流体力学总结

流体力学总结
流体力学总结

流体力学总结

第一章 流体及其物理性质

1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动

2. 流体特性:易流动(易变形)性、可压缩性、粘性

3. 流体质点:宏观无穷小、微观无穷大的微量流体。

4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和

激波情况下不适合。

5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V

δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4?C 时纯水的密度(1000)之比

w w

S ρρρ=为4?C 时纯水的密度 13.6Hg S = 7. 混合气体密度1n i

i i ρρα==∑

8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数为体积模量1

P P K β=

9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。

10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不

可压缩流体。气体流速不高,压强变化小视为不可压缩流体

11. 牛顿内摩擦定律: du dy

τμ= 黏度du dy

τμ= 流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加 μυρ

=

。满足牛顿内摩擦定律的流体为牛顿流体。 12. 理想流体:黏度为0,即0μ=。完全气体:热力学中的理想气体

第二章 流体静力学

1. 表面力:流体压强p 为法向表面应力,内摩擦τ是切向表面应力(静止时为0)。

2. 质量力(体积力):某种力场对流体的作用力,不需要接触。重力、电磁力、电场力、

虚加的惯性力

3. 单位质量力:x y z F f f i f j f k m

==++ ,单位与加速度相同2m s 4. 流体静压强:

1)流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向

2)在静止流体内部任意点处的流体静压强在各个方向都是相等的。

5. 流体平衡微分方程式(欧拉平衡方程)

6. 压差方程 ()x y z dp f dx f dy f dz ρ=++

7. 势函数 ()()(),,x y z f f f x y z

πππ?-?-?-===??? ()dp d ρπ=- 重力场质量力势函数gz π=

8. 等压面:()0

x y z d f dx f dy f dz c ππ-=++==每一点的等压面与该点质量力垂

9. 重力场中流体静力学基本方程:p dp gdz p gz C z C g

ρρρ=-→=-+→+= 静水头为常数 z :位置水头(位置势能) p g

ρ:压力水头(压力势能) 10. 表压g a p p p =- 真空度v a p p p =-

注:测压计测得是相对压强(表压),不是绝对压强

11. U 型管测压计:

12. 倾斜式微压计

13. 等加速直线相对平衡

等压面上()0dp adx gdz ax gz C ρ=--=?+= tan a g

α= 自由液面 0s a ax gz z x g

+=?=- 静压强分布 0()s p p g z z ρ=+-

工程流体力学(一)试题库

2009 年 秋季学期 工 程 流 体 力 学 题号 一 二 三 四 五 六 总分 分数 班号 学号 姓名 一、解释下列概念:(20分) 1. 连续性介质模型、粘性、表面力、质量力 2. 等压面、压力体、流线、迹线 简述“流体”的定义及特点。 3. 恒定流动、非恒定流动、牛顿流体、正压流体 简述 Euler “连续介质模型”的内容及引入的意义。 4.动能修正因数、动量修正因数、水力半径、当量直径 简述“压力体”的概念及应用意义。 5. 有旋运动、无旋运动、缓变流动、急变流动 .简述研究“理想流体动力学”的意义。

二.简答题(10分) 1.流体粘性产生的原因是什么?影响流体粘性的因素有哪些? 2.粘性的表示方法有几种?影响流体粘性的因素有哪些? 3.举例说明等压面在静力学计算中的应用 4. 举例说明压力体在静力学计算中的应用 说明静止流体对曲面壁总作用力的计算方法 三.推导题(30分) 1试推导:流体在直角坐标系中非恒定可压缩流体连续性微分方程式为: 2.试推导粘性流体应力形式的运动微分方程 2.试从粘性流体应力形式出发推导粘性流体的运动微分方程(N-S 方程) 4. 由恒定流动、不可压缩流体流体微小流束的伯努利方程出发,推求粘性流体总流的伯努利方程,并指出其使用条件。 5.推求粘性不可压缩流体作恒定流动时的动量方程式 试证明在不可压缩流体的缓变过流断面上有: z+p/ρg=c 1.试证明:粘性流体的动压强为 四、已知某流速场速度分布为 ,,x y z v yz t v xz t v xy =+=+= 10 d V dt ρ ρ+?=u v g ()1 3 xx yy zz p σσσ=- ++

