2014年第10届“IMC国际数学竞赛”(中国赛区初赛) .doc
2014年美国“数学大联盟杯赛”(中国赛区)初赛五、六年级试卷
37. 将 1 ~ 9 九个数不重不漏地组成一个两位数、一个三位数、一个四位数。 这三个数均能被 9 整除,并且 7、8、9 分别在这三个数中,三个数十位 数字为三个连续的偶数,个位数字为三个连续的奇数。如果将四位数的 千位移到两位数的百位,组成新的三个三位数,新的三位数也均能被 9 整除。那么题中最初的三位数是 。 38. 如图为一个正方体有盖纸盒的示意图,在 1 ~ 30 的数中 选出 7 个,在纸盒的每个面填一个数。将盒盖的两个数 字相加后,三组相对面填的数均满足两两乘积相等。那 么 x 处的数字有 种可能。
姓名(签名)
A) 413 B) 1626 C) 21155 D) 161155 16. Which of the following figures has an odd number of sides? A) rhombus B) trapezoid C) pentagon D) hexagon 17. For how many integers from 55 to 66 is the ones digit greater than the tens digit? A) 4 B) 5 C) 10 D) 11 18. Lex buys 6 same-priced books and pays with a $50 bill. The change Lex receives is twice the price of a book. Each book costs A) $6.25 B) $7.14 C) $8.33 D) $12.50
14. If two consecutive whole numbers have a different number of digits, then their 一、选择题(每小题 5 分,答对加 5 分,答错不扣分,共 150 分,答案请填涂在答题卡上) 1. The band’s trombone plays 2013 notes, the trumpet plays 2014 notes, and the tuba plays 218 notes. That’s a total of ? notes. A) 6245 B) 6045 C) 4245 D) 645 2. The remainder when (999 999 999 + 666 666 + 333 + 1) is divided by 3 is A) 0 B) 1 C) 2 D) 3 3. 20 − 5 × 2 = 2 × ? A) 5 B) 15 C) 25 D) 30 C) 15 D) 100
2014年全国初中数学竞赛试题参考答案及评分标准
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
2014年第10届“IMC国际数学竞赛”(中国赛区初赛)
2014年第10届“IMC 国际数学竞赛”(中国赛区初赛) The 10th IMC International Mathematics Contest (China),2014五年级初赛试题 姓名_____________学校_____________得分____________一、填空题I (每小题6分,共60分) 1. 计算:20.140.4285710.810⨯⨯=_________;答案: 7解答: 原式=181338107907999⨯⨯=; 2. 计算:357911436144400900++++=_________; 答案:3536解答: 原式=419416925163625144991616252536-----++++⨯⨯⨯⨯⨯11136=-3536=; 3. 右图是一个乘法竖式,那么三位数的乘数是_________; 答案: 928 解答: 1)2014=2014⨯1=1007⨯2,仅此两种可能;2)由于14⨯4=56,14⨯5=70,十位不会是6,被乘数不能是2014,必为奇数,即1007; 3)1007⨯8=8056,1007⨯9=9063,1007⨯928=934496; 故三位乘数为928。
4. 将1~7这七个数字不重复地组成一个七位数,且这个七位数的任意两个相邻数字所组成的两位数都可以表示为两个一位数的乘积,那么这个七位数最大为_________; 答案: 7216354解答: 1)含7的两位数只有27=3⨯9,72=8⨯9,故7只能与2相邻,且为了最大应放在首位; 2)易验证1只能放在2的后面,即为721□□□□; 3)1后面最大写6,即为7216□□□;4)3、4、5中,5不能跟在6后面,3不能跟在4、5后面,4不能跟在3后面; 综上,最大为7216354。
IMC5. 把1~81按照右表规律排列,那么与1和81所在一条斜线上的所有数之和为_________;答案: 289解答: 1)从1、9、25…可见奇数的平方都在1的右下45︒方向, 故81在表格的最右下角; 2)1的左上45︒方向都是“偶数的平方+1”,22+1~82+1; 故总和 =12+(22+1)+32+(42+1)+52+(62+1)+72+(82+1)+92 =(12+22+32+⋯+92)+4=289。
2014年全国初中数学联赛试题及答案
2014年全国初中数学联合竞赛试题参考答案第一试一、选择题:1.已知x ,y 为整数,且满足(1x +1y ) (1x 2+1y 2)=-23(1x 4-1y 4),则x +y 的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数x ,y ,z 满足x +y +z =1,则t =2xy +yz +2xz 的最大值为( ) A .47 B .59 C .916 D .12253.在△ABC 中,AB =AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP =3,PE =1,则AE =( )A .62B .2C .3D .6 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12B .25C .23D .345.设[t ]表示不超过实数t 的最大整数,令{t }=t -[t ].已知实数x 满足x 3+1x 3=18,则{x }+{1x}=( ) A .12 B .3-5 C .12(3-5) D .1 6.在△ABC 中,∠C =90°,∠A =60°,AC =1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, ∠ADE =90° ,则BE 的长为( )A .4-23B .2-3C .12(3-1)D .3-1 二、填空题:1.已知实数a ,b ,c 满足a +b +c =1, 1 a +b -c + 1 a +c -b + 1 b +c -a=1,则abc =__2.使得不等式917<n n +k <815对唯一的整数k 成立的最大正整数n 为________. 3.已知P 为等腰△ABC 内一点,AB =BC ,∠BPC =108°,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则∠PAC =________.4.已知正整数a ,b ,c 满足: 1<a <b <c ,a +b +c =111,b 2=ac ,则b =________.第一试 参考答案一、选择题1.C2.A3.B4.B5.D6.A二、填空题F CA B D E1. 02. 1443. 48°4. 36第二试 (A )一、 设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值. 二、如图,在□ABCD 中, D 为对角线BD 上一点,且满足∠ECD =∠ACB , AC 的延长线与△ABD 的外接圆交于点F .证明:∠DFE =∠AFB三、设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.第二试 (A )答案一、解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=,联立解得(,)(2,6)x y =或(,)(6,2)x y =.若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根;若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. 二、证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠.又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF ,所以ED CD AB DF AF AF==.又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故 DFE AFB ∠=∠.