力应彼此平衡,则cos LW W L αασσσθ=+ 即cos W LW L αασσσθ-=-222(1cos )L A rh r αππθ==-222(sin )(1cos )W A r r απθπθ==-222S 232(1cos )(1cos )cos (23cos cos )L L L G r r r αααπθσπθσθπσθθ∆=---=-+ 球冠的体积 23311(3)(23cos cos )33V r h h r ππθθ=-=-+ 令31()(23cos cos )4f θθθ=-+ **3*24()4()3V S V L G V G G r G f r f απθπσθ∆=∆+∆=∆+则 **2**04()8()0c V c L G r G f r f rαπθπσθ∂∆=⇒∆+∂令 = ****22L c c cL V r G r G αασσ∆∴=-=-∆ 即 ****3**2*3*424()()323c V cc V c c V r G G r G r f r G f ππθπθ⎛⎫∆∴∆=∆-=-∆ ⎪⎝⎭ **3***41()32c c c c V V r f G V G πθ=∴∆=-∆3.解: (1)当临界晶核为球形时,设其半径为r c ,则33333243233323c c c V Vc V r V r G G V n V G V σπσππσ=-∴==-∆∆∴==-∆(2)当晶核为正方形时,设其边长为a ,则326V V G V G A a G a σσ∆=∆+=∆+2403120c V c c VG a G a a r G σσ∂∆=⇒∆+=-∂∆令 =,即 333336464c c c V V V V a n V G V G σσ=∴==-=-∆∆4.答:金属结晶时粗糙型液-固界面的微观结构为粗糙界面。

第06章 凝固

第06章 凝固

总之,非均匀晶核有利的降低 临界过冷度,大大提高形核率。
材料凝固时晶体的生长
(一)材料的熔化熵对晶体生长的影响 Δ Sf=SS-SL 熔化熵是表征材料晶体生长特性的基本参 数,常以Δ Sf/k=Δ Hf/kTe表示: 1. Δ Hf/kTe < 2, 液态与固态没有明显的界 面-粗糙界面。(金属材料) 2. Δ Hf/kTe =2~3.5,液态与固体只有一个原 子层厚-光滑界面。(半导体材料) 3. Δ Hf/kTe ≈10, 靠在液-固界面上不断地 二维形核才得以生长。(高分子材料)
平衡凝固

固体
X
液体
xL x x0 XS
不平衡凝固 -固相内无扩散,液相内能达到完全均匀化
x
固 x0 xL 液
k0x0
xs
不平衡凝固
-固体内无扩散,液相内只有扩散没有对流
S x0 k0x0
L
成分过冷
成分过冷现象:
对照相图,液体的开始凝固温度 随着液体的成分变化而变化,图c给 出其分布曲线TL(x),如果G2为实际 温度,对比可以看出在界面前沿的液 体中的一小区域内,尽管温度比界面 处高,却存在一定的过冷度,这种由 成分的不均匀而产生的过冷度称为 ‘成分过冷’。 固溶体凝固过程中,由于析出的 固体的成分和原液体有一定的差别, 排放到液体中的某些组元来不及均匀, 这种因成分偏差对应的凝固温度也不 同而造成的附加过冷度称为成分过冷。
成分过冷
成分过冷对凝固过程的影响
由于不同的固溶体对应的相图形 式不同,不同组元的扩散能力各自不 同,加上凝固过程的实际温度分布也 不相同,成分过冷的影响也必然存在 差别,凝固后的组织也各不相同。 1. 实际温度梯度较大,在凝固过程 中不出现成分过冷现象。 2. 成分过冷区较小,界面处的不平衡生长的凸起始终处在领先 的状态,但这个凸起既不会消失,也不能发展到成分过冷区 外,凸起和底部的微小成分有一定差别而发展成胞状组织。

纯晶体的凝固

纯晶体的凝固

内容提要由一种元素或化合物构成的晶体称为单组元晶体或纯晶体,该体系称为单元系。

某组元由液相至固相的转变称为凝固。

如果凝固后的固体是晶体,则凝固又称为结晶。

研究纯晶体的凝固,首先必须了解晶体凝固的热力学条件。

在恒压条件下,晶体凝固的热力学条件是需要过冷度,即实际凝固温度应低于熔点T m。

晶体的凝固经历了形核与长大两个过程。

形核又分为均匀形核与非均匀(异质)形核。

对于均匀形核,当过冷液体中出现晶胚时,一方面,体系的体积自由能下降,这是结晶的驱动力;另一方面,由于晶胚构成新的表面而增强了表面自由能,这成为结晶的阻力。

综合驱动力和阻力的作用,可导出晶核的临界半径r*,其物理意义是,当半径小于r*的晶胚是不稳定的,不能自发长大,最终熔化而消失,而半径等于或大于r*的晶胚可以自发长大成为晶核。