流体力学知识点大全-吐血整理讲解学习

流体力学知识点大全- 吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张 力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与 该曲线的速度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹 线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线 构成的管状曲面。 性质:①流管表面流体不能穿过。②流管形状和位 置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡 量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流 场中速度旋度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方 向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f=0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表 面称为控制面。特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

工程流体力学公式资料讲解

工程流体力学公式

第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υ μ=dn d v μτ±=n v d /d τμ=

第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力 学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ

工程流体力学相关概念公式

第二章流体及其物理性质 流体:是一种受任何微小剪切力作用都能连续变形的物质。 流体连续介质假说:可以不去考虑分子间存在的空隙,而把流体视为由无数连续分布的流体微团所组成的连续介质。 作用在流体上的力:表面力和质量力。 流体密度:单位体积内所具有的质量。 压缩性:随着压强的增高,体积便缩小。压缩系数:用单位压强所引起的体积变化率。 膨胀性:随着温度的升高,体积便膨胀。体胀系数:单位温升所引起的体积变化率。 粘性:流体微团间发生相对滑移时产生切向阻力的性质。 牛顿内摩擦定律:作用在流层上的切向应力与速度梯度成正比,其比例系数为流体的动力粘度。 粘性与温度的关系:液体的粘度随温度上升而减小,气体的年度随温度上升而增大。 牛顿流体:凡作用在流体上的切向应力与它所引起的角变形速度(速度梯度)之间的关系符合牛顿内摩擦定律的流体。 第三章流体静力学 流体静压强两个特性:一。流体静压强的方向沿作用面的内法线方向。二。静止流体中任一点流体静压强的大小与其作用面在空间的方位无 关,只是该点坐标的连续函数,即静止流 体中任一点上不论来自何方的静压强均相

等。 等压面:压强相等的各点组成的面。作用于静止流体中任一点的质量 力必垂直于通过该点的 等压面。 帕斯卡原理:施于在重力作用下不可压缩流体表面上的压强,将以同 一数值沿各个方向传递 到流体中的所有流体质点。 水头:单位重量流体所具有的能量用液柱高度表示。 压力体:液体作用在曲面上的总压力的铅直分力的大小恰好等于压力 体的液体重力,但并非 作用在曲面上的一定是它上面压力体的液体重力。(纯数学概念,与 体内有无液体无关) 第四章流体运动学和流体动力学基础 流体运动的描述方法:欧拉方法和拉格朗日方法。 流线:在某一瞬时,一条曲线上的每一点的速度矢量总是在该点与此 曲线相切。 流管:在流场内作一本身不是流线又不相交的封闭曲线,通过这样的 封闭曲线上各点的流线 所构成的管状表面。 有效截面:处处与流线相垂直的流束的截面。 湿周:在总流的有效截面上,流体同固体边界接触部分的周长。 水力半径:总流的有效面积与湿周之比。

流体力学总结

流体力学总结 第一章 流体及其物理性质 1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。 4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和 激波情况下不适合。 5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4?C 时纯水的密度(1000)之比 w w S ρρρ=为4?C 时纯水的密度 13.6Hg S = 7. 混合气体密度1n i i i ρρα==∑ 8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数为体积模量1 P P K β= 9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。 10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不 可压缩流体。气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律: du dy τμ= 黏度du dy τμ= 流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加 μυρ = 。满足牛顿内摩擦定律的流体为牛顿流体。 12. 理想流体:黏度为0,即0μ=。完全气体:热力学中的理想气体