三、解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P . 取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则=3()3()()x y z x y z xy yz zx ++-++++2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P .若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P .第二试 (B )试题及答案一.同(A )卷第一题.二.如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .解 延长BD 交⊙O 于点N ,延长OD 交⊙O 于点E ,由题意得NDE ODB OCB OBC CDE ∠=∠=∠=∠=∠,所以DE 为BDC ∠的平分线.又点D 在⊙O 的半径OE 上,点C 、N 在⊙O 上,所以点C 、N 关于直线OE 对称,DN DC =.延长AH 交⊙O 于点M ,因为O 为圆心,AM OD ⊥,所以点A 、M 关于直线OD 对称,AH MH =.因此MN AC AB ==.又FNM FAB ∠=∠,FBA FMN ∠=∠,所以△ABF ≌△NMF ,所以MF BF =,FN AF =. 因此,AM AF FM FN BF BN BD DN BD DC =+=+==+=+ 7310=+=,即210AH =,所以5AH =.三.设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P ..(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ; 取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++, 从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P .(2)记333(,,)3f x y z x y z xyz =++-,则=3()3()()x y z x y z xy yz zx ++-++++2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知3f x y z x y z x y z xy yz zx=++-++++.9|(,,)()3()()综合可知:当且仅当93=+(k为整数)时,整数n不具有性质P.n kn k=+或96又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P的数共有224×2=448个.2020-2-8。
2014年全国初中数学联赛试题及答案(修正版)
第一试
一、选择题:
1 1 1 1 21 1 1.已知 x,y 为整数,且满足(x+y) (x2+y2)=-3(x4-y4),则 x+y 的可能的值有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.已知非负实数 x,y,z 满足 x+y+z=1,则 t=2xy+yz+2xz 的最大值为(
3 | f (x, y, z) (x y z)3 3(x y z)(xy yz zx) , 则 3 | (x y z)3 从 而
,
3 | (x y z) ,进而可知9 | f (x, y, z) (x y z) 3 3(x y z)(xy yz zx) .
综合可知:当且仅当 n 9k 3 或 n 9k 6 ( k 为整数)时,整数 n 不具有性质 P.
设 a b x , ab y ,则有 x2 y2 40 , x y 8 ,
联立解得 (x, y) (2, 6) 或 (x, y) (6, 2) .
若 (x, y) (2, 6) ,即 a b 2 , ab 6 ,则 a, b 是一元二次方程t 2 2t 6 0 的两
根,但这个方程的判别式 ( 2)2 24 20 0 ,没有实数根;
为等腰直角三角形, ∠ADE=90° ,则 BE 的长为(
)
A.4-2 3
B.2- 3
C.12( 3-1)
D. 3-1
二、填空题: 1.已知实数 a,b,c 满足 a+b+c=1,a+1b-c+a+1c-b+b+1c-a=1,则 abc=__
2.使得不等式197<n+n k<185对唯一的整数 k 成立的最大正整数 n 为________.
P.
imc国际数学竞赛初一
IMC(International Mathematics Competition)是一项国际性的数学竞赛,
旨在激发学生的数学兴趣,提高学生的数学
能力,提升学生的数学素养,以及培养学生
的创新能力。
IMC竞赛分为多个年级,其中初一年级的竞赛是针对初中一年级学生的,主要考察学生
在数学方面的基本知识和基本技能,以及对
数学问题的综合分析能力。
IMC初一年级的竞赛主要考察学生对基础数学知识的掌握情况,如:数字、因式、方程、
函数、平面几何、立体几何等。
另外,还包括对概率、统计、算法、计算机科学等知识的考察。
IMC初一年级的竞赛通常分为两部分,一部分是实践考试,考察学生对数学基础知识的掌握情况,以及对数学问题的解决能力;另一部分是理论考试,考察学生对数学概念、定理、证明等的理解能力。
IMC初一年级的竞赛题目,通常有多项选择题、填空题、解答题等。
多项选择题考察学生对基础数学知识的掌握情况,填空题考察学生对数学概念的理解能力,解答题考察学生对数学问题的解答能力。
IMC初一年级的竞赛,可以帮助学生提高数学素养,提升数学能力,培养学生的创新能力,激发学生的数学兴趣,从而为学生的今后学习和发展奠定坚实的基础。
2014全国初中数学联合竞赛试题答案及评分标准
全国初中数学联合竞赛试题参考答案及评分标准一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y,则x y 的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个 【答】 C.由已知等式得2244224423x y x y x y xy x y x y ,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y ,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )ABCD 【答】 B .因为AD BC ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BCBP BE ⋅=⋅=,又2BC BD =,所以BD =DP=又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅== 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =±,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2- C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB . 设EF x =,则2BE x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.A当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠, 而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒, 所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=. 注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试 (A )一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, ……………………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ……………………10分D若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ……………………20分 二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .解 延长BD 交⊙O 于点N ,延长OD 交⊙O 于点E ,由题意得NDE ODB OCB OBC CDE ∠=∠=∠=∠=∠,所以DE 为BDC ∠的平分线. ……………………5分又点D 在⊙O 的半径OE 上,点C 、N 在⊙O 上,所以点C 、N 关于直线OE 对称,DN DC =. ……………………10分延长AH 交⊙O 于点M ,因为O 为圆心,AM OD ⊥,所以点A 、M 关于直线OD 对称,AH MH =.因此MN AC AB ==.