临界半径对应的自由能称为形核功。

理论推导表明,是大于零的,其值等于表面能的三分之一,因此,这部分的能量必须依靠液相中存在的能量起伏来提供。

综合所述可知,结晶条件需要过冷度、结构起伏(出现半径大于r*的晶胚)和能量起伏。

在研究结晶问题时,形核率是一个重要的参数,它涉及到凝固后的晶粒的大小,而晶粒尺寸对材料的性能有重要影响。

形核率受两个因素控制,即形核功因子核和扩散几率因子。

对纯金属均匀形核研究发现,有效形核温度约在0.2T m,表明均匀形核所需的过冷度很大。

而纯金属在实际凝固中,所需过冷度却很小,其原因是实际凝固是非均匀(异质)形核。

异质基底通常可有效地降低单位体积的表面能,从而降低形核功,这种异质基底的催化作用使非均匀(异质)形核的过冷度仅为0.02T m。

形核后地长大涉及到长大的形态、长大的方式和长大的速率。

影响晶体长大特征的重要因素是液——固界面的构造。

液——固界面的结构可分为光滑界面和粗糙界面。

晶体的长大速率与其长大方式有关。

连续长大方式对应的是粗糙界面,其长大速率最大,与动态过冷度(液——固界面向液体推移时所需的过冷度)成正比;而二维形核+z长大(螺形位错形核对应)是光滑界面,它们的生长速率均小于连续长大方式的生长速率。

学基础-第6章-单组元相图及纯晶体的凝固

学基础-第6章-单组元相图及纯晶体的凝固
(3)液态原子长程无序,但存在短程有序结构。局部的 有序结构随原子热运动不断形成和消失,称“结构起伏”。 (4)金属的熔化热远小于气化热≈升华热,判断液态金属 仍为金属键结合。
7
第六章
单组元相图及纯晶体的凝固
二、晶体凝固的热力学条件 恒压时,dG/dT=-S,因SL>SS , G △G 故有:(dG/dT)L<(dG/dT)s 曲线GL-T与Gs-T必相交,交点对
(3) 螺位错生长机制(光滑界面的横向生长)
螺位错提供永不消失的小台阶,长大速度较慢
生长特点: ★不需在固-液界面上反复形核,不需形核功,生长连续; ★生长速率为:vg=μ3△Tk2 (μ3为常数)
27
第六章
单组元相图及纯晶体的凝固
五、结晶动力学及凝固组织
单组元相图及纯晶体的凝固
(2)二维晶核台阶生长(光滑界面 的横向生长) 生长特点:
★需要不断地形成新的二维晶核, 需形核功,生长不连续;
★晶体生长需要较大动态过冷度 △Tk(1~2℃); ★生长速率:vg=μ2exp(-b/△Tk) 式中,μ2、b为常数
二维晶核形核
26
第六章
单组元相图及纯晶体的凝固
固相晶面上原子所占位置分数 x
23
第六章
单组元相图及纯晶体的凝固
凝固时的固-液界面微观和宏观形态 粗糙界面:界面微观粗 糙,而宏观平直。
液 液
光滑界面:微观为由许多光滑 的小平面组成,而宏观不平。



微观

宏观

微观

宏观
粗糙界面中原子的堆放
光滑界面中原子的堆放
24
第六章
单组元相图及纯晶体的凝固
3
)

