高三等差数列复习课件.ppt
合集下载
高三数学第一轮总复习课件: 等差、等比数列
![高三数学第一轮总复习课件: 等差、等比数列](https://img.taocdn.com/s3/m/2a8b91086c175f0e7cd1371a.png)
Sn
a1 an n na
2
q 1 na1 等比数列前n项和 S n a1 1 q n q 1 1 q n 1 S1 2.如果某个数列前n项和为Sn,则 an S n S n1 n 2
nn 1 d 1 2
3.下列命题中正确的是( B
)
A.数列{an}的前n项和是Sn=n2+2n-1,则{an}为等差数列 B. 数列 {an} 的前 n 项和是 Sn=3n-c,则 c=1 是 { an} 为等比数列的 充要条件 C.数列既是等差数列,又是等比数列
D.等比数列{an}是递增数列,则公比q大于1
4. 等差数列 { an} 中, a1>0,且 3 a8=5a13,则 Sn 中最大的是 C ( ) (A)S10 (B)S11 (C)S20 (D)S21
(2n-1)an,当{an}为等比数列时其结论可类似推导得出.
4. 已知数列 { an} 的前 n 项和 Sn=32n-n2,求数列 { |an|} 的前 n 项 Sn 和S’n .
【解题回顾】
:当ak≥0 一般地,数列{an}与数列{|an|}的前n项和Sn与 S n
时,有 S n ak<0时, S n S(n k =1,2,…,n).若在 S;当 n
高三数学第一轮总复习四:等差、等比数列
等差、等比数列的通项及求和公式 等差、等比数列的运用
等差、等比数列的应用 数列的通项与求和
第1课时 等差、等比数列的通项及求 和公式
• • • •
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
•误 解 分 析
要点·疑点·考点
1.等差数列前n项和
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零, 设其和分别为S+、S-,则有Sn=S++S-,所以
等差数列复习课PPT优秀课件
![等差数列复习课PPT优秀课件](https://img.taocdn.com/s3/m/ef9c60bc83d049649b6658c3.png)
等差数列
课前热身
4.a1=-7,且满足an+1=an+2(n∈N), 则a1+a2+a3+…+a17=_____ .
解:由an+1=an+2可知{an}是以2为公差的等差数列.
n ( n 1) S17 na1 d 2 17 (17 1) 17 ( 7 ) 2 2 =153
练习:
等差数列
3.设Sn是等差数列{an}的前n项和.
a5 5 S5 若 ,则 等于() a3 9 S9
(B)-1 (C)2
(A)1
【分析】
(D)
9 ( a a ) 1 9 S 9 ( a a ) 9 2 a 9 1 9 5 2 1 5 ( a a ) S 5 ( a a ) 5 2 a 1 5 5 1 5 3 2
等差数列
能力.思维.方法
例1. 已知等差数列{ an },a4=9 ,a9=-6 , Sn=63 . 求 n . 解: a4 = a1+(4-1)d = 9 a9 = a1+(9-1)d = -6 得 a1 = 18, d=-3.
n ( n 1 ) S n 18 (- 3 ) 63 n 2
3.前n项和公式:
n ( n 1 ) n (a 1 a n) 或 S na d Sn n 1 2 2 4.主要性质: 等差数列 a n ,若m+n=p+q,则 a + a a a m n p q
等差数列
课前热身
1 . 已知等差数列{an},a1=1 ,d=2, 求 a201 解: a201=a1+(n-1)d =1+(201-1)×2 =401.
高考数学一轮复习等差数列-教学课件
![高考数学一轮复习等差数列-教学课件](https://img.taocdn.com/s3/m/d0fe2727a31614791711cc7931b765ce05087aa4.png)
(1)项数为偶数 2n 的等差数列{an}: S2n=n(a1+a2n)=…=n(an+an+1). S 偶-S 奇=nd, S奇 = an .