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

流体力学—习题答案

一、选择题 1、流体传动系统工作过程中,其流体流动存在的损失有( A ) A、沿程损失和局部损失, B、动能损失和势能损失, C、动力损失和静压损失, D、机械损失和容积损失 2、液压千斤顶是依据( C )工作的。 A、牛顿内摩擦定律 B、伯努力方程 C、帕斯卡原理 D、欧拉方程 3、描述液体粘性主要是依据( D ) A、液体静力学原理 B、帕斯卡原理 C、能量守恒定律 D、牛顿内摩擦定律 4、在流场中任意封闭曲线上的每一点流线组成的表面称为流管。与真实管路相比(C )。 A、完全相同 B、完全无关 C、计算时具有等效性 D、无边界性 5、一般把( C )的假想液体称为理想液体 A、无粘性且可压缩, B、有粘性且可压缩, C、无粘性且不可压缩, D、有粘性且不可压缩 6、进行管路中流动计算时,所用到的流速是( D ) A、最大速度 B、管中心流速 C、边界流速 D、平均流速 7、( A )是能量守恒定律在流体力学中的一种具体表现形式 A、伯努力方程, B、动量方程, C、连续方程, D、静力学方程 8、( A )是用来判断液体流动的状态 A、雷诺实验 B、牛顿实验 C、帕斯卡实验 D、伯努力实验 9、黏度的测量一般采用相对黏度的概念表示黏度的大小,各国应用单位不同,我国采用的是( D ) A、雷氏黏度 B、赛氏黏度 C、动力黏度 D、恩氏黏度 10、流体传动主要是利用液体的( B )来传递能量的 A、动力能 B、压力能, C、势能, D、信号 11、静止液体内任一点处的压力在各个方向上都( B ) A、不相等的, B、相等的, C、不确定的 12、连续性方程是( C )守恒定律在流体力学中的一种具体表现形式 A、能量, B、数量, C、质量 D、动量 13、流线是流场中的一条条曲线,表示的是( B ) A、流场的分布情况, B、各质点的运动状态 C、某质点的运动轨迹, D、一定是光滑曲线 14、流体力学分类时常分为( A )流体力学 A、工程和理论, B、基础和应用 C、应用和研究, D、理论和基础 15、流体力学研究的对象( A ) A、液体和气体 B、所有物质, C、水和空气 D、纯牛顿流体 16、27、超音速流动,是指马赫数在( B )时的流动 A、0.7 < M < 1.3 B、1.3 < M ≤5 C、M > 5 D、0.3 ≤M ≤0.7 17、静压力基本方程式说明:静止液体中单位重量液体的(A )可以相互转换,但各点的总能量保持不变,即能量守恒。 A、压力能和位能, B、动能和势能, C、压力能和势能 D、位能和动能 18、由液体静力学基本方程式可知,静止液体内的压力随液体深度是呈( A )规律分布的 A、直线, B、曲线, C、抛物线 D、不变 19、我国法定的压力单位为( A ) A、MPa B、kgf/cm2 C、bar D、mm水柱 20、理想液体作恒定流动时具有( A )三种能量形成,在任一截面上这三种能量形式之间可以相互转换。 A压力能、位能和动能,B、势能、位能和动能, C、核能、位能和动能, D、压力能、位能和势能 21、研究流体沿程损失系数的是(A) A、尼古拉兹实验 B、雷诺实验 C、伯努力实验 D、达西实验 22、机械油等工作液体随温度升高,其粘度( B ) A、增大, B、减小, C、不变 D、呈现不规则变化

