初中数学知识点归纳总结
初中数学知识点 初中数学知识点总结归纳(完整版)
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
初中数学必知识点总结
初中数学必知识点总结一、有理数1. 整数整数包括正整数、负整数和0,用Z表示。
正整数、负整数和0的概念及表示法。
2. 分数分数的定义和表示,最简分数的概念和求法。
3. 有理数有理数的基本概念和表示法。
有理数的大小比较和顺序,有理数的运算(加减乘除)、性质。
4. 有理数的应用有理数的应用题,有理数在实际生活和社会中的应用。
二、代数初步1. 代数式代数式概念,代数式的基本性质(如代数式的值、同类项的加减、变元的同系项的概念和处理方法等)。
2. 一元一次方程一元一次方程的基本概念,一元一次方程的解、解法和应用。
3. 一次方程组一次方程组的基本概念,一次方程组的解、解法和应用。
4. 不等式不等式概念,不等式的解法,不等式的应用。
5. 代数运算三、平面几何1. 直线与角倾斜直线的概念和表示。
角的定义,角的度量、角的性质以及角的表示法。
2. 三角形三角形的构造、三角形的分类、三角形内角和、三角形的外角和、三角形的边与角的关系。
3. 四边形四边形的分类及特殊四边形的性质。
4. 相似相似的基本概念,相似三角形的判定和性质,相似图形的应用。
5. 直角三角形直角三角形的性质和应用,勾股定理。
四、数学中的应用题1. 比例比例的概念,比例的性质和应用。
2. 百分数百分数的概念和表示,百分数的基本性质,百分数的转化。
3. 利率利率的概念和计算,利息的计算。
4. 图形的周长和面积矩形、平行四边形、三角形、圆的周长和面积。
5. 直方图和折线图的应用直方图和折线图的基本构造和表示,直方图和折线图的解读。
五、统计与概率1. 统计调查的基本概念收集数据的方法、资料汇总和资料处理。
2. 相对频数和频率相对频数和频率的计算及其意义。
3. 概率概率的基本概念及其计算。
六、坐标系1. 直角坐标系直角坐标系的基本概念,坐标的意义及其表示。
2. 点和图形的位置关系点和图形在坐标系中的位置关系、位置坐标的计算。
以上是初中数学的必知知识点总结,希望能够帮助同学们对初中数学知识有一个较为系统的了解。
初中数学知识点全面总结
初中数学知识点全面总结一、集合与函数1.集合的定义、集合的表示法、集合的运算和集合的基本性质2.包含关系和相等关系3.并集、交集、差集和补集的概念4.集合的运算定律5.判断元素是否属于一些集合的方法6.集合的划分和幂集的概念7.函数的定义和函数的表示法(映射、箭头图、列表)8.域、值域和一一对应的概念9.函数的四种关系:单射、满射、一射和反函数10.函数的运算:加法、减法、乘法、除法和复合二、代数与方程1.代数式的概念和常见的代数式2.代数式的运算法则3.代数等式和方程的概念4.方程的解、方程的根和方程的意义5.一元一次方程的解法和一次方程的实际应用6.一元一次方程的图像表示方法7.一元一次方程组的解法8.二元一次方程组的解法和一元一次方程与二元一次方程组的关系9.二元一次方程组的图像表示方法10.一元二次方程的解法和一元二次方程的图像表示方法11.一元二次方程的实际应用12.二元二次方程组的解法和二元一次方程组与二元二次方程组的关系13.二元二次方程组的图像表示方法三、平面几何与空间几何1.平面几何的基本概念:点、直线、线段、射线、角2.角的度量和角的分类3.角的平分线和垂直平分线4.形状相似的概念和判断方法5.相似三角形的性质和判断方法6.直角三角形的性质和判断方法7.三角形三边关系和三角形内角和关系8.正多边形和圆的基本概念及特性9.圆的周长和面积的计算公式10.圆与直线的位置关系及判断方法11.三棱锥和四棱锥的概念及特性12.立体图形的表面积和体积的计算公式13.空间几何的基本概念:点、直线、平面、空间等四、数据与统计1.数据的收集和处理2.平均数的计算和解读3.中位数、众数和极差的计算和解读4.茎叶图和折线图的绘制和解读5.概率的基本概念和计算方法6.基本事件和对立事件的概念7.加法原理和乘法原理的概念和应用8.随机事件和必然事件的概念9.事件的运算和事件的概率计算10.古典概型和几何概型的概念和计算方法11.条件概率和独立事件的概念和计算方法12.排列和组合的概念和计算方法以上是初中数学的主要知识点总结,包括了集合与函数、代数与方程、平面几何与空间几何、数据与统计等方面的知识。
初中数学必学的知识点总结
初中数学必学的知识点总结一、整数与有理数整数是由自然数、0和负整数组成,用符号±表示。
有理数包括整数和分数,可以用分数的形式表示。
二、代数表达式与代数方程代数表达式是由数、变量和运算符号组成的式子。
代数方程是含有未知数的等式,通过解方程可以求得未知数的值。
