天津市红桥区2017届九年级数学上学期期末考试试题
天津红桥区2017届九年级上学期数学期末试题带解析人教版
天津红桥区2017届九年级上学期数学期末试题(带解析)人教版2016-2017学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,斜面体3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.2.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.3.一元二次方程x2+2x﹣3=0的两个根中,较小一个根为()A.3B.﹣3C.﹣2D.﹣14.将抛物线y=﹣(x﹣3)2﹣2向上平移1个单位后,其顶点坐标为()A.(﹣3,﹣2)B.(﹣3,﹣1)C.(3,﹣2)D.(3,﹣1)5.如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对B.2对C.3对D.4对6.正六边形的边心距与边长之比为()A.1:2B.:2C.:1D.:27.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°8.如图是二次函数:y=ax2+bx+c(a≠0)的图象,下列说法错误的是()A.函数y的最大值是4B.函效的图象关于直线x=﹣1对称C.当x<﹣1时,y随x的增大而增大D.当﹣4<x<1时,函数值y>09.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20vB.t=C.t=D.t=10.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>﹣3B.k>3C.k<3D.k<﹣311.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①a<b<c;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.方程100x2﹣3x﹣7=0两根之和等于.14.若扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为.(结果保留π)15.如果两个相似三角形的面积比是4:9,那么它们对应高的比是.16.如图,正方形ABCD内有一点O使得△OBC是等边三角形,连接OA并延长,交以O为圆心OB长为半径的⊙O 于点E,连接BD并延长交⊙O于点F,连接EF,则∠EFB 的度数为度.17.若a为实数,则代数式的最小值为.18.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.20.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,∠F=60°,求:(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.21.如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC 的面积为4,求点P的坐标.22.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.(1)求证:DF⊥AB;(2)若AF的长为2,求FG的长.23.如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2)、B(,n).(1)求这两个函数解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.24.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.25.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.2016-2017学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,斜面体3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.2.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.3.一元二次方程x2+2x﹣3=0的两个根中,较小一个根为()A.3B.﹣3C.﹣2D.﹣1【考点】解一元二次方程-因式分解法.【分析】因式分解法求解可得.【解答】解:∵(x﹣1)(x+3)=0,∴x﹣1=0或x+3=0,解得:x=1或x=﹣3,则两个根中,较小一个根为﹣3,故选:B.4.将抛物线y=﹣(x﹣3)2﹣2向上平移1个单位后,其顶点坐标为()A.(﹣3,﹣2)B.(﹣3,﹣1)C.(3,﹣2)D.(3,﹣1)【考点】二次函数图象与几何变换.【分析】先求出抛物线的顶点坐标,再根据向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【解答】解:抛物线y=﹣(x﹣3)2﹣2的顶点坐标为(3,﹣2),∵向上平移1个单位后的抛物线的顶点坐标为(3,﹣1).故选:D.5.如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对B.2对C.3对D.4对【考点】相似三角形的判定.【分析】由DE∥BC,EF∥AB,即可得△ADE∽△ABC,△EFC∽△ABC,继而证得△ADE∽△EFC.【解答】解:∵DE∥BC,EF∥AB,∴△ADE∽△ABC,△EFC∽△ABC,∴△ADE∽△EFC.∴图中相似三角形的对数是:3对.故选C.6.正六边形的边心距与边长之比为()A.1:2B.:2C.:1D.:2【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设正六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,于是OC==a,所以正六边形的边心距与边长之比为:a:a=:2.故选:D.7.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°【考点】圆周角定理.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,可求∠D=60°,即可求∠A=∠D=60°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=30°,∴∠D=60°,∴∠A=∠D=60°.故选C.8.如图是二次函数:y=ax2+bx+c(a≠0)的图象,下列说法错误的是()A.函数y的最大值是4B.函效的图象关于直线x=﹣1对称C.当x<﹣1时,y随x的增大而增大D.当﹣4<x<1时,函数值y>0【考点】二次函数的性质.【分析】根据二次函数的图象结合二次函数的性质即可得出a<0、二次函数对称轴为x=﹣1以及二次函数的顶点坐标,再逐项分析四个选项即可得出结论.【解答】解:观察二次函数图象,发现:开口向下,a<0,抛物线的顶点坐标为(﹣1,4),对称轴为x=﹣1,与x轴的一个交点为(1,0).A、∵a<0,∴二次函数y的最大值为顶点的纵坐标,即函数y的最大值是4,A正确;B、∵二次函数的对称轴为x=﹣1,∴函效的图象关于直线x=﹣1对称,B正确;C、当x<﹣1时,y随x的增大而增大,C正确;D、∵二次函效的图象关于直线x=﹣1对称,且函数图象与x轴有一个交点(1,0),∴二次函数与x轴的另一个交点为(﹣3,0).∴当﹣3<x<1时,函数值y>0,即D不正确.故选D.9.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20vB.t=C.t=D.t=【考点】根据实际问题列反比例函数关系式.【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.10.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>﹣3B.k>3C.k<3D.k<﹣3【考点】反比例函数的性质.【分析】根据题意得出关于k的不等式,求出k的取值范围即可.【解答】解:∵在反比例函数y=图象的每一支曲线上,y 都随x的增大而减小,∴k+3>0,解得k>﹣3.故选A.11.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2C.D.【考点】直线与圆的位置关系.【分析】根据题意有C、O、G三点在一条直线上OG最小,MN最大,根据勾股定理求得AB,根据三角形面积求得CF,然后根据垂径定理和勾股定理即可求得MN的最大值.【解答】解:过O作OG垂于G,连接OC,∵OC=,只有C、O、G三点在一条直线上OE最小,连接OM,∴OM=,∴只有OG最小,GM才能最大,从而MN有最大值,作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵ACBC=ABCF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选C.12.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①a<b<c;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确结论的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】采用形数结合的方法解题,根据抛物线的开口方向,对称轴的位置判断a、b、c的符号,把两根关系与抛物线与x的交点情况结合起来分析问题.【解答】解:①因为图象与x轴两交点为(﹣2,0),(x1,0),且1<x1<2,对称轴x==﹣,则对称轴﹣<﹣<0,且a<0,∴a<b<0,由抛物线与y轴的正半轴的交点在(0,2)的下方,得c >0,即a<b<c,故①正确;②设x2=﹣2,则x1x2=,而1<x1<2,∴﹣4<x1x2<﹣2,∴﹣4<<﹣2,∴2a+c>0,4a+c<0,故②③正确;④由抛物线过(﹣2,0),则4a﹣2b+c=0,而c<2,则4a﹣2b+2>0,即2a﹣b+1>0,故④正确.综上可知正确的有4个,故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.方程100x2﹣3x﹣7=0两根之和等于.【考点】根与系数的关系.【分析】直接根据根与系数的关系求解.【解答】解:方程100x2﹣3x﹣7=0两根之和等于.故答案为.14.若扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为2π.(结果保留π)【考点】弧长的计算.【分析】根据弧长公式可得.【解答】解:根据题意知该扇形的弧长为=2π,故答案为:2π.15.如果两个相似三角形的面积比是4:9,那么它们对应高的比是2:3.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形对应高的比等于相似比解答即可.【解答】解:∵两个相似三角形的面积比是4:9,∴两个相似三角形相似比是2:3,∴它们对应高的比是2:3.故答案为:2:3.16.如图,正方形ABCD内有一点O使得△OBC是等边三角形,连接OA并延长,交以O为圆心OB长为半径的⊙O 于点E,连接BD并延长交⊙O于点F,连接EF,则∠EFB 的度数为37.5度.【考点】圆周角定理;等边三角形的判定;正方形的性质.【分析】根据正方形的性质得到∠ABC=90°,由△OBC是等边三角形,得到∠OBC=60°,根据等腰三角形的性质得到∠AOB==75°,由圆周角定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=30°,∵AB=BO,∴∠AOB==75°,∴AOB=37.5°,故答案为:37.5.17.若a为实数,则代数式的最小值为3.【考点】配方法的应用;非负数的性质:偶次方;二次根式的性质与化简.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵==≥3,∴代数式的最小值为3,故答案为:3.18.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.【考点】垂径定理;直角三角形全等的判定;等腰三角形的性质;等腰三角形的判定;勾股定理;矩形的判定;直角梯形.【分析】本题的综合性质较强,根据全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,直角梯形的性质可知.【解答】解:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2cm,∴AO=OD=2cm,S△AOD=AODO=ADOF,∴OF=cm.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.【考点】列表法与树状图法.【分析】(1)由某单位A,B,C,D四人随机分成两组赴北京,上海学习,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A,B都去北京的情况,再利用概率公式即可求得答案;(3)由(2)可求得A,B分在同一组的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵某单位A,B,C,D四人随机分成两组赴北京,上海学习,∴A去北京的概率为:;(2)画树状图得:∵共有12种等可能的结果,A,B都去北京的有2种情况,∴A,B都去北京的概率为:=;(3)由(2)得:A,B分在同一组的有4种情况,∴A,B分在同一组的概率为:=.20.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,∠F=60°,求:(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.【考点】旋转的性质;正方形的性质.【分析】(1)由于△ADF旋转一定角度后得到△ABE,根据旋转的性质得到旋转中心为点A,∠DAB等于旋转角,于是得到旋转角为90°;(2)根据旋转的性质得到AE=AF=4,∠AEB=∠F=60°,则∠ABE=90°﹣60°=30°,解直角三角形得到AD=4,∠ABD=45°,所以DE=4﹣4,然后利用∠EBD=∠ABD﹣∠ABE计算即可.【解答】解:(1)∵△ADF旋转一定角度后得到△ABE,∴旋转中心为点A,∠DAB等于旋转角,∴旋转角为90°;(2)∵△ADF以点A为旋转轴心,顺时针旋转90°后得到△ABE,∴AE=AF=4,∠AEB=∠F=60°,∴∠ABE=90°﹣60°=30°,∵四边形ABCD为正方形,∴AD=AB=4,∠ABD=45°,∴DE=4﹣4,∠EBD=∠ABD﹣∠ABE=15°.21.如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC 的面积为4,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求一次函数解析式;二次函数的性质.【分析】(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式;(3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.【解答】解:(1)由﹣x2+3x+4=0解得x=﹣1或x=4,所以A、B两点坐标为(﹣1,0)和(4,0);(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),设直线BC的函数关系式y=kx+b,∴,解得,∴直线BC的函数关系式为y=﹣x+4;(3)抛物线y=﹣x2+3x+4的对称轴为x=,对称轴与直线BC的交点记为D,则D点坐标为(,).∵点P在抛物线的对称轴上,∴设点P的坐标为(,m),∴PD=|m﹣|,∴S△PBC=OBPD=4.∴×4×|m﹣|=4,∴m=或m=.∴点P的坐标为(,)或(,).22.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.(1)求证:DF⊥AB;(2)若AF的长为2,求FG的长.【考点】切线的性质;等边三角形的性质.【分析】(1)连结OD,根据切线的性质由DF是圆的切线得∠ODF=90°,再根据等边三角形的性质得∠C=∠A=∠B=60°,AB=AC,而OD=OC,所以∠ODC=60°=∠A,于是可判断OD∥AB,根据平行线的性质得DF⊥AB;(2)在Rt△ADF中,由∠A=60°得到∠ADF=30°,根据含30度的直角三角形三边的关系得AD=2AF=4,再证明OD 为△ABC的中位线,则AD=CD=4,即AC=8,所以AB=8,BF=AB﹣AF=6,然后在Rt△BFG中,根据正弦的定义计算FG的长.【解答】(1)证明:连结OD,如图,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,AB=AC,而OD=OC,∴∠ODC=60°,∴∠ODC=∠A,∴OD∥AB,∴DF⊥AB;(2)解:在Rt△ADF中,∠A=60°,∴∠ADF=30°,∴AD=2AF=2×2=4,而OD∥AB,点O为BC的中点,∴OD为△ABC的中位线,∴AD=CD=4,即AC=8,∴AB=8,∴BF=AB﹣AF=6,∵FG⊥BC,∴∠BGF=90°,在Rt△BFG中,sinB=sin60°=,∴FG=6×=3.23.如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2)、B(,n).(1)求这两个函数解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A在反比例函数的图象上,结合反比例函数图象上的点的坐标特征即可得出反比例函数的解析式;由点B的横坐标以及反比例函数的解析式即可得出点B的坐标,再由A、B点的坐标利用待定系数法即可求出一次函数得解析式;(2)结合(1)中得结论找出平移后的直线的解析式,将其代入反比例函数解析式中,整理得出关于x的二次方程,令其根的判别式△=0,即可得出关于m的一元二次方程,解方程即可得出结论.【解答】解:(1)∵A(2,2)在反比例函数的图象上,∴k=4.∴反比例函数的解析式为.又∵点B(,n)在反比例函数的图象上,∴,解得:n=8,即点B的坐标为(,8).由A(2,2)、B(,8)在一次函数y=ax+b的图象上,得:,解得:,∴一次函数的解析式为y=﹣4x+10.(2)将直线y=﹣4x+10向下平移m个单位得直线的解析式为y=﹣4x+10﹣m,∵直线y=﹣4x+10﹣m与双曲线有且只有一个交点,令,得4x2+(m﹣10)x+4=0,∴△=(m﹣10)2﹣64=0,解得:m=2或m=18.24.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.【考点】旋转的性质;等腰三角形的性质;等腰梯形的判定.【分析】(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.【解答】(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB 平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.25.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC==,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.2017年2月6日。