……………………15分 又FNM FAB ∠=∠,FBA FMN ∠=∠,所以△ABF ≌△NMF ,所以MF BF =,FN AF =. ……………………20分因此,AM AF FM FN BF BN BD DN BD DC =+=+==+=+ 7310=+=,即210AH =,所以5AH =. ……………………25分三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个? 解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ;取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;…………………5分 若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P . ……………………10分(2)记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++N=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①……………………15分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .……………………20分 又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知39|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++.综合可知:当且仅当93n k =+或96n k =+(k 为整数)时,整数n 不具有性质P .。
2014年全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不.一定..是有理数的为( ). (A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设33a =,b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
2014全国初中数学联赛参考答案及评分标准
H
O
N D E
F B M C
三. (本题满分 25 分) 设 n 是整数,如果存在整数 x, y, z 满足 n x3 y 3 z 3 3xyz ,则称 n 具有性质 P . (1)试判断 1,2,3 是否具有性质 P ; (2)在 1,2,3, …,2013,2014 这 2014 个连续整数中,不具有性质 P 的数有多少个? 解 取 x 1 , y z 0 ,可得1 13 03 0 3 3 1 0 0 ,所以 1 具有性质 P ; 取 x y 1 , z 0 ,可得 2 13 13 0 3 3 1 1 0 ,所以 2 具有性质 P ; 若 3 具有性质 P ,则存在整数 x, y, z 使得 3 ( x y z ) 3 3( x y z )( xy yz zx ) ,从而可得
1 2
B.
2 5
C.
2 3
D.
3 4
【答】 B. 若取出的 3 张卡片上的数字互不相同,有 2×2×2=8 种取法;若取出的 3 张卡片上的数字有相同的, 有 3×4=12 种取法.所以,从 6 张不同的卡片中取出 3 张,共有 8+12=20 种取法. 要使得三个数字可以构成三角形的三边长,只可能是: (2,4,4) , (4,4,6) , (2,6,6) , (4,6, 6) ,由于不同的卡片上所写数字有重复,所以,取出的 3 张卡片上所写的数字可以作为三角形的三边长的 情况共有 4×2=8 种. 因此,所求概率为
2014年美国“数学大联盟杯赛”(中国赛区)初赛八、九年级试卷
34. The sum of 5 different prime numbers is 200. Each of the 5 prime numbers is less than 100. Four of the 5 prime numbers have the same units digit. What is the median of the 5 prime numbers? Answer:______. 35. The sum of the digits of 2014 is 2 + 0 + 1 + 4 = 7. For how many numbers between 1 and 10000 is the sum of the digits of each number 29? Answer:______. 36. Tom has 6 cards with number 1 on each card, 3 cards with number 2 on each card, 5 cards with number 3 on each card, 1 card with number 5 it, 3 cards with number 7 on each card, and 2 cards with number 9 on each card. So Tom has 20 cards in total. He uses all these 20 cards to form 12 different prime numbers. Each primer number is either a number on a card, or a number from concatenating the two numbers on two cards. (Card with number 9 can’t be used as number 6, and vice versa.) The product of all the 12 prime numbers is ab207381348cd . What is abcd ? Answer:______. 37. Ten people stand to form a line, p1, p2 , p3 , p4 , p5 , p6 , p7 , p8 , p9 , p10 , with p1 the leftmost person. Some of them are truth-tellers who always speak the truth. And the rest are all liars who always lie. p1 stated that there are 3 liars to my right. p2 stated that there is one liar to my left. p3 stated that there are 4 liars to my right. p4 stated that there is one liar to my left. p5 stated that there are 5 liars to my right. p6 stated that there are 9 liars in total. p8 stated that there are 6 liars to my left. p7 stated that there are 2 liars to my right. p10 stated that there are 3 liars to my left. p9 stated that there are 5 liars to my left. How many truth-tellers are there? Answer:______. 38. Sn denotes the sum of all the digits of integer n. For example, S123 = 1 + 2 + 3 = 6. Two different integers m and n form a pair, <m, n>, where m < 100, n < 100, m < n, and m + Sm = n + Sn. How many such pairs, <m, n>, exist? Answer:______. 39. Place numbers 14, 27, 36, 57, 178, 467, 590, and 2345 on the eight vertexes of an octagon such that any two numbers on two adjacent vertexes share some same digit(s). What is the sum of the two numbers adjacent to 57? Answer:______. 40. If a 4-digit number, which is a perfect square, can be written as aabb cc , it is called a "good" perfect square number. How many “good” perfect square numbers are there? Answer:______.
