二次函数难题练习及答案一
二次函数 难题100题
1.(2012•义乌市)如图,已知抛物线y 1=-2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断: ①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M=1的x 值是- 1 2 或 2 2 .
其中正确的是( )
A .①②
B .①④
C .②③
D .③④
VIP 显示解析试题篮
2.(2012•大连)如图,一条抛物线与x 轴相交于A 、B 两
点,其顶点P 在折线C-D-E 上移动,若点C 、D 、E 的坐标分别为(-1,4)、(3,4)、(3,1),点B 的横坐标的最小值为1,则点A 的横坐标的最大值为( )
A .1
B .2
C .3
D .4
VIP 显示解析试题篮
3.(2011•安顺)正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE=BF=CG=DH .设小正方形EFGH 的面积为y ,AE=x .则y 关于x 的函数图象大致是( )
A .
B .
C .
D .
VIP 显示解析试题篮
4.(2010•遵义)如图,两条抛物线y 1=-
1
2
x2+1,y
2=-
1
2
x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为()
A.8 B.6 C.10 D.4
(专题精选)初中数学二次函数难题汇编含答案
(专题精选)初中数学二次函数难题汇编含答案
一、选择题
1.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()
A.5B.4
5
3
C.3 D.4
【答案】A
【解析】
【分析】
【详解】
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA=1
2
OA=2.
由勾股定理得:5
设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE.
∴BF OF CM AM
DE OE DE AE
==
,
x2x
22
55
-
,,解得:
()52x 5BF ?x CM 22
-==,. ∴BF+CM=5.
故选A .
2.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )
A .﹣1<x <1
B .﹣3<x <﹣1
C .x <1
D .﹣3<x <1
【答案】D
【解析】
【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.
【详解】
解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),
二次函数难题汇编附答案
二次函数难题汇编附答案
一、选择题
1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当
2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
A .甲
B .乙
C .丙
D .丁
【答案】B 【解析】 【分析】
利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】
解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得
01442b c
b c =-+⎧⎨
=++⎩
解得:13
23b c ⎧
=⎪⎪⎨⎪=-⎪⎩
∴二次函数的解析式为:2
21212533636
⎛⎫=+-=+ ⎪⎝⎭-y x x x
∴当x=16-时,y 的最小值为25
36
-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;
B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()2
13y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;
C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得
1
2
01b
b c
⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩
∴223y x x =--
当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()2
人教版数学九年级上册 第22 章 二次函数 难题精编(含解析)
第22 章二次函数难题精编
一.选择题(共28小题)
1.若整数a使得关于x的分式方程有整数解,且使得二次函数y=(a﹣2)x2+2(a﹣1)x+a+1的值恒为非负数,则所有满足条件的整数a的值之和是()
A.12B.15C.17D.20
2.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()A.长方形B.正方形C.正三角形D.圆
3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:
①abc>0;
②4a+2b+c>0;
③2a+c<0;
④一元二次方程cx2+bx+a=0的两根分别为x1=,x2=﹣1;
⑤若m,n(m<n)为方程a(x+1)(x﹣3)+2=0的两个根,则m<﹣1且n>3.
其中正确的结论有()个.
A.2B.3C.4D.5
4.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.若横、纵坐标都是整数的点叫做整点,当抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,可得m的取值范围为()
A.<m≤B.≤m<C.0<m<D.0<m≤
5.如图在平面直角坐标系中,一次函数y=mx+n与x轴交于点A,与二次函数交于点B、点C,点A、B、C三点的横坐标分别是a、b、c,则下面四个等式中不一定成立的是()
A.a2+bc=c2﹣ab B.=
C.b2(c﹣a)=c2(b﹣a)D.=+
6.将函数y=﹣x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()
中考数学(二次函数提高练习题)压轴题训练及答案(1)
一、二次函数 真题与模拟题分类汇编(难题易错题)
1.如图,抛物线y =12
x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).
(1)求抛物线的解析式及顶点D 的坐标;
(2)判断△ABC 的形状,证明你的结论;
(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.