流体力学概念总结

第一章绪论 1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观 的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 第二章流体的主要物理性质 1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。 2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。 3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是: 1)由无数连续分布、彼此无间隙地; 2)占有整个流体空间的流体质点所组成的介质。 4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。 5.重度:单位体积的流体所受的重力称为重度,以γ表示。 6.比体积:密度的倒数称为比体积,以υ表示。它表示单位质量流体所占有的体积。 7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。 8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。 9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。 10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。 11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。 12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。 13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变 化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。这个关系式称为牛顿内摩擦定律。 14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随dυ/d n而变化,否则称 为非牛顿流体。 15.动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的 大小。 16.运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。 17.实际流体:具有粘性的流体叫实际流体(也叫粘性流体), 18.理想流体:就是假想的没有粘性(μ= 0)的流体 第三章流体静力学 1.★流体的平衡:(或者说静止)是指流体宏观质点之间没有相对运动,达到了相对的平衡。 2.★绝对静止:流体对地球无相对运动,也称为重力场中的流体平衡。 3.★相对平衡:流体整体对地球有相对运动,但流体对运动容器无相对运动,流体质点之间也无相 对运动,这种静止或叫流体的相对静止★:体积力:作用于流体的每一个流体质点上,其大小与流体所具有的质量成正比的力。在均质流体中,质量力与受作用流体的体积成正比,因此又叫。 4.★表面力:表面力是作用于被研究流体的外表面上,其大小与表面积成正比的力。 5.★压强:在静止或相对静止的流体中,单位面积上的内法向表面力称为压强。 6.等压面:在静止流体中,由压强相等的点所组成的面。 7.★位置水头(位置高度):流体质点距某一水平基准面的高度。 8.压强水头(压强高度):由流体静力学基本方程中的p/(ρg)得到的液柱高度。 9.★静力水头:位置水头z和压强水头p/(ρg)之和。 10.压强势能:流体静力学基本方程中的p/ρ项为单位质量流体的压强势能。

流体力学简单计算MATLAB程式

用matlab进行编程计算 第一问: z=30;p1=50*9.8*10^4;p2=2*9.8*10^4;jdc=0.00015;gama=9800;d=0.257;L=50000 ;mu=6*10^(-6); hf=z+(p1-p2)/(0.86*gama) xdc=2*jdc/d; beta=4.15;m=1; Q=(hf*d^(5-m)/(beta*mu^m*L))^(1/(2-m)); v=4*Q/(pi*d^2); Re=v*d/mu; Re1=59.7/xdc^(8*xdc/7); Re2=(665-765*log(xdc))/xdc; i=hf/L; if Re<3000 Q=Q; elseif 3000

工程流体力学知识整理

流体:一种受任何微小剪切力作用,都能产生连续变形的物质。 流动性:当某些分子的能量大到一定程度时,将做相对的移动改变它的平衡位置。 流体介质:取宏观上足够小、微观上足够大的流体微团,从而将流体看成是由空间上连续分布的流体质点所组成的连续介质 压缩性:流体的体积随压力变化的特性称为流体的压缩性。 膨胀性:流体的体积随温度变化的特性称为流体的膨胀性。 粘性:流体内部存在内摩擦力的特性,或者说是流体抵抗变形的特性。 牛顿流体:将遵守牛顿内摩擦定律的流体称为牛顿流体,反之称为非牛顿流体。 理想流体:忽略流体的粘性,将流体当成是完全没有粘性的理想流体。 表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。 表面力:大小与表面面积有关而且分布作用在流体微团表面上的力称为表面力。 质量力:所有流体质点受某种力场作用而产生,它的大小与流体的质量成正比。 压强:把流体的内法线应力称作流体压强。 流体静压强:当流体处于静止或相对静止时,流体的压强称为流体静压强。 流体静压强的特性:一、作用方向总是沿其作用面的内法线方向。二、任意一点上的压强与作用方位无关,其值均相等(流体静压强是一个标量)。 绝对压强:以完全真空为基准计量的压强。 相对压强:以当地大气压为基准计量的压强。 真空度:当地大气压-绝对压强 液体的相对平衡:指流体质点之间虽然没有相对运动,但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。 压力体:曲面上方的液柱体积。 等压面:在平衡流体中,压力相等的各点所组成的面称为等压面。特性一、在平衡的流体中,过任意一点的等压面,必与该点所受的质量力互相垂直。特性二、当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 流场:充满运动流体的空间称为流场。 定常流动:流场中各空间点上的物理量不随时间变化。 缓变流:当流动边界是直的,且大小形状不变时,流线是平行(或近似平行)的直线的流动状态为缓变流。 急变流:当流边界变化比较剧烈,流线不再是平行的直线,呈现出比较紊乱的流动状态

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

流体力学创新实验(终稿)

实验项目名称:溢洪道流速流态分布测量实验实验类型:自主创新实验 姓名及学号: 方平 3110103076 其他小组成员: 钱晨辉王坤王婕支颖 指导教师: 章军军老师 实验地点:安中实验大厅 时间: 2013.12.21

