平面向量基本定理教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1平面向量基本定理
教学目的:
1.了解平面向量基本定理的证明.掌握平面向量基本定理及其应用;
2.能够在解题中适当地选择基底,使其它向量能够用选取的基底表示. 教学重点:平面向量基本定理.
教学难点:理解平面向量基本定理.
教学过程:
一、设置情境,引入新课:
上节课我们学习了共线向量的基本定理,通过它们判定两个向量是否平行,而且共线向量可由该集合中的任一非零向量表示出来.这个非零向量叫基向量.那么平面上的任一向量是否也具有类似属性呢?如果是这样的话,对平面上任一向量的研究就可以化归为对基向量的研究了.
二、新课:
1.回顾:
(1) 实数与向量的积: 实数λ与向量a r 的积是一个向量,记作λa r ,它的长度和方向规定如下: (1) |λa r | = |λ||a r |. (2) λ > 0时,λa r 的方向与a r 的方向相同;当λ < 0时,λa r 的方向与a r 的方向相反;特别地,当λ = 0或a r =0r 时,λa r =0r .
(2) 共线向量的一个充要条件: 定理:向量b r 与非零向量a r 共线的充要条件是有且仅有一个实数λ,使得b r = λa r . 例1 已知向量1e u r 、2e u r ,求作向量- 2.51e u r + 32e u r .
推广:已知1e u r 、2e u r 是同一平面内的两个不共线的向量,
则对于给定的两个实数λ1、λ2,都可以在这个平面内作出唯一的一个向量a r 满足 1212.a e e λλ=+
2.平面向量基本定理: 如果1e u r 、2e u r 是同一平面内的两个不共线向量,那么对这一平面内的任一向量
a r ,有且只有一对实数λ1、λ2,使 a r = λ11e u r + λ22e u r . 例2 ABCD 的两条对角线相交于点M ,且AB uu u r =a r ,AD uuu r =
b r ,用a r 、b r 表示MA uuu r 、MB uuu r 、MC uuu r 和MD uuu r ? 解:(略 )
例3 如图,ABCD 中,E ,F 分别为BC ,DC 的中点,且AE uu u r =m u r ,AF uu u r =n r ,求AB uu u r ,AD uuu r .
解:(略)
例4 如图,OA uu r 、OB uu u r 不共线,AP uu u r = t AB uu u r (t ∈ R),用OA uu r 、OB uu u r 表示OP uu u r .
解: (略)
三、小结: 1.当平面内取定一组基底1e u r 、2e u r 后,任一向量a r 都被1e u r 、2e u r 唯一确定,其含义是存在唯一数对(λ1,λ2),使a r = λ11e u r + λ22e u r . 2.三点A 、B 、C 共线⇔AB uu u r = k AC uuu r ⇔PB uu r = λ1PA uu r + λ2PC uu u r (其中λ1,λ2 ∈ R 且λ1 + λ2 = 1).
四、课后作业: 1.命题p :向量b r 与a r 共线;命题q :有且只有一个实数λ,使b r = λa r ;则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .不充分不必要条件
2.如图,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN = 2NC ,AM 与BN 相交于点P ,求AP :PM 的值.。

相关文档
最新文档