【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258
);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(
32,﹣54). 【解析】
【分析】 (1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;
(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;
(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32
=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32
=
交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】 (1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-
,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (3
二次函数经典难题(含精解)
二次函数经典难题(含精解)
一.选择题(共1小题)
1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()
A.1B.2C.3D.6
二.填空题(共12小题)
2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是_________.
3.抛物线关于原点对称的抛物线解析式为_________.
4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________.
5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为
_________.
6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________.
7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y
轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________.
8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=_________;若抛物线与x轴有两个交点,则a的范围是_________.
二次函数重难题含答案
学科教师指点课本
教授教养内容
(一)元二次方程的解法
题型1二次函数的图像和性质
例题1
(2012•贵港一模)若直线y=b(b为实数)与函数y=|x2﹣4x+3|的图象至少有三个公共点,则实数b的取值规模是0<b≤1.
考点:二次函数的性质.
剖析:先求x2﹣4x+3=0时x的值,再求x2﹣4x+3>0和x2﹣4x+3<0时,自变量的取值规模及对应的函数式,求函数式的取值规模,断定相符前提的b的值的规模.
解答:解:∵当x2﹣4x+3=0时,x=1或x=3,
∴当x<1或x>3时,x2﹣4x+3>0,即:y=|x2﹣4x+3|,函数值大于0,
当1<x<3时,﹣1≤x2﹣4x+3<0,即:y=|﹣x2+4x﹣3|,函数最大值为1,
故相符前提的实数b的取值规模是0<b≤1.
点评:本题是分段函数的问题,按照绝对值里的数的符号,分段求函数,再求相符前提的b值规模.
(2014•牡丹江)抛物线y=ax2+bx+c经由点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=0.
考点:二次函数的性质.
专题:通例题型.
剖析:依据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0),由此求出a+b+c的值.
解答:解:∵抛物线y=ax2+bx+c经由点A(﹣3,0),对称轴是直线x=﹣1,
∴y=ax2+bx+c与x轴的另一交点为(1,0),
∴a+b+c=0.
故答案为:0.
点评:本题考核了二次函数的性质,依据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0)是解题的症结.
我来试一试!
二次函数难点100题
90.若在定义域内存在实数 ,满足 ,称 为“局部奇函数”.若 为定义域 上的“局部奇函数”,则实数 的取值范围是__________.
78.已知二次函数 , , , , , 时,其对应的抛物线在 轴上截得的线段长依次为 , , , , ,则 __________.
79.已知实数 ,且满足 ,则 的取值范围是__________.
80.已知函数 的最小值为 ,则实数 的取值集合为__________.
81.已知 ,若 , ,则 ____________.
A. B. C. D.
14.已知 , ,若对任意 , 或 ,则 的取值范围是( )
A. B. C. D.
15.已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是( )
A. B. C. D.
16.设函数f(x)= g(x)=x2f(x-1),则函数g(x)的递减区间是( )
67.若f(x)=cos 2x+acos 在区间 上是增函数,则实数a的取值范围为________.
68.已知函数g(x)=log2x,x∈(0,2),若关于x的方程|g(x)|2+m|g(x)|+2m+3=0有三个不同的实数解,则实数m的取值范围是__________________.
二次函数重难题含答案
学科教师辅导讲义
教学内容
(一)元二次方程的解法
题型1二次函数的图像和性质
例题1
(2012•贵港一模)若直线y=b(b为实数)与函数y=|x2﹣4x+3|的图象至少有三个公共点,则实数b的取值范围是0<b≤1.
考点:二次函数的性质.
分析:先求x2﹣4x+3=0时x的值,再求x2﹣4x+3>0和x2﹣4x+3<0时,自变量的取值范围及对应的函数式,求函数式的取值范围,判断符合条件的b的值的范围.
解答:解:∵当x2﹣4x+3=0时,x=1或x=3,
∴当x<1或x>3时,x2﹣4x+3>0,即:y=|x2﹣4x+3|,函数值大于0,
当1<x<3时,﹣1≤x2﹣4x+3<0,即:y=|﹣x2+4x﹣3|,函数最大值为1,
故符合条件的实数b的取值范围是0<b≤1.