S偶 an1 (2)项数为奇数(2n+1)的等差数列{an}: S2n+1=(2n+1)an+1. S奇 = n 1 .(其中 S 奇、S 偶分别表示数列{an}中所有奇数 S偶 n 项、偶数项的和)
解析:(1)等差数列{an}中,有 a6+a7+a8=3a7, ∴a7=4,∴S13=13a7=52.
S偶 S奇 354,
(2)由题意,可知
S偶
S奇
32 , 27
∴
S偶
S奇
192, 162.
又项数为 12 的等差数列中 S 偶-S 奇=6d,
∴d=5.
答案:(1)52 (2)5
反思归纳 在等差数列前 n 项和中还常用到以下性质
∴
8a1
87 2
d
4 a1
2d
,
a1 6d 2.
∴
ad1
10, 2.
∴a9=a1+8d=10+8×(-2)=-6.
法二 ∵S8=4a3,∴ 8a1 a8 =4a3.
2
∴a1+a8=a3,∴a3+a6=a3,∴a6=0. ∴d=a7-a6=-2, ∴a9=a7+2d=-6. 故选 A.
即时突破 2 (2013 山东省滨州市质检)已知数
列{an}满足 a1=3,an·an-1=2an-1-1(n≥2).
(1)求 a2,a3,a4;
(2)求证:数列
1 an
1
是等差数列,并求出{an}
S偶 an1 (2)项数为奇数(2n+1)的等差数列{an}: S2n+1=(2n+1)an+1. S奇 = n 1 .(其中 S 奇、S 偶分别表示数列{an}中所有奇数 S偶 n 项、偶数项的和)
解析:(1)等差数列{an}中,有 a6+a7+a8=3a7, ∴a7=4,∴S13=13a7=52.
S偶 S奇 354,
(2)由题意,可知
S偶
S奇
32 , 27
∴
S偶
S奇
192, 162.
又项数为 12 的等差数列中 S 偶-S 奇=6d,
∴d=5.
答案:(1)52 (2)5
反思归纳 在等差数列前 n 项和中还常用到以下性质
∴
8a1
87 2
d
4 a1
2d
,
a1 6d 2.
∴
ad1
10, 2.
∴a9=a1+8d=10+8×(-2)=-6.
法二 ∵S8=4a3,∴ 8a1 a8 =4a3.
2
∴a1+a8=a3,∴a3+a6=a3,∴a6=0. ∴d=a7-a6=-2, ∴a9=a7+2d=-6. 故选 A.
即时突破 2 (2013 山东省滨州市质检)已知数
列{an}满足 a1=3,an·an-1=2an-1-1(n≥2).
(1)求 a2,a3,a4;
(2)求证:数列
1 an
1
是等差数列,并求出{an}
等差数列求和(共24张PPT)
![等差数列求和(共24张PPT)](https://img.taocdn.com/s3/m/a424727982c4bb4cf7ec4afe04a1b0717fd5b384.png)
例子二
求1+4+7+10+13的和,这是一个等差数列,公差为3,项数为5。根据等差数 列求和公式,可以得出结果为30。
04
等差数列求和的变种
04
等差数列求和的变种
倒序相加求和
总结词
倒序相加求和是一种特殊的等差数列求和方法,通过将数列倒序排列,再与原数列正序求和,最后除 以2得到结果。
详细描述
倒序相加求和的步骤包括将等差数列倒序排列,然后从第一个数开始与原数列对应项相加,直到最后 一个数。这种方法可以简化等差数列求和的计算过程,特别是对于较大的数列。
计算
使用通项公式,第5项$a_5=a_1+(5-1)d=1+(5-1)times1=5$。
03
等差数列求和公式
03
等差数列求和公式
公式推导
公式推导方法一
利用等差数列的性质,将等差数列的 项进行分组求和,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
公式推导方法二
利用等差数列的特性,将等差数列的 项进行倒序相加,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
公式应用
应用场景一
在数学、物理、工程等领域中,常常需要求解等差数列的和 ,如计算等差数列的各项之和、计算等差数列的和的极限等 。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
定义与特性
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
求1+4+7+10+13的和,这是一个等差数列,公差为3,项数为5。根据等差数 列求和公式,可以得出结果为30。
04
等差数列求和的变种
04
等差数列求和的变种
倒序相加求和
总结词
倒序相加求和是一种特殊的等差数列求和方法,通过将数列倒序排列,再与原数列正序求和,最后除 以2得到结果。