第六章 单组元相图纯晶体的凝固

第六章 单组元相图纯晶体的凝固

第六章 单组元相图及纯晶体的凝固




• • • • •
单组元晶体(纯晶体):由一种化合物或金属组成的晶体。该体系称 单组元晶体(纯晶体) 由一种化合物或金属组成的晶体。 单元系( system) 为单元系(one component system)。 从 一 种 相 转 变 为 另 一 种 相 的 过 程 称 为 相 变 ( phase transformation) transformation)。 若 转 变 前 后 均 为 固 相 , 则 成 为 固 态 相 变 ( solid phase transformation ) 。 从 液 相 转 变 为 固 相 的 过 程 称 为 凝 固 solidification)。若凝固后的产物为晶体称为结晶 crystallization)。 结晶( (solidification)。若凝固后的产物为晶体称为结晶(crystallization)。 金属转变过程为:汽态←→液态←→ ←→液态←→固态 金属转变过程为:汽态←→液态←→固态 组元(component) 组成合金的最基本、独立的物质。 组元(component):组成合金的最基本、独立的物质。可以是单一 元素也可以是稳定的化合物。 元素也可以是稳定的化合物。 相图( diagram):表示合金系中合金的状态与温度、 相图(phase diagram):表示合金系中合金的状态与温度、成分之间 的关系的图形,又称为平衡图或状态图。 的关系的图形,又称为平衡图或状态图。 单组元相图( diagram)是表示在热力学平衡条件下所 单组元相图 ( single phase diagram) 是表示在热力学平衡条件下所 存在的相与温度,压力之间的对应关系的图形。 存在的相与温度,压力之间的对应关系的图形 合金系( system) 合金系 ( alloy system): 由给定的组元可以以不同比例配制成一 系列成分不同的合金,这一系列合金就构成一个合金系统。 系列成分不同的合金,这一系列合金就构成一个合金系统。单、二、三、 多元系。 多元系。 多相合金: 单、双、多相合金:

第六章 纯晶体的凝固讲解

第六章 纯晶体的凝固讲解
b) 枝晶长大
晶体向树枝那样向前长大,不断分支发展。在负温度 梯度下, 微观粗糙界面以树枝状方式生长,一般纯金属都 具有这种树枝状长大形态
5、固液界面前沿液体中的温度分布
1)正的温度梯度
(液体中距液固界面越远,温度越高)
粗糙界面:平面状。 光滑界面:台阶状。
(2)负温度梯度(液体中距液固界面越远,温度越低) 粗糙界面:树枝状。 光滑界面:树枝状-多面体—台阶状。
△T≥△Tk是结晶的必要条件。
两条曲线的交点所对应的过冷度 Δ T* 为临界过冷度。(结晶可能开 始进行的最小过冷度)。
大小:Δ T* = 0.2Tm (K)
r*、r
max—Δ
T 关系曲线
即: 当Δ T <Δ T* 时, rmax 行。 当Δ T =Δ T* 时, rmax 当Δ T >Δ T* 时, rmax
(1)二维晶核台阶生长
晶体以这种方式长大时,其长大速度十分缓慢。 长大速度:单位时间内晶核长大的线速度,用Vg表示。 Vg = K2 e-B/Δ T (2)螺型位错长大机制
实际金属。它的长大速度比二维晶核长大方式快得多。
Vg =K3Δ T2
4、长大方式
纯金属其长大方式主要有两种: a) 平面长大
在正的温度梯度下 ,两种界面结构的金属,都会以平面状生长。
3、临界晶核形核功
4、非均匀形核临界晶核形核功
Δ G非
2、凝固的结构条件
结构起伏(相起伏):液态材料中出现的短程有序原子集团的时隐 时现现象。是结晶的必要条件(之二)。
结构起伏的 尺寸大小与 温度有关, 温度越低, 结构起伏的 尺寸愈大。
小结:金属凝固的条件
热力学条件:Δ Gv = Gs—GL<0 结构条件:结构起伏

材料科学基础(上海交大)_第6章.答案

材料科学基础(上海交大)_第6章.答案
材料与化学化工学院
第6章 单组元相图及纯晶体凝固
6.1 单元系相变的热力学与相平衡
6.2 纯晶体的凝固
6.3 气固相变与薄膜生长
重点与难点:
• • • • • 结晶的热力学、结构和能量条件; 相律的应用; 克劳修斯——克拉珀龙方程的应用; 亚稳相出现的原因; 均匀形核的临界晶核半径和形核功的推 导; 润湿角的变化范围及其含义;
• 两条斜率不同的自由能曲线必然相交于一点
• 液、固两相的自由能相等 • 两相处于平衡而共存。 事实上, Tm—既不能完全结晶,也不能完全熔化 • 要发生结晶则体系必须降至低于Tm温度, • 而发生熔化则必须高于Tm 。
(2) 热力学条件
a △T>0, △Gv<0-过冷是结晶的
必要条件(之一)。
b △T越大, △Gv越小-过冷度越
图6.4
大, 越有利于结晶。
c △Gv的绝对值为凝固过程的驱 动力。
ΔT=Tm-T,是熔点Tm与实际凝固温度T之差 Lm是熔化热,
要使 ΔGv<0,必须使Δ T>0,即 T<Tm,故ΔT
称为过冷度。
晶体凝固的热力学条件——实际凝固温度应低于
熔点Tm,即需要有过冷度,其中热分析实验装置示 意图见图6.5。
如果外界压力保持恒定(例如一个标准大气 压),那么单元系相图只要一个温度轴来表示,如 水的情况见图6.1(b)。根据相律,在汽、水、冰
的各单相区内(f=1),温度可在一定范围内变动。
在熔点和沸点处,两相共存,f=0,故温度不能变
动,即相变为恒温过程。
在单元系中,除了可以出现气、液、固三相之
间的转变外,某些物质还可能出现固态中的同素异
构转变,见图6.2和图6.3。
• bcc • fcc

