高考数学复习第七章 7.1.1
新教材2023年高中数学第七章随机变量及其分布列7
[规律方法] 应用乘法公式的关注点 1.功能:已知事件A发生的概率和事件A发生的条件下事件B发生的 概率,求事件A与B同时发生的概率. 2 . 推 广 : 设 A , B , C 为 三 个 事 件 , 且 P(AB) > 0 , 则 有 P(ABC) = P(C|AB)P(AB)=P(C|AB)P(B|A)P(A).
[解析] (1)令事件 A={取得蓝球},B={取得蓝色 E 型玻璃球}.
解法一:∵P(A)=1116,P(A∩B)=146=14,
1 ∴P(B|A)=PPA∩AB=141=141.
16
解法二:∵n(A)=11,n(A∩B)=4,
∴P(B|A)=nnA∩AB=141.
题型二
概率的乘法公式
典例2 (1)已知P(A)=0.4,P(B)=0.5,P(A|B)=0.6,则P(B|A)= ___0_._7_5__;
及格的概率是
( A)
A.51
B.130
C.12
D.31
[解析] 设 A 为事件“数学不及格”,B 为事件“语文不及格”, P(B|A)=PPAAB=00..0135=15,所以当数学不及格时,该学生语文也不及格的 概率为15.
2.某人忘记了一个电话号码的最后一个数字,只好去试拨,他第一
次失败、第二次成功的概率是
(2)某市场供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂 产品的合格率是95%,乙厂产品的合格率为80%,则买到一个甲厂的合 格灯泡的概率为___0_.6_6_5___.
[解析] (1)∵P(A)=0.4,P(B)=0.5,P(A|B)=0.6, ∴ P (AB)= P (B) ·P (A|B) =0.5×0.6=0.3. ∴P(B|A)=PPAAB=00..34=0.75. (2)记事件 A 为“买到甲厂产品”,事件 B 为“买到合格产品”,则 P(A)=70%,P(B|A)=95%,所以 P(AB)=P(A) ·P(B|A)=70%×95%=0.665.
2023年高考数学一轮复习(新高考1) 第7章 §7
所以∠C1A1D=60°,又 A1M=2,所以在△A1MN 中,由余弦定理可得 MN2=A1N2+A1M2-2A1N·A1Mcos∠MA1N=592, 所以 MN=2 313,即点 Q 的轨迹长度为2 313.
题型三 最值、范围问题
例3 (1)如图所示,在正方体ABCD-A1B1C1D1中,点P是线段B1D1上一动
第七章
题型一 空间位置关系的判定 例1 (1)如图,在矩形ABCD中,BC=1,AB=x,BD和AC交于点O,将 △BAD沿直线BD翻折,则下列说法中错误的是
A.存在x,在翻折过程中存在某个位置,使得AB⊥OC B.存在x,在翻折过程中存在某个位置,使得AC⊥BD C.存在x,在翻折过程中存在某个位置,使得AB⊥平面ACD
√D.存在x,在翻折过程中存在某个位置,使得AC⊥平面ABD
当AB=x=1时,此时矩形ABCD为正方形,则AC⊥BD, 将△BAD沿直线BD翻折,若使得平面ABD⊥平面BCD时, 由OC⊥BD,OC⊂平面BCD,平面ABD∩平面BCD=BD, 所以OC⊥平面ABD,又AB⊂平面ABD,所以AB⊥OC,故A正确; 又OC⊥BD,OA⊥BD,且OA∩OC=O,OA,OC⊂平面OAC, 所以BD⊥平面OAC,又AC⊂平面OAC,所以AC⊥BD,故B正确; 在矩形 ABCD 中,AB⊥AD,AC= 1+x2, 所以将△BAD沿直线BD翻折时, 总有AB⊥AD,
故 FE=FG=52,GE=3, ∴△FEG的周长为8.
思维升华
解决与几何体有关的动点轨迹问题的方法 (1)几何法:根据平面的性质进行判定. (2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定, 或用代替法进行计算. (3)特殊值法:根据空间图形线段长度关系取特殊值或位置 进行排除.
高考数学一轮复习第七章7.1二元一次不等式(组)与简单的线性规划问题课件文北师大版
1
m∈(0,2].
√2
,
2
考点2
求目标函数的最值问题 (多考向探究)
考向1 求线性目标函数的最值
2 + -2 ≤ 0,
【例 2】(1)(2020 全国 1,文 13)若 x,y 满足约束条件 --1 ≥ 0, 则 z=x+7y
+ 1 ≥ 0,
的最大值为
.
2 + -2 ≥ 0,
(2)(2020 福建福州模拟,理 13)设 x,y 满足约束条件 -2 + 4 ≥ 0,则 z=x-3y
(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不
等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则
就表示直线与特殊点异侧的那部分区域.当不等式中带等号时,边界画为实线,不
带等号时,边界应画为虚线,特殊点常取原点.
(2)也常利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于
(3)任何一个二元一次不等式组都表示平面上的一个区域.( × )
(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.( √ )
(5)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截
距.( × )
-3 + 6 < 0,
2.不等式组
表示的平面区域是(
- + 2 ≥ 0
.
思考如何利用可行域求非线性目标函数最值?
答案 (1)A
11
(2)
2
解析 (1)作不等式组表示的可行域,如图所示.
由于
又
+1
k= 表示动点
2024年高考数学总复习第七章不等式真题分类26不等关系与不等式
第6页
返回层目录 返回目录
真题分类26 不等关系与不等式
高考·数学
答案:B 解法一: ∵a>b>0,ab=1,∴log2(a+b)>log2(2 ab )=1.
1 ∵2ba =2aa =a-1·2-a,令 f(a)=a-1·2-a, 又∵b=1a ,a>b>0,∴a>1a ,解得 a>1. ∴f′(a)=-a-2·2-a-a-1·2-a·ln 2=-a-2·2-a·(1+aln 2)<0, ∴f(a)在(1,+∞)上单调递减,∴f(a)<f(1),即2ba <12 . ∵a+1b =a+a=2a>a+b>log2(a+b),∴2ba <log2(a+b)<a+1b . 故选 B.
Ⅰ.利用不等式的性质判断不等关系
1.(2019·课标全国Ⅱ(理),6,5 分)若 a>b,则( )
A.ln (a-b)>0 B.3a<3b
C.a3-b3>0
D.|a|>|b|
答案:C 由 a>b,得 a-b>0,但 a-b>1 不一定成立,则 ln (a-b)>0 不一定成立, 故 A 不一定成立.
第8页
返回层目录 返回目录
真题分类26 不等关系与不等式
解法二: ∵a>b>0,ab=1, ∴取 a=2,b=12 , 此时 a+1b =4,2ba =18 ,log2(a+b)=log25-1≈1.3, ∴2ba <log2(a+b)<a+1b .故选 B.
2020版高考文科数学(北师大版)一轮复习课件:第七章+不等式、推理与证明+7.1 (1)
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-14-
考点1
考点2
考点3
思考确定二元一次不等式(组)表示的平面区域的方法是什么?求 平面区域的面积的技巧是什么? 思路分析(1)先作可行域,再根据三角形面积公式求结果.(2)首先 ������ ≥ 1, 确定 ������-2������ + 1 ≤ 0 所表示的平面区域,然后结合点与直线的位置 关系整理计算即可求得最终结果.
表示的可行域有交点, 画出可行域M如图所示,
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-19-
考点1
考点2
考点3
求得A(2,10),C(3,8),B(1,9), 由图可知,欲满足条件必有a>1且图像在过B,C两点的图像之间, 当图像过B点时,a1=9,∴a=9, 当图像过C点时,a3=8,∴a=2, 故a的取值范围是[2,9],故选C. (2)由于x=1与x+y-4=0不可能垂直,所以只可能x+y-4=0与kx-y=0 垂直或x=1与kx-y=0垂直. ①当x+y-4=0与kx-y=0垂直时,k=1,检验知三角形区域面积为1,即 符合要求. ②当x=1与kx-y=0垂直时,k=0,检验不符合要求.故选A.