天津市红桥区2017-2018学年度第一学期期中考试九年级数学试卷(word版,含答案)
红桥区2017~2018 学年度第一学期期中考试九年级数学一、选择题(本大题共12 小题,每小题3 分,共36 分.)(1)在下列y 关于x 的函数中,一定是二次函数的是(A)y=2x2 (B)y=2x-2(C)y=ax2 (D )(8)当二次函数y=x²+4x+9 取最小值时,x 的值为(A)-2 (B)1(C)2 (D)9(9)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,-4),则这个二次函数的解析式为(A)y=-2(x+2)2+4 (B)y=-2(x-2)2+4(C)y=2(x+2)2-4 (D)y=2(x-2)2-4(10)如图,在矩形ABCD 中,AB=1,BC= 3 .将矩形ABCD 绕点A 逆时针旋转至矩形AB'C'D' (2)抛物线y=x2+2 的对称轴是直线(A)x=2 (B)x=0(C)y=0 (D)y=2(3)下列运动属于旋转的是(A)滚动过程中的篮球的滚动(B)钟表的钟摆的摆动(C)气球升空的运动(D)一个图形沿某直线对折的过程(4)下列图形中,既是轴对称图形又是中心对称图形的有(A)4 个(B)3 个(C)2 个(D)1 个(5)如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm,则弦AB 的长是(A)4cm(B)6cm(C)8cm(D)10cm(6)若⊙O 的弦AB 等于半径,则AB 所对的圆心角的度数是(A)30°(B)60°(C)90°(D)120°(7)如图,正方形A BCD 四个顶点都在⊙O 上,点P是在上 的一点,则∠CPD 的度数是(A)35°(B)40°(C)45°(D)60°使得点B' 恰好落在对角线BD 上,连接DD' ,则DD' 的长度为(A) 5(B) 3(C)3+1(D)2(11)如图,点A,B,C 在⊙O 上,∠ABC=29°,过点C 作⊙O 的切线交OA 的延长线于点D,则∠D 的大小为(A)29°(B)32°(C)42°(D)58°(12)二次函数y=ax²+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b²>4ac;③a+b+2c<0;④3a+c<0;其中正确的是(A)①④(B)②④(C)①②③(D)①②③④九年级数学第1页(共8页)九年级数学第2页(共8页)二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) (13)点 A (2, y 1)、B (3, y 2)是二次函数 y =(x -1)2+3 图象上两点,则 y 1 与 y 2 的大小关系为y 1y 2.(填“>”、“<”、“=”)(14)如图,在圆内接四边形 ABCD 中,若∠A ,∠B ,∠C 的度数之比为 4:3:5,则∠D 的度数是.(15)如图,△ABC 中,∠ACB =90°,∠ABC =25°,以点 C 为旋转中心顺时针旋转后得到△A 'B 'C ' ,且点 A 在 A 'B ' 上,则旋转角为.三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)(19)(本小题 8 分)如图,△ABC 中,∠B =10°,∠ACB =20°,AB =4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点 C 恰好成为 AD 的中点.(Ⅰ)指出旋转中心,并求出旋转的度数;(Ⅱ)求出∠BAE 的度数和 AE 的长.(第 14 题图)(第 15 题图)(第 17 题图)(16)二次函数 y =(a -1)x ²-x +a ²-1 的图象经过坐标原点,则 a 的值为.(17)如图,已知正方形 ABCD 与正方形 AEFG 的边长分别为 4cm ,1cm ,若将正方形 AEFG 绕点A 旋转,则在旋转过程中,点 C 、F 之间的最小距离为.(18)已知二次函数 y =x ²-2mx +1(m 为常数),当自变量 x 的值满足-1≤x ≤2 时,与其对应的函数值 y 的最小值为-2,则 m 的值为.(20)(本小题 8 分) 已知抛物线 y =-x ²+2x +3.(Ⅰ)用配方法求它的顶点坐标和对称轴; (Ⅱ)直接写出抛物线与 x 轴的两个交点 A 、B (点 A 在点 B 的左侧)及与 y 轴的交点 C 的 坐标.(21)(本小题 10 分)如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点 B ,且 AB =OC ,求∠A 的度数.已知:△ABC 内接于⊙O,过点A 作直线EF.(Ⅰ)如图甲,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(写出两种情况):①或②;(Ⅱ)如图乙,AB 是非直径的弦,若∠CAF=∠B,求证:EF 是⊙O 的切线;(Ⅲ)如图乙,若EF 是⊙O 的切线,CA 平分∠BAF,求证:OC⊥AB.某电子商投产一种新型电子产品,每件制造成本为18 元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(Ⅰ)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价-制造成本);(Ⅱ)当销售单价为多少元时,厂商每月能够获得350 万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?在数学兴趣小组活动中,小明进行数学探究活动,将边长为2 的正方形ABCD 与边长为2 2 的正方形AEFG 按图①位置放置,AD 与AE,AB 与AG 分别在同一直线上.(Ⅰ)小明发现DG⊥BE,请你帮他说明理由;(Ⅱ)如图②,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.如图,二次函数y=x²+bx+c 的图象与x 轴交于A、B 两点,与y 轴交于点C,OB=OC.点D 在函数图象上,CD∥x 轴,且CD=2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(Ⅰ)求b、c 的值;(Ⅱ)如图①,连接BE,线段OC 上的点F 关于直线l 的对称点F ' 恰好在线段BE 上,求点F 的坐标;(Ⅲ)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.。
天津市红桥区2017届九年级中考模拟数学试题(解析版)
1.A【解析】2017的倒数是12017.故选A.2.D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选D.3.C【解析】1π、3x、25的分母中不含有字母,属于整式,11x-的分母中含有字母,属于分式.故选C.4.B【解析】1100000000=1.1×109,故选B.【点睛】本题考查了众数、中位数、加权平均数、方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数,能熟练掌握平均数和方差公式并加以应用是解题的关键.6.C【解析】A、不是中心对称图形,错误;B、不是中心对称图形,错误;C、是中心对称图形,正确;D、不是中心对称图形,错误.故选C.在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCEDF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确,故选C.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8.B【解析】竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选B.9.A【解析】解不等式2x-6≤0得,x≤3解不等式x+4>0得,x>﹣4在数轴上表示为:故选A.【点睛】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.13.x ≥2【解析】由题意得:x ﹣2≥0,解得:x ≥2,14.抽样调查【解析】了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,观察图象可知3三次一个循环,一个循环点M 1203π+1201180π+1201180π=)π, ∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为)ππ=+896)π.【点睛】本题考查轨迹、规律题、弧长公式、等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,从特殊到一般的探究方法.17.①④⑤【解析】①∵开口向下,∴a <0,∵与y 轴交于正半轴,∴c >0,∵对称轴在y 轴右侧,∴b >0,∴abc <0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣2ba=1, ∴2a+b=0,故②错误;∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故③错误; ∵b=﹣2a ,∴可将抛物线的解析式化为:y=ax 2﹣2ax+c (a ≠0);由函数的图象知:当x=﹣2时,y <0;即4a ﹣(﹣4a )+c=8a+c <0,故④正确;∵二次函数的图象和x 轴的一个交点时(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0), ∴设y=ax 2+bx+c=a (x ﹣3)(x+1)=ax 2﹣2ax ﹣3a ,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.【点睛】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.19.【解析】试题分析:首先利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.试题解析:原式=4+1﹣+3=3.20.【解析】试题分析:根据分式的运算法则即可求出答案.试题解析:原式=()()()21111x xx x x x++-+=11x-,当+1时,原式21.【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可; (2)分别计算出小王和小李去植树的概率即可知道规则是否公平. 试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种, 所以P (小王)=34; (2)不公平,理由如下: ∵P (小王)=34,P (小李)=14,34≠14, ∴规则不公平. 22.【解析】米. ∵∠D′CE′=39°,∴CE′=''tan 39D E ≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D 向后水平移动7米才能保证教学楼的安全.【点睛】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解题的关键.23.【解析】试题分析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据数量=总价÷单价结合花3万元购买A种设备和花7.2万元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;24.【解析】试题分析:(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长,即可得到四边形ABC'D′的周长为;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.试题解析:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为或.25.【解析】试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.试题解析:(1)连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴PB PD,∴点P为BD的中点;26.【解析】试题分析:(1)利用待定系数法求二次函数的表达式;(2)先求出OB和AB的长,根据勾股定理的逆定理证明∠ABO=90°,由对称计算∠QCB=60°,利用特殊的三角函数列式可得BQ的长;(3)因为D在OB上,所以F分两种情况:i)当F在边OA上时,ii)当点F在AB上时,当F在边OA上时,分三种情况:①如图2,过D作DF⊥x轴,垂足为F,则E、F在OA上,②如图3,作辅助线,构建△OFD≌△EDF≌△FGE,③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,当点F在OB上时,过D作DF∥x轴,交AB于F,连接OF与DA,依次求出点E的坐标即可.试题解析:(1)将点A的坐标代入二次函数的解析式得:﹣12×42+4b=0,解得b=2,∴二次函数的表达式为y=﹣12x2+2x.(2)∵y=﹣12x2+2x=﹣12(x﹣2)2+2,∴B(2,2),抛物线的对称轴为x=2.如图1所示:由两点间的距离公式得:,.∵C 是OB 的中点,∴∵△OB′C 为等边三角形, ∴∠OCB′=60°.(3)分两种情况: i )当F 在边OA 上时,①如图2,过D 作DF ⊥x 轴,垂足为F , ∵△DOF ≌△DEF ,且E 在线段OA 上, ∴OF=FE ,由(2)得:, ∵点D 在线段BO 上,OD=2DB ,∴OD=23 , ∵∠BOA=45°, ∴cos45°=OFOD,43,则OE=2OF=83, ∴点E 的坐标为(83,0);∵DE=OF=43,DF=DF , ∴△OFD ≌△EDF , 同理可得:△EDF ≌△FGE , ∴△OFD ≌△EDF ≌△FGE ,∴OG=OF+FG=OF+DE=43+43=83,EG=DF=OD •sin45°=43, ∴E 的坐标为(83,43);③如图4,将△DOF 沿边DF 翻折,使得O 恰好落在AB 边上,记为点E , 过B 作BM ⊥x 轴于M ,过E 作EN ⊥BM 于N , 由翻折的性质得:△DOF ≌△DEF ,∴,∵BD=12,∴在Rt △DBE 中,由勾股定理得:,则,,BM ﹣BN=2,∴点E 的坐标为:(2则∠BDF=∠BFD ,∠ODF=∠AFD ,∴OD=OB ﹣BD=BA ﹣BF=AF ,则△DOF ≌△DAF ,∴E 和A 重合,则点E 的坐标为(4,0);综上所述,点E 的坐标为:(83,0)或(83,43)或(2)或(4,0).【点睛】本题是二次函数的综合题,考查了利用了待定系数法求二次函数的解析式、勾股定理、三角形全等和相似的性质和判定、特殊的三角函数、等边三角形,第三问有难度,正确画图是关键,要采用分类讨论的思想.。
2016~2017学年天津红桥区初三上学期期末数学试卷(解析)
6. 正六边形的边心距与边长之比为( ).
A. [Math Processing
B. [Math Processing
Error]
Error]
C. [Math Processing Error]
D. [Math Processing Error]
答案 D
解 析 如图:设正六边形的边长是[Math Processing Error],则半径长也是[Math Processing Error]; 经过正六边形的中心[Math Processing Error]作边[Math Processing Error]的垂线段[Math Processing Error],则[Math Processing Error], 于是[Math Processing Error], 所以正六边形的边心距与边长之比为:[Math Processing Error].
[Math Processing Error],[Math Processing Error]正确;
[Math Processing Error]、∵二次函数的对称轴为[Math Processing Error],
∴函效的图象关于直线[Math Processing Error]对称,[Math Processing Error]正确;
A. [Math Processing Error]对
B.
j[EiMarroaotrsh]对C.
[Math Processing Error]对
D. [Math Processing Error]对
答案 C
解 析 ∵[Math Processing Error],[Math Processing Error], ∴[Math Processing Error],[Math Processing Error],[Math Processing Error]. ∴图中相似三角形的对数是:[Math Processing Error]对.