第六章凝固

第六章凝固

平衡时固溶体的成分是均匀的。
2、不平衡凝固 (1)固相内无扩散,液相内能达到 完全均匀化,因为是不平衡凝固, 所以平衡分配系数不是整个固相和 液相在成分上的平衡分配,而是局 部平衡,是指在界面上液固两相必 须保持一定的溶质分配。 (2)固相内无扩散,液相内只有扩 散没有对流溶质原子只能部分混合。
曲线1 C0 曲线3 k0C0
ΔHƒ
( 3)
ΔHƒ
kTe
≈10
生长速度很慢只能靠在液固界面上不断地 二维形成才得以生长,这类材料的凝固过程, 很大程度地取决于形核速度而不是生长速度。 二.温度对晶体生长的影响粗Biblioteka 界面正温度梯度:平面状生长
负温度梯度:枝晶生长
光滑界面
正温度梯度:一系列小台阶 负温度梯度:多面体
为什么会形成这样的形态?
对于非均匀形核,由于其形核功要 比均匀形核小得多,因此,可以在 较小的过冷度下获得很高的形核率。 由于非均匀形核主要是依附再杂质 或模壁等表面形成,因而非均匀形 核的最大值取决于液态金属中可作 为基底的固态粒子的种类和数量。
二.非均匀形核
依附于液相中某种固体表面(外来杂质表面或容 器壁)上形成的过程。
(2)对于光滑界面结构的晶体,其生长界 面以小平面台阶生长方式推进。小平面台 阶的扩展同样不能伸入到前方温度高于等 温线的液体中去,因此从宏观看液固相界 面似与等温线平行,但小平面与等温线呈 一定角度。 在负的温度梯度下,呈树枝状生长。 晶体生长界面一旦出现局部凸出生长,由 于前方液体具有更大的过冷度而使其生长 速度增加。在这种情况下,生长界面就不
3 2
2
说明
L-S的体积自由能差可补偿临界 晶核所需表面能的2/3,而另外1/3 则依靠液体中存在的能量起伏来 补偿