点评:本题是分段函数的问题,按照绝对值里的数的符号,分段求函数,再求符合条件的b值范围.
例题2
(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=0.
考点:二次函数的性质.
专题:常规题型.
分析:根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0),由此求出a+b+c的值.
解答:解:∵抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,
∴y=ax2+bx+c与x轴的另一交点为(1,0),
∴a+b+c=0.
故答案为:0.
点评:本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0)是解题的关键.
我来试一试!
中考数学(二次函数提高练习题)压轴题训练含详细答案(1)
一、二次函数 真题与模拟题分类汇编(难题易错题)
1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;
(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .
①求线段PM 的最大值;
②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.
【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=9
4
;②P (2,﹣3)或(22﹣2). 【解析】 【分析】
(1)根据待定系数法,可得答案;
(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】
(1)将A ,B ,C 代入函数解析式,
得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩
,解得123a b c =⎧⎪
=-⎨⎪=-⎩,
这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得
303k b b +=⎧⎨
=-⎩,解得1
3k b =⎧⎨=-⎩
, BC 的解析式为y=x ﹣3,
设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),
PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣3
2
)2+
9
4
,
当n=3
2
时,PM最大=
9
4
;
②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,
二次函数填空题-难题30道
二次函数填空题-难题1-30
1.已知:如图,过原点的抛物线的顶点为M(-2,4),与x轴负半轴交于点A,对称轴与x 轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.
(1)抛物线解析式为().
(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为
2.将抛物线y=x2-2向左平移3个单位,所得抛物线的函数表达式为___________.
3.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.令m=S四边形CFGH/ S四边形CMNO ,则m= ;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有____________.(填序号)
5.如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A 作AH⊥x轴于点H.在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是___________
6.如图,抛物线y=ax2-4和y=-ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为___________
二次函数难题汇编及答案
二次函数难题汇编及答案
一、选择题
1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )
①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;
②c =a+3;
③a+b+c <0;
④方程ax 2+bx+c =3有两个相等的实数根.
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;
由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;
由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a
=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;
由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.
故选C .
考点:二次函数的图像与性质
2.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )
九年级数学二次函数的专项培优 易错 难题练习题(含答案)附答案
b 2a
a b c
1 0
,解得:
a b
1 2
,
c3
c 3
∴ 抛物线的解析式为 y x2 2x 3 .
∵ 对称轴为 x 1,且抛物线经过 A1, 0,
∴ 把 B3,0 、 C 0,3 分别代入直线 y mx n ,
得
3m n
n3
0
,解之得:
m 1 n 3
,
∴ 直线 y mx n 的解析式为 y x 3 .
15. 【解析】
【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将 B
Biblioteka Baidu
点坐标代入,即可求出二次函数的解析式;
(2)根据函数解析式,令 x=0,可求得抛物线与 y 轴的交点坐标;令 y=0,可求得抛物线
与 x 轴交点坐标;
(3)由(2)可知:抛物线与 x 轴的交点分别在原点两侧,由此可求出当抛物线与 x 轴负
九年级数学二次函数的专项培优 易错 难题练习题(含答案)附答案
一、二次函数 1.如图,已知抛物线 y ax2 bx c(a 0) 的对称轴为直线 x 1 ,且抛物线与 x 轴交 于 A 、 B 两点,与 y 轴交于 C 点,其中 A(1,0) , C(0, 3) .
(1)若直线 y mx n 经过 B 、 C 两点,求直线 BC 和抛物线的解析式; (2)在抛物线的对称轴 x 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和 最小,求出点 M 的坐标; (3)设点 P 为抛物线的对称轴 x 1 上的一个动点,求使 BPC 为直角三角形的点 P 的
二次函数难题综合(附答案)
庞圣洁(二次函数难题)
一.选择题(共22小题)
1.(2015•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:
①b=﹣2;
②该二次函数图象与y轴交于负半轴;
③存在这样一个a,使得M、A、C三点在同一条直线上;
④若a=1,则OA•OB=OC2.