详细描述
倒序相加求和的步骤包括将等差数列倒序排列,然后从第一个数开始与原数列对应项相加,直到最后 一个数。这种方法可以简化等差数列求和的计算过程,特别是对于较大的数列。
计算
使用通项公式,第5项$a_5=a_1+(5-1)d=1+(5-1)times1=5$。
03
等差数列求和公式
03
等差数列求和公式
公式推导
公式推导方法一
利用等差数列的性质,将等差数列的 项进行分组求和,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
公式推导方法二
利用等差数列的特性,将等差数列的 项进行倒序相加,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
公式应用
应用场景一
在数学、物理、工程等领域中,常常需要求解等差数列的和 ,如计算等差数列的各项之和、计算等差数列的和的极限等 。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
定义与特性
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
高三高考数学复习等差数列、等比数列(共29张PPT)
![高三高考数学复习等差数列、等比数列(共29张PPT)](https://img.taocdn.com/s3/m/0cec86f70b4e767f5bcfce86.png)
即会“脱去”数学文化的背景,提取关键信息;二是构造模型,
即由题意构建等差数列或等比数列或递推关系式的模型;三是
“解模”,即把文字语言转化为求数列的相关信息,如求指定项、
公比(或公差)、项数、通项公式或前 n 项和等. 精编优质课PPT江苏省2020届高三高考数学复习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
从而 a3×a5=25×27=212,所以 log2(a3a5)=log2212=12.
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
变式1-3(2018·全国Ⅰ卷改编)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1= 2,则a5=__-1__0____. 解:法一 设等差数列{an}的公差为 d,
解:设数列{an}首项为a1,公比为q(q≠1),
精编优质课PPT江苏省2020届高三高考数学复习 等差数列、等比数列(共29张PPT)(获奖课件推荐下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
法二 同法一得a5=3.
等差数列的等差中项
∴又da=2a5a+5-3a8a=2=d0⇒2,3anana21+=mamaa82=-0d⇒=2-a25+. 2a5=0a⇒n aa2=m -(n3. m)d
高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件
![高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件](https://img.taocdn.com/s3/m/3f2caa746529647d26285220.png)
(2)因为{an}是等差数列,公差为 d,所以 a3(n+1)-a3n=3d(与 n 值无关的常数),所以数列{a3n}也是等差数列.
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .
高三数学课件:等差数列共31页
![高三数学课件:等差数列共31页](https://img.taocdn.com/s3/m/748c91e55a8102d277a22fc5.png)
高三数学课件:等差数列
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
Thank youFra bibliotek6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
Thank youFra bibliotek6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
等差数列复习课课件公开课ppt
![等差数列复习课课件公开课ppt](https://img.taocdn.com/s3/m/709bea95b8f3f90f76c66137ee06eff9aef8498a.png)
等差数列的定义