晶体凝固过程

晶体凝固过程

晶体凝固过程晶体凝固是物质从液态到固态的转变过程,也是自然界中常见的现象之一。

从我们日常生活中可以观察到的冰冻水变成冰块,到金属加工中铸造出的铁锭,都是晶体凝固的例子。

本文将从晶体凝固的基本原理、凝固方式和凝固过程中的影响因素等方面进行探讨。

晶体凝固的基本原理是物质分子在冷却过程中逐渐失去热能并排列有序,形成具有周期性结构的晶体。

在液态的物质中,分子之间的相互作用较弱,可以自由运动。

而当温度下降时,分子的热运动减弱,分子之间的相互作用逐渐增强,最终达到一种平衡状态,形成有序的晶体结构。

晶体凝固的方式有两种:均匀凝固和非均匀凝固。

均匀凝固是指整个液体体系同时凝固,在凝固过程中晶体的生长速度相对均匀。

而非均匀凝固则是指液体体系在局部区域先行凝固,形成初生晶核,然后晶体的生长从这些初生晶核开始扩展。

非均匀凝固常见于铸造、合金制备等工艺中。

晶体凝固过程中的影响因素有很多,其中温度是最重要的因素之一。

温度的升高可以加快晶体凝固过程,而温度的降低则会使晶体凝固速度变慢。

此外,溶液中的浓度和成分也会对晶体凝固过程产生影响。

浓度的增加会使晶体生长速度加快,而溶液中的杂质则会抑制晶体的生长。

晶体凝固过程的速度还受到晶体生长界面的形态和形态变化的影响。

晶体生长界面的形态决定了晶体的外形和晶体的生长速度。

例如,面心立方结构的晶体生长界面是六角形的,而体心立方结构的晶体生长界面则呈现出立方形。

晶体生长界面的形态变化会导致晶体生长速度的改变。

晶体凝固过程除了在材料科学中有着广泛应用外,还在生物学、地质学等领域中有重要作用。

例如,在生物学中,晶体凝固是生物体中骨骼和牙齿等硬组织形成的基础。

在地质学中,晶体凝固是岩石形成的过程之一,不同的岩石类型由不同的晶体凝固方式形成。

晶体凝固是物质从液态到固态的转变过程,涉及到物质分子的有序排列和晶体生长等过程。

它是自然界中常见的现象,对于材料科学、生物学和地质学等领域都具有重要意义。

通过研究晶体凝固过程的原理、方式和影响因素,可以更好地理解物质的结构和性质,为相关领域的发展提供科学依据。

材科第六章单组元相图及纯晶体的凝固

材科第六章单组元相图及纯晶体的凝固

有些物质在稳定相形成前,先形成自由能较稳定相高的亚稳相,
这称为Ostwald阶段,即在冷却过程中相变顺序为
高温相(unstable)
亚稳相(metastable)
稳定相(stable)
有时可扩充相图,使其同时包含可能出现的亚稳相:
包含在SiO2系统中出现亚稳相的相图
二氧化硅的多晶型转变
位移型相变(Displasive transformation) 重建型相变(Reconstructive transformation)
2表示温度和压力二个变量。
在常压下:
f CP1
相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之 间的关系,对分析和研究相图有重要的指导作用。
Gibbs相律的局限性
1. 只适用于热力学的平衡状态,包括热量平衡、压力平衡、化 学平衡。
2. 相律只能表示体系中组元与相的数目,而不能指明组元与相 的类型和含量。
凝固的意义:金属材料绝大多数用冶炼来方法生产出来,即首先 得到的是液态,经过冷却后才得到固态,固态下材料的组织结构 (宏观状态、结晶状态、晶体结构缺陷)与从液态转变为固态的 过程有关,从而也影响材料的性能。
相图(phase diagram):表示合金系中合金的状态与温度、成分之间 的关系的图形,又称为平衡图或状态图。
在单元系中.除了可以出现气、液、固三相之间的转变外,某些 物质还可能出现固态中的同素异构转变,如:
(a)纯铁的相图
(b)只有温度变动的情况
除了某些纯金属,如铁等具有同素异构转变之外,在某些化合物中 也有类似的转变,称为同分异构转变或多晶型转变,如:
SiO2平衡相图
上述相图中的曲线所表示的两相平衡时的温度和压力的定量关系, 可由克劳修斯(Clausius)-克拉珀龙 (C1apeyron)方程决定,即

东大金属凝固原理第六章

东大金属凝固原理第六章

15
二、单晶生长的方法 根据熔区的特点,单晶生长的方法可以分为正常凝 固法和区熔法。
(一) 正常凝固法
正常凝固法制备单 晶,最常用的有坩 埚移动、炉体移动 及晶体提拉等单向 凝固方法。
16
1、坩埚移动或炉体移动单向凝固法 最常用的是将尖底坩埚垂直沿炉体逐渐下降,单 晶体从尖底部位缓慢向上生长;也可以将“籽晶”放 在坩埚底部,当坩埚向下移动时, “籽晶”处开始
8
二、单向凝固的方法
1.发热剂法
型壳(精密铸造壳型)放在绝热箱中,底部放水 冷结晶器,浇铸金属后,在上部盖发热剂,使 上部金属处于高温,四周绝热,下部冷却,建立 自下而上的凝固条件。
缺点:无法调节GL 和R,制备小型柱状晶铸件(叶
片)。
9
2.功率降低法(P.D法) 加热线圈分成两段, 铸件不移动,型壳加热到 一定温度,向型壳内加入 过热的金属液,切断下部
1
§6-1 定向凝固工艺
单向凝固又称单向结晶,是使金属或合金由熔 体中单向生长晶体的一种工艺方法。单向凝固是用 于制备单晶、柱状晶和内生复合材料的凝固工艺方 法。其中最重要的工艺参数是:
GL-固液界面前沿液相中的温度梯度
R-固液界面前沿推进速度,晶体生长速度。
GL/R是控制晶体长大形态的重要判据(影响界面 稳定性) 在提高GL的条件下,增加R,才获得所要求的晶体 形态,细化组织,改善质量,并且提高单向凝固铸 件的生产率。
向右,每重熔一次都有提纯作用,纯度提高一
次,经多次重熔,得到高纯材料。
25
26
区域提纯效果与K0和搅 拌程度有关。 K0越小, 搅拌越好,提纯效果越 好。感应加热,电磁搅 拌,液相溶质分布均匀, 界面前沿溶质浓度低, 固相中的溶质少,提纯 效率高。