2017学年第一学期期末教学质量监测九年级数学试卷及详细解答
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
天津市部分地区2017-2018学年度第一学期期末试卷九年级数学(高清版-附答案)
天津市部分地区2017-2018学年度第一学期期末试卷九年级数学(高清版-附答案)天津市部分区2017~2018学年度第一学期期末考试九年级数学参考答案一、选择题(每小题3分,共36分)1 2 3 4 5 6 7 8 9 10 11 12题号答D A B C D C D A A B B C案二、填空题(每小题3分,共18分); 16.65; 17.20 13.-4 ; 14.(3,-2);15.12个;18.1或6或11或26(注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分)19.(1)解:移项,得x2﹣8x= -1,配方,得x2﹣8x+ 42= -1+42即(x-4)2=15. .......................... ..................2分∴ x﹣4=±15∴ x115x2=4﹣15.............................................4分(2)解:因式分解,得(x-3)(x+1)=0 ............................................1分于是得 x-3=0 , 或x+1=0 ............................................2分∴x 1=3,x 2=-1. .............................................4分20.解:(1)△A′BC′如图所示; .............................................3分(2)∵BC′=BC=4,∠CBC′=90º∴22442+= .............................................5分(3)点A 经过的路径为以点B 为圆心,AB 为半径的圆弧,路径长即为弧长,∵22345+=,∠ABA′=90º .................6分 ∴¼'AA 的长为:180n r π=90551802ππ⨯⨯=, 即点A 经过的路径长为52π. ...................8分 21.(1)设每公顷水稻产量的年平均增长率为x , ............................................1分根据题意,得7200(1+x)2=8712............................................4分解得:x1=0.1,x2=﹣2.1(不合题意,舍去)............................................6分答:年平均增长率为10%; (7)分(2)由题意,得8712(1+0.1)=9583.2(kg)因为9583.2<10000 .................................. ..........9分所以,2016年该村水稻产量不能达到10000kg ............................................10分22.解:如图,连接OD .......................................... ..1分∵AB是⊙O的直径∴∠ACB=∠ADB= 90°,.......................................... ..3分在Rt△ABC中,BC=2222-=-=16(cm) ..............................2012AB AC..............5分∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD.∴AD=BD ...... .....................................7分又在Rt△ABD中,222+=AD BD AB∴ AD=BD=2AB=22×20=1022(cm)............................................10分23.解:(1)同学甲的方案不公平.............................................1分理由如下:开始第一次红1 红2 白蓝第二次红2 白蓝红1 白蓝 1 2 红1 红2 白 (5)分由树状图可以看出,所有可能出现的结果共有12种,即:红1 红1 红1 红2 红2 红2 白白白蓝蓝蓝红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种,摸到“一白一蓝”的有2种,故小刚获胜的概率为41,小明获胜的概率为=12321............................................7分=126两人获胜的概率不相同,所以该方案不公平.......................................8分(2)拿出一个红球或放进一个蓝球,其他不变(答案不唯一)...............................10分24.解:(1)直线DM与⊙O相切 (1)分证明:连接OD , ............ ................................2分∵OB=OD∴∠B=∠ODB............................................3分∵AB=AC∴∠B=∠C............................................4分∴∠ODB =∠C∴OD∥AC............................................5分又∵DM⊥AC∴DM⊥OD∴DM与OD相切.................... ........................6分(2)连接OE交AB 于点H ...........................................7分∵E是»AB的中点,AB=24∴OE⊥AB,AB=12 ................................. AH=12..........8分连接OA, 设⊙O 的半径为x ...........................................9分由EH=8,则OH=x-8在RtΔOAH 中,根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2,0),C (0,2)代入y=﹣x 2+mx+n ,得0422m n n =--+⎧⎨=⎩,解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣x+2,则易得B (1,0).∵S △AOM =2S △BOC , ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分整理,得x 2+x=0或x 2+x ﹣4=0,解得x=0或 x=﹣1或x=1172- .............................6分则符合条件的点M 的坐标为:(0,2)或(-1,2)或(1172-+,-2)117--,-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ,将A (﹣2,0),C (0,2)代入,得202k b b -+=⎧⎨=⎩, 解得12k b =⎧⎨=⎩. 即直线AC 的解析式为y=x+2. ............................................8分设N 点坐标为(x ,x+2),(﹣2≤x≤0),则D 点坐标为(x ,﹣x 2﹣x+2),ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1,∴当x=﹣1时,ND有最大值1............................................ 10分。
九年级数学上学期期末考试试题(扫描版) (2)
天津市红桥区2017届九年级数学上学期期末考试试题红桥区2016~2017学年度第一学期九年级期末测试数学参考答案及评分标准一、选择题:本大题共12个小题,每小题3分,共36分.(1)A(2)A (3)B (4)D (5)C (6)D (7)C (8)D (9)B (10)A (11)C (12)D二、填空题:本大题共6个小题,每小题3分,共18分.(13)3100 (14)2π(15)2:3 (16)37.5(17)3 (18)10 三、解答题:本大题共7个小题,共66分.(19)(本小题满分8分)解:(1)∵某单位A ,B ,C ,D 四人随机分成两组赴北京,上海学习,∴A 去北京的概率为:12; …………………………………………… 2分 (2)画树状图得: …………………………………………… 4分∵共有12种等可能的结果,A ,B 都去北京的有2种情况,∴A ,B 都去北京的概率为:21=126; …………………………………………… 6分 (3)由(2)得:A ,B 分在同一组的有4种情况,∴A ,B 分在同一组的概率为:41=123. …………………………………………… 8分 (20)(本小题满分8分)解:(1)∵ADF △旋转一定角度后得到ABE △,∴旋转中心为点A ,DAB ∠等于旋转角,∴旋转角为90︒; …………………………………………… 3分(2)∵ADF △以点A 为旋转轴心,顺时针旋转90°后得到ABE △,∴4AE AF ==,60AEB F ∠=∠=︒, ∴906030ABE ∠=︒︒=︒﹣,∵四边形ABCD 为正方形,∴AD AB ==,45ABD ∠=︒,∴4DE =-,15EBD ABD ABE ∠=∠-∠=︒. …………………………………………… 8分(21)(本小题满分10分)解:(1)由2340x x -++=解得1x =-或4x =,所以A 、B 两点坐标为(10)-,和(40),; …………………………………………… 2分 (2)抛物线234y x x =-++与y 轴交点C 坐标为(04),,由(1)得,(40)B ,, 设直线BC 的函数关系式y kx b =+,∴404k b b +=⎧⎨=⎩,,解得14k b =-⎧⎨=⎩,,∴直线BC 的函数关系式为4y x =-+; ………………………………………… 4分(3)抛物线234y x x =-++的对称轴为32x =, 对称轴与直线BC 的交点记为D ,则D 点坐标为35()22,. ∵点P 在抛物线的对称轴上,∴设点P 的坐标为3()2m ,, ∴5||2PD m =-, ∴1•42PBC S OB PD ==△. ∴154||=422m ⨯⨯-, ∴92m =或12m =. ∴点P 的坐标为39()22,或31()22,. ……………………………………… 10分第(21)题(22)(本小题满分10分)(1)证明:连结OD ,如图,∵DF 是圆的切线,∴OD DF ⊥,∴90ODF ∠=︒,∵ABC △为等边三角形,∴60C A ∠=∠=︒,而OD OC =,∴60ODC ∠=︒,∴ODC A ∠=∠,∴OD AB ,∴DF AB ⊥; ……………………………………… 5分(2)解:在Rt ADF △中,60A ∠=︒,∴30ADF ∠=︒,∴2224AD AF ==⨯=,而OD AB ∥,点O 为BC 的中点,∴OD 为ABC △的中位线,∴4AD CD ==,即8AC =,∴8AB =,∴6BF AB AF =-=,∵FG BC ⊥,∴90BGF ∠=︒,在Rt BFG △中,30BFG ∠=︒,∴3BG =,则根据勾股定理得33FG =. ……………………………………… 10分(23)(本小题满分10分)解:(1)∵(22)A ,在反比例函数k y x=的图象上,∴4k =. ∴反比例函数的解析式为4y x=. ……………………………………… 1分 又∵点1()2B n ,在反比例函数4y x =的图象上,∴142n =,解得:8n =, 即点B 的坐标为1(8)2,. ……………………………………… 2分 由(22)A ,、1()2B n ,在一次函数y ax b =+的图象上, 得:22182a b a b =+⎧⎪⎨=+⎪⎩,,解得:410a b =-⎧⎨=⎩,, ……………………………………… 4分 ∴一次函数的解析式为410y x =-+. ……………………………………… 5分(2)将直线410y x =-+向下平移m 个单位得直线的解析式为410y x m =-+-, ………… 6分 第(22)题 B OAFCDE G∵直线410y x m =-+-与双曲线4y x=有且只有一个交点, 令4410x m x-+-=,得24(10)40x m x +-+=, ……………………………………… 7分 ∴2(10)640m =--=△,解得:2m =或18m =. ……………………………………… 10分(24)(本小题满分10分)(1)证明:∵AB AC =,36A ∠=︒,∴72ABC C ∠=∠=︒, 又∵BE 平分ABC ∠,∴36ABE CBE ∠=∠=︒, ∴18072BEC C CBE ∠=︒-∠-∠=︒, ∴ABE A ∠=∠,BEC C ∠=∠, ∴AE BE =,BE BC =,∴AE BC =. ……………………………………………………………… 3分(2)证明:∵AC AB =且EF BC ∥,∴AE AF =; 由旋转的性质可知:E AC F AB ∠'=∠',AE AF '=', ∵在CAE '△和BAF '△中 ''''AC AB E AC F AB AE AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴CAE BAF ''△≌△,∴CE BF '='. ……………………… 6分 (3)存在CE AB '∥,理由:由(1)可知AE BC =,所以,在AEF △绕点A 逆时针旋转过程中,E 点经过的路径(圆弧)与过点C 且与AB 平行的直线l 交于M 、N 两点,如图:①当点E 像E '与点M 重合时,则四边形ABCM 为等腰梯形, ∴72BAM ABC ∠=∠=︒,又36BAC ∠=︒,∴36CAM α=∠=︒. ②当点E 像E '与点N 重合时, 由AB l ∥得,72AMN BAM ∠=∠=︒, ∵AM AN =,∴72ANM AMN ∠=∠=︒, ∴18027236MAN ∠=︒-⨯︒=︒,36°第(24)题BF AClE (')N E (')M E∴72CAN CAM MAN α=∠=∠+∠=︒.所以,当旋转角为36°或72°时,CE AB '∥. ……………………………………… 10分(25)(本小题满分10分)解:(1)把点(40)A ,,(13)B ,代入抛物线2y ax bx =+中, 得 01643a b a b =+⎧⎨=+⎩,, 解得:14a b =-⎧⎨=⎩,,∴抛物线表达式为:24y x x =-+;…………………………… 2分(2)点C 的坐标为(33),, 又∵点B 的坐标为(13),, ∴2BC =,∴12332ABC S =⨯⨯=△;………………………… 3分(3)过P 点作PD BH ⊥交BH 于点D , 设点2(4)P m m m -+,, 根据题意,得:3BH AH ==,24HD m m =-,1PD m =-, ∴ABP ABH BPD HAPD S S S S =+-△△△四边形,22111633(31)(4)(1)(34)222m m m m m m =⨯⨯++----+-,∴23150m m -=,10m =(舍去),25m =,∴点P 坐标为(55)-,. ……………………………………… 6分 (4)以点C 、M 、N 为顶点的三角形为等腰直角三角形时,分三类情况讨论: ①以点M 为直角顶点且M 在x 轴上方时,如图2,CM MN =,90CMN ∠=︒, 则CBM MHN △≌△,∴2BC MH ==,321BM HN ==-=, ∴(12)M ,,(20)N ,, 由勾股定理得:22215CM =+=,∴155522CMN S =⨯⨯=△;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt NEM △和Rt MDC △,得Rt Rt NEM MDC △≌△,∴5EM CD ==,2MD NE ==, 由勾股定理得:222529CM =+=,∴129292922CMN S =⨯⨯=△;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN MN =,90MNC ∠=︒,作辅助线, 同理得:223534CN =+=,∴13434172CMN S =⨯⨯=△;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得:223110CN =+=,∴1101052CMN S =⨯⨯=△;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形; 综上所述:CMN △的面积为:52或292或17或5.……………………………………… 10分感谢下载资料仅供参考!。
2018-2019学年天津市红桥区九年级(上)期末数学试卷(有答案和解析)
2018-2019学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.66.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.77.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x110.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE 的长为.17.二次函数y=ax2+4x+a的最大值是3,则a的值是.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为,CD的长.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2018-2019学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据相似三角形的性质解答即可.【解答】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.【点评】此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.【点评】此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【分析】根据相似三角形的判定和性质列比例式即可得到结论.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【分析】利用弧长公式可得.【解答】解:=.故选:D.【点评】此题主要是利用弧长公式进行计算,学生要牢记公式.8.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【解答】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,﹣6<﹣2<0<2,∴x2<x1<x3,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【分析】本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20﹣x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.【解答】解:设一条直角边为x,则另一条为(20﹣x),∴S=x(20﹣x)=﹣(x﹣10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.11.【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.【点评】本题主要考查切线的性质及直角三角形的勾股定理.12.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选:B.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.