2014-2015年度美国”数学大联盟杯赛“(中国赛区)初赛-(十、十一、十二年级).doc
2014-2015年度美国”数学大联盟杯赛“(中国赛区)初赛(十、十一、十二年级)一、选择题(每小题10分,答对加10分,答错不扣分,共100分,请将正确答案A 、B 、C 或者D 写在每题后面的圆括号内。
)正确答案填写示例如下:=-⨯⨯20522 ? (A )A)5 B)15 C)25 D)301. Meg loves her megaphone! The large circular end has a circumference that is the reciprocal of its diameter. What is the area of the circle? ( )A)π14 B) π12 C) 14 D) 122. How many solutions does the equation x x +=233 have? ( )A)0 B)1 C)2 D)43. If y x =-1, which of the following is always true for any value of x ? ( )A) ()()x y -=-2211B) ()()x x y y -=-222211 C) ()()x x y y --=-222211 D) ()()()()x x y y -+=-+22221111 4. Lee the crow ate a grams of feed that was 1% seed, b grams of feed that was 2% seed, and c grams of feed that was 3% seed. If combined, all the feed he ate was 1.5% seed. What is a in terms of b and c ?( )A)b c +3B)b c +3 C)b c +23 D)b c +32 5. If <x 0 and <.x 2001, then x -1 must be ( )A)less than -10B)between-0.1 and 0 C)between 0and 0.1 D) greater than 106. At 9:00 A.M., the ratio of red to black cars in a parking lot was 1 to 5. An hour later the number of red cars had increased by 2, the number of black cars had decreased by 5, and the ratio of red to black cars was 1 to 4. How many black cars were in the lot at 10:00 A.M.? ( )A)13 B)15 C)60 D)657. If x ≠1and x ≠-1, then ()()()x x x x x --++-32241111=( ) A)x -21 B) x +21 C) x -241 D) x -341 8. The Camps are driving at a constant rate. At noon they had driven 300 km.At 3:30 P.M. they had driven 50% further than they had driven by 1:30 P.M.What is their constant rate in km/hr? ( )A)150 B)120 C)100 D)909. The letters in DIGITS can be arranged in how many orders without adjacent I ’s? ( )A)240 B)355 C)600 D)71510. Al, Bea, and Cal each paint at constant rates, and together they are painting a house. Al and Bea togethercould do the job in 12 hours; Al and Cal could to it in 15, and Bea and Cal could do it in 20. How many hours will it take all three working together to paint the house?( )A)8.5 B)9 C)10 D)10.5二、填空题(每小题10分,答对加10分,答错不扣分,共200分)11. What is the sum of the degree-measures of the angles at the outer points ,,,A B C D and E of a five-pointed star, as shown? Answer: . 12. What is the ordered pair of positive integers (,k b ), with the least value of k , which satisfiesk b ⋅⋅=34234?Answer: .13. A face-down stack of 8 playing cards consisted of 4 Aces (A ’s) and 4 Kings (K ’s).After I revealed and then removed the top card, I moved the new top card to thebottom of the stack without revealing the card. I repeated this procedure until thestack without revealing the card. I repeated this procedure until the stack was leftwith only 1 card, which I then revealed. The cards revealed were AKAKAKAK ,in that order. If my original stack of 8 cards had simply been revealed one card at atime, from top to bottom (without ever moving cards to the bottom of the stack),in what order would they have been revealed?Answer: .14. For what value of a is one root of ()x a x a -+++=222120 twice the other root?Answer: .15. Each time I withdrew $32 from my magical bank account, the account ’sremaining balance doubled. No other account activity was permitted. My fifth$32 withdrawal caused my account ’s balance to become $0. With how manydollars did I open that account?Answer: .16. In how many ways can I select six of the first 20 positive integers, disregarding the order in which these sixintegers are selected, so that no two of the selected integers are consecutive integers?Answer: .17. If, for all real ,()()xx f x f x =-21, what is the numerical value of f (3)?Answer: .18. How many pairs of positive integers (without regard to order) have a least common multiple of 540?Answer: .19. If the square of the smaller of consecutive positive integers is x , what is the square of the larger of thesetwo integers, in terms of x ?Answer: .20. A pair of salt and pepper shakers comes in two types: identical and fraternal.Identical pairs are always the same color. Fraternal pairs are the same colorhalf the time. The probability that a pair of shakers is fraternal is p andthat a pair is identical is .q p =-1 If a pair of shakers is of the same color, AE DCBword 格式-可编辑-感谢下载支持 determine, in terms of the variable q alone, the probability that the pair is identical. Answer: .21. As shown, one angle of a triangle is divided into four smaller congruentangles. If the lengths of the sides of this triangle are 84, 98, and 112, as shown,how long is the segment marked x ?Answer: .22. How long is the longer diagonal of a rhombus whose perimeter is 60, if threeof its vertices lie on a circle whose diameter is 25, as shown?Answer: .23. The 14 cabins of the Titanic Mail Boat are numbered consecutively from1 through 14, as are the 14 room keys. In how many different ways canthe 14 room keys be placed in the 14 rooms, 1 per room, so that, for everyroom, the sum of that room ’s number and the number of the key placed inthat room is a multiple of 3?Answer: .24. For some constant b , if the minimum value of ()x x b f x x x b -+=++2222is 12, what is the maximum value of ()f x ? Answer: .25. If the lengths of two sides of a triangle are 60cos A and 25sin A , what is the greatest possible integer-length of the third side?Answer: .26. {}n a is a geometric sequence in which each term is a positive number. If a a =5627, what is the value oflog log log ?a a a +++3132310Answer: . 