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-16-
考点1
考点2
考点3
(2)求平面区域的面积的方法: ①首先画出不等式组表示的平面区域,若不能直接画出,应利用 题目的已知条件转化为不等式组问题,从而再作出平面区域; ②对平面区域进行分析,若为三角形应确定底与高;若为规则的 四边形(如平行四边形或梯形),可利用面积公式直接求解;若为不规 则四边形,则可分割成几个三角形分别求解再求和. ③利用几何意义求解的平面区域问题,也应作出平面图形,利用 数形结合的方法去求解.
2021版新高考数学一轮复习第七章数列7.1数列含递推公式ppt课件新人教B版
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
【教材·知识梳理】 1.数列的概念 (1)数列的定义:按照_一__定__顺__序__排列的一列数称为数列,数列中的每一个数叫 做这个数列的_项__. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限 子集{1,2,…,n})为_定__义__域__的函数an=f(n)当自变量按照从小到大的顺序依次 取值时所对应的一列函数值. (3)数列有三种表示法,它们分别是_列__表__法__、_图__象__法__和_解__析__法__.
4 16 16 16 16
2.选D.令an=3,即n2-8n+15=3,解得n=2或6,故3是数列{an}中的第2项或第6 项. 3.选D.该数列是分数形式,分子为奇数2n+1,分母是指数2n,各项的符号由(-1)n+1 来确定,所以D选项正确.
4.选D.由an+1=an+n+1,得an+1-an=n+1,则a2-a1=1+1,a3-a2=2+1,a4-
A.2n-1 C. ( 2 )n-1
3
B. ( 3 )n-1
2
D. 1
2n-1
()
【解析】选B.由已知Sn=2an+1得Sn=2(Sn+1-Sn),
a 2 021
2 23
则
(
1
1
)]=2(1
1
)=2 021.
2 021 2 022
2 022 1 011
5.选A.因为an+1=an+ln(1 1 ),
n
所以an-an-1=ln(1 1=)ln (nn ≥2),
高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理
D.a2>ab>b2
答案 D 选项A,∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;选项B, 1 - 1 =
ab
b ,a∵a<b<0,∴b-a>0,ab>0,∴ b>0a,即 >1 ,1故选项B不正确;选项C,∵a<b<0,∴取a=-2,b=-1,
ab
ab
ab
12/11/2021
2.(2014江苏,10,5分)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的
取值范围是
.
答案
2 2
,0
解析 要满足f(x)=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需
f f
(即m ) 0,解得-
(m 1) 0,
∵0<log0.20.3<log0.20.2=1,log20.3<log20.5=-1,即0<a<1,b<-1,∴a+b<0,排除D.
∵ b =l o g 2=0 . 3 =llgo0g.220.2,∴b- =logb 20.3-log20.2=log2
a lo g 0.2 0 .3 l g 2
a
解法二:易知0<a<1,b<-1,∴ab<0,a+b<0,
<1,∴3 b<1+
2
⇒ab b<a+b,排除A.故选B.
a
∵ 1 +1 =log0.30.2+log0.32=log0.30.4<1,
2024年高考数学总复习第七章《不等式》不等关系与不等式
2024年高考数学总复习第七章《不等式》§7.1不等关系与不等式最新考纲1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系.2.了解不等式(组)的实际背景.1.两个实数比较大小的方法(1)-b >0⇔a >b-b =0⇔a =b-b <0⇔a <b (a ,b ∈R )(2)⇔a >b 1⇔a =b⇔a <b (a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b 的大小关系确定吗?提示不确定.若a >b ,ab >0,则1a <1b,即若a 与b 同号,则分子相同,分母大的反而小;若a >0>b ,则1a >1b,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示可以相加但不一定能相乘,例如2>-1,-1>-3.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√)(2)若ab>1,则a >b .(×)(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.(×)(4)a >b >0,c >d >0⇒a d >bc .(√)(5)ab >0,a >b ⇔1a <1b .(√)题组二教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.设b <a ,d <c ,则下列不等式中一定成立的是()A .a -c <b -dB .ac <bdC .a +c >b +dD .a +d >b +c答案C解析由同向不等式具有可加性可知C 正确.题组三易错自纠4.若a >b >0,c <d <0,则一定有()A.a c -b d >0 B.a c -b d <0C.a d >b c D.a d <b c答案D解析∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac ,又∵cd >0,∴bd cd >ac cd ,即b c >ad.5.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a+b >3且ab >2”的充分不必要条件.故选A.6.若-π2<α<β<π2,则α-β的取值范围是__________.答案(-π,0)解析由-π2<α<π2,-π2<-β<π2,α<β,得-π<α-β<0.题型一比较两个数(式)的大小例1(1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q答案B解析(作差法)p -q =b 2a +a 2b-a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2=(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小.解∵a a b b a b b a =a a -bb a -b=-b,又a >b >0,故ab >1,a -b >0,-b>1,即a a b ba b ba >1,又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为:a a b b >a b b a .思维升华比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法.跟踪训练1(1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________.答案M >N解析因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则()A .77a a <7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a 与7a a 7的大小不确定答案C解析77a a 7a a7=77-a a a -7-a,则当a >7时,0<7a <1,7-a <0,则-a>1,∴77a a >7a a 7;当0<a <7时,7a >1,7-a >0,则-a>1,∴77a a >7a a 7.综上,77a a >7a a 7.题型二不等式的性质例2(1)对于任意实数a ,b ,c ,d ,下列命题中正确的是()A .若a >b ,c ≠0,则ac >bcB .若a >b ,则ac 2>bc 2C .若ac 2>bc 2,则a >bD .若a >b ,则1a <1b 答案C解析对于选项A ,当c <0时,不正确;对于选项B ,当c =0时,不正确;对于选项C ,∵ac 2>bc 2,∴c ≠0,∴c 2>0,∴一定有a >b .故选项C 正确;对于选项D ,当a >0,b <0时,不正确.(2)已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b 的是________.(填序号)答案①②④解析运用倒数法则,a >b ,ab >0⇒1a <1b,②④正确.又正数大于负数,所以①正确.思维升华常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是()A.ab>ac B.c(b-a)<0 C.cb2<ab2D.ac(a-c)>0答案A解析由c<b<a且ac<0,知c<0且a>0.由b>c,得ab>ac一定成立.(2)若1a <1b<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④ab<b2中,正确的不等式有________.(填序号)答案①④解析因为1a<1b<0,所以b<a<0,a+b<0,ab>0,所以a+b<ab,|a|<|b|,在b<a两边同时乘以b,因为b<0,所以ab<b2.因此正确的是①④.题型三不等式性质的应用命题点1应用性质判断不等式是否成立例3已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为()A.①②③B.①②④C.①③④D.②③④答案A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A.命题点2求代数式的取值范围例4已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y<-2,∴-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,∴1<3x+2y<18.引申探究若将本例条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围.解设3x+2y=m(x+y)+n(x-y),+n=3,-n=2,=52,=12.