晶体凝固过程

晶体凝固过程

晶体凝固过程晶体凝固是一种物质由液态到固态的转变过程,它是自然界中晶体形成的基础过程。

晶体凝固过程发生在许多不同的领域,如冶金、材料科学、地质学、化学等。

本文将从晶体凝固的原理、过程和应用三个方面来详细介绍晶体凝固的相关内容。

一、晶体凝固的原理晶体凝固的原理可以归结为两个主要因素:热力学驱动力和动力学过程。

热力学驱动力指的是凝固过程中的能量差异,即液态相与固态相之间的自由能差。

当液态相的自由能高于固态相时,晶体凝固就会发生。

动力学过程则是指晶体凝固中的原子或分子在空间上有序排列的过程。

晶体在凝固过程中,原子或分子按照一定的规律有序排列,形成晶体结构。

二、晶体凝固的过程晶体凝固过程可以分为三个阶段:核化、生长和成熟。

1. 核化阶段:在液体中,当达到一定的过饱和度时,原子或分子会聚集形成小的晶核。

晶核的形成是一个热力学过程,需要克服液体的表面张力。

晶核的形成是凝固过程的起点,也是晶体生长的基础。

2. 生长阶段:晶核形成后,它们会在液体中生长。

晶体生长是一个动力学过程,晶体中的原子或分子按照一定的方向和速度有序排列。

晶体生长的速度取决于温度、过饱和度、物质的浓度等因素。

3. 成熟阶段:当晶体生长到一定大小时,晶体就会达到成熟状态。

成熟的晶体具有完整的晶体结构和形态,它们可以继续生长也可以停止生长。

三、晶体凝固的应用晶体凝固在许多领域都有广泛的应用。

1. 冶金领域:晶体凝固技术在冶金中可以用于合金的制备。

通过控制凝固过程中的温度、过饱和度和凝固速度等参数,可以得到具有特定性能的合金材料。

2. 材料科学领域:晶体凝固技术可以用于制备单晶材料,如硅单晶、镁铝合金等。

单晶材料具有优异的物理性能和化学性能,在电子器件、光学器件等领域有重要应用。

3. 地质学领域:晶体凝固是地壳中岩石形成的重要过程。

岩浆在地壳中凝固形成岩石,不同的凝固速度和条件会导致不同的岩石类型。

4. 化学领域:晶体凝固技术可以用于制备纯净的化学物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 6 Phase diagram of single-component and Solidification
for pure metal
作业1:The solid-liquid interfacial energy of pure silver is 0.126J/m 2. The latent heat of melting is 104.6J/g. The melting point of pure silver is 961℃. The density of solid/liquid silver at the melting point is 10.5g/cm 3
. (15points)
(1) What is the value of the critical radius at 700℃? (2) What is the value of ΔG * at this radius?
作业2:This diagram is for a hypothetical embryo of silver growing against an arbitrary
mold wall. With the aid of this diagram,
(a)
Compute the angle of contact, θ, of the embryo with the mold wall. (b) Determine the magnitude of the factor that may be used to convert the
homogeneous free energy needed to obtain a nucleus into that of the corresponding heterogeneous free energy.
作业3: 已知纯铜的熔化潜热为1.88×109J/M 2,熔点为1089℃,点阵常数为3.4167Å, 发生
均匀形核过冷度为230K ,21SL /10*44.1m J -=σ。

求铜的临界晶核半径⨯γ及临界晶核中所含的铜原子数。

作业4:已知锌的熔点为419℃,其结晶潜热为7×108J/m 3,液固界面能2/06.0m J =σ,
锌的原子量为65.4,密度为7.18g/cm 3,试计算锌在350℃结晶后的临界晶核半径,并说明晶核内有多少个锌原子?
作业5:金的熔点为1064℃,溶化潜热为12.8KJ/mol, 若液态金在1000℃时发生结晶,其
临界晶核半径m 10*10*3.43-=γ
,试计算金属的液固界面能。

作业6:解释金属结晶时,为什么会产生过冷?
作业7:在均匀形核时,若设晶核形状为边长a 的立方体,试求其临界晶核半径及形核功。

相关文档
最新文档