二、填空题(本大题共名小题,每小题3分,共18分)13.【分析】根据反比例函数的一般式是(k≠0)或y=kx﹣1(k≠0),即可求解.【解答】解:∵y=x m﹣1是反比例函数,∴m﹣1=﹣1,解得m=0.故答案为:0.【点评】本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【解答】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点评】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.【分析】根据二次函数的最大值公式列出方程计算即可得解.【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.【分析】根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH 为等腰直角三角形得到BH=CH=BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.20.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.【分析】(Ⅰ)依据一次函数,求得B(﹣2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=﹣5;当x=5时,y=﹣2,即可得到函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.【解答】解:(Ⅰ)在y=﹣2x+1中,令y=5,则x=﹣2,∴B(﹣2,5),代入反比例函数y=,可得k=﹣2×5=﹣10,∴反比例函数的解析式为,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=﹣5;当x=5时,y=﹣2,∴函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)当x=0时,y=﹣2x+1=1,∴A(0,1),∴OA=1,∴S=OA•|x B|=×1×2=1.△AOB【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.【分析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF =∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.【解答】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点评】本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.【分析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.【解答】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB﹣∠BAC=15°,∵∠ABE=∠ADE,∴∠ADE=15°,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC﹣∠DAO=45°,且∠C=60°∴∠ADC=75°【点评】本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA ′=∠AA ′O =30°,∵∠OA ′B ′=30°,∴∠AA ′K =60°,∴∠AKA ′=90°,∵OA ′=,∠OA ′K =30°,∴OK =OA ′=,A ′K =OK =, ∴A ′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 25.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P 1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣ a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y =﹣x 2+mx +n 经过A (﹣1,0),C (0,2). 解得:,∴抛物线的解析式为:y =﹣x 2+x +2;(2)∵y =﹣x 2+x +2,∴y =﹣(x ﹣)2+,∴抛物线的对称轴是x =.∴OD =.∵C (0,2),∴OC =2.在Rt △OCD 中,由勾股定理,得CD =.∵△CDP 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD .作CM ⊥x 对称轴于M ,∴MP 1=MD =2,∴DP 1=4.∴P 1(,4),P 2(,),P 3(,﹣);(3)当y =0时,0=﹣x 2+x +2∴x 1=﹣1,x 2=4,∴B (4,0). 设直线BC 的解析式为y =kx +b ,由图象,得,解得:,∴直线BC 的解析式为:y =﹣x +2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣ a +2),F (a ,﹣ a 2+a +2), ∴EF =﹣a 2+a +2﹣(﹣a +2)=﹣a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD •OC +EF •CM +EF •BN ,=+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a +(0≤a ≤4).=﹣(a ﹣2)2+ ∴a =2时,S 四边形CDBF 的面积最大=, ∴E (2,1).【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。
天津市红桥区九年级(上)期末数学试卷
九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. “打开电视机,正在播《都市报道60分》”是必然事件B. “从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C. “概率为0.0001的事件”是不可能事件D. “经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A. B. C. D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A. 2:1B. 3:1C. 4:3D. 3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A. CM=DMB. CB=DBC. ∠ACD=∠ADCD. OM=MD5.若正方形的边长为6,则其外接圆的半径为()A. 3B. 32C. 6D. 626.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A. 4B. 5C. 6D. 77.在半径为3的圆中,150°的圆心角所对的弧长是()A. 154πB. 152πC. 54πD. 52π8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A. 20∘B. 25∘C. 40∘D. 50∘9.若点A(x1,-6),B(x2,-2),C(x3,2)在反比例函数y=m2+1x(m为常数)的图象上,则x1,x2,x3的大小关系是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x110.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A. 25cm2B. 50cm2C. 100cm2D. 不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A. 2B. 23C. 3D. 2212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A. −3B. 3C. −6D. 9二、填空题(本大题共6小题,共18.0分)13.已知y=x m-1,若y是x的反比例函数,则m的值为______.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是______.15.一个等边三角形边长的数值是方程x2-3x-10=0的根,那么这个三角形的周长为______.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为______.17.二次函数y=ax2+4x+a的最大值是3,则a的值是______.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为______,CD的长______.三、解答题(本大题共7小题,共66.0分)19.已知关于x的一元二次方程x2+x+m-1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.已知直线y=-2x+1与y轴交于点A,与反比例函数y=kx(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.在平面直角坐标系中,O为原点,点A(-3,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案和解析1.【答案】D【解析】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【答案】A【解析】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.根据相似三角形的性质解答即可.此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【答案】D【解析】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【答案】B【解析】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【答案】C【解析】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.根据相似三角形的判定和性质列比例式即可得到结论.本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【答案】D【解析】解:=.故选:D.利用弧长公式可得.此题主要是利用弧长公式进行计算,学生要牢记公式.8.【答案】C【解析】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.连接OA,根据切线的性质,即可求得∠C的度数.本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【答案】B【解析】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,-6),B(x2,-2),C(x3,2)在反比例函数y=(m为常数)的图象上,-6<-2<0<2,∴x2<x1<x3,故选:B.根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【答案】B【解析】解:设一条直角边为x,则另一条为(20-x),∴S=x(20-x)=-(x-10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20-x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.11.【答案】B【解析】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.本题主要考查切线的性质及直角三角形的勾股定理.12.【答案】B【解析】解:(法1)∵抛物线的开口向上,顶点纵坐标为-3,∴a>0,=-3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,可见-m≥-3,∴m≤3,∴m的最大值为3.故选:B.先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.13.【答案】0【解析】解:∵y=x m-1是反比例函数,∴m-1=-1,解得m=0.故答案为:0.根据反比例函数的一般式是(k≠0)或y=kx-1(k≠0),即可求解.本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.【答案】37【解析】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】15【解析】解:x2-3x-10=0,(x-5)(x+2)=0,即x-5=0或x+2=0,∴x1=5,x2=-2.因为方程x2-3x-10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.【答案】3.6【解析】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.【答案】-1【解析】解:由题意得,=3,整理得,a2-3a-4=0,解得a1=4,a2=-1,∵二次函数有最大值,∴a<0,∴a=-1.故答案为:-1.根据二次函数的最大值公式列出方程计算即可得解.本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.【答案】8 72【解析】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH为等腰直角三角形得到BH=CH= BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.19.【答案】解:(Ⅰ)当m=0时,方程为x2+x-1=0.△=12-4×1×(-1)=5>0.∴x=−1±52×1,∴x1=−1+52,x2=−1−52.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(-1)2-4×1×(m-1)=1-4m+4=5-4m>0∵5-4m>0∴m<54.【解析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2-4ac.20.【答案】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为316.【解析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.【答案】解:(Ⅰ)在y=-2x+1中,令y=5,则x=-2,∴B(-2,5),代入反比例函数y=kx,可得k=-2×5=-10,∴反比例函数的解析式为y=−10x,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=-5;当x=5时,y=-2,∴函数值y的取值范围为-5<y<-2;(Ⅲ)当x=0时,y=-2x+1=1,∴A(0,1),∴OA=1,∴S△AOB=12OA•|x B|=12×1×2=1.【解析】(Ⅰ)依据一次函数,求得B(-2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=-5;当x=5时,y=-2,即可得到函数值y的取值范围为-5<y<-2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.【答案】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中AB=BC∠ABC=∠BAC=∠C=60°BD=CE,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴ADBD=BDDF,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=22.【解析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.【答案】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB-∠BAC=15°,∵∠ABE=∠ADE,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC-∠DAO=45°,且∠C=60°∴∠ADC=75°【解析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.【答案】解:(Ⅰ)如图①,∵A(-3,0),B(0,1),∴OA=3,OB=1,∴tan∠BAO=OBOA=33,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′-OB=3-1,∠BA′C=30°,∴BC=12A′B=3−12,∵∠HBC=60°,∴BH=12BC=3−14,CH=3BH=3−34,∴OH=1+BH=3+34,∴点C的坐标(3−34,3+34).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AA′K=60°,∴∠AKA′=90°,∵OA′=3,∠OA′K=30°,∴OK=12OA′=32,A′K=3OK=32,∴A′(32,32).【解析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:(1)∵抛物线y=-12x2+mx+n经过A(-1,0),C(0,2).解得:m=32n=2,∴抛物线的解析式为:y=-12x2+32x+2;(2)∵y=-12x2+32x+2,∴y=-12(x-32)2+258,∴抛物线的对称轴是x=32.∴OD=32.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=52.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(32,4),P2(32,52),P3(32,-52);(3)当y=0时,0=-12x2+32x+2∴x1=-1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得2=b0=4k+b,解得:k=−12b=2,∴直线BC的解析式为:y=-12x+2.如图2,过点C作CM⊥EF于M,设E(a,-12a+2),F(a,-12a2+32a+2),∴EF=-12a2+32a+2-(-12a+2)=-12a2+2a(0≤a≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=12BD•OC+12EF•CM+12EF•BN,=12×52×2+12a(-12a2+2a)+12(4-a)(-12a2+2a),=-a2+4a+52(0≤a≤4).=-(a-2)2+132∴a=2时,S四边形CDBF的面积最大=132,∴E(2,1).【解析】(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,-a+2),就可以表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。
天津市红桥区2017届九年级上期中数学试卷含答案解析
B.当 x>﹣2 时,y 随 x 的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是 x1﹣
10.如图,点 A、B、C 是圆 O 上的三点,且四边形 ABCO 是平行四边形,OF⊥ OA 交圆 O 于点 F,则∠CBF 等于( )
A.12.5° B.15° C.20° D.22.5°
11.已知 x1 是关于 x 的一元二次方程 a2x+bx+c=0(a≠0)的一个根,记△
=b2﹣4ac,M=(2ax +b)2
,则关于△与 M 大小关系的下列说法中,正确的是
()
1
A.△>M B.△=M
C.△<M D.无法确定△与 M 的大小
第 2 页(共 28 页)
A.
B.
C.
D.