27. What is the greatest possible value of ()=sin cos ?f x x x ++3412Answer: .28. Let C be a cube. Triangle T is formed by connecting the midpoints of three edges of cube C . What is the greatest possible measure of an angle of triangle T ?Answer: .29. Let a and b be two real numbers. ()sin f x a x b x =++34 and (lg log )f =3105. What is the value of (lg lg )f 3?Answer: .30. Mike likes to gamble. He always bets all his chips whenever the number of chips he has is <=5. He always bets n (10-)chips whenever the number of chips he has is greater than 5 and less than 10. He continues betting until either he has no chips or he has more than 9 chips. For every round, if he bets n chips. The probability that he wins or loses in each round is 50%. If Mike begins with 4 chips, what is the probability that he loses all his chips?Answer: .1129884xword格式-可编辑-感谢下载支持。
2014年全国初中数学联合竞赛(初三年级组)
2014年全国初中数学联合竞赛(初三年级组)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-. 若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )ABCD【答】 B .因为AD BC ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2BC BD =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅== 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x += ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =±,显然10{}1,0{}1x x<<<<,所以1{}{}x x +=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2- C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB . 设EF x =,则2B E x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =.故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 整理得22()8a b c abc -++=,所以abc =0.2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 .【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠,而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒. 4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b bd =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=. 注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去. 若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试 (A )一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, ……………………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ……………………10分若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ……………………20分 二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠.……………………5分又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF , ……………………15分所以ED CD ABDF AF AF==. ……………………20分 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故DFE AFB ∠=∠. ……………………25分三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P .取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .…………………5分 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3(x y z ++-2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①……………………10分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P . ……………………20分若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P . ……………………25分。
2014年美国“数学大联盟杯赛”(中国赛区)初赛五、六年级详解
(五、六级) 一、 选择题 1. C. The band’s trombone plays 2013 notes, the trumpet plays 2014 notes, and the tuba plays 218 notes. That is a total of 2013 + 2014 + 218 = 4245 notes. A) 6245 B) 6045 C) 4245 D) 645 2. B. This has the same remainder as 1 divided by 3. The remainder is 1. A) 0 B) 1 C) 2 D) 3 3. A. 20 − 5 C) 25 D) 30 4. D. (2 × 2) × (2 × 3) × (2 × 4) × (2 × 5) = 2 × 3 × 4 × 5 × (2 × 2 × 2 × 2). A) 2 B) 6 C) 8 D) 16 5. A. When I split the cost of a video game equally with 4 friends, we each pay $12. It costs the five of us 5 × $12 = $60. If only 4 of us split the cost, we each pay $60 ÷ 4 = $15. We each pay $15 − $12 = $3 more. A) $3.00 B) $4.00 C) $15.00 D) $16.00 6. C. At 5:00 P.M. on Friday, Hal got locked in. Since 5040 mins. is 5040 ÷60 = 84 hrs., Hal got out in 3 days 12 hrs. That’s Tuesday at 5 A.M. A) Sunday B) Monday C) Tuesday D) Wednesday
年第届“IMC国际数学竞赛”(中国赛区初赛)【直接打印】
2014年第10届“IMC 国际数学竞赛”(中国赛区初赛) The 10th IMC International Mathematics Contest (China),2014六年级初赛试题 姓名_____________学校_____________得分____________一、填空题I (每小题6分,共60分)1. 计算:45671111111123233434+++-+-+=_________;答案: 114解答: 原式=4⨯6+6+6⨯12+12=114;2. 大家知道“斐波那契数列”的规律是从第三项起,每一项等于前两项之和,a 1=1,a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,⋯,那么681024133********a a a a a a a a a a a a a a a ++++⨯⨯⨯⨯⨯=_________; 答案:8889解答: 原式=31537597119133********a a a a a a a a a a a a a a a a a a a a -----++++⨯⨯⨯⨯⨯ =133********1111111111a a a a a a a a a a -+-+-+-+-=11111a a -=11189-=88893. 将2014个棱长为1cm 的小正方体,搭建成由一个正方体和一个长方体组成的实心模型(如图),已知正方体棱长为10cm ,长方体的底面为正方形,那么这个立体模型的表面积为_________cm 2;答案: 1050解答: 1)长方体体积=2014-1000=1014=2⨯3⨯132=6⨯13⨯13; 2)模型表面积为2⨯132+4⨯(102+6⨯13)=1050cm 2;4. 图中给出了4个半径为10cm 的圆紧靠在一起,4个圆的圆心恰好是正方形的四个顶点,那么如果在中心空缺处再画一个圆,则面积为_________cm 2;(已知正方形的对角线约为边长的1.4倍,π=3.14) 答案: 50.24解答: 小圆半径为1.4⨯10-10=4cm ;小圆面积为42π=50.24cm ;5. 用数字1~9各一次组成若干个整数,如果要求这些整数都是合数(例如:1345、27、96、8),这些合数之和的最小值为_________;答案: 99解答: 尽量多组,4、6、8、9之外,1、2、3、5、7最多再组两个,即共组成6个; 除一位数外尽量都是两位数,即3个一位数、3个两位数; 最小1、2、3作十位,其余作个位,例如15+27+34+6+8+9=99,即为最小总和;IMC6. 若六位数ababab 既不能被a 整除,也不能被b 整除,那么ab 最小为__________;答案: 29解答: 1)371337ababab ab =⨯⨯⨯⨯; 2)最小a =2,b ≠1、3、7 且a 、b 不能整除ab ,即b 不能整除20,2不能整除b ,只剩下b =9,故最小ab =29;7. 如图,把边长为3cm 的正方形四条边分别三等分,连结一些分点得到一个正方形和一个长方形,那么这两个图形重叠部分的面积为_________cm 2;答案: 103解答: 连接对边三等分点,将图形分为边长为1cm 的9个小正方形;面积为中间小方格面积为1cm 2; 左右两块三角形面积和为0.5+0.5=1 cm 2; 上下两块三角形面积和为22+33=43cm 2;总面积一共1+1+43=103cm 28. 一项工程,甲工作20天后,若乙来帮忙,可提前6天,若是丙来帮忙,可提前8天,丙工效是乙工效的1.5倍。