以上说法正确的有()
A.①②③④B.②③④ C.①②④ D.①②③
2.(2013•泰安模拟)如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在
点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为()
A. B. C.D.
3.(2015•潍坊模拟)若函数y=的自变量x的取值范围是全体实数,则c的取值
范围是()
A.c<1 B.c=1 C.c>1 D.c≤1
4.(2015•天桥区一模)如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当﹣3<x<2时,ax2+kx<b,
其中正确的结论是()
A.①②④ B.①②⑤ C.②③④ D.③④⑤
5.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()
九年级数学二次函数的专项培优 易错 难题练习题及详细答案
,得:
,
将 x 1 1 t 代入得
,
2
∴ N(1 1 t , ), 2
∴ MN
,
∴
,
∴ 当 t=2时,△ AMC 面积的最大值为 1.
(3)①如图1,当点H在N点上方时,
∵ N(1 1 t , 2
),P(1 1 t ,4), 2
∴ PN=4—( )= =CQ,
又∵ PN∥ CQ,
∴ 四边形 PNCQ 为平行四边形,
交点。熟练运用顶点坐标(- b , 4ac b2 ) 2a 4a
4.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说 销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为 20 元.根据以往经验:当销售单价是 25 元时,每天的销售量是 250 本;销售单价每上涨 1 元,每天的销售量就减少 10 本,书店要求每本书的利润不低于 10 元且不高于 18 元.
所以当 PQ=CQ 时,四边形 FECQ 为菱形,据此得到
,解得 t 值;
②当点H在N点下方时,NH=CQ= ,NQ=CQ 时,四边形 NHCQ 为菱形,NQ2=CQ2,得:
,解得 t 值.
解:(1)由矩形的性质可得点 A(1,4),
∵ 抛物线的顶点为 A,
设抛物线的解析式为 y=a(x-1)2+4,
∴ 抛物线的对称轴 x= n 5 n 1 2 2
初三数学 二次函数的专项 培优 易错 难题练习题及答案
初三数学二次函数的专项培优易错难题练习题及答案
一、二次函数
1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.
(1)求抛物线和直线AC的解析式;
(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=
S△CGO,求点E的坐标;
(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角
形,t的值为或或.
【解析】
【分析】
(1)用待定系数法即能求出抛物线和直线AC解析式.
(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.
(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.
【详解】
(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37.(2014年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
34.(2014•德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
28. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.
(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;
(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.
(第5题图)
24. (2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
(第1题图)
20.(2014•邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m >n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.
(1)若m=2,n=1,求A、B两点的坐标;
(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;
(3)若m=2,△ABC是等腰三角形,求n的值.
18.(10分)(2014•孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.
(1)求k的取值范围;
(2)试说明x1<0,x2<0;
(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.
解:(1)由题设可知A(0,1),B(﹣3,),
则二次函数的解析式是:y=﹣﹣x+1;
(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,
则当x=﹣时,MN的最大值为;
(3)连接MN、BN、BM与NC互相垂直平分,
即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,
即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,
故当N(﹣1,4)时,MN和NC互相垂直平分.
分析:
(3)据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.
解答:则抛物线的解析式是:y=﹣x2+3x+4;
(2)存在.
第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.
∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,
∴∠MCP1=∠OAC=45°∴∠MCP1=∠MP1C,∴MC=MP1,
设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,
解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).
第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,
设P2(n,﹣n2+3n+4),则n=(﹣n2+3n+4)﹣1,
解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,
则P2的坐标是(﹣2,﹣6).
综上所述,P的坐标是(2,6)或(﹣2,﹣6);
(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.
根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
由(1)可知,在直角△AOC中,OC=OA=4,
则AC==4,
根据等腰三角形的性质,D是AC的中点.
又∵DF∥OC,
∴DF=OC=2,
∴点P的纵坐标是2.
则﹣x2+3x+1=2,
解得:x=,
∴当EF最短时,点P的坐标是:(,0)或(,0).
考点:二次函数综合题