4.关于 x 的一元二次方程 x2﹣2x+m=0 有两个不相等的实数根,则实数 m 的取 值范围是( ) A.m> B.m= C.m< D.m<﹣ 5.如图,点 A,B,C 是⊙O 上的三点,已知∠ACB=50°,那么∠AOB 的度数是 ()
A.90° B.95° C.100° D.120° 6.在平面直角坐标系中,把点 P(﹣2,2)绕原点 O 顺时针旋转 180°,所得到 的对应点 P′的坐标为( ) A.(3,2) B.(2,﹣2) C.(﹣2,﹣2) D.(3,﹣2) 7.函数 y1﹣x2+1 的图象大致为( )
2016-2017 学年天津市红桥区九年级(上)期中数学试卷
一、选择题(共 12 小题,每小题 3 分,满分 36 分) 1.下列方程中,关于 x 的一元二次方程是( ) A.x2﹣2x﹣2=0 B.x2﹣2y﹣110 C.x2﹣x(x+3)=0 D.ax2+bx+c=0 2.将一元二次方程 4x2+5x=81 化为一般形式后,二次项系数、一次项系数、常 数项分别为( ) A.4,5,81 B.4,5,﹣81 C.4,5,0 D.24,x5x,﹣81 3.下列图案中既是中心对称图形,又是轴对称图形的是( )
2017年上期末数学试题(九年级)
2016—2017学年第一学期期末考试九 年 级 数 学 试 卷注意事项: 1.本卷共4页,共有25小题,满分120分,考试时限120分钟。
2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。
3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。
一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.下列四个图形中,不是中心对称图形的是( ) A .①③ B .②④ C .①④ D .②③2.如图,ABC △内接于O ⊙,OD ⊥BC 于D ,若70A ∠=︒,则OCD ∠的大小为 ( ) A .35° B .30° C .25° D .20° 3.一元二次方程230x x -=的根为( ) A .x =3 B .x =-3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.若函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-15.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .112 B .61 C .41 D .136.已知⊙O 的半径为5cm ,弦AB 长为8cm ,则这条弦的中点到弦所对劣弧的中点的距离为( ) A .1 B .2 C .3 D .47.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( ) A .21 B .41 C .61 D .818.在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点 C 顺时针旋转60°,则顶点A 所经过的路径长为( ) A .10π B .103 C .103π D .π9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴, 垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A .47 B .22 C .27 D .5(第2题图) (第8题图)(第9题图)10.如图,二次函数c bx ax y ++=2(a ≠0)的图象经过点(1,2) 且与x 轴交点的横坐标分别为x 1,x 2,其中一1<x 1<0,1<x 2<2, 下列结论:①c b a ++24<0;②b a +2<0;③a b 82+>4ac ;④a <-1. 其中结论正确的个数有( )A .1个B .2个C .3个D .4个二、填空题:(本题有6个小题,每小题3分,共18分)11.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P BA ',则∠PBP '的度数是 . 12.十张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张, 则(P 摸到数字大于4)= . 13.某种型号的笔记本电脑,原售价7500元/台,经连续两次降价后,现售价为4800元/台, 则平均每次降价的百分率为 .14.将抛物线222y x x =-+沿y 向下平移1个单位,则所得的抛物线的顶点坐标是 . 15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E . 则阴影部分面积为 (结果保留π).16.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y = 2x(x >0)的图象经过A 、E 两点,则点D 的坐标为____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 用公式法解方程:230x x --=18.(本题满分6分)从男女学生共48人的班级中,选一名班长,假设任何人都有同样的当选机会,如果选得男生的概率为32,求男女学生人数. 19.(本题满分7分) 如图,AB 是⊙O 的直径,直线PQ 过⊙O 上的点C ,PQ 是⊙O 的切线. 求证:∠BCP =∠A .(第15题图)(第10题图) 12 (第16题图)(第11题图)(第19题图)20.(本题满分7分) 某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑. 东沟中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,求选中A 型号电脑的概率; (2)已知东沟中学购买甲、乙两种品牌电脑共36台(价格如图所示), 恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑, 求购买的A 型号电脑有几台.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22.(本题满分8分)如图,正比例函数12y x =的图象与反比例函数ky x=第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1..(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.23.(本题满分9分)武当超市购进一批每千克价格为6元的新上市西瓜,在超市试销中发现:销售单价x (元/千克)与每天销售量y (千克)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)写出每天的利润w 与销售单价x 之间的函数关系式,为了缩短西瓜销售期,规定每千克销售单价不超过12元,若你是超市负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?(第22题图)(第23题图)E24.(本题满分10分) 如图,在△ABC 中,AB = AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E , 点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°,AD =3时,求BF 的长.25.(本题满分12分)如图,已知抛物线2(1)33y a x =-+(a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 作平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.(第24题图)BA CDEGOFxyMCDPQOAB (第25题图)。
天津市红桥区九年级数学上学期期末考试试题(扫描版)
天津市红桥区2017届九年级数学上学期期末考试试题红桥区2016~2017学年度第一学期九年级期末测试数学参考答案及评分标准一、选择题:本大题共12个小题,每小题3分,共36分. (1)A (2)A (3)B (4)D (5)C (6)D (7)C(8)D(9)B(10)A(11)C(12)D二、填空题:本大题共6个小题,每小题3分,共18分. (13)3100(14)2π (15)2:3(16)37.5(17)3(18三、解答题:本大题共7个小题,共66分. (19)(本小题满分8分)解:(1)∵某单位A ,B ,C ,D 四人随机分成两组赴北京,上海学习,∴A 去北京的概率为:12; …………………………………………… 2分 (2)画树状图得:…………………………………………… 4分∵共有12种等可能的结果,A ,B 都去北京的有2种情况, ∴A ,B 都去北京的概率为:21=126; …………………………………………… 6分 (3)由(2)得:A ,B 分在同一组的有4种情况, ∴A ,B 分在同一组的概率为:41=123. …………………………………………… 8分 (20)(本小题满分8分)解:(1)∵ADF △旋转一定角度后得到ABE △, ∴旋转中心为点A ,DAB ∠等于旋转角,∴旋转角为90︒; …………………………………………… 3分 (2)∵ADF △以点A 为旋转轴心,顺时针旋转90°后得到ABE △, ∴4AE AF ==,60AEB F ∠=∠=︒,∴906030ABE ∠=︒︒=︒﹣,∵四边形ABCD 为正方形,∴AD AB ==,45ABD ∠=︒,∴4DE =-,15EBD ABD ABE ∠=∠-∠=︒. …………………………………………… 8分 (21)(本小题满分10分)解:(1)由2340x x -++=解得1x =-或4x =,所以A 、B 两点坐标为(10)-,和(40),; …………………………………………… 2分 (2)抛物线234y x x =-++与y 轴交点C 坐标为(04),,由(1)得,(40)B ,, 设直线BC 的函数关系式y kx b =+, ∴404k b b +=⎧⎨=⎩,,解得14k b =-⎧⎨=⎩,,∴直线BC 的函数关系式为4y x =-+; ………………………………………… 4分 (3)抛物线234y x x =-++的对称轴为32x =, 对称轴与直线BC 的交点记为D ,则D 点坐标为35()22,.∵点P 在抛物线的对称轴上,∴设点P 的坐标为3()2m ,, ∴5||2PD m =-,∴1•42PBC S OB PD ==△.∴154||=422m ⨯⨯-, ∴92m =或12m =. ∴点P 的坐标为39()22,或31()22,. ……………………………………… 10分第(21)题(22)(本小题满分10分) (1)证明:连结OD ,如图,∵DF 是圆的切线,∴OD DF ⊥,∴90ODF ∠=︒, ∵ABC △为等边三角形,∴60C A ∠=∠=︒, 而OD OC =,∴60ODC ∠=︒,∴ODC A ∠=∠, ∴ODAB ,∴DF AB ⊥; ……………………………………… 5分(2)解:在Rt ADF △中,60A ∠=︒,∴30ADF ∠=︒,∴2224AD AF ==⨯=, 而OD AB ∥,点O 为BC 的中点,∴OD 为ABC △的中位线, ∴4AD CD ==,即8AC =,∴8AB =,∴6BF AB AF =-=, ∵FG BC ⊥,∴90BGF ∠=︒,在Rt BFG △中,30BFG ∠=︒,∴3BG =,则根据勾股定理得FG = ……………………………………… 10分(23)(本小题满分10分) 解:(1)∵(22)A ,在反比例函数ky x=的图象上,∴4k =. ∴反比例函数的解析式为4y x=. ……………………………………… 1分 又∵点1()2B n ,在反比例函数4y x =的图象上,∴142n =,解得:8n =, 即点B 的坐标为1(8)2,. ……………………………………… 2分 由(22)A ,、1()2B n ,在一次函数y ax b =+的图象上, 得:22182a b a b =+⎧⎪⎨=+⎪⎩,,解得:410a b =-⎧⎨=⎩,, ……………………………………… 4分 ∴一次函数的解析式为410y x =-+. ……………………………………… 5分 (2)将直线410y x =-+向下平移m 个单位得直线的解析式为410y x m =-+-, ………… 6分第(22)题B∵直线410y x m =-+-与双曲线4y x=有且只有一个交点, 令4410x m x-+-=,得24(10)40x m x +-+=, ……………………………………… 7分 ∴2(10)640m =--=△,解得:2m =或18m =. ……………………………………… 10分 (24)(本小题满分10分)(1)证明:∵AB AC =,36A ∠=︒,∴72ABC C ∠=∠=︒, 又∵BE 平分ABC ∠,∴36ABE CBE ∠=∠=︒, ∴18072BEC C CBE ∠=︒-∠-∠=︒, ∴ABE A ∠=∠,BEC C ∠=∠, ∴AE BE =,BE BC =,∴AE BC =. ……………………………………………………………… 3分(2)证明:∵AC AB =且EF BC ∥,∴AE AF =; 由旋转的性质可知:E AC F AB ∠'=∠',AE AF '=', ∵在CAE '△和BAF '△中 ''''AC AB E AC F AB AE AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴CAE BAF ''△≌△,∴CE BF '='. ……………………… 6分 (3)存在CE AB '∥,理由:由(1)可知AE BC =,所以,在AEF △绕点A 逆时针旋转过程中,E 点经过的路径(圆弧)与过点C 且与AB 平行的直线l 交于M 、N 两点,如图:①当点E 像E '与点M 重合时,则四边形ABCM 为等腰梯形, ∴72BAM ABC ∠=∠=︒,又36BAC ∠=︒,∴36CAM α=∠=︒. ②当点E 像E '与点N 重合时, 由AB l ∥得,72AMN BAM ∠=∠=︒, ∵AM AN =,∴72ANM AMN ∠=∠=︒, ∴18027236MAN ∠=︒-⨯︒=︒,第(24)题(')E ')∴72CAN CAM MAN α=∠=∠+∠=︒.所以,当旋转角为36°或72°时,CE AB '∥. ……………………………………… 10分(25)(本小题满分10分)解:(1)把点(40)A ,,(13)B ,代入抛物线2y ax bx =+中, 得 01643a b a b =+⎧⎨=+⎩,, 解得:14a b =-⎧⎨=⎩,,∴抛物线表达式为:24y x x =-+;…………………………… 2分 (2)点C 的坐标为(33),, 又∵点B 的坐标为(13),,∴2BC =,∴12332ABC S =⨯⨯=△;………………………… 3分(3)过P 点作PD BH ⊥交BH 于点D , 设点2(4)P m m m -+,, 根据题意,得:3BH AH ==,24HD m m =-,1PD m =-, ∴ABP ABH BPD HAPD S S S S =+-△△△四边形,22111633(31)(4)(1)(34)222m m m m m m =⨯⨯++----+-,∴23150m m -=,10m =(舍去),25m =,∴点P 坐标为(55)-,. ……………………………………… 6分 (4)以点C 、M 、N 为顶点的三角形为等腰直角三角形时,分三类情况讨论: ①以点M 为直角顶点且M 在x 轴上方时,如图2,CM MN =,90CMN ∠=︒, 则CBM MHN △≌△,∴2BC MH ==,321BM HN ==-=, ∴(12)M ,,(20)N ,,由勾股定理得:CM ==∴1522CMN S ==△;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt NEM △和Rt MDC △,得Rt Rt NEM MDC △≌△,∴5EM CD ==,2MD NE ==,由勾股定理得:CM =,∴12922CMN S ==△;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN MN =,90MNC ∠=︒,作辅助线,同理得:CN ==∴1172CMN S ==△;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得:CN ==∴152CMN S =△;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形; 综上所述:CMN △的面积为:52或292或17或5.……………………………………… 10分。
2017-2018学年度上学期期末考试九年级数学试卷(含答案)
2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。
2017年红桥区初三结课考数学试题及答案(1)(1)
红桥区 2016-2017 学年度第二学期九年级结课考质量检测1 2 3 4 A.B.C.D.5555数学一、选择题:本大题共 12 小题,每小题 3 分,共 36 分。
在每小题给出的四个选项中,只有一项是符合题目的要求的。