$a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 n 项,$a_1$ 是第一项,d 是公差。
等差数列的通项公式
定义
等差数列中,任意两项之和等于常数(n个项的和也等于常数)。
性质
等差数列的性质1
等差数列中,任意两项之差的绝对值等于常数。
等差数列的性质2
等差数列中,所有项的和对数值为常数。
应用场景
等差数列在现实生活中有着广泛的应用,如存款利息计算、物品数量变化等。
求解等差数列的前n项和
应用一
实例展示
以一个具体的等差数列为例,展示如何使用求和公式求解前n项和。
以一个实际问题为例,展示如何使用求和公式解决与等差数列相关的实际问题。
求和公式的应用
04
等差数列的判定方法及其应用
项值法
通过数列中的几项来计算其余各项的值,然后判断这个数列是否为等差数列。
总结词:灵活运用,举一反三
详细描述
总结词:思维缜密,策略取胜
详细描述
1. 能够解决涉及多个知识点和复杂技巧的高难度问题
2. 掌握等差数列与其他数学知识的深度结合,如与解析几何、不等式等的结合
3. 了解一些高级的解题策略和方法,如数形结合、函数思想等
高难度题型的解题思路
06
课堂练习与答案解析
总结词:强化基础详细描述:本题主要考察等差数列的定义和性质,以及等差数列的通项公式和前n项和公式的应用。题目内容什么是等差数列?请举例说明。等差数列的性质是什么?如何证明?给出等差数列的通项公式和前n项和公式,并解释其意义。利用通项公式和前n项和公式,计算等差数列的前n项和。答案解析:针对每个问题,从定义、性质、公式和应用四个方面进行解答,帮助学生全面掌握等差数列的基础知识。
$a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 n 项,$a_1$ 是第一项,d 是公差。
等差数列的通项公式
定义
等差数列中,任意两项之和等于常数(n个项的和也等于常数)。
性质
等差数列的性质1
等差数列中,任意两项之差的绝对值等于常数。
等差数列的性质2
等差数列中,所有项的和对数值为常数。
应用场景
等差数列在现实生活中有着广泛的应用,如存款利息计算、物品数量变化等。
求解等差数列的前n项和
应用一
实例展示
以一个具体的等差数列为例,展示如何使用求和公式求解前n项和。
以一个实际问题为例,展示如何使用求和公式解决与等差数列相关的实际问题。
求和公式的应用
04
等差数列的判定方法及其应用
项值法
通过数列中的几项来计算其余各项的值,然后判断这个数列是否为等差数列。
总结词:灵活运用,举一反三
详细描述
总结词:思维缜密,策略取胜
详细描述
1. 能够解决涉及多个知识点和复杂技巧的高难度问题
2. 掌握等差数列与其他数学知识的深度结合,如与解析几何、不等式等的结合
3. 了解一些高级的解题策略和方法,如数形结合、函数思想等
高难度题型的解题思路
06
课堂练习与答案解析
总结词:强化基础详细描述:本题主要考察等差数列的定义和性质,以及等差数列的通项公式和前n项和公式的应用。题目内容什么是等差数列?请举例说明。等差数列的性质是什么?如何证明?给出等差数列的通项公式和前n项和公式,并解释其意义。利用通项公式和前n项和公式,计算等差数列的前n项和。答案解析:针对每个问题,从定义、性质、公式和应用四个方面进行解答,帮助学生全面掌握等差数列的基础知识。
等差数列复习课件ppt
![等差数列复习课件ppt](https://img.taocdn.com/s3/m/e56bb04078563c1ec5da50e2524de518974bd34b.png)
(1)求证:{S1n}是等差数列; (2)求an的表达式.
【解析】 (1)由已知得Sn-Sn-1=2Sn-1Sn(n≥2),
若Sn-1Sn=0,由上式可知Sn-Sn-1=0,从而an=0.
但S1=a1=1≠0,矛盾,故Sn-1Sn≠0.
∴S1n-Sn1-1=-2.
由等差数列的定义知{
1 Sn
}是以1为首项,-2为公差的等
A.63
B.45
C.36
D.27
【解析】 S3,S6-S3,S9-S6成等差数列,即9,27,a7+ a8+a9成等差数列,∴a7+a8+a9=54-9=45.故选B.
【答案】 B
(2)设数列{an},{bn}都是等差数列.若a1+b1=7,a3+b3 =21,则a5+b5=________.
【解析】 ∵a1+a5=2a3,b1+b5=2b3, ∴a5+b5=2(a3+b3)-(a1+b1)=2×21-7=35. 【答案】 35
【答案】 C
探究2 (1)本例用到等差数列中最常用的性质:①d= app--qaq,②若m+n=p+q,则am+an=ap+aq.