溢洪道流速流态分布测量实验 一、实验背景 本工程下水库库区面积较大,蓄洪能力较强,而天然洪水相对较小,2000年一遇洪水24h洪量仅387万m3,经过调洪演算分析,水库可利用蓄洪能力较强的特点,选择操作简便、安全的开敞式溢洪道作为水库主要泄洪设施。 下水库溢洪道布置在右岸,采用岸边开敞式,堰顶高程同正常蓄水位,自由溢流。溢洪道由进水渠、溢流堰、泄槽、挑流鼻坎及出水渠等组成。溢洪道的泄槽轴线与坝轴线成82.46°夹角,溢洪道全长约268.75m。 进水渠底板高程79.00m,长41.05m,底宽为6m,进水渠轴线由10.55m长的直线段、20.5m长圆弧段、5m长的渐变段和5m长的直线段组成,圆弧半径为24m,进水渠采用梯形断面,两侧边坡开挖坡比为1:0.5。渐变段以前渠底及两侧设30cm厚混凝土衬砌。 控制段堰顶宽度6m,堰顶高程81.00m,堰顶下游堰面采用WES幂曲线,曲线方程y=0.2898x1.85,堰面曲线与反弧段相连,反弧半径5.0m,反弧末端高程78.58m。堰面曲线原点上游由椭圆曲线组成,并与堰上游面相切。溢流堰与两侧闸墩作为一个整体结构,闸墩顶高程与坝顶高程相同,挡墙顶部设交通桥,桥宽8m。 溢洪道泄槽纵坡1:7.85,泄槽横断面采用矩形断面,两侧开挖边坡坡比为1:0.5,泄槽边墙为衡重式挡墙。泄槽底宽6m,混凝土底板厚50cm,底板基础设置锚筋及排水系统。泄槽段衡重式边墙高度为2.5m,边墙及底板每约15m长设置垂直缝,并设止水。泄槽中段有仙人洞断裂F9横穿,拟对其进行槽挖后回填混凝土处理。 溢洪道采用挑流消能,挑流鼻坎长6m,连续挑坎坎顶高程58.49m,反弧半径5.0m,挑角25°。由于挑流鼻坎附近岩体为薄层状的瘤状泥质灰岩、页岩、泥质粉砂岩,物理力学性质较差,易风化,抗冲刷能力差,因此鼻坎后设长9m 的平护坦,护坦混凝土衬砌厚0.5m,之后设一预挖冲坑,采用宽浅式结构,前段部分坡比为1:3,斜坡及底部采用混凝土衬护,厚度为50cm,预挖冲坑顶高程为52.00m。预挖冲坑以1:4的坡比与天然河床相连,底部采用60cm厚干砌石护底并铺设土工布,出水渠长度约为58.60m。 二、实验目的 (1)、验证两种流量情况下溢洪道的泄流能力; (2)、观测溢洪道各部位的流态; (3)、分析各部分流速及流态,提出相应建议。

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

工程流体力学习题集及答案

第1章 绪论 选择题 【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒; (c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元 体。 解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有 诸如速度、密度及压强等物理量的流体微团。 (d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变 形速度;(c )切应力和剪切变形;(d )切应力和流速。 解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度 d d t γ,故d d t γτμ=。 (b ) 【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N ·s/m 2。 解:流体的运动黏度υ的国际单位是/s m 2。 (a ) 【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 解:不考虑黏性的流体称为理想流体。 (c ) 【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b ) 1/1 000;(c )1/4 000;(d )1/2 000。 解:当水的压强增加一个大气压时,其密度增大约 95d 1 d 0.51011020 000k p ρ ρ-==???=。 (a ) 【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时 不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力, 平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切 应力。 (c ) 【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a ) 【1.8】 15C o 时空气和水的运动黏度6215.210m /s υ-=?空气,621.14610m /s υ-=?水 ,这说明:在运动中(a )空气比水的黏性力大;(b )空气比水的黏性力小;(c )空气 与水的黏性力接近;(d )不能直接比较。