即3x+2y=52(x+y)+12(x-y),又∵-1<x+y<4,2<x-y<3,∴-52<52(x+y)<10,1<12(x-y)<32,∴-32<52(x+y)+12(x-y)<232,即-32<3x+2y<232,∴3x+2y-32,思维升华(1)判断不等式是否成立的方法①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3(1)若a<b<0,则下列不等式一定成立的是()A.1a-b>1bB.a2<abC.|b ||a |<|b |+1|a |+1D .a n >b n答案C解析(特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________.答案(-4,0)解析∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).一、选择题1.下列命题中,正确的是()A .若a >b ,c >d ,则ac >bdB .若ac >bc ,则a >bC .若a c 2<bc2a <bD .若a >b ,c >d ,则a -c >b -d 答案C解析A 项,取a =2,b =1,c =-1,d =-2,可知A 错误;B 项,当c <0时,ac >bc ⇒a <b ,所以B 错误;C 项,因为a c 2<bc 2,所以c ≠0,又c 2>0,所以a <b ,C 正确;D 项,取a =c =2,b =d =1,可知D 错误,故选C.2.若1a <1b <0,则下列结论正确的是()A .a 2>b 2B .C.b a +a b <2D .a e b >b e a答案D解析由题意知,b <a <0,则a 2<b 2>1,b a +ab >2,∵b <a <0,∴e a >e b >0,-b >-a >0∴-b e a >-a e b ,∴a e b >b e a ,故选D.3.若a >b >0,则下列不等式中一定成立的是()A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >ab答案A解析取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a ,但g (a )>g (b )未必成立,故选A.4.已知x >y >z ,x +y +z =0,则下列不等式成立的是()A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案C解析∵x >y >z 且x +y +z =0,∴3x >x +y +z =0,3z <x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .5.设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则()A .P >QB .P <QC .P ≤QD .P ≥Q答案A解析因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.6.若α,β满足-π2<α<β<π2,则2α-β的取值范围是()A .-π<2α-β<0B .-π<2α-β<πC .-3π2<2α-β<π2D .0<2α-β<π答案C解析∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2,∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.7.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.答案a b 2+b a 2≥1a +1b解析a b 2+ba 2-=a -b b 2+b -a a2=(a -b =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b2≥0.∴a b 2+b a 2≥1a +1b 8.已知有三个条件:①ac 2>bc 2;②a c >b c ;③a 2>b 2,其中能成为a >b 的充分条件的是________.答案①解析由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0;②若ab >0,c a -d b>0,则bc -ad >0;③若bc -ad >0,c a -d b>0,则ab >0.其中正确的命题是________.(填序号)答案①②③解析∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab>0,∴①正确;∵ab >0,又c a -d b >0,即bc -ad ab>0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -d b >0,即bc -ad ab>0,∴ab >0,∴③正确.故①②③都正确.10.设αT 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案T 1<T 2解析T 1-T 2=(cos 1cos α-sin 1sin α)-(cos 1cos α+sin 1sin α)=-2sin 1sin α<0.故T 1<T 2.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d ;(2)已知c >a >b >0,求证:a c -a >bc -b .证明(1)∵bc ≥ad ,bd >0,∴c d ≥a b ,∴c d +1≥a b +1,∴a +b b ≤c +d d.(2)∵c >a >b >0,∴c -a >0,c -b >0.由a >b >0⇒1a <1b ,c >0⇒c a <c b ⇒c -a a <c -b b ,c -a >0,c -b >0⇒a c -a >b c -b.12.已知1<a <4,2<b <8,试求a -b 与a b 的取值范围.解因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为18<1b <12,所以18<a b <42=2,即18<a b <2.13.设0<b <a <1,则下列不等式成立的是()A .ab <b 2<1B .12log b <12log a <0C .2b <2a <2D .a 2<ab <1答案C 解析方法一(特殊值法):取b =14,a =12.方法二(单调性法):0<b <a ⇒b 2<ab ,A 不对;y =12log x 在(0,+∞)上为减函数,∴12log b >12log a ,B 不对;a >b >0⇒a 2>ab ,D 不对,故选C.14.若a =ln 33,b =ln 44,c =ln 55,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案B 解析方法一对于函数y =f (x )=ln x x (x >e),y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1,所以a >b ;b c =5ln 44ln 5=log 6251024>1,所以b >c .即c <b <a .15.已知实数x ,y 满足a x >a y (0<a <1),则下列关系式恒成立的是()A .ln(x 2+1)>ln(y 2+1)B .sin x >sin yC .x 3<y 3D.1x 2+1>1y 2+1答案C 解析方法一因为实数x ,y 满足a x >a y (0<a <1),所以x <y .对于A ,取x =0,y =3,不成立;对于B ,取x =-π,y =π,不成立;对于C ,由于f (x )=x 3在R 上单调递增,故x 3<y 3成立;对于D ,取x =-2,y =1,不成立.故选C.方法二根据指数函数的性质得x <y ,此时x 2,y 2的大小不确定,故选项A ,D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立.16.设0<b <a <1,则下列不等式成立的是()A .a ln b >b ln aB .a ln b <b ln aC .a e b <b e aD .a e b =b e a 答案B解析观察A ,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a ,B 正确.对于C ,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e x x 在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e b b,所以a e b >b e a ,故选B.。
高中数学 新人教A版选择性必修第三册 第七章 7.1.1条件概率 课件
【解析】选C.设A为“某人检验呈阳性”,B为“此人患病”.则“某人检验呈阳性时 他确实患病”为B|A,
又P(B|A) =PP((AAB)) =99%0.×20%.1% =49.5%.
2.气象资料表明,某地区每年七月份刮台风的概率为35 ,在刮台风的条件下, 下大雨的概率为190 ,则该地区七月份既刮台风又下大雨的概率为( ) A.23 B.2570 C.190 D.130
1.若P(A∩B)=35 ,P(A)=34 ,则P(B|A)=( ) A.54 B.45 C.53 D.43
2.下列式子成立的是( A.P(A|B)=P(B|A) C.P(AB)=P(B|A)·P(A)
) B.0<P(B|A)<1 D.P(AB|A)=P(B)
【解析】选C.由P(B|A)=PP((AAB)) 得P(AB)=P(B|A)·P(A),而P(A|B)=PP((ABB)) 知 A不正确,C正确;当P(B)为零时知P(B|A)=0,所以B不正确;D选项应是P(AB|A) =P(B|A),故D不正确.
第七章 随机变量及其分布 7.1 条件概率与全概率公式
7.1.1 条 件 概 率
基础预习初探
主题1 条件概率的概念及性质 3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取.
(1)问最后一名同学抽到中奖奖券的概率是否比其他同学小?
提示:由古典概型可知,最后一名同学抽到中奖奖券的概率为 1 ,与其他同学
(2)设“点数a,b之和不大于5”为事件B, 包含(1,1),(1,2),(1,3),(1,4),(2,1), (2,2),(2,3),(3,1),(3,2),(4,1),共10个基本事件; 设“a,b中至少有一个为2”为事件C, 包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数a,b 之和不大于5的条件下,a,b中至少有一个为2”的概率:P=nn((BBC)) =150 =12 .