2014年美国“数学大联盟杯赛”(中国赛区)初赛三、四年级详解
2014年美国“数学大联盟杯赛”(中国赛区)初赛三、四年级详解2013-2014年度美国“数学大联盟杯赛”(中国赛区)初赛答案(三、四年级)一、选择题1. A.Since 0 is a factor, 2 × 0 × 1 × 4 = 0.A) 0B) 7C) 8D) 20142. B.If 2 years ago I was 3 years old, I am now 3 + 2 = 5.A) 4B) 5C) 6D) 233. D.8 + (60 ÷ 4) = 8 + (15) = 23.A) 15B) 17C) 22D) 234. B.(1 + 7) + (2 + 6) + (3 + 5) = 3 × 8 = 24 = 4 + 20.A) 4B) 20C) 24D) 285. C.The prime numbers less than 10 are 2, 3, 5, and 7.A) 2B) 3C) 4D) 56. B.Caleb the dog dreams he has 12 dozen bones. Since 12 dozen = 12 × 12 = 144, there are 144 ÷ 2 = 72 pairs. Caleb will have to dig 72 holes.A) 24B) 72C) 144D) 2887. C.From 9:45 PM to 10:45 PM is 60 mins. From 10:45 PM to 11 PM is 15 mins. From 11 PM to 11:10 PM is 10 mins. That’s (60 +15 + 10) mins.A) 65B) 75C) 85D) 958. D.From January 1st to January 31st, there are 16 odd-numbered dates. From February 1st to February 21st, there are11 odd-numbered dates. That’s 27 × $2 = $54.A) $48B) $50C) $52D) $549. C.9 × 9 + 9 × 8 + 9 × 7 + 9 × 6 = 9 × (9 + 8 + 7 + 6).A) 20B) 24C) 30D) 3610.D.Manny weighs three times as much as Murray. Manny also weighs 8000 kg more than Murray, so 8000 kg is twice Murray’s weight. Thus Murray weighs 4000 kg and Manny weighs 12 000 kg.D) 12 00011.B.I have twice as many shirts as hats, and four times as many hats as scarves. If I have 24 shirts, I have 24÷ 2 = 12 hats and 12 ÷ 4 = 3 scarves.A) 2B) 3C) 6D) 1212.C.My coins have a total value of $6.20. If I have 1 of each coin, I have (1 + 5 + 10 + 25)¢= 41¢. Subtract 41¢from $6.20 repeatedly until there is 5¢ left. After 15 subtractions, there is 5¢left. I have 15 + 5 or20 pennies.A) 10B) 15C) 20D) 2513.D.The diagrams demonstrate choices A, B, and C.A) 14 kmB) 10 kmC) 8 kmD) 1 km14.C.(2014 ?1014) + (3014 ? 2014) = 1000 + 1000 = 2000.A) 0B) 1000C) 2000D) 201415.A.10 + (9 ×8) ? (7 × 6) = 10 + 72 ? 42 = 40.A) 40B) 110The prime factorization of 72 is 2 × 2 × 2 × 3 × 3. The largest prime is 3.A) 3B) 7C) 36D) 7217.D.6 × 4 = 24 = 96 ÷ 4.A) 6B) 12C) 24D) 9618.C.If 6 cans contain 96 teaspoons of sugar, 1 can contains 96 ÷ 6 = 16 teaspoons of sugar. Thus 15 cans contain 16 × 15 = 240 teaspoons of sugar.A) 192B) 208C) 240D) 28819.C.The largest possible such sum is 98 + 99 = 197.A) 21B) 99C) 197D) 19820.B.Ann sent Wilson hearts with odd numbers with odd tens digits. The number on each heart he received must be two digits with both digits odd. There are 5 possible tens digits and 5 possible ones digits.That’s a total of 5 × 5 = 25 hearts.A) 23B) 25C) 30D) 4521.B.Since Rich ate his favorite sandwich 8 days ago, today is the 9th day of the month. Since the shortest month has 28 days, it is at least 28 ? 9 = 19 days until the last day of the month. He must wait 1 more day.A) 1922.D.The factors of 49 are 1, 7, and 49. Since 49 has 3 factors, it has a prime number of factors.A) 6B) 12C) 36D) 4923.D.Dividing a certain two-digit number by 10 leaves a remainder of 9, so it is 19, 29, 39, 49, 59, 69, 79, 89, or 99. The only number listed with remainder 8 when divided by 9 is 89, so the number is89 and 8 + 9 = 17.A) 7B) 9C) 13D) 1724.A.The whole numbers less than 1000 that can be written as such a product are 0 × 1 × 2, 1 × 2 × 3, 2 × 3 ×4, 3 × 4 × 5, 4 × 5 × 6, 5 × 6 × 7, 6 × 7 × 8, 7 × 8 × 9, 8 × 9 × 10, and 9 × 10 ×11. In all, that’s 10.A) 10B) 11C) 15D) 2125.B.The only such numbers are 5432, 5431, 5430, 5421, 5420, 5410, 5321, 5320, 5310, and 5210. In all, there are 10 such numbers.A) 3B) 10C) 69D) 12026.C.2014 × 400 = 805 600; the hundreds digit is 6.A) 0B) 5C) 6D) 827.B.Greta was 110 cm tall 2 years ago, when she was 10 cm taller than her brother. Her brother was 100 cmB) 130C) 140D) 15028.B.The number 789 678 567 456 is added to the number 987 876 765 654. Since we carry a 1 when adding the left-most digits, the sum has 12 + 1 digits.A) 12B) 13C) 24D) 2529.D.We must find which number among the choices is two more than a multiple of 5. Divide each choice by5 (or recogniz e that any number that ends in “2”or “7” is 2 more than a multiple of 5).A) 4351B) 5215C) 5616D) 646230.C.Of every 11 people, there are 2 adults and 9 children. Since99 ÷ 11 = 9, there are 9 groups of 11 people.Of these, 9 × 2 = 18 are adults.A) 9B) 11C) 18D) 22二、填空题31.5.32.22.33.4.34.1.35.617.36.21.37.499.38.765.39.69.40.10.。
2014年美国“数学大联盟杯赛”(中国赛区)初赛七年级(初一)详解
(七年级) 一、 选择题 1. B. No even number can be written as the product of two odd integers. Since 11 is the product of 1 and 11, Skip may have run 11 kilometers. A) 10 B) 11 C) 12 D) 14