(2)利用等差数列性质(特别是感觉条件不够时)求解即简 捷,又漂亮.
思考题2 (1)设等差数列{an}的前n项和为Sn,若S3
=9,S6=36,则a7+a8+a9等于( )
思考题3 (1)(2014·北京理)若等差数列{an}满足a7 +a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和 最大.
【解析】 由等差数列的性质可得a7+a8+a9=3a8>0, 即a8>0;而a7+a10=a8+a9<0,故a9<0.所以数列{an}的前8项 和最大.
【解析】 (1)由已知得Sn-Sn-1=2Sn-1Sn(n≥2),
若Sn-1Sn=0,由上式可知Sn-Sn-1=0,从而an=0.
但S1=a1=1≠0,矛盾,故Sn-1Sn≠0.
∴S1n-Sn1-1=-2.
由等差数列的定义知{
1 Sn
}是以1为首项,-2为公差的等
A.63
B.45
C.36
D.27
【解析】 S3,S6-S3,S9-S6成等差数列,即9,27,a7+ a8+a9成等差数列,∴a7+a8+a9=54-9=45.故选B.
【答案】 B
(2)设数列{an},{bn}都是等差数列.若a1+b1=7,a3+b3 =21,则a5+b5=________.
【解析】 ∵a1+a5=2a3,b1+b5=2b3, ∴a5+b5=2(a3+b3)-(a1+b1)=2×21-7=35. 【答案】 35
【答案】 C
探究2 (1)本例用到等差数列中最常用的性质:①d= app--qaq,②若m+n=p+q,则am+an=ap+aq.
(2)利用等差数列性质(特别是感觉条件不够时)求解即简 捷,又漂亮.
思考题2 (1)设等差数列{an}的前n项和为Sn,若S3
=9,S6=36,则a7+a8+a9等于( )
思考题3 (1)(2014·北京理)若等差数列{an}满足a7 +a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和 最大.
【解析】 由等差数列的性质可得a7+a8+a9=3a8>0, 即a8>0;而a7+a10=a8+a9<0,故a9<0.所以数列{an}的前8项 和最大.
高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版
![高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版](https://img.taocdn.com/s3/m/c033108dc1c708a1284a44aa.png)
4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.
高中数学6.7等差数列复习课优秀课件
![高中数学6.7等差数列复习课优秀课件](https://img.taocdn.com/s3/m/c5822ff29f3143323968011ca300a6c30c22f1a6.png)
变式训练
3.(2019年)设等差数列an的前n项和为sn , a5 2a4, s9 108 求数列an 的通项公式.
解:由题意可得:
a1 4d 2(a1 3d )
9a1
9 8d 2
108
an 12 (n 1) 6 6n 18 即an 6n 18
解之得:
a1 12
d 6
变式训练
先职业高级中 张维
一、研究考纲
知识内容
数列的概念 数列的通项公式 等差数列的定义 等差数列的通项公式 等差数列的前n项和公式 等比数列的定义 等比数列的通项公式 等比数列的前n项和公式 数列实际应用举例
了解 √
√
考试层次要求
理解
掌握
√ √
√ √ √ √ √
二、明确考点
年份
选择题
填空题
解答题
分值
2015
an
)
或sn
na1
n(n 1) d 2
若m n p q, 则am an a p aq
四、小试牛刀
在等差数列an 中
(1)若a1 3, d 2,则a10 _2_1____ (2)若a1 1, d -2,则s6 __-_2_4___ (3)若a2 a8 16,则a1 a9 _1_6___,a5 __8__ s9 _7_2___ (4)若x,3, y,11成等差数列,则x -_1__, y _7___
5(. 2016年)已知等差数列an中,a1 2, a1a2 a4求数列an的
通项公式及前n项和sn.
解: 由a1a2 a4得a(1 a1 d) a1 3d a1 2
d 2
an 2 (n 1) 2 2n
sn
n(2
2