【新】版高考数学大一轮复习第七章不等式7.1不等关系与不等式教师用书
(浙江专用)2018版高考数学大一轮复习 第七章 不等式 7.1 不等关系与不等式教师用书1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +mb +m ;a b <a -mb -m(b -m >0). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若a b>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)一个非零实数越大,则其倒数就越小.( × ) (5)a >b >0,c >d >0⇒a d >b c.( √ ) (6)若ab >0,则a >b ⇔1a <1b.( √ )1.设a <b <0,则下列不等式中不成立的是( ) A.1a >1bB.1a -b >1aC .|a |>-b D.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立,即1a -b >1a不成立. 2.(教材改编)若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A 解析a -b >0⇒a >b⇒a >b ⇒a 2>b 2, 但由a 2-b 2>0a -b >0.3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( ) A .a -b >0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.(教材改编)若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝ ⎛⎭⎪⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定(2)若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 (1)B (2)B解析 (1)M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1 =a 1(a 2-1)-(a 2-1) =(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A ≤B B .A ≥BC .A <BD .A >B(2)若a =1816,b =1618,则a 与b 的大小关系为________. 答案 (1)B (2)a <b 解析 (1)∵A ≥0,B ≥0,A 2-B 2=a +2ab +b -(a +b )=2ab ≥0,∴A ≥B .(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618,即a <b . 题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0(2)若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有( ) A .①② B.②③ C.①④ D.③④ 答案 (1)A (2)C解析 (1)由c <b <a 且ac <0知c <0且a >0.由b >c 得ab >ac 一定成立.(2)因为1a <1b<0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b , 因为b <0,所以ab <b 2.因此正确的是①④.思维升华 解决此类问题常有两种方法:一是直接利用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 方法一 ∵a >0>b ,c <d <0, ∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), ∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 方法二 取特殊值. 题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立 例3 已知a >b >0,给出下列四个不等式: ①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b .其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④ D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x在R 上是增函数, ∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b , ∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④不成立.故选A.方法二 令a =3,b =2, 可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立,故选A.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是______,3x +2y 的取值范围是______. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18. 引申探究1.若将已知条件改为-1<x <y <3,求x -y 的取值范围. 解 ∵-1<x <3,-1<y <3, ∴-3<-y <1,∴-4<x -y <4. 又∵x <y ,∴x -y <0,∴-4<x -y <0, 故x -y 的取值范围为(-4,0).2.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为(-32,232).思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等. (2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1D .a n>b n(2)设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( ) A .① B .①② C .②③ D .①②③答案 (1)C (2)D解析 (1)(特殊值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确; C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C.(2)由不等式性质及a >b >1知1a <1b,又c <0,∴c a >c b,①正确; 构造函数y =x c,∵c <0,∴y =x c在(0,+∞)上是减函数, 又a >b >1,∴a c <b c,②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.6.利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ②①+②得3≤2a ≤6,∴6≤4a ≤12, 又由①可得-2≤-a +b ≤-1,③②+③得0≤2b ≤3,∴-3≤-2b ≤0, 又f (-2)=4a -2b ,∴3≤4a -2b ≤12, ∴f (-2)的取值范围是[3,12]. 答案 [3,12] 现场纠错解析 方法一 由⎩⎪⎨⎪⎧f-=a -b ,f =a +b ,得⎩⎪⎨⎪⎧a =12[f -+f ,b =12[f-f -,∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是( ) A .ad >bc B .ac >bd C .a -c >b -d D .a +c >b +d答案 D解析 由不等式的同向可加性得a +c >b +d .2.(2016·包头模拟)若6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9≤c ≤18B .15<c <30C .9≤c ≤30D .9<c <30 答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a2,∴9<3a2≤a +b ≤3a <30.3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )小中高 精品 教案 试卷A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0, 又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立. 5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( )A .(0,5π6)B .(-π6,5π6)C .(0,π)D .(-π6,π)答案 D解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.6.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b答案 C解析 当c =0时,可知A 不正确; 当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0,知a >0且b <0, 所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.7.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1C .a -1b>b -1aD.2a +b a +2b >ab答案 A解析 取a =2,b =1,排除B ,D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A.8.若a >b >0,则下列不等式一定不成立的是( ) A.1a <1bB .log 2a >log 2bC .a 2+b 2≤2a +2b -2 D .b <ab <a +b2<a答案 C解析 ∵(a -1)2+(b -1)2>0(由a >b >0,得a ,b 不能同时为1), ∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2, ∴C 项一定不成立.9.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c. 其中正确命题的序号是________. 答案 ②③解析 ①不对,因为c 2可以为0;②对,因为c 2>0;③对,因为2c>0.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________. 答案 a =b >c解析 ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233,∴a =b ,又a =log 233>1,c =log 32<1, ∴a >c .故a =b >c .11.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0; ②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0. 其中正确的命题是________. 答案 ①②③解析 ∵ab >0,bc -ad >0, ∴c a -d b =bc -adab>0,∴①正确;∵ab >0,又c a -db>0,即bc -adab>0, ∴bc -ad >0,∴②正确; ∵bc -ad >0,又c a -d b >0,即bc -adab>0, ∴ab >0,∴③正确.故①②③都正确. 12.设a >b >c >0,x =a 2+b +c2,y =b 2+c +a2,z =c 2+a +b2,则x ,y ,z的大小关系是________.(用“>”连接) 答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x . 同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20,z =26,故z >y >x .13.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?解 设路程为s ,跑步速度为v 1,步行速度为v 2,甲到教室所用时间为t 甲,乙到教室所用时间为t 乙.t 甲=s 2v 1+s 2v 2=s v 1+v 22v 1v 2, s =t 乙2·v 1+t 乙2·v 2⇒t 乙=2s v 1+v 2,∴t 甲t 乙=v 1+v 224v 1v 2≥v 1v 224v 1v 2=1.∴t 甲≥t 乙,当且仅当v 1=v 2时“=”成立. 由实际情况知v 1>v 2,∴t 甲>t 乙.∴乙先到教室.*14.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34nx , y 2=45nx .所以y 1-y 2=14x +34nx -45nx=14x -120nx =14x (1-n 5). 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠; 当单位去的人数多于5人时,甲车队收费更优惠; 当单位去的人数少于5人时,乙车队收费更优惠.。
2023年高考数学一轮复习(新高考1) 第7章 §7
则点O到平面ABC1D1的距离
—→ —→ 1
d2=|
DA1 ·C1O —→
|=
| DA1 |
22=
42,故
B
正确;
—A1→B =(1,0,-1),—A1→D =(0,1,-1),
A—1→D1=(0,1,0).
设平面A1BD的法向量为n=(x,y,z), 则nn··——AA11→→DB = =00, ,
设点N到直线AB的距离为d1,
则 d1=
|A→N|2-
A→A→NB·A→B 2=
20-4=4.
(2)求点C1到平面ABN的距离.
设平面ABN的一个法向量为n=(x,y,z),
则由 n⊥A→B,n⊥A→N,
得nn··AA→→NB==24y+3x2+z=2y0=,0,
令 z=2,则 y=-1,x= 易知—C1→N =(0,0,-2),
得xy= =0z,, 令y=z=1,
所以n=(0,1,1). 因为O→F=(0, 3,0),
设点O到平面PBC的距离为d,
则 d=O→|Fn·|n=
3= 2
6 2.
因为点O在直线DE上,
所以直线
DE
到平面
PBC
的距离等于
6 2.
思维升华
点到直线的距离 (1)设过点 P 的直线 l 的单位方向向量为 n,A 为直线 l 外一点, 点 A 到直线 l 的距离 d= |P→A|2-P→A·n2.
如图,设DE的中点为O,BC的中点为F,连接OP,OF,OB, 因为平面PDE⊥平面BCDE, 平面PDE∩平面BCDE=DE, 所以OP⊥平面BCDE. 因为在△ABC中,点D,E分别为AC,AB边的中点, 所以DE∥BC. 因为DE⊄平面PBC,BC⊂平面PBC, 所以DE∥平面PBC. 又OF⊥DE,
2024年高考数学总复习第七章不等式真题分类27一元二次不等式及其解法
答案:(-5,0)∪(5,+∞) 由于 f(x)为 R 上的奇函数,所以当 x=0
时,f(0)=0;当 x<0 时,-x>0,所以 f(-x)=x2+4x=-f(x),即 f(x)=-x2-4x,
x2-4x,x>0, 所以 f(x)=0,x=0,
-x2-4x,x<0.
由 f(x)>x,可得x2-4x>x, x>0
或- 5 或-5<x<0,所以原不等式的解集为(-5,0)∪(5,+∞).
第7页
返回层目录 返回目录
真题分类27 一元二次不等式及其解法
高考·数学
02. 解不等式需要注意下面几个问题
(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法. (2)掌握用数轴标根法解高次不等式和分式不等式,特别要注意因式的处理方 法. (3)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化 为易解的不等式. (4)对于含字母的不等式,要按照正确的分类标准,进行分类讨论.
C3.一元二次不等式的解法
高考·数学
命题者说:掌握二次不等式的解题要领,能讨论含参不等式的解法及高次不等式的解法.
第1题 第2题 第3题 第4题
第2页
返回目录
真题分类27 一元二次不等式及其解法
高考·数学
Ⅰ.不含参数的一元二次不等式的解法 1.(2013·广东,9,5 分)不等式 x2+x-2<0 的解集为________.