三、平方根与立方根平方根又称二次根,表示一个数的正平方根的符号是√,平方根的计算需要使用平方根运算法则。
立方根是一个数的3次方根,表示一个数的立方根的符号是∛。
四、比例与比例的应用比例是两个相等的比之间的关系,比例的记法是a:b或a/b。
比例的应用包括比例的相等性、比例的延长与缩短、比例的倒数、比例的合并与分离、比例的倒置等。
五、百分数与简单利息百分数表示一个数分之一百,记作百分之a%。
简单利息是指利息按固定利率在固定时间内计算得到的利息,简单利息的计算公式是I=PxRxT,其中I表示利息,P表示本金,R表示利率,T表示时间。
六、数列数列是按照一定规律排列的一组数。
等差数列是指数列中相邻两项之差相等的数列,通项公式为an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等比数列是指数列中相邻两项之比相等的数列,通项公式为an=a1*r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
七、平面几何平面几何是研究平面图形的形状和性质的数学学科。
平面图形包括三角形、四边形、多边形等,每种图形都有特定的性质和计算方法。
计算平面图形的面积需要根据图形的形状选择相应的计算公式。
八、立体几何立体几何是研究空间物体的形状和性质的数学学科。
常见的立体几何图形包括球、圆柱、圆锥、棱柱、棱锥等,每种图形都有特定的性质和计算方法。
计算立体图形的体积需要根据图形的形状选择相应的计算公式。
九、统计与概率统计是研究收集、整理、分析和解释数据的学科。
统计的基本方法包括调查和统计、频数和频率的统计、用直方图和折线图表示数据等。
概率是研究随机事件发生可能性的学科,概率用数字表示一个事件发生的可能性。
初中数学知识点全总结(完美打印版)
初中数学知识点全总结(完美打印版)初中数学知识点全总结(完美打印版)有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .。
(完整版)初中数学知识点归纳总结(精华版)
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初中数学知识点全总结(完美打印版)
七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
初中数学知识点总结大全(经典版)
初中数学知识点总结大全(经典版) 初中数学必考知识点总结一、基本知识1.数与代数A。
数与式1.有理数有理数包括整数和分数,其中整数分为正整数、0和负整数,分数分为正分数和负分数。
数轴是一条水平直线,通过取一点表示原点,并选择某一长度作为单位长度,规定直线上向右的方向为正方向,从而得到数轴。
任何一个有理数都可以用数轴上的一个点来表示。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
数轴上两个点表示的数,右边的总比左边的大。
正数大于,负数小于,正数大于负数。
绝对值是一个数所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
两个负数比较大小,绝对值大的反而小。
有理数的运算包括加法、减法、乘法、除法和乘方。
同号相加,取相同的符号,把绝对值相加。
异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数与相加不变。
减去一个数,等于加上这个数的相反数。
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与相乘得1.乘积为1的两个有理数互为倒数。
除以一个数等于乘以一个数的倒数。
乘方是求N个相同因数A的积的运算,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序是先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2.实数无理数是无限不循环小数。
平方根是一个正数X的平方等于A时,这个正数X就叫做A的算术平方根。
如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
一个正数有两个平方根,0的平方根为0,负数没有平方根。
求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根是一个数X的立方等于A时,这个数X就叫做A的立方根。
正数的立方根是正数,的立方根是,负数的立方根是负数。
求一个数A的立方根的运算叫做开立方,其中A叫做被开方数。
实数分为有理数和无理数。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