1.方程的 2x 2-6x -5=0 二次项系数、一次项系数、常数项分别为 A.6、2、52.tan60°的值等于 B.2、-6、5C.2、-6、-5D.-2、6、5 A.2B. 3C. 22D. 323.下列汽车标志中既是轴对称图形又是中心对称图形的是A. B. C. D.4.如图,⊙O 的半径为 5,AB 为弦,半径 OC ⊥AB ,垂足为点 E ,若 OE =3,则 AB 的长是CBAE OA.4B.6C.8D.10 5 如图,在⊙O 中,弦 AC 与半径 OB 平行,若∠BOC =50°,则∠B 的大小为OABA.25°B. 30°C. 50°D. 60° 6.下列事件中,必然发生的事件是 A.明天会下雨 B.小明数学考试得 99 分 C.明年有 370 天 D.今天是星期一,明天就是星期二7. 在一个不透明的口袋中装有 5 个完全相同的小球,把他们分别标号为 1、2、3、4、5,从中随机摸出一个小球,其标号是奇数的概率为=8.如图是由六个相同的小正方体搭成的几何体,那么这个几何体的俯视图是A. B. C. D.9.如图,已知△ABC 与△ADE 中,∠C=∠AED=90°,点E 在AB 上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE 的是AC ABA. ∠B=∠DB.C. AD∥BCD.∠BAC=∠DDE AD10.如图,正六边形螺帽的边长是2cm,这个扳手的开口a 的值应是A. 2 3 cmB. 3 cmC.233cm D. 1cm11.如图,点A是反比例函数y =k的图象上的一点,过点A 作AB⊥x 轴,垂足为B,点Cx为y 轴上的一点,连接AC、BC,若△ABC 的面积为3,则k 的值是A.3 B.-3 C. 6 D.-612.如图,直线y =1x + 2 与y 轴交与点A,与直线y =-1x 交于点B,以AB 为边向右作菱2 2形ABCD,点C 恰好与原点O 重合,抛物线y=(x-h)2 +k的顶点在直线y =-1 x 上移动,2若抛物线与菱形的边AB、BC 都有公共点,则h 的取值范围是A. -2 ≤h ≤12B. -2 ≤h ≤1C. -1 ≤h ≤32D. -1 ≤h ≤12二、填空题:本大题共 6 小题,每小题3 分,共18 分,13.一元二次方程x2-2x=0 的根为.14.若关于x 的一元二次方程x2-2x-k=0 没有实数根,则k 的取值范围是15.已知反比例函数y =m + 2的图象在第二、四象限,则m 的取值范围是x16.如图,在平面直角坐标系中,直线OA 过点(2,1)则tanα的值是17.如图,△ABC 中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点E 从点B 出发沿线段BA 的方向移动到点A 停止,连接CE.若△ADE 与△CDE 的面积相等,则线段DE 的长度是18. 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA,使点B 在直线CD 上,连接OD 交AB 于点M,直线CD 的解析式为三、解答题(本大题共7 小题,共66 分.解答应写出文字说明、演算步骤或推理过程)19. (本小题满分8 分)解方程⑴ 2x2 - 4x -1 = 0 (配方法)⑵(x+1)2 =6x+620. (本小题满分8 分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12 米的建筑物CD 上的C 处观察,测得某建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1 米).(可供选用的数据:2 ≈1.4 ,3 ≈1.7 )21.(本小题满分10 分)⑴如图⑴,△ABC 内接于⊙O,AB 为直径,∠CAE=∠B,是说明AE 与⊙O 相切于点A⑵如图⑵中,若AB 为非直径的弦,∠CAE=∠B,AE 还与⊙O 相切于点A 吗?请说明理由22.(本小题满分10 分)一个不透明的口袋中有3 个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率23.(本小题满分10 分)如图,在梯形ABCD 中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E,连接DE,作EF⊥DE,交直线AB 于点F⑴若点F 与B 重合,求CE 的长;⑵若点F 在线段AB 上,且AF=CE,求CE 的长24.(本小题满分10 分)k (x > 0)经过边OB 的如图,等边△OAB 和等边△AFE 的一边都在x 轴上,反比例函数y =x中点C 和AE 中点D,已知等边△OAB 的边长为8⑴求反比例函数的解析式;⑵求等边△AFE 的周长25.(本小题满分10 分)在平面直角坐标系中,平行四边形ABCD 如图放置,点A、C 的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A'B'OC'⑴若抛物线经过点C、A、A',求此抛物线的解析式⑵在⑴的情况下,点M 是第一象限内抛物线上的一动点,问:当点M 在何处时,△AMA′ 的面积最大?最大面积是多少?并求出此时M 的坐标;⑶在⑴的情况下,若P 为抛物线上一动点,N 为x 轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P 的坐标,当这个平行四边形为矩形时,求点N 的坐标.三、解答题19. (本小题满分8 分)解方程⑴ x = 1+6x = 1-1 2 262⑵x1= 5 x2=-120. 解:过点C 作AB 的垂线,垂足为E,∵CD⊥BD,AB⊥BD,∴四边形CDBE 是矩形,∵CD=12m,∠ECB=45°,∴BE=CE=12m,∴AE=CE•tan30°=12 ×3=4 3 (m),3∴AB=4 3 +12≈19(m).答:建筑物AB 的高为19 米.一、选择题:参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C C A D C A A A D A 题号13 14 15 16 17 18答案x1= 0 x2= 2k <-1 m <-2123 135y =-7x + 42421. ⑴证明:如图1,连接BC.∵AB 是直径,∴∠ACB=90°.∴∠B+∠CAB=90°.∴AB⊥BC,∴AB∥DE,∵∠EAC=∠B,∴∠EAC+∠CAB=90°,即∠EAB=90°,∴AE 是⊙O 的切线;⑵解:AE 还是切线.理由如下:如图2,连接AO 并延长交圆于点F,连接FC.∵∠B=∠F,∠CAE=∠B,∴∠CAE=∠F.根据(1)的证明可知,AE 是⊙O 的切线.22 解:画树状图得:∵共有9 种等可能的结果,摸出的两个小球上的数字之和为偶数的有5 种情况,∴摸出的两个小球上的数字之和为偶数的概率为:5923. 解:⑴当F 和B 重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∵AD ∥BC ,∴四边形 ABED 是平行四边形, ∴AD =EF =9,∴CE =BC ﹣EF =12﹣9=3; ⑵过 D 作 DM ⊥BC 于 M , ∵∠B =90°, ∴AB ⊥BC , ∴DM ∥AB , ∵AD ∥BC ,∴四边形 ABMD 是矩形,∴AD =BM =9,AB =DM =7,CM =12﹣9=3,设 AF =CE =a ,则 BF =7﹣a ,EM =a ﹣3,BE =12﹣a , ∵∠FEC =∠B =∠DMB =90°,∴∠FEB +∠DEM =90°,∠BFE +∠FEB =90°, ∴∠BFE =∠DEM , ∵∠B =∠DME , ∴△FBE ∽△EMD ,∴ BF = BE EM DM ∴ 7 - a = 12 - a a - 3 7 a =5,a =17,∵点 F 在线段 AB 上,AB =7, ∴AF =CE =17(舍去),即 CE =5.24. 解:⑴过 C 作 CM ⊥OA ,∵△OAB 为边长为 8 的等边三角形,C 为 OB 中点, ∴OC =4,∠BOA =60°,在 Rt △OCM 中,CM =OC •sin 60°=2 3 ,OM =OC •cos 60°=2 ,∴C (2,2 3 ),代入反比例解析式得:k =4 3 ,则反比例解析式为 y = 4 3 ;x⑵过点 D 作 DH ⊥AF ,垂足为点 H ,设 AH =a (a >0).在 Rt △DAH 中, ∵∠DAH =60°, ∴∠ADH =30°. ∴AD =2AH =2a ,由勾股定理得:DH = 3 a .∵点 D 在第一象限,∴点 D 的坐标为(8+a , 3 a ).∵点 D 在反比例函数 y = 4 3 的图象上,x∴把 x =8+a ,y = 3 a 代入反比例函数解析式,解得 a =2 5 ﹣4 (a =﹣2 5 ﹣4<0 不符题意,舍去).∵点 D 是 AE 中点,∴等边△AFE 的边长为 8 5 ﹣16,∴△AEF 的周长=24 5 ﹣48.∴点 A ′的坐标为:(4,0), ∵点 A 、C 的坐标分别是(0,4)、(﹣1,0),抛物线经过点 C 、A 、A ′,设抛物线的解析式为:y =ax 2+bx +c ,∴ ⎪c = 4 ⎧a - b + c = 0 ⎨ 解得: ⎪ ⎪16a + 4b + c = 0 ⎧a = -1 ⎨b = 3 ⎩ ⎪c = 4 ⎩ ∴此抛物线的解析式为:y =﹣x 2+3x +4;⑵连接 AA ′,设直线 AA ′的解析式为:y =kx +b , ∴ ⎨4k + b = 0 解得: ⎨k = -1, ⎧b = 4 ⎧b = 4 ⎩⎩ ∴直线 AA ′的解析式为:y =﹣x +4,设点M 的坐标为:(x ,﹣x 2+3x +4), 则 S = 1 ×4×[﹣x 2+3x +4﹣(﹣x +4)]=﹣2x 2+8x =﹣2(x ﹣2)2+8, △AMA ′ 2 ∴当 x =2 时,△AMA ′的面积最大,最大值 S △AMA ′=8,∴M 的坐标为:(2,6); ⑶设点 P 的坐标为(x ,﹣x 2+3x +4),当 P ,N ,B ,Q 构成平行四边形时, ∵平行四边形 ABOC 中,点 A 、C 的坐标分别是(0,4)、(﹣1,0),∴点B 的坐标为(1,4), ∵点 Q 坐标为(1,0),P 为抛物线上一动点,N 为 x 轴上的一动点, ①当 BQ 为边时,PN ∥BQ ,PN =BQ , ∵BQ =4,∴﹣x 2+3x +4=±4,当﹣x 2+3x +4=4 时,解得:x 1=0,x 2=3, ∴P 1(0,4),P 2(3,4);当﹣x 2+3x +4=﹣4 时,解得:x 3= 3 + 2 41 ,x 4=3 - 41 ,2 25.解:⑴∵平行四边形 ABOC 绕点 O 顺时针旋转 90°,得到平行四边形 A ′B ′OC ′,且点 A 的坐标是(0,4),∴P 3( 3 + 2 41 ,﹣4),P 4( 3 - 2 41 ,﹣4);3 + 41 2②当 BQ 为对角线时,BP ∥QN ,BP =QN ,此时 P 与 P 1,P 2 重合; 综上可得:点 P 的坐标为:P 1(0,4),P 2(3,4),P 3( ,﹣4), P 4( 3 - 241 ,﹣4); 如图 2,当这个平行四边形为矩形时,点 N 的坐标为:(0,0)或(3,0).。
2021-2021学年天津市红桥区九年级(上)期末数学试卷
2021-2021学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列函数中是二次函数的是()A.y=3x﹣1 B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣12.(3分)如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.123.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)5.(3分)从√2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.456.(3分)对于双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<17.(3分)已知正三角形外接圆半径为2,这个正三角形的边长是()A.2√3B.√3C.3 D.28.(3分)已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°9.(3分)如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°10.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°11.(3分)如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.22的第一象限的那一支上,AB垂直于y轴于点B,点12.(3分)如图,点A在双曲线y=kxC在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为()A.16 B.163C.143D.9二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.(3分)如图,已知反比例函数y=kx(k为常数,k≠0)的图象经过点A,过A点作AB⊥x 轴,垂足为B.若△AOB的面积为1,则k=.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=.16.(3分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是.17.(3分)在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是.18.(3分)如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F 处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE=.19.(3分)如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.20.(3分)已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为.三、解答题(本大题共6小题,共60分)21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.22.(10分)如图,已知点A(1,a)是反比例函数y1=mx 的图象上一点,直线y2=﹣12x+12与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.23.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(Ⅰ)求证:△ABC∽△DAE;(Ⅱ)若AB=8,AD=6,AE=4,求BC的长.24.(10分)如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB 于点F.(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)(1)求该二次函数的解析式;(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?2017-2018学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列函数中是二次函数的是()A.y=3x﹣1 B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣1【解答】解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.2.(3分)如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.12【解答】解:∵DE∥BC,∴ADBD =AEEC即510=3EC解得:EC=6.故选:B.3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.4.(3分)抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)【解答】解:∵二次函数的解析式为y=3(x﹣4)2+5,∴其顶点坐标为:(4,5).故选:D.5.(3分)从√2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.45【解答】解:∵在√2,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从√2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是35.故选:C.6.(3分)对于双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<1【解答】解:∵双曲线y=1−mx,当x>0时,y随x的增大而减小,∴1﹣m>0,解得:m<1.故选:D.7.(3分)已知正三角形外接圆半径为2,这个正三角形的边长是()A.2√3B.√3C.3 D.2【解答】解:如图OA=2,求AB长.∠AOB=360°÷3=120°连接OA,OB,作OC⊥AB于点C,∵OA=OB,∴AB=2AC,∠AOC=60°,∴AC=OA×sin60°=√3cm,∴AB=2AC=2√3cm,故选A.8.(3分)已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.9.(3分)如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°【解答】解:∵△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,∴AC=AC′,∠CAC′=40°,∴∠AC′C=∠ACC′=70°,∵CC′∥AB,∴∠BAC=∠ACC′=70°,故选:D.10.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°【解答】解:设C′D′与BC交于点E,如图所示.∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°﹣∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°﹣70°﹣90°﹣90°=110°,∴∠1=∠BED′=110°.11.(3分)如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.22【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选:C .12.(3分)如图,点A 在双曲线y =k x 的第一象限的那一支上,AB 垂直于y 轴于点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为( )A .16B .163C .143D .9【解答】解:连DC ,如图,∵AE=3EC ,△ADE 的面积为3,∴△CDE 的面积为1,∴△ADC 的面积为4,设A 点坐标为(a ,b ),则AB=a ,OC=2AB=2a ,而点D 为OB 的中点,∴BD=OD=12b ,∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,∴12(a+2a )×b=12a×12b+4+12×2a×12b ,∴ab=163,把A (a ,b )代入双曲线y=k x ,∴k=ab=163.故选:B .二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.14.(3分)如图,已知反比例函数y=kx(k为常数,k≠0)的图象经过点A,过A点作AB⊥x 轴,垂足为B.若△AOB的面积为1,则k=﹣2.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于12|k|=1,解得k=﹣2,故答案为:﹣2.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=8.5.【解答】解:∵AD=3,DC=4,∴AC=AD+DC=3+4=7,∵△ADE∽△ABC,∴ADAB =AE AC,即3AB =2 7,解得AB=10.5,∴DE=AB﹣AE=10.5﹣2=8.5.故答案为:8.5.16.(3分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.【解答】解:∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴∠C=90°,∴△ABC的外接圆的半径是12×10=5,即外接圆的直径是10,故答案为:10.17.(3分)在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是12.