真题分类27 一元二次不等式及其解法
高考·数学
第七章 不等式
§7.1 不等式及其解法 真题分类27 一元二次不等式及其解法
C3.一元二次不等式的解法 C4.一元二次不等式的恒成立问题 C5.一元二次方程的根的分布问题 C6.一元二次不等式与函数的综合问题
2021年高考数学一轮复习第七章不等式7.1一元二次不等式讲义
2021年高考数学一轮复习第七章不等式7.1一元二次不等式讲义答案:8解析:∵sin A=2sin Bsin C,∴sin(B+C)=2sin Bsin C,即sin Bcos C+cos Bsin C=2sin Bsin C,亦即tan B+tan C=2tan Btan C,∵tan A=tan[π-(B+C)]=-tan(B+C)=-=,又△ABC为锐角三角形,∴tan A=>0,tan B+tan C>0,∴tan Btan C>1,∴tan Atan Btan C=·tan B·tan C=,令tan Btan C-1=t,则t>0,∴tan Atan BtanC==2≥2×(2+2)=8,当且仅当t=,即tan Btan C=2时,取“=”.∴tan Atan Btan C的最小值为8.考纲解读考点内容解读要求五年高考统计常考题型预测热度xx xx xx xx xx不等式的解法1.解不等式2.由不等式求参数C填空题解答题★★★分析解读一元二次不等式很少单独命题,一般和其他知识融合在一起考查.五年高考考点不等式的解法1.(xx浙江理改编,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)= .答案(-2,3]2.(xx课标全国Ⅰ理改编,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=.答案3.(xx安徽理改编,6,5分)已知一元二次不等式f(x)<0的解集为,则f(10x)>0的解集为.答案{x|x<-lg 2}4.(xx陕西理改编,9,5分)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是.答案[10,30]5.(xx四川理,14,5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x.那么,不等式f(x+2)<5的解集是.答案(-7,3)教师用书专用(6)6.(xx安徽理,17,12分)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}.(1)求I的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.解析(1)因为方程ax-(1+a2)x2=0(a>0)有两个实根x1=0,x2=,故f(x)>0的解集为{x|x1<x<x2}.因此区间I=,I的长度为.(2)设d(a)=,则d'(a)=.令d'(a)=0,得a=1.由于0<k<1,故当1-k≤a<1时,d'(a)>0,d(a)单调递增;当1<a≤1+k时,d'(a)<0,d(a)单调递减.所以当1-k≤a≤1+k时,d(a)的最小值必定在a=1-k或a=1+k处取得.而==<1.故d(1-k)<d(1+k).因此当a=1-k时,d(a)在区间[1-k,1+k]上取得最小值.三年模拟A组xx模拟·基础题组考点不等式的解法1.(xx江苏东台安丰高级中学月考)设f(x)=若f(t)>2,则实数t的取值范围是.答案t<0或t>32.(xx江苏扬州中学高三月考)已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是.答案[2,4]3.(苏教必5,三,2,变式)若关于x的不等式m(x-1)>x2-x的解集为{x|1<x<2},则实数m的值为.答案 24.(苏教必5,三,2,变式)对任意的k∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则x的取值范围是.答案x<1或x>35.(xx江苏苏州期中)函数y=的定义域为.答案(-2,1]6.(xx江苏南京三模,7)记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为.答案(-∞,-3]B组xx模拟·提升题组(满分:50分时间:25分钟)一、填空题(每小题5分,共20分)1.(xx江苏海安中学阶段测试)已知不等式(ax+3)(x2-b)≤0对任意x∈(0,+∞)恒成立,其中a,b是整数,则a+b 的取值集合为.答案{-2,8}2.(xx江苏淮安、宿迁高三期中)不等式x6-(x+2)3+x2≤x4-(x+2)2+x+2的解集为.答案[-1,2]3.(苏教必5,三,2,变式)已知函数f(x)=,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是.答案{a|a>-3}4.(xx江苏前黄高级中学第一次学情调研,6)已知函数f(x)=若对于任意x∈R,不等式f(x)≤-t+1恒成立,则实数t的取值范围是.答案(-∞,1]∪[3,+∞)二、解答题(共30分)5.(xx江苏金陵中学高三月考)已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(1)求函数g(x)的解析式;(2)解不等式g(x)≥f(x)-|x-1|;(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.解析(1)设函数y=f(x)的图象上任一点Q(x0,y0)关于原点的对称点为P(x,y).则即∵点Q(x0,y0)在函数y=f(x)的图象上,∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x.(2)由g(x)≥f(x)-|x-1|可得2x2-|x-1|≤0.当x≥1时,2x2-x+1≤0,此时不等式无解.当x<1时,2x2+x-1≤0,∴-1≤x≤,因此,原不等式的解集为.(3)h(x)=-(1+λ)x2+2(1-λ)x+1.①当λ=-1时,h(x)=4x+1,在[-1,1]上是增函数,符合题意.②当λ≠-1时,抛物线h(x)=-(1+λ)x2+2(1-λ)x+1的对称轴方程为x=.(i)当λ<-1,且≤-1时,h(x)在[-1,1]上是增函数,解得λ<-1.(ii)当λ>-1,且≥1时,h(x)在[-1,1]上是增函数,解得-1<λ≤0.综上,λ≤0.6.(xx江苏淮安高中阶段检测,19)设A=[-1,1],B=,函数f(x)=2x2+mx-1.(1)设不等式f(x)≤0的解集为C,当C⊆(A∪B)时,求实数m的取值范围;(2)若对任意x∈R,都有f(1+x)=f(1-x)成立,试求x∈B时,f(x)的值域.解析(1)A∪B=[-1,1],因为二次函数f(x)=2x2+mx-1的图象开口向上,且Δ=m2+8>0恒成立,故图象始终与x轴有两个交点,若C⊆A∪B,则这两个交点的横坐标x1,x2∈[-1,1],所以解得:-1≤m≤1.(2)因为对任意x∈R,都有f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,所以-=1,故m=-4.所以f(x)=2(x-1)2-3,所以f(x)在上为减函数.所以f(x)min=-2,f(x)max=2,故x∈B时,f(x)的值域为[-2,2].C组xx模拟·方法题组方法1 一元二次不等式的解法及应用1.(xx江苏南京溧水中学质检,15)已知集合A={x|(x-6)(x-2a-5)>0},集合B={x|[(a2+2)-x]·(2a-x)<0}.(1)若a=5,求集合A∩B;(2)已知a>,且“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围.解析(1)当a=5时,由(x-6)(x-15)>0,解得x<6或x>15,所以A=(-∞,6)∪(15,+∞),由(27-x)·(10-x)<0,即(x-27)(x-10)<0,解得10<x<27,所以B=(10,27),∴A∩B=(15,27).(2)当a>时,2a+5>6,a2+2>2a,∴A=(-∞,6)∪(2a+5,+∞),B=(2a,a2+2),∵“x∈A”是“x∈B”的必要不充分条件,∴B⫋A,显然2a<2a+5,∴a2+2≤6,∵a>,∴<a≤2.方法2 分式不等式的解法2.(xx江苏金陵中学月考)不等式<3的解集为.答案(-∞,0)∪3.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是.答案4.已知f(x)=则f(x)>-1的解集为.答案(-∞,-1)∪(0,1)∪(1,+∞)方法3 解含参数的一元二次不等式5.(xx泰州第一次质量检测)已知二次函数f(x)=mx2-2x-3,关于实数x的不等式f(x)≤0的解集为[-1,n].(1)当a>0时,解关于x的不等式ax2+n+1>(m+1)x+2ax;(2)是否存在实数a∈(0,1),使得关于x的函数y=f(a x)-3a x+1(x∈[1,2])的最小值为-5?若存在,求实数a的值;若不存在,请说明理由.解析由不等式mx2-2x-3≤0的解集为[-1,n]知,关于x的方程mx2-2x-3=0的两根为-1和n,且m>0,由根与系数的关系,得解得(1)原不等式可化为(x-2)(ax-2)>0,①当0<a<1时,原不等式化为(x-2)>0,且2<,解得x>或x<2;②当a=1时,原不等式化为(x-2)2>0,解得x∈R且x≠2;③当a>1时,原不等式化为(x-2)>0,且2>,解得x<或x>2.综上所述,当0<a<1时,原不等式的解集为;当a=1时,原不等式的解集为{x|x≠2};当a>1时,原不等式的解集为.(2)存在.假设存在满足条件的实数a,易知f(x)=x2-2x-3,则y=f(a x)-3a x+1=a2x-(3a+2)a x-3.令a x=t(a2≤t≤a),则y=t2-(3a+2)t-3,函数y=t2-(3a+2)t-3的图象的对称轴为直线t=,因为a∈(0,1),所以a2<a<1,1<<,所以函数y=t2-(3a+2)t-3在[a2,a]上单调递减,所以当t=a时,y取得最小值,最小值为y=-2a2-2a-3由-2a2-2a-3=-5,解得a=或a=(舍去).D组xx模拟·突破题组(xx江苏南通调研,19)设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式·f(x)≥·g(x);(2)若k≥0,求关于x的方程f(x)=x·g(x)实根的个数.解析(1)k=0时,f(x)=(x+1),g(x)=.由得x≥0.此时,原不等式为(x+1)x≥(x+3),即2x2+x-3≥0,解得x≤-或x≥1.因为x≥0,所以原不等式的解集为[1,+∞).(2)由方程f(x)=x·g(x)得,(x+k+1)=x.①由得x≥k,所以x≥0,x+k+1>0.方程①两边平方,整理得(2k-1)x2-(k2-1)x-k(k+1)2=0(x≥k).②当k=时,由②得x=,因为>,所以原方程有唯一解.当k≠时,方程②整理为[(2k-1)x+k(k+1)](x-k-1)=0,解得x1=,x2=k+1.i)k=时,x1=x2,方程②有两个相等的实数根,此时x=,因为>,所以原方程有唯一的解. ii)0≤k<且k≠时,x1≠x2,且x2=k+1>k,x1-k=≥0,即x1≥k.故原方程有两解.iii)k>时,x1-k=<0,即x1<k,故x1不是原方程的解.而x2=k+1>k,故原方程有唯一解. 综上所述:当k≥或k=时,原方程有唯一解;当0≤k<且k≠时,原方程有两解.。
新课标高考数学一轮复习第七章不等式7.1不等关系与不等式课件理
A.-2<a-b<0
B.-2<a-b<-1
C.-1<a-b<0
D.-1<a-b<1
解:-1<a<1,-1<-b<1⇒-2<a-b <2.又 a<b,则-2<a-b<0.故选 A.