27. D. As shown, only choice D is not a product of a divisor of 24 and a divisor of 35.
A) 1 × 1 B) 6 × 7 C) 8 × 7 D) 6 × 11 28. B. The sum of the dimensions is 40 ÷2 = 20. Its dimensions are 16 × 4, and its area is 64. A) 100 B) 64 C) 40 D) 24 29. A. Her average score for 6 tests was 82. So her total was 6 × 82 = 492. Adding 2 × 98, her total for 8 tests was 688. Her average score was 86. A) 86 B) 88 C) 90 D) 94 30. D. From 1 to 99 there are 9; in every 100 #s after there are 19. Include 1000. A) 162 B) 171 C) 180 D) 181 二、填空题 31. 8. 32. 2257. 33. 21. 34. 37. 35. 120. 36. 7410. 37. 2. 38. 81. 39. 32451. 40. 671.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年第10届“IMC 国际数学竞赛”(中国赛区初赛)The 10th IMC International Mathematics Contest (China),2014六年级初赛试题 姓名_____________学校_____________得分____________一、填空题I (每小题6分,共60分)1. 计算:45671111111123233434+++-+-+=_________;答案: 114解答: 原式=4⨯6+6+6⨯12+12=114;2. 大家知道“斐波那契数列”的规律是从第三项起,每一项等于前两项之和,a 1=1,a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,⋯,那么681024133********a a a a a a a a a a a a a a a ++++⨯⨯⨯⨯⨯=_________; 答案:8889解答: 原式=31537597119133********a a a a a a a a a a a a a a a a a a a a -----++++⨯⨯⨯⨯⨯ =133557799111111111111a a a a a a a a a a -+-+-+-+-=11111a a -=11189-=88893. 将2014个棱长为1cm 的小正方体,搭建成由一个正方体和一个长方体组成的实心模型(如图),已知正方体棱长为10cm ,长方体的底面为正方形,那么这个立体模型的表面积为_________cm 2; 答案: 1050 解答: 1)长方体体积=2014-1000=1014=2⨯3⨯132=6⨯13⨯13; 2)模型表面积为2⨯132+4⨯(102+6⨯13)=1050cm 2;4. 图中给出了4个半径为10cm 的圆紧靠在一起,4个圆的圆心恰好是正方形的四个顶点,那么如果在中心空缺处再画一个圆,则面积为_________cm 2;(已知正方形的对角线约为边长的1.4倍,π=3.14) 答案: 50.24解答: 小圆半径为1.4⨯10-10=4cm ; 小圆面积为42π=50.24cm ;5. 用数字1~9各一次组成若干个整数,如果要求这些整数都是合数(例如:1345、27、96、8),这些合数之和的最小值为_________; 答案: 99解答: 尽量多组,4、6、8、9之外,1、2、3、5、7最多再组两个,即共组成6个; 除一位数外尽量都是两位数,即3个一位数、3个两位数;最小1、2、3作十位,其余作个位,例如15+27+34+6+8+9=99,即为最小总和;6. 若六位数ababab 既不能被a 整除,也不能被b 整除,那么ab 最小为__________;答案: 29解答: 1)371337ababab ab =⨯⨯⨯⨯; 2)最小a =2,b ≠1、3、7且a 、b 不能整除ab ,即b 不能整除20,2不能整除b , 只剩下b =9,故最小ab =29;7. 如图,把边长为3cm 的正方形四条边分别三等分,连结一些分点得到一个正方形和一个长方形,那么这两个图形重叠部分的面积为_________cm 2;答案:103解答: 连接对边三等分点,将图形分为边长为1cm 的9个小正方形; 面积为中间小方格面积为1cm 2; 左右两块三角形面积和为0.5+0.5=1 cm 2; 上下两块三角形面积和为22+33=43cm 2;总面积一共1+1+43=103cm 28. 一项工程,甲工作20天后,若乙来帮忙,可提前6天,若是丙来帮忙,可提前8天,丙工效是乙工效的1.5倍。
如果从一开始就是甲、乙、丙一起做,需要_________天完成; 答案: 24 解答: 设原计划甲单独做(x +20)完成,丙工效每天为“3”,乙工效每天为“2”; 甲工效则为2(x -6)÷6或者3(x -8)÷8; 2(x -6)÷6=3(x -8)÷8,x =24,甲工效每天为“6”; 三人一起做需6⨯(24+20)÷(6+2+3)=24天。