流体动力学及工程应用

1、定常流和非定常流的判别? 2、为何提出“平均流速”的概念? 3、举例说明连续性方程的应用。 3.4 流体微元的运动分析 一、流体微元运动的三种形式 1.平移运动 x 、y 方向的速度不变,经过dt 时间后,ABCD 平移到A ‘B ’C ‘D ’位置,微元形状不变。 2.直线变形运动 流体微元沿x (流动)方向变形。 3.旋转运动与剪切变形运动 流体微元沿x 方向和y 方向均有变形,且流体微元

除了产生剪切变形外,还绕z 轴旋转。 实际流体微元运动常是上述三种或两种(如没有转动)基本形式组合在一起的运动。 二、作用在流体微元上的力 有表面力(压力)、质量力、惯性力、粘性力(剪切力) 龙卷风 水涡旋 3.5 理想流体的运动微分方程及伯努利积分 一、理想流体的运动微分方程(15分钟) 讨论理想流体受力及运动之间的动力学关系,即根据牛顿第二定律,建立理想流体的动力学方程。 如图所示,从运动的理想流体中取一以C (x 、y 、z )点为中心的微元六面体1-2-3-4,作用于其上的力有质量力和表面力,分析方法同连续性方程的建立,只是这是一个运动的流体质点。 根据牛顿第二定律,作用在微元六面体上的合外力在某坐标轴方向投影的代数和等于此流体微元质量乘以其在同轴方向的分加速度。 在x 轴方向 x x ma F =∑ 图 微元六面体流体质点 可得1122x x p p dF p dx dydz p dydz ma x x ??? ?? ?+- -+= ? ???? ?? ? 因为 dt du a dt u d a x x = =, ,dt du a dt du a z z y y ==, 所以流体微元沿x 方向的运动方程为 x x du p f dxdydz dxdydz dxdydz x dt ρρ?- =? 整理后得

工程流体力学总复习_总复习_概念

第1 章、流体的定义与物理性质 一、主要内容 1.1、流体的定义: 流体是一种受任何微小的剪切力作用时,都会产生连续变形的物质。能够流动的物体称为流体, 包括气体和液体。 1.2、流体力学的研究对象: 流体力学是以流体为研究对象,研究流体处于平衡和运动状态时的力学规律(如:压力与速度分布等),以及流体与固体的相互作用及流动过程中的能量损失。 本章的主要内容可以总结为三个三:这就是三个基本特征;三个基本特性;三个力学模型。 1.3、流体的三个基本特征: 1.3.1、易流性: 流动性是流体的主要特征。 组成流体的各个微团之间的内聚力很小,任何微小的剪切力都会使它产生变形,(发生连续的剪切变形)——流动。 1.3.2、形状不定性: 流体没有固定的形状,取决于盛装它的容器的形状,只能被限定为其所在容器的形状。 1.3.3、连续性: 流体能承受压力,但不能承受拉力,对切应力的抵抗较弱,只有在流体微团发生相对运动时,才显示其剪切力。因此,流体没有静摩擦力。 1.4、三个基本特性 1.4.1、流体的惯性: 物质维持原有运动状态的特性称为惯性,它是物质本身固有的属性,运动状态的任何变化都必须克服惯性的作用。 衡量惯性大小的物理量是质量,也可以用单位体积的质量即密度表示。 (1)、流体的密度: 流体的密度是指单位体积的流体的质量。 ρ=dm/ dV kg /m 3 (2)、流体的比容: 流体的比容是指单位质量流体的体积。 v =1 /ρm 3 / kg (3)、流体的重度: 流体的重度是指单位体积的流体所具有的重量(所受的重力)。 =γdG/ dV= N /m 3 (4)、流体的比重: 流体的比重是指流体的重量与温度为4 0 C 时同体积蒸馏水的重量之比,无量纲。 (5)、混合气体的密度: 混合气体的密度可按各组份气体所占体积百分数计算。 1.4.2、流体的压缩性与膨胀性: (1)、流体的压缩性: 流体的体积随压力变化的特性称为流体的压缩性。压缩性的大小用压缩系数来度量。即: Pa p V V 1??-=β

相关文档
最新文档