第五页,共26页。
(2016·四川成都模拟)若 a<b<0,则下
列不等式中一定成立的是( A.1a<1b
)
B.12a<12b
第三页,共26页。
自查自纠
1.>0 =0 <0
2 . (1)b<a (2)a>c (3)>
ac<bc (5)a+c>b+d (7)ac>bd (10)an>bn(n∈N 且 n≥2)
n (11)
n a>
Hale Waihona Puke b(n∈N且n≥2)
(4)ac>bc
第四页,共26页。
(教材题改编)若-1<a<b<1,则( )
解:a,b,c 是实数,若 a>b>c>0,不等式 a+b>c 成立;a,b,c 是实数,若 a>0>b>c, 不等式 a+b>c 成立;a,b,c 是实数,若 0>a>b >c,a+b=c,不等式 a+b>c 不成立,一组整 数 a,b,c 的值为负数,依次为-1,-2,-3. 故填-1,-2,-3.
第二十一页,共26页。
(2)(2016·云南模拟)若-1≤lgxy≤2,1≤lg(xy)≤4, 则 lgxy2的取值范围是________.
解:由 1≤lg(xy)≤4,-1≤lgxy≤2, 得 1≤lgx+lgy≤4,-1≤lgx-lgy≤2, 则 lgxy2=2lgx-lgy=12(lgx+lgy)+32(lgx-lgy), 所以-1≤lgxy2≤5.故填[-1,5].
2022届高考数学一轮复习第7章7.1数列含递推公式核心考点精准研析训练含解析新人教B版
第7章核心考点·精准研析考点一数列的有关概念及通项公式1.数列{a n}中,a1=1,当n≥2且n∈N*时,a n=,则a3+a5= ( )A. B. C. D.n=n2-8n+15,则3 ( )A.不是数列{a n}中的项B.只是数列{a n}中的第2项C.只是数列{a n}中的第6项D.是数列{a n}中的第2项或第6项,-,,-,…的一个通项公式为( )n=(-1)n·n=(-1)n·n=(-1)n+1·n=(-1)n+1·4.若数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+n+1,则++…+等于( )世纪金榜导学号A. B. C. D.5.在数列{a n}中,a1=2,a n+1=a n+ln,则a n=( )世纪金榜导学号A.2+ln nB.2+(n-1)ln nC.2+nln nD.1+n+ln n【解析】n=(n≥2),所以a3=,a5=,所以a3+a5=+=+=.n=3,即n 2-8n+15=3,解得n=2或6,故3是数列{an}中的第2项或第6项.3.选D.该数列是分数形式,分子为奇数2n+1,分母是指数2n,各项的符号由(-1)n+1来确定,所以D选项正确.n+1=a n+n+1,得a n+1-a n=n+1,则a2-a1=1+1,a3-a2=2+1,a4-a3=3+1,…,a n-a n-1=(n-1)+1,以上等式相加,得a n-a1=2+3+…+(n-1)+n,把a1=1代入上式得a n=1+2+3+…+(n-1)+n=,所以==2,则++…+=2=2= .n+1=a n+ln,所以a n-a n-1=ln=ln(n≥2),所以a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=ln+ln+…+ln+ln 2+2=2+ln=2+ln n(n≥2).又a1=2适合上式,故a n=2+ln n(n∈N*).将T3改为已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )n=(-1)n-1n=n=2sin n=cos(n-1)π+1【解析】选C.对n=1,2,3,4进行验证,a n=2sin不合题意.(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③各项的符号特征和绝对值特征;④对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑤对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.(1)累加法:a n+1-a n=f(n).(2)累乘法: =f(n).(3)待定系数法:a n+1=pa n+q(其中p,q均为常数,pq(p-1)≠0).把原递推公式转化为:a n+1-t=p(a n-t),其中t=,再利用换元法转化为等比数列求解.【秒杀绝招】1.代入法解T2根据选项可直接把n=2或n=6代入检验.2.特值检验法解T3先利用排除法排除A、B,然后可直接把n=3代入检验排除C.考点二a n与S n的关系及其应用【典例】1.设数列{a n}的前n项和为S n,且S n=2(a n-1)(n∈N*),则a n= ( )-1 nn-1n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,求a n. 世纪金榜导学号【解题导思】序号联想解题(1)看到a n与S n的关系,想到利用a n=S n-S n-1(n≥2)转化为a n与a n-1的关系1(2)也可以先检验n=1,n=2,n=3进行排除(1)利用a n+1=S n+1-S n转化为S n+1与S n的关系2(2)求得S n,代入a n=S n-S n-1(n≥2)得a n,并检验n=1是否成立【解析】1.选C.当n=1时,a1=S1=2(a1-1),可得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1,所以a n=2a n-1,所以数列{a n}为首项为2,公比为2的等比数列,所以a n=2n.【一题多解】1=2,a2=4,a3=8,易确定C.n+1=S n+1-S n=S n+1S n,两边同时除以S n+1S n,得-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1-(n-1)=-n,所以S n=-.当n≥2时,a n=S n-S n-1=-+=,故a n=【答题模板微课】本例题2的模板化过程:建模板:当n=1时,a1=S1=-1, …………求首项当n≥2时,a n=S n-S n-1=-+=,…………作差求通项经检验a1=-1不适合a n=, …………检验故a n=…………结论套模板:已知数列{a n}的前n项和S n=n2+2n+1,则a n=________.【解析】当n=1时,a1=S1=1+2+1=4, …………求首项当n≥2时,a n=S n-S n-1=2n+1, …………作差求通项经检验a1=4不适合a n=2n+1, …………检验故a n=…………结论答案:n求a n的三个步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)注意检验n=1时的表达式是否可以与n≥2的表达式合并.n与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.1.已知数列{a n}的前n项和S n=2n-3,则数列{a n}的通项公式是________.【解析】当n=1时,a1=S1=2-3=-1;当n≥2时,a n=S n-S n-1=(2n-3)-(2n-1-3)=2n-2n-1=2n-1.当n=1时不满足,故a n=答案:a n=2.