【解答】解:画出树状图来说明评委给出A选手的所有可能结果:由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,∴对于A选手,进入下一轮比赛的概率是12,故答案为:12.18.(3分)如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE=495.【解答】解:由翻转变换的性质可知,∠DFE=∠A=60°,∵∠EFC=180°﹣∠DFB﹣∠DFE,∠FDB=180°﹣∠DFB﹣∠B,∴∠EFC=∠FDB,又∠B=∠C=60°,∴△BDF∽△CFE,∴BDBF =CFCE,即157=21CE,解得,CE=495,故答案为:495.19.(3分)如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是3.【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=12AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,{FC =EC ∠FCD =∠ECG DC =GC,∴△FCD ≌△ECG (SAS ),∴DF=GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG=DF=12CD=14BC=3.故答案为3.20.(3分)已知抛物线经过A (﹣4,0)、B (0,﹣4)、C (2,0)三点,若点M 为第三象限内抛物线上一动点,△AMB 的面积为S ,则S 的最大值为 4 .【解答】解:设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=12, 则抛物线解析式为y=12(x+4)(x ﹣2)=12x 2+x ﹣4; 过M 作MN ⊥x 轴,设M 的横坐标为m ,则M (m ,12m 2+m ﹣4),∴MN=|12m 2+m ﹣4|=﹣12m 2﹣m+4,ON=﹣m ,∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=12×(4+m )×(﹣12m 2﹣m+4)+12×(﹣m )×(﹣12m 2﹣m+4+4)﹣12×4×4=2(﹣12m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.故答案为4.三、解答题(本大题共6小题,共60分)21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.【解答】解:(1)如图所示:(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿) 共9种情况;(2)P (甲获胜)=39=13,P (乙获胜)=29,P(甲获胜)>P(乙获胜),所以游戏不公平.22.(10分)如图,已知点A(1,a)是反比例函数y1=mx 的图象上一点,直线y2=﹣12x+12与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【解答】解:(Ⅰ)∵点B(3,﹣1)在y1=mx图象上,∴m3=﹣1,∴m=﹣3,∴反比例函数的解析式为y=﹣3x;(Ⅱ){y=−3xy=−12x+12∴﹣3x =﹣12x+12,即x2﹣x﹣6=0,则(x﹣3)(x+2)=0,解得:x1=3、x2=﹣2,当x=﹣2时,y=32,∴D(﹣2,32);结合函数图象知y1>y2时﹣2<x<0或x>3;(Ⅲ)∵点A(1,a)是反比例函数y=﹣3x的图象上一点∴a=﹣3∴A(1,﹣3)设直线AB为y=kx+b,则{k+b=−33k+b=−1∴{k=1b=−4,∴直线AB解析式为y=x﹣4令y=0,则x=4∴P(4,0).23.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(Ⅰ)求证:△ABC∽△DAE;(Ⅱ)若AB=8,AD=6,AE=4,求BC的长.【解答】(Ⅰ)证明:∵DE∥AB,∴∠CAB=∠EDA,又∵∠B=∠DAE,∴△ABC∽△DAE;(Ⅱ)解:∵△ABC∽△DAE,∴BCAE =AB AD,∵AB=8,AD=6,AE=4,∴BC4=8 6,∴BC=163.24.(10分)如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.【解答】(1)证明:连接OE,OC;如图所示:∵DE与⊙O相切于点E∴∠OEC=90°,在△OBC和△OEC中,{OB=OECB=CEOC=OC,∴△OBC≌△OEC(SSS),∴∠OBC=∠OEC=90°,∴BC为⊙O的切线;(2)过点D作DF⊥BC于F;如图所示:设CE=x ∵CE,CB为⊙O切线,∴CB=CE=x,∵DE,DA为⊙O切线,∴DE=DA=1,∴DC=x+1,∵∠DAB=∠ABC=∠DFB=90°∴四边形ADFB为矩形,∴DF=AB=4 BF=AD=1,∴FC=x﹣1,Rt△CDF中,根据勾股定理得:(x+1)2﹣(x﹣1)2=16,解得:x=4,∴CE=4.25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB 于点F.(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵EF∥BC,∴∠AFE=∠ABC,∠AEF=∠ACB,∴∠AFE=∠AEF,∴AE=AF.(2)解:①由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,{AE′=AF′∠E′AC=∠F′ABAB=AC,∴△CAE′≌△BAF′(SAS),∴CE′=BF′=6;②由(1)可知AE=AF,所以,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB平行的直线l相交于点M、N,如图,①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,所以,∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E的像E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角α为36°或72°.26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)(1)求该二次函数的解析式;(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,设E(t,t2﹣2t﹣3),当0<t<1时,如图1,EF=2(1﹣t),EH=﹣(t2﹣2t﹣3),∵矩形EFGH为正方形,∴EF=EH,即2(1﹣t)=﹣(t2﹣2t﹣3),整理得t2﹣4t﹣1=0,解得t1=2+√5(舍去),t2=2﹣√5(舍去);当1<t<3时,如图2,EF=2(t﹣1),EH=﹣(t2﹣2t﹣3),∵矩形EFGH为正方形,∴EF=EH,即2(t﹣1)=﹣(t2﹣2t﹣3),整理得t2﹣5=0,解得t1=√5,t2=﹣√5(舍去),此时正方形EFGH的边长为2√5﹣2;当t>3时,EF=2(t﹣1),EH=t2﹣2t﹣3,∵矩形EFGH为正方形,∴EF=EH,即2(t﹣1)=t2﹣2t﹣3,整理得t2﹣4t﹣1=0,解得t1=2+√5,t2=2﹣√5(舍去),此时正方形EFGH的边长为2√5+2,综上所述,正方形EFGH的边长为2√5﹣2或2√5+2;(3)设P(x,x2﹣2x﹣3),当﹣1<x<0时,∵S△ABC=1×4×3=6,2∴0<S △APC <6,当0<x <3时,作PM ∥y 轴交AC 于点M ,如图3,易得直线AC 的解析式为y=x ﹣3,则M (x ,x ﹣3),∴PM=x ﹣3﹣(x 2﹣2x ﹣3)=﹣x 2+3x ,∴S △APC =12•3•(﹣x 2+3x ) =﹣32x 2+92x=﹣32(x ﹣32)2+278, 当x=32时,S △APC 的面积的最大值为278,即0<S △APC <278, 综上所述,0<S △APC <6,∴△PAC 面积为整数时,它的值为1、2、3、4、5,即△PAC 有5个.。
天津市红桥区2017-2018学年九年级数学上学期期末试卷(含解析)
2017-2018学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列函数中是二次函数的是()A.y=3x﹣1 B.y=x3﹣2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣12.(3分)如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.123.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)5.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.6.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<17.(3分)已知正三角形外接圆半径为2,这个正三角形的边长是()A.2 B.C.3 D.28.(3分)已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75° B.65° C.60° D.50°9.(3分)如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55° B.60° C.65° D.70°10.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°11.(3分)如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2212.(3分)如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C 在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为()A.16 B.C.D.9二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.(3分)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B.若△AOB的面积为1,则k= .15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE= .16.(3分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是.17.(3分)在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是.18.(3分)如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE= .19.(3分)如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.20.(3分)已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为.三、解答题(本大题共6小题,共60分)21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.22.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.23.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(Ⅰ)求证:△ABC∽△DAE;(Ⅱ)若AB=8,AD=6,AE=4,求BC的长.24.(10分)如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C 为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F (1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)(1)求该二次函数的解析式;(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?2017-2018学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列函数中是二次函数的是()A.y=3x﹣1 B.y=x3﹣2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣1【解答】解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选(D)2.(3分)如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.12【解答】解:∵DE∥BC,∴即解得:EC=6.故选B.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.(3分)抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)【解答】解:∵二次函数的解析式为y=3(x﹣4)2+5,∴其顶点坐标为:(4,5).故选D.5.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选C.6.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<1【解答】解:∵双曲线y=,当x>0时,y随x的增大而减小,∴1﹣m>0,解得:m<1.故选D.7.(3分)已知正三角形外接圆半径为2,这个正三角形的边长是()A.2 B.C.3 D.2【解答】解:如图OA=2,求AB长.∠AOB=360°÷3=120°连接OA,OB,作OC⊥AB于点C,∵OA=OB,∴AB=2AC,∠AOC=60°,∴AC=OA×sin60°=cm,∴AB=2AC=2cm,故选A.8.(3分)已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75° B.65° C.60° D.50°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选B.9.(3分)如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55° B.60° C.65° D.70°【解答】解:∵△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,∴AC=AC′,∠CAC′=40°,∴∠AC′C=∠ACC′=70°,∵CC′∥AB,∴∠BAC=∠ACC′=70°,故选D.10.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°【解答】解:设C′D′与BC交于点E,如图所示.∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°﹣∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°﹣70°﹣90°﹣90°=110°,∴∠1=∠BED′=110°.11.(3分)如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.22【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选C.12.(3分)如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C 在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为()A.16 B.C.D.9【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故选B.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1 .【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.14.(3分)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B.若△AOB的面积为1,则k= ﹣2 .【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE= 8.5 .【解答】解:∵AD=3,DC=4,∴AC=AD+DC=3+4=7,∵△ADE∽△ABC,∴=,即=,解得AB=10.5,∴DE=AB﹣AE=10.5﹣2=8.5.故答案为:8.5.16.(3分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10 .【解答】解:∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴∠C=90°,∴△ABC的外接圆的半径是×10=5,即外接圆的直径是10,故答案为:10.17.(3分)在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是.【解答】解:画出树状图来说明评委给出A选手的所有可能结果:由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,∴对于A选手,进入下一轮比赛的概率是,故答案为:.18.(3分)如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE= .【解答】解:由翻转变换的性质可知,∠DFE=∠A=60°,∵∠EFC=180°﹣∠DFB﹣∠DFE,∠FDB=180°﹣∠DFB﹣∠B,∴∠EFC=∠FDB,又∠B=∠C=60°,∴△BDF∽△CFE,∴=,即=,解得,CE=,故答案为:.19.(3分)如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是 3 .【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SA S),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.20.(3分)已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为 4 .【解答】解:设抛物线解析式为y=a(x+4)(x﹣2),将B(0,﹣4)代入得:﹣4=﹣8a,即a=,则抛物线解析式为y=(x+4)(x﹣2)=x2+x﹣4;过M作MN⊥x轴,设M的横坐标为m,则M(m, m2+m﹣4),∴MN=|m2+m﹣4|=﹣m2﹣m+4,ON=﹣m,∵A(﹣4,0),B(0,﹣4),∴OA=OB=4,∴△AMB的面积为S=S△AMN+S梯形MNOB﹣S△AOB=×(4+m)×(﹣m2﹣m+4)+×(﹣m)×(﹣m2﹣m+4+4)﹣×4×4=2(﹣m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4,当m=﹣2时,S取得最大值,最大值为4.