初中的数学知识点归纳
初中的数学知识点归纳初中数学的知识点包括数与代数、几何、函数与方程、统计与概率四个方面。
下面将分别对这四个方面的知识点进行总结。
一、数与代数1.自然数的加法、减法、乘法和除法运算2.整数的加法、减法、乘法和除法运算3.分数的加法、减法、乘法和除法运算4.百分数的计算和应用5.有理数的加法、减法、乘法和除法运算6.实数的基本性质和排序7.次方和根的运算8.二次根式的化简9.四则运算的复杂运用10.整式的乘法和因式分解11.分式的乘法、除法和简化12.方程和不等式的解13.利用代数式进行计算和推理14.利用模型解决实际问题二、几何1.平面图形的边与角2.平面图形的面积和周长3.三角形的性质和计算4.四边形的性质和计算5.圆的性质、计算和应用6.尺规作图和投影解析几何的基本概念7.立体图形的表面积和体积8.相似和全等三角形的判定和计算9.平行线和平面的性质和运用10.坐标系和平面向量的基本概念11.三视图和棱柱体的展开图12.三角形的中线、高线和角平分线三、函数与方程1.一次函数及其图像的性质和应用2.整式的加减乘除与因式分解3.二次函数及其图像的性质和应用4.函数与方程的应用问题5.数列的概念、性质和应用6.等差数列和等比数列的计算和应用7.不等式的性质及其解法8.一元一次方程的性质和解法9.一元一次不等式的性质和解法10.二元一次方程组的性质和解法11.函数的复合、反函数和函数方程四、统计与概率1.统计图表的制作和分析2.平均数与中位数的计算和应用3.简单事件的概率计算4.复合事件的概率计算5.抽样调查和数据分析6.统计推断和误差分析7.图形的构造和解释8.概率模型和随机变量的应用9.条件概率和事件的独立性总结以上初中数学的知识点,主要涵盖了数与代数、几何、函数与方程、统计与概率四个方面。
这些知识点不仅是初中数学学科的基础,也是后续学习高中和大学数学的基石。
掌握这些知识点,可以使学生在数学学习中更加熟练和自信,并为将来的学习打下坚实的基础。
初中数学知识点大全总结整理
初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。
初中数学知识点归纳总结
初中数学知识点归纳总结一、整数与有理数整数是自然数、0和负整数的集合。
有理数是整数和分数的集合。
1.1 整数与有理数的运算规律整数和有理数之间的加减乘除遵循以下规律:- 加法:整数加整数仍为整数,有理数加有理数仍为有理数。
- 减法:整数减整数得到有理数。
- 乘法:整数乘整数得到整数,有理数乘有理数得到有理数。
- 除法:整数除整数得到有理数,有理数除有理数得到有理数(除数不能为零)。
1.2 整数与有理数的应用整数与有理数在实际生活中有广泛的应用,比如算账(财务管理)、温度计(气象学)、海拔计(地理学)等。
二、平面图形与空间几何2.1 平面图形的性质与分类平面图形根据边数、角数和对称性质等特点进行分类:- 三角形:根据边长和角度分为等边三角形、等腰三角形和普通三角形。
- 四边形:根据四边的边长、角度和对角线的相交情况分类,如正方形、长方形和平行四边形等。
2.2 空间几何的基本概念空间几何研究的是三维物体的性质和变换等。
其中的基本概念有:- 点:在空间中没有大小,只有位置的标志。
- 线:由无限多的点组成,没有宽度和厚度。
- 面:由无限多的线组成,有宽度和厚度。
- 体:由无限多的面组成,有长度、宽度和高度。
三、代数方程与函数3.1 一元一次方程与不等式一元一次方程和一元一次不等式是代数学中基本的方程和不等式,其一般形式为ax+b=0和ax+b>0。
3.2 二次函数二次函数是指以自变量的平方最高次数为2的函数。
- 二次函数的图像是抛物线,可以开口向上或向下。
- 二次函数的顶点坐标是(xv, yv),其中xv=-b/2a,yv=f(xv)。
- 二次函数的轴对称线方程为x=-b/2a。
四、数据统计与概率4.1 数据的收集与处理数据统计的基本流程包括数据的收集、整理和分析等。
- 数据的收集:通过调查、实验、观察等方式获得数据。
- 数据的整理:对获得的数据进行整理,比如制表、绘制图表等。
- 数据的分析:对整理后的数据进行分析,得出结论和推断。
初中数学知识点总结归纳