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n= ( ) n-1 B.C. D.【解析】n=2a n+1得S n=2(S n+1-S n),即2S n+1=3S n,=,而S1=a1=1,所以S n=.【变式备选】已知数列{a n}的前n项和为S n,求{a n}的通项公式.(1)S n=2n2-3n.(2)S n=3n+b.【解析】(1)当n=1时,a1=S1=2-3=-1;当n≥2时,a n=S n-S n-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5.由于a1也适合此等式,所以a n=4n-5.(2)a1=S1=3+b,当n≥2时,a n=S n-S n-1=(3n+b)-(3n-1+b)=2·3n-1.当b=-1时,a1适合此等式;当b≠-1时,a1不适合此等式.所以当b=-1时,a n=2·3n-1;当b≠-1时,a n=考点三数列的性质及其应用命题精解读考什么:考查数列的单调性、周期性、最值问题怎么考:因为数列可以看作是一类特殊的函数值,所以数列也具备函数应具备的性质,因此常常以数列为载体,考查单调性、周期性以及最值等问题.解题过程中常常渗透逻辑推理的核心素养.新趋势:由递推关系求通项公式考查求通项公式的方法成为考试的新趋势学霸好方法(1)作差比较法(2)作商比较法(3)结合相应函数的图象直观判断.先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.(1)利用不等式组(n≥2)找到数列的最大项;(2)利用不等式组(n≥2)找到数列的最小项.数列的函数特性可利用数形结合、分类讨论进行解题数列的单调性【典例】已知递增数列{a n},a n≥0,a1=0.对于任意的正整数n,不等式t2-- 3t-3a n≤0恒成立,则正数t的最大值为( )A.1B.2【解析】选C.因为数列{a n}是递增数列,又t2--3t-3a n=(t-a n-3)(t+a n)≤0,t+a n>0,所以t≤a n+3恒成立,t≤(a n+3)min=a1+3=3,所以t max=3.在数列的恒成立问题中,若涉及求参数的最值问题时,如何进行合理地转化?提示:在涉及求参数的最值问题时,常常与已知数列的单调性有关,因此解决这类问题,需要先判断该数列的单调性.数列的周期性【典例】若数列{a n}满足a1=2,a n+1=,则a2 022的值为世纪金榜导学号( )A.2B.-3 D.【解析】1=2,a n+1=,所以a2==-3,同理可得:a3=-,a4=,a5=2,a6=-3,a7=-,a8=,…,可得a n+4=a n,则a2 022=a505×4+2=a2=-3.在求数列中某一项的值,特别是该项的序号较大时,应该考虑如何求解?提示:在求数列中某一项的值,特别是该项的序号较大时,应该考虑该数列是否具有周期性,利用周期性即可求出该数列中的某一项.数列中的最值【典例】数列{a n}的通项为a n=(n∈N*),若a5是{a n}中的最大值,则a的取值X围是________.世纪金榜导学号【解析】当n≤4时,a n=2n-1单调递增,因此n=4时取最大值,a4=24-1=15.当n≥5时,a n=-n2+(a-1)n=-+.因为a5是{a n}中的最大值,所以解得9≤a≤12.所以a的取值X围是[9,12].答案:[9,12]当数列涉及最大项或最小项问题时,除了用不等式组求解,还可以考虑什么方法?提示:解决数列的最值问题,除了用不等式组求解,还可以将数列看作某个函数,利用求函数的最值的方法求数列的最值.1.已知数列{a n}满足a n=(n∈N*),则数列{a n}的最小项是第______项.【解析】因为a n=,所以数列{a n}的最小项必为a n<0,即<0,3n-16<0,从而n<.又n∈N*,所以当n=5时,a n的值最小.答案:52.已知数列{a n}中,a n=n2+λn,且{a n}为递增数列,某某数λ的取值X围.【解析】因为a n+1-a n=(n+1)2+λ(n+1)-n2-λn=2n+λ+1,所以由{a n}为递增数列可得2n+λ+1>0,即λ>-2n-1对一切n∈N*恒成立.因为n=1时,-2n-1取得最大值-3,所以λ>-3,即λ∈(-3,+∞).【一题多解】函数f(n)=n2+λn的图象的对称轴是n=-,如图,只需要-<,则λ>-3,即λ∈(-3,+∞).1.(2020·某某模拟)已知在正项等比数列中,a2 020=4a2 018,a2+a4=20,则a2 020的个位数字是( )A.2B.4【解析】选C.设公比为q(q>0),依题意得解得a1=q=2,故a2 020=2×22 019=22 020,注意到21个位数字是2,22个位数字是4,23个位数字是8,24的个位数字是6,25的个位数字是2,26的个位数字是4,…,故2n的个位数字的周期为4,而22 020=2505×4,故其个位数字为6.2.数列{a n}的通项公式为a n=,则数列{a n}中的最大项是( )B.19C.D.【解析】选 C.令f(x)=x+(x>0),运用基本不等式得f(x)≥2,当且仅当x=3n=,所以≤,由于n∈N*,故当n=9或n=10时,a n=最大.。
2023年高考数学一轮复习(新高考1) 第7章 §7
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
在正方体ABCD-A1B1C1D1中, 设平面A1ACC1为α, 平面BDEF为β. ∵Q∈A1C1,∴Q∈α. 又Q∈EF,∴Q∈β, 则Q是α与β的公共点,同理,P是α与β的公共点, ∴α∩β=PQ. 又A1C∩β=R,∴R∈A1C. ∴R∈α,且R∈β, 则R∈PQ,故P,Q,R三点共线.
思维升华
共面、共线、共点问题的证明 (1)证明共面的方法:先确定一个平面,然后再证其余的线 (或点)在这个平面内. (2)证明共线的方法:先由两点确定一条直线,再证其他各点 都在这条直线上. (3)证明共点的方法:先证其中两条直线交于一点,再证其他 直线经过该点.
跟踪训练1 (1)(多选)如图是正方体或四面体,P,Q,R,S分别是所在 棱的中点,则这四个点共面的图是
因为直线MN经过平面A1CC1内一点M, 且点M不在直线A1C上, 所以直线MN与直线A1C是异面直线,所以D错误.
命题点2 异面直线所成角
例3 (1)(2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中 点,则直线PB与AD1所成的角为
π A.2
π B.3
π C.4
√D.π6
DM= AD2+12AB2= 25,
DB1= AB2+AD2+BB21= 5.
所以 OM=12AD1=1,OD=12DB1= 25,
于是在△DMO中,由余弦定理,
得 cos∠MOD=12+2× 251×2-25252= 55,
即异面直线
AD1
与
DB1
所成角的余弦值为
5 5.
思维升华
(1)点、直线、平面位置关系的判定,注意构造几何体(长方 体、正方体)模型来判断,常借助正方体为模型. (2)求异面直线所成的角的三个步骤 一作:根据定义作平行线,作出异面直线所成的角. 二证:证明作出的角是异面直线所成的角. 三求:解三角形,求出所作的角.