故答案为4.三、解答题(本大题共6小题,共60分)21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.【解答】解:(1)如图所示:(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况;(2)P(甲获胜)==,P(乙获胜)=,P(甲获胜)>P(乙获胜),所以游戏不公平.22.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【解答】解:(Ⅰ)∵点B(3,﹣1)在y1=图象上,∴=﹣1,∴m=﹣3,∴反比例函数的解析式为y=﹣;(Ⅱ)∴﹣=﹣x+,即x2﹣x﹣6=0,则(x﹣3)(x+2)=0,解得:x1=3、x2=﹣2,当x=﹣2时,y=,∴D(﹣2,);结合函数图象知y1>y2时﹣2<x<0或x>3;(Ⅲ)∵点A(1,a)是反比例函数y=﹣的图象上一点∴a=﹣3∴A(1,﹣3)设直线AB为y=kx+b,则∴,∴直线AB解析式为y=x﹣4令y=0,则x=4∴P(4,0).23.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(Ⅰ)求证:△ABC∽△DAE;(Ⅱ)若AB=8,AD=6,AE=4,求BC的长.【解答】(Ⅰ)证明:∵DE∥AB,∴∠CAB=∠EDA,又∵∠B=∠DAE,∴△ABC∽△DAE;(Ⅱ)解:∵△ABC∽△DAE,∴=,∵AB=8,AD=6,A E=4,∴=,∴BC=.24.(10分)如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C 为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.【解答】(1)证明:连接OE,OC;如图所示:∵DE与⊙O相切于点E∴∠OEC=90°,在△OBC和△OEC中,,∴△OBC≌△OEC(SSS),∴∠OBC=∠OEC=90°,∴BC为⊙O的切线;(2)过点D作DF⊥BC于F;如图所示:设CE=x ∵CE,CB为⊙O切线,∴CB=CE=x,∵DE,DA为⊙O切线,∴DE=DA=1,∴DC=x+1,∵∠DAB=∠ABC=∠DFB=90°∴四边形ADFB为矩形,∴DF=AB=4 BF=AD=1,∴FC=x﹣1,Rt△CDF中,根据勾股定理得:(x+1)2﹣(x﹣1)2=16,解得:x=4,∴CE=4.25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F (1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.【解答】(1)证明:∵AB=AC,∴∠ABC=∠C,∵EF∥BC,∴∠AFE=∠B,∠AEF=∠C,∴∠AFE=∠AEF,∴AE=AF.(2)解:①由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′=6;②由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB平行的直线l相交于点M、N,如图,①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,所以,∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E的像E′与点N重合时,∵CE′∥AB,∴∠AM N=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角α为36°或72°.26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)(1)求该二次函数的解析式;(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,设E(t,t2﹣2t﹣3),当0<t<1时,如图1,EF=2(1﹣t),EH=﹣(t2﹣2t﹣3),∵矩形EFGH为正方形,∴EF=EH,即2(1﹣t)=﹣(t2﹣2t﹣3),整理得t2﹣4t﹣1=0,解得t1=2+(舍去),t2=2﹣(舍去);当1<t<3时,如图2,EF=2(t﹣1),EH=﹣(t2﹣2t﹣3),∵矩形EFGH为正方形,∴EF=EH,即2(t﹣1)=﹣(t2﹣2t﹣3),整理得t2﹣5=0,解得t1=,t2=﹣(舍去),此时正方形EFGH的边长为2﹣2;当t>3时,EF=2(t﹣1),EH=t2﹣2t﹣3,∵矩形EFGH为正方形,∴EF=EH,即2(t﹣1)=t2﹣2t﹣3,整理得t2﹣4t﹣1=0,解得t1=2+,t2=2﹣(舍去),此时正方形EFGH的边长为2+2,综上所述,正方形EFGH的边长为2﹣2或2+2;(3)设P(x,x2﹣2x﹣3),当﹣1<x<0时,∵S△ABC=×4×3=6,∴0<S△APC<6,当0<x<3时,作PM∥y轴交AC于点M,如图3,易得直线AC的解析式为y=x﹣3,则M(x,x﹣3),∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△APC=•3•(﹣x2+3x)=﹣x2+x=﹣(x﹣)2+,当x=时,S△APC的面积的最大值为,即0<S△APC<,综上所述,0<S△APC<6,∴△PAC面积为整数时,它的值为1、2、3、4、5,即△PAC有5个.。
()天津市红桥区九年级上期末强化测试试题(有)(数学)
2017-2018学年九年级数学上册期末加强练习卷一、选择题1.以下方程是一元二次方程的是()A.ax 2+bx+c=0B.x2+2x=x2﹣1C.(x﹣1)(x﹣3)=0D.=22.以下各图中,不是中心对称图形的是()3.在今年的中考取,市里学生体育测试分红了三类,耐力类、速度类和力量类.此中必测项目为耐力类,抽测项目为:速度类有50m、100m、50m×2来回跑三项,力量类有原地掷实心球、立定跳远、引体向上(男) 或仰卧起坐(女)三项.市中考领导小组要赶快度类和力量类中各随机抽取一项进行测试,请问同时抽中50m ×2来回跑、引体向上(男)或仰卧起坐(女)两项的概率是().1211A.B.C.D.33694.若对于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k取值范围是()2+(2k﹣1)x+kA.k≥1.25B.k>1.25C.k<1.25D.k≤1.255.如图,小明同学设计了一个丈量圆直径的工具,标有刻度的尺子OA.OB在O点钉在一同,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位6.如图,已知AC是⊙O的直径,点B在圆周上(不与A.C重合),点D在AC的延伸线上,连结BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EBB.DE=EBC.DE=DOD.DE=OB7.已知⊙O的半径是4,OP=3,则点P与⊙O的地点关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不可以确立8.以下成语所描绘的事件是必定事件的是()A.瓮中捉鳖B.拔苗滋长C.刻舟求剑D.水中捞月9.在必定条件下,若物体运动的行程s(米)与时间t(秒)的关系式为s=5t 2+2t,则当t=4时,该物体所经过的行程为()A.88米B.68米C.48米D.28米210.同一坐标系中,一次函数y=ax+1与二次函数y=x+a的图象可能是()11.如图,将Rt△ABC绕点A按顺时针旋转必定角度获取Rt△ADE,点B的对应点D恰巧落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.112.“假如二次函数y=ax 2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”.请依据你对这句话的理解,解决下边问题:若m、n(m<n)是对于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b二、填空题13.若对于x的二次方程有两个相等的实数根,则实数a=14.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能组成三角形的概率是.15.如图,将△ABC绕点A按逆时针方向旋转100°,获取△AB1C1,若点B1在线段BC的延伸线上,则∠BB1C1的大小是__________度.16.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=°.17.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.218.抛物线y=mx﹣2x+1与x轴有且只有一个交点,则m的值是.三、解答题19.如图,△ABC的极点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后获取的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后获取的△A2B2C2.20.解方程:3x2﹣6x+1=0(用配方法)21.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A.B两点,此中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的极点.(1)求抛物线的分析式;(2)求△MCB的面积S△MCB.22.一个不透明的布袋里装有16个只有颜色不一样的球,此中红球有x个,白球有2x个,其余均为黄球,现甲从布袋中随机摸出一个球,假如红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为什么值时,游戏对两方是公正的?23.本市新建的滴水湖是圆形人工湖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市红桥区2017届九年级数学上学期期末考试试题
红桥区2016~2017学年度第一学期九年级期末测试 数学参考答案及评分标准
一、选择题:本大题共12个小题,每小题3分,共36分.
(1)A
(2)A (3)B (4)D (5)C (6)D (7)C (8)D (9)B (10)A (11)C (12)D
二、填空题:本大题共6个小题,每小题3分,共18分.
(13)3100 (14)2π
(15)2:3
(16)37.5
(17)3 (18三、解答题:本大题共7个小题,共66分.
(19)(本小题满分8分)
解:(1)∵某单位A ,B ,C ,D 四人随机分成两组赴北京,上海学习,
∴A 去北京的概率为:
12
; …………………………………………… 2分 (2)画树状图得:
…………………………………………… 4分
∵共有12种等可能的结果,A ,B 都去北京的有2种情况,
∴A ,B 都去北京的概率为:21=126
; …………………………………………… 6分 (3)由(2)得:A ,B 分在同一组的有4种情况,
∴A ,B 分在同一组的概率为:
41=123
. …………………………………………… 8分 (20)(本小题满分8分)
解:(1)∵ADF △旋转一定角度后得到ABE △,
∴旋转中心为点A ,DAB ∠等于旋转角,
∴旋转角为90︒; …………………………………………… 3分
(2)∵ADF △以点A 为旋转轴心,顺时针旋转90°后得到ABE △,
∴4AE AF ==,60AEB F ∠=∠=︒,
∴906030ABE ∠=︒︒=︒﹣,
∵四边形ABCD 为正方形,
∴AD AB ==45ABD ∠=︒,
∴4DE =,15EBD ABD ABE ∠=∠-∠=︒. …………………………………………… 8分
(21)(本小题满分10分)
解:(1)由2340x x -++=解得1x =-或4x =,
所以A 、B 两点坐标为(10)-,
和(40),; …………………………………………… 2分 (2)抛物线234y x x =-++与y 轴交点C 坐标为(04),
,由(1)得,(40)B ,, 设直线BC 的函数关系式y kx b =+,
∴404k b b +=⎧⎨=⎩,,解得14k b =-⎧⎨=⎩
,, ∴直线BC 的函数关系式为4y x =-+; ………………………………………… 4分
(3)抛物线234y x x =-++的对称轴为32
x =, 对称轴与直线BC 的交点记为D ,则D 点坐标为35()22
,. ∵点P 在抛物线的对称轴上,
∴设点P 的坐标为3()2
m ,, ∴5||2
PD m =-, ∴1•42
PBC S OB PD ==△. ∴154||=422
m ⨯⨯-, ∴92m =或12
m =. ∴点P 的坐标为39()22,或31()22
,. ……………………………………… 10分
第(21)题
(22)(本小题满分10分)
(1)证明:连结OD ,如图,
∵DF 是圆的切线,∴OD DF ⊥,∴90ODF ∠=︒,
∵ABC △为等边三角形,∴60C A ∠=∠=︒,
而OD OC =,∴60ODC ∠=︒,∴ODC A ∠=∠,
∴OD AB ,∴DF AB ⊥; ……………………………………… 5分
(2)解:在Rt ADF △中,60A ∠=︒,∴30ADF ∠=︒,∴2224AD AF ==⨯=,
而OD AB ∥,点O 为BC 的中点,∴OD 为ABC △的中位线,
∴4AD CD ==,即8AC =,∴8AB =,∴6BF AB AF =-=,
∵FG BC ⊥,∴90BGF ∠=︒,
在Rt BFG △中,30BFG ∠=︒,∴3BG =,
则根据勾股定理得FG = ……………………………………… 10分
(23)(本小题满分10分)
解:(1)∵(22)A ,在反比例函数k y x
=的图象上,∴4k =. ∴反比例函数的解析式为4y x
=. ……………………………………… 1分 又∵点1()2B n ,在反比例函数4y x
=的图象上,∴142n =,解得:8n =, 即点B 的坐标为1(8)2
,. ……………………………………… 2分 由(22)A ,、1()2
B n ,在一次函数y ax b =+的图象上, 得:22182
a b a b =+⎧⎪⎨=+⎪⎩,,解得:410a b =-⎧⎨=⎩,, ……………………………………… 4分 ∴一次函数的解析式为410y x =-+. ……………………………………… 5分
(2)将直线410y x =-+向下平移m 个单位得直线的解析式为410y x m =-+-, ………… 6分
第(22)题
B
∵直线410y x m =-+-与双曲线4
y x
=有且只有一个交点, 令4
410x m x
-+-=
,得24(10)40x m x +-+=, ……………………………………… 7分 ∴2(10)640m =--=△,解得:2m =或18m =. ……………………………………… 10分 (24)(本小题满分10分)
(1)证明:∵AB AC =,36A ∠=︒,∴72ABC C ∠=∠=︒, 又∵BE 平分ABC ∠,∴36ABE CBE ∠=∠=︒, ∴18072BEC C CBE ∠=︒-∠-∠=︒, ∴ABE A ∠=∠,BEC C ∠=∠, ∴AE BE =,BE BC =,
∴AE BC =. ……………………………………………………………… 3分
(2)证明:∵AC AB =且EF BC ∥,∴AE AF =; 由旋转的性质可知:E AC F AB ∠'=∠',AE AF '=', ∵在CAE '△和BAF '△中 ''''AC AB E AC F AB AE AF =⎧⎪
∠=∠⎨⎪=⎩
,,
, ∴CAE BAF ''△≌△,
∴CE BF '='. ……………………… 6分 (3)存在CE AB '∥,
理由:由(1)可知AE BC =,所以,在AEF △绕点A 逆时针旋转过程中,E 点经过的路径(圆弧)与过点C 且与AB 平行的直线l 交于M 、N 两点,
如图:①当点E 像E '与点M 重合时,则四边形ABCM 为等腰梯形, ∴72BAM ABC ∠=∠=︒,又36BAC ∠=︒,
∴36CAM α=∠=︒. ②当点E 像E '与点N 重合时, 由AB l ∥得,72AMN BAM ∠=∠=︒, ∵AM AN =,∴72ANM AMN ∠=∠=︒, ∴18027236MAN ∠=︒-⨯︒=︒,
第(24)题
(')
E ')
∴72CAN CAM MAN α=∠=∠+∠=︒.
所以,当旋转角为36°或72°时,CE AB '∥. ……………………………………… 10分
(25)(本小题满分10分)
解:(1)把点(40)A ,
,(13)B ,代入抛物线2y ax bx =+中, 得 01643a b a b =+⎧⎨=+⎩,, 解得:14a b =-⎧⎨=⎩,
,
∴抛物线表达式为:24y x x =-+;…………………………… 2分 (2)点C 的坐标为(33),, 又∵点B 的坐标为(13),
,
∴2BC =,∴1
2332ABC S =⨯⨯=△;………………………… 3分
(3)过P 点作PD BH ⊥交BH 于点D , 设点2(4)P m m m -+,
, 根据题意,得:3BH AH ==,24HD m m =-,1PD m =-, ∴ABP ABH BPD HAPD S S S S =+-△△△四边形,
22111
633(31)(4)(1)(34)222m m m m m m =⨯⨯++----+-,
∴23150m m -=,10m =(舍去),25m =,
∴点P 坐标为(55)-,
. ……………………………………… 6分 (4)以点C 、M 、N 为顶点的三角形为等腰直角三角形时,分三类情况讨论: ①以点M 为直角顶点且M 在x 轴上方时,如图2,CM MN =,90CMN ∠=︒, 则CBM MHN △≌△,
∴2BC MH ==,321BM HN ==-=, ∴(12)M ,
,(20)N ,,
由勾股定理得:CM =
∴1522
CMN S =△;
②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt NEM △和Rt MDC △,得Rt Rt NEM MDC △≌△,
∴5EM CD ==,2MD NE ==,
由勾股定理得:
CM =,
∴129
22
CMN S =△;
③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN MN =,90MNC ∠=︒,作辅助线,
同理得:
CN
∴1
172
CMN S =△;
④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得:CN
∴1
52
CMN S =△;
⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形; 综上所述:CMN △的面积为:
52或292
或17或5.……………………………………… 10分。