初中数学知识点总结归纳一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 绝对值- 有理数的加、减、乘、除运算- 有理数的比较大小2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 方程的解与根- 含字母系数的方程5. 二元一次方程组- 代入法与消元法- 方程组的解与无穷多解、无解6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数的概念与性质- 函数的定义- 函数的表示方法:表格、图像、解析式- 函数的简单性质:定义域、值域、单调性、奇偶性二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角- 直线与角的关系:平行线、相交线2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形、直角三角形的性质- 三角形的内角和与外角性质3. 四边形- 平行四边形的性质- 矩形、菱形、正方形的性质- 梯形的性质4. 圆的基本性质- 圆的定义与性质- 圆的对称性- 圆周角与圆心角的关系5. 面积与体积的计算- 平面图形的面积计算:三角形、四边形、圆- 空间图形的体积计算:长方体、立方体、圆柱、圆锥6. 相似与全等- 全等图形的判定条件- 相似图形的判定条件- 相似三角形的性质三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的计算方法- 简单事件的概率四、应用题1. 列方程解应用题- 根据问题描述建立方程- 解方程得到答案2. 几何应用题- 利用几何知识解决实际问题- 计算面积、体积等3. 统计与概率应用题- 分析数据,得出结论- 计算可能性与概率以上是对初中数学知识点的总结归纳。
每个部分都包含了关键的概念、性质、公式和解题方法。
初中数学知识点总结归纳(完整版
初中数学知识点总结归纳(完整版初中数学是建立在小学数学的基础上的,它是中学数学的起点。
初中数学包括了很多知识点,下面是初中数学知识点的完整总结。
1.数与代数1.1自然数:整数、形式化运算1.2有理数:绝对值、相反数、比较大小、加减乘除1.3分数:相等、约分、比较大小、加减乘除、分数在数轴上的表示1.4百分数:百分数的意义、百分数与分数、百分数的加减乘除1.5整数:加减乘除、整数在数轴上的表示1.6算式与方程:算式的意义、算式的运算、算式与方程的关系1.7代数式与代数方程:项、系数、次数、等式、解方程、解不等式1.8四则运算:整数四则运算、有理数四则运算、分数四则运算1.9编码与解码:字符的编码、解码的算法与应用2.图形与空间2.1图形的基本概念:点、线、面、多边形2.2平面图形:多边形的内角和、相似三角形的性质、平行四边形、正方形、直角三角形2.3立体几何:长方体、正方体、棱柱、棱锥、棱台、球的计算2.4向量与坐标:向量的定义、向量的加减法、向量的模、向量坐标、空间直角坐标系2.5坐标综合题:平面坐标系中的距离和中点、线段的垂直平分线、平行线和垂直线的性质3.数据与数理统计3.1数据的整理:调查和统计、频率分布表、频数和频率3.2数据的描述:离散型数据与连续型数据、极差、平均数、中位数、众数3.3概率:概率的意义、事件的概率、概率的加法、概率的乘法3.4抽样调查:简单随机抽样、比例估计、误差与精度3.5统计问题:问题的定量化、问题的分类、解决问题的步骤4.初等几何4.1相似与全等:相似的判定、相似的性质、相似的应用、全等的判定、全等的性质、全等的应用4.2几何证明:运用已知条件与证明结论、利用定义与性质证明、综合运用定理和公理证明4.3三角形:三角形的内外角、三角形的分类、三角形的性质、三角形的综合题4.4平行线与三角形:平行线的性质、平行线的判定、平行线与三角形的性质、平行线与平面图形的性质4.5连接与垂直:垂直线段的判定、垂直角的性质、垂直的判定定理、垂直线段的应用4.6圆的性质与计算:圆的中心与半径、弧长与扇形面积、圆与直角三角形5.函数与图像5.1一元一次方程与一元二次方程:解方程、解不等式、解方程的应用、解不等式的应用5.2一次函数与二次函数:函数的定义、函数的性质、函数的图象、函数关系、函数方程、函数的应用5.3幂函数与反比例函数:幂函数的图象、反比例函数的图象、幂函数与反比例函数的性质、幂函数与反比例函数的应用5.4函数的实际问题:函数模型、函数图象的应用、函数方程与不等式。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)初中数学知识点总结归纳1.菱形的定义:一组相邻边相等的平行四边形称为菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学重点知识归纳1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
(完整版)初中数学知识点归纳总结(精华版)
(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点归纳总结一、基本运算方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。