高三数学第七章知识点
高三数学第七章知识点一、复习概述高三数学第七章主要涉及三角函数、向量和坐标系等知识点。
这些知识点是数学学习中的重要基础,也是高考数学的考点之一。
复习这些知识点对于提高数学成绩和应对高考数学考试非常重要。
二、三角函数1. 三角函数的定义与性质:三角函数包括正弦函数、余弦函数和正切函数等。
通过单位圆的概念,我们可以定义三角函数,并研究它们的性质。
例如,正弦函数的周期为2π,值域为[-1, 1];余弦函数的周期也为2π,值域也为[-1, 1];正切函数的定义域为实数集R,值域为(-∞, +∞)。
2. 三角函数的基本关系:三角函数之间存在一些基本的关系。
例如,正弦函数与余弦函数的和差化积公式、倍角公式等。
掌握这些基本关系可以帮助我们在解决问题时更加方便和灵活。
3. 三角函数的图像与性质:通过对三角函数的图像进行观察和分析,可以更好地理解三角函数的性质。
例如,正弦函数的图像是一条连续的曲线,周期为2π;余弦函数的图像也是一条连续的曲线,周期为2π。
掌握这些图像特点,对于解决与三角函数相关的问题很有帮助。
三、向量1. 向量的基本概念:向量是数学中的一个重要概念,它与点和线段密切相关。
向量可以表示有大小和方向的量,常用于表示力、速度、位移等物理量。
向量有长度和方向两个基本要素。
2. 向量的运算:向量之间可以进行加法和数乘等运算。
向量的加法满足平行四边形法则和三角形法则,即两个向量的和可以用平行四边形或三角形的对角线表示。
向量的数乘表示将向量的长度进行相应的改变。
3. 向量的坐标表示:在坐标系中,可以将向量用坐标表示。
例如,在二维坐标系中,一个向量可以表示为(x, y),其中x和y分别表示向量在x轴和y轴上的投影长度。
这种表示方法可以简化向量运算和问题求解过程。
四、坐标系1. 二维坐标系:二维坐标系由x轴和y轴组成,通常用于表示平面上的点、向量和函数等。
在二维坐标系中,一个点可以用坐标(x, y)表示,其中x和y分别表示点在x轴和y轴上的投影长度。
高三数学第七章知识点总结
高三数学第七章知识点总结高三数学学习中,第七章是关于函数的章节。
函数是数学中重要的概念之一,也是高考考察的重点之一。
本文将对高三数学第七章的知识点进行总结和梳理,帮助同学们更好地理解和掌握这一部分知识。
一、函数的概念及性质函数是一种与两个变量之间的关系,并满足每个自变量都有唯一的函数值的映射关系。
定义函数时,需要明确函数的定义域、值域和对应关系。
函数的性质有以下几点:1. 定义域:函数的自变量的取值范围。
2. 值域:函数的函数值的取值范围。
3. 奇偶性:关于y轴对称为偶函数,关于原点对称为奇函数。
4. 增减性:若在定义域内,随着自变量的增大,函数值也增大,则函数为增函数。
二、初等函数的运算初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数等。
初等函数具有一系列运算法则,有利于化简和计算。
1. 幂函数:f(x) = a^x,其中a为常数,x为自变量。
2. 指数函数:f(x) = a^x,其中a为常数,x为自变量。
3. 对数函数:f(x) = loga(x),其中a为常数,x为自变量。
4. 三角函数和反三角函数:包括正弦函数、余弦函数、正切函数、反正弦函数、反余弦函数、反正切函数等。
三、函数的图像与性质函数的图像是函数在坐标系中的几何表示,通过观察图像可以了解函数的性质和变化规律。
1. 函数的单调性:根据函数图像的上升和下降情况,可以判断函数的单调性。
2. 函数的最值:通过观察函数图像的高峰和低谷,可以找到函数的最大值和最小值。
3. 函数的周期性:若存在正整数T,使得对于任意x,有f(x+T)=f(x),则称函数有周期T。
四、函数的解析式及其应用函数的解析式是由函数的定义域、值域和对应关系来表达的。
通过解析式可以计算函数的函数值和求解方程。
1. 一次函数:f(x) = ax + b,其中a、b为常数,x为自变量。
2. 二次函数:f(x) = ax^2 + bx + c,其中a、b、c为常数,x为自变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 复数 7.1 复数的概念
7.1.1 数系的扩充和复数的概念
|提能达标过关|
1.(2020·北京八中高一期中)复数1-i 的虚部为( ) A .i B .-i C .1
D .-1
解析:选D 由复数虚部定义可知,1-i 的虚部为-1.故选D.
2.(多选)若z =a +(a 2-1)i(a ∈R ,i 为虚数单位)为实数,则a 的值为( ) A .0 B .1 C .-1
D .2或-2
解析:选BC 若z =a +(a 2-1)i(a ∈R ,i 为虚数单位)为实数,则a 2-1=0,所以a =±1,故选BC.
3.“复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数”是“a =-2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
解析:选B 因为1-a +a 2
=⎝ ⎛
⎭⎪⎫a -12 2 +34 >0,所以若复数4-a 2+(1-a
+a 2)i(a ∈R )是纯虚数,则4-a 2=0,即a =±2.当a =-2时,4-a 2+(1-a +a 2)i =7i 为纯虚数.故选B.
4.(2020·福建龙岩一中高一(下)期中考试)以复数3i -2 的虚部为实部,以复数3i 2+2 i 的实部为虚部的复数是( )
A .3-3i
B .-3+3i
C .-2 +2 i
D .2 +2 i
解析:选A 3i -2 的虚部为3,3i 2+2 i =-3+2 i ,其实部为-3.故选A.
5.(2020·安徽亳州二中高一期中)已知i 是虚数单位,若(3+5i)x +(2-i)y =17-2i ,x ,y ∈R ,则x +y =( )
A .6
B .7
C .8
D .-7
解析:选C 由(3+5i)x +(2-i)y =17-2i ,可得(3x +2y )+(5x -y )i =17-2i ,所以⎩⎪⎨⎪⎧3x +2y =17,5x -y =-2, 解得⎩⎪⎨⎪⎧x =1,y =7,
则x +y =8.故选C.
6.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.
解析:复数m 2+m -2+(m 2-1)i 是纯虚数的充要条件是⎩⎪⎨⎪⎧m 2+m -2=0,m 2-1≠0,
解得⎩⎪⎨⎪⎧m =1或m =-2,
m ≠±1,
∴m =-2. 答案:-2
7.(一题两空)(2020·山东莱西一中高一月考)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b ,组成复数a +b i ,其中虚数有________个,纯虚数有________个.
解析:从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b ,组成复数a +b i ,当a =0时,对应的b 有6个值;当a 取1,2,3,4,5,6时,对应的b 只有5个值.所以虚数有6+6×5=36(个),纯虚数有6个.
答案:36 6
8.(2020·浙江杭州高一期中考试)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =m 2-2m -3+(m 2+3m +2)i(i 为虚数单位),b =12,c =13,∠ACB =90°,则实数m =________.
解析:由题意知a =c 2-b 2 =5,则⎩⎪⎨⎪
⎧m 2-2m -3=5,m 2+3m +2=0,
解得m =-2.
答案:-2
9.定义运算⎪⎪
⎪⎪⎪⎪a
b c d =ad -bc ,若(x +y )+(x +3)i =⎪⎪⎪⎪
⎪⎪
3x +2y i -y 1 ,求实数x ,y 的值.
解:由定义得⎪⎪
⎪⎪⎪⎪
3x +2y i -y 1 =3x +2y +y i , 所以(x +y )+(x +3)i =3x +2y +y i. 因为x ,y 为实数,所以⎩⎨⎧x +y =3x +2y ,
x +3=y ,
即⎩⎨⎧2x +y =0,x +3=y , 解得⎩⎨⎧x =-1,y =2.
10.已知集合P ={5,(m 2-2m )+(m 2+m -2)i},Q ={4i ,5},其中m ∈R ,i 为虚数单位,若P ∩Q =P ∪Q ,求实数m 的值.
解:由题意,知P =Q ,所以(m 2-2m )+(m 2+m -2)i =4i , 所以⎩⎨⎧m 2-2m =0,m 2+m -2=4,
解得m =2.
建模探究提能
求使log 12 (m +n )-(m 2-3m )i>-1成立的自然数m ,n 的值.
解:因为log 12 (m +n )-(m 2-3m )i>-1,
所以log 12 (m +n )-(m 2-3m )i 是实数,
从而有⎩⎨⎧m 2-3m =0, ①
m +n <2, ②
由①得m =0或m =3.
当m =0时,代入②得0<n <2,又n ∈N ,所以n =1; 当m =3时,代入②得n <-1,与n 是自然数矛盾. 综上,m =0,n =1.。