9. 我们知道红、黄、蓝三原色颜料可以调出各种颜色,如果都混在一起就变成黑色。
现在有2014张白色卡片,编号依次为1、2、3、⋯、2014,然后把编号为3的倍数卡片刷一遍红色,编号为5的倍数的卡片刷一遍黄色,编号为7的倍数的卡片刷一遍蓝色,那么既不是黑、白色,也不是红、黄、蓝色的卡片共有_________张; 答案: 229解答: 相当于求刷过两遍颜色的卡片张数; 即15倍、21倍、35倍,但要排除105倍;2014201420142014[][][]3[]152135105++-⨯=134+95+57-19⨯3=229;10. 小明与电脑对弈五子棋,玩了若干局后。
若要使胜率变为30%,需要接下来10局再胜5局;若要使胜率变为40%,需要接下来20局再胜12局;若要使胜率变为50%,需要接下来30局再胜______局; 答案: 21解答: 设开始的x 局中胜了y 局;{530%(10)1240%(20)y x y x +=++=+,解得{204x y ==故而后30局需要再胜(20+30)⨯50%-4=21(局);二、填空题II(每小题8分,共40分)11.计算一个多位数除以99的余数时,可以将该数从右起每两位一段截开,将得到的数求和后再除以99的余数(例如1234相当于34+12=46,13579相当于79+35+1=115,115再除以99余16)。
有些人容易搞混方向,误左从起截开,对于1234这样的数倒没有关系,但是对于13579这样的数就变成了13+57+9= 79这个错误答案。
现在有一个由1~7组成的七位数,发现无论是从左起,还是从右起,所得的答案都是一样的,那么这样的七位数共有______个;答案:576解答:设七位数abcdefg;即10(a+c+e+g)+(b+d+f)≡(a+c+e+g)+(b+d+f) (mod99),即(a+c+e+g)≡(b+d+f) (mod11),由(a+c+e+g)+(b+d+f)=28只能是a+c+e+g=b+d+f=14=7+6+1=7+5+2=7+4+3=6+5+3共4⨯A33⨯ A44=576个;12.甲、乙、丙三人各有一些小球,甲拿出自己小球的50%,乙拿出自己小球的30%,丙拿出自己小球的20%另凑成一堆,然后从中分出50%给甲,30%给乙,20%给丙,结果甲、乙、丙三人手中的小球分别占小球总数的50%、30%、20%,那么小球总数至少为________;答案:470解答:1)三人拿出小球后,剩下小球之比也是5:3:2;故原数量比为:(5÷50%):(3÷70%):(2÷80%)=28:12:7;2)设甲、乙、丙原有28x、12x、7x个,则取出后甲、乙、丙分别剩下14x、8.4x、5.6x;取出的9x个,分为4.5x、2.7x、1.8x个可见x最小为10,所以小球数共有(28+12+7)⨯10=470个;13.有一个40人旅游团来到一个湖区游览,绕湖一周共5.5km,一辆观光游览车只能单方向绕湖行驶,且每次只能承载20人,空驶时速度为每小时18km,满载时速度为每小时12km,人步行速度为每小时3k m,为了尽快游览一周并同时回到起点,先安排一半人乘车,另一半步行,乘车人在途中下车步行,游览车继续绕湖追上步行游客,带上他们一直到起点,这个过程共用了________分钟;答案:50解答:设第一拨游客下车时,第二拨游客走出x千米;此时车开出x÷3⨯12=4x千米,第一拨游客需要步行(5.5-4x)千米;空车追上第二拨游客需要[(5.5-4x)+x]÷(18-3)小时,此后第二拨游客乘车;两拨游客步行时间相同5545533315.x x.x--=+,解得x=1,代入得步行时间为0.5小时;两拨游客步行时间相同41=123x小时;共用115+=236小时,即50分钟;14.如图,用小正方形拼成“IMC”的形状,甲、乙两人轮流从中涂黑一个1⨯2的小长方形(方格不能重复涂黑),轮到谁无法按要求涂黑时,就算谁输。
甲为了保证获胜,应该先涂黑标有_____和_____的长方形; 答案: 8、9 解答: 1)图中一共可以包含1+5+3=9(奇数)个1⨯2的长方形;先手欲控制胜利必须剩下偶数个1⨯2的长方形;2)只看I 和C ,包含了4(偶数)个1⨯2的长方形,无论如何后手可以控制胜利; 3)M 中涂黑8和9组成的1⨯2的长方形,剩下的两块图形对称,接下来后手只需和先手按对称方式涂黑即可控制胜利;否则,后手总可以改变剩余1⨯2长方形的奇偶性; 即甲先涂黑8和9组成的1⨯2的长方形,即可控制胜利;15. 有十匹赛马编号为A 1~A 10,它们的实力排名分别为123910A A A A A >>>>,实力靠前的赛马必定能胜实力靠后的赛马。
现在安排一次比赛,每场比赛让两匹赛马PK ,每匹赛马恰好比赛3场,胜2场即可被评为“骏马”,那么合理安排比赛,最多可以使_________匹赛马被评为“骏马”; 答案: 7匹 解答: 1)比赛的总场次10⨯3÷2=15场;2)15÷2=7⋯1,故最多有7名优秀棋手(如果8名至少16场); 具体构造: A 1胜A 2、A 9、A 10; A 2胜A 3、A 8,负A 1; A 3胜A 4、A 9,负A 2; A 4胜A 5、A 10,负A 3; A 5胜A 6、A 8,负A 4; A 6胜A 7、A 9,负A 5; A 7胜A 8、A 10,负A 6; A 8负A 2、A 5、A 7; A 9负A 1、A 3、A 6; A 10负A 1、A 4、A 7;。