筠门岭初中九年级数学月考试卷

合集下载

人教版九年级数学月考试卷.doc

人教版九年级数学月考试卷.doc

九年级数学月考试卷(快班)一、填空题。

36分(每小题3分)1、要使代数式 有意义,则x 的取值范围是。

2、若最简二次根式 2b+1与 7-b 是同类二次根式则b= 。

3、实数a 在数轴上的位置如图标: 化简|a -1|+ (a -2)2=4、已知方程3x 2-9x+m=0的一个根是1,则m 的值为 。

5、写一个一元一次方程使方程两根为±1,并且二次项系数为1 。

6、比较大小:5 66 57、已知点A (2a+3b ,-2)和点B (8,3a+2b )关于原点对称则a+b= 。

8、如图所示,正方形ABCD 通过旋转得到正方形A ′B ′ C ′D ′则旋转角度为 。

9、分别写出具有下列性质的图形各1个,a 是轴对称图形又是中心对称图形 ,b 是轴对称图形但不是中心对称图形 ,c 不是轴对称图形但是中心对称图形 。

10、如图,已知两条弦AB 与CD 相交于M ,且AC=BC 添加条件 (写出一个即可) 就可得到M 是AB 的中点。

11、已知,点M 为⊙O 内一点,且过点M 最长的弦为最短的弦长为6,则OM 的长为 。

12、已知正数a 和b ,①a+b=2,则 ab ≤1 ②若a+b=3则 ab ≤ ③若a+b=6则 ab ≤3根据以上三个命题提供规律猜想:若a+b=9,则 ab ≤二、选择题20分(每小题4分)13、下列根式中,已经是最简根式的是( )A 、7a 5bB 、 4aC 、aD 、9a 2+b 214、已知关于x 的方程2x 2-6x+2n -1=0有实数根,则n 的最大整数为( ) A 、2 B 、3 C 、4 D 、515、如图AB 为的直径,点C 在⊙O 上, B=50°,则∠A 等于( ) A 、30° B 、40° C 、50° D 、60° 16绕B 点按顺时针旋转180°后 ′BC ′D ′,则图中AC ′与A ′C 的关系是( ) A 、AC ′∥A ′C ,B 、AC ′= A ′CC 、AC ′平行且等于A ′C ,D 、AC ′与A ′C 无关系 17、下列说法正确的个数为( )①顶点在圆周上的角叫圆周角 ②相等的圆周角所对的弧相等③若三角形一边上中线等于这边的一半,则这一边必为此三角形外接圆的直径。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

2019-2020年九年级数学上学期月考检测题 新人教版

2019-2020年九年级数学上学期月考检测题 新人教版

DC B A 2019-2020年九年级数学上学期月考检测题 新人教版 (考试时间:100分钟,满分:120分)班有: 姓名: 座号: 评分:一、选择题。

(本大题共42分,每小题3分)在下列各题的4个答案中,有且只有一个是正确的。

1、-3的相反数是( )A .-3B .3C .-D .2、不等式x-1<0的解集为( )A . x >-1 B. x <-1 C . x >1 D. x <13、下列运算中,正确的是( )A.a 2+a 4=a 6B.a 6÷a 3=a 2C.(-a 4)2=a 6D.a 2·a 4=a 64、一个正方形的面积为15,估计它的边长大小在( )A.2与3之间B. 3与4之间C. 4与5之间D. 5与6之间5、从-1,-2,3,4这四个数中,随机抽取两个数相乘,积为负数的概率为() A. B. C. D6、5. 如图所示几何体的主(正)视图是( )7、已知一组数据5,2,3,x ,4的众数为4,则这组数据的中位数为( )A.2B.3C.4D.4.5 8、“比a 的2倍大1的数”用代数式表示是( )A.2(a+1)B.2(a-1)C.2a+1D.2a-19、下列方程中,是一元二次方程的是( )A.2x+1=0B.y+x=1C.x 2-1=0D.x 2-=010、下列各组的四组线段中,成比例线段的是( )A.2cm ,3cm ,4cm ,1cmB.3cm ,4cm ,5cm ,6cmC.1.1cm ,2.2cm ,3.3cm ,4.4cmD.1cm ,2cm ,2cm ,4cm11、如图1,在12、“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件14.在正方形网格中,的位置如图3所示,则 的值是( )A .B .C .D .2二、填空题。

(本大题共16分,每小题4分)15、分解因式:x 2-4= 。

16、17、若=,则= 。

新人教版九年级数学上学期月考试卷及答案

新人教版九年级数学上学期月考试卷及答案

九年级数学九月份月考试卷一、填空题:(每小题2分,共20分)1.化简:21= ,=-2)32(; 二、方程x 2-2=0的解是x 1= 、x 2= ; 3、已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x4、化简:5=-a a 9 ;五、关于x 的一元二次方程x 2+bx +c =0的两个实数根别离为1和2,则b =______;c =______.六、(2007湖南怀化)已知方程230x x k -+=有两个相等的实数根,则k =7.(2006年福建省三明市)已知x 2+4x -2=0,那么3x 2+12x +2000的值为 。

八、(2007江苏淮安)写出一个两实数根符号相反的一元二次方程:__________________。

九、(06四川成都市)已知某工厂计划通过两年的时刻,把某种产品从此刻的年产量100万台提高到121万台,那么每一年平均增加的百分数是______________。

按此年平均增加率,估计第4年该工厂的年产量应为______________万台。

10、下面是依照必然规律画出的一列“树型”图:经观察能够发觉:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”.二、选择题:(每小题3分,共24分)1一、.方程x(x+3)=(x+3)的根为--------------------------------------( )A 、x 1=0,x 2=3B 、x 1=0,x 2=-3C 、x=0D 、x=-31二、下列方程没有实数根的是-----------------------------------------( )A. x 2-x-1=0B. x 2-6x+5=0C.2x 3x 30+= +x+1=0.13.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则那个三角形的周长为--( ).10 C 或10 D.不能肯定 14.如图1,在宽为20m ,长为30m 的矩形地面上修建两条一样宽的道路,余下部份作为耕地. 按照图中数据, 图11m 1m 30m20m计算耕地的面积为------------------------------------------( )A .600m 2B .551m 2C .550 m 2D .500m 215.下列说法中正确的是……………………………………………………………( ) (A )36的平方根是±6 (B )16的平方根是±2 (C )|-8|的立方根是-2 (D )16的算术平方根是416 在式子b a b a a x m +-+,2,4,5.0,31,182中,是最简二次根式的有( )个A 、2B 、3C 、1D 、017.下列变形中,正确的是………------------------------------------------( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯.三、解答题:(19—21小题每小题5分,共20分)1九、()3327÷-20.计算:1131850452+-2一、 b a a b ab a155102÷⋅ 2二、 ()21322)6328(--÷-23、解方程:每小题7分,共28分)(1)、4x 2-121=0 (2)、2410x x +-=.(3)、x 2+3=3(x +1). (4)、x 2-3x+043=24.(9分)如图5,小正方形边长为1,连接小正方形的三个极点,可得△ABC 。

人教版九年级上册数学《月考》试卷(附答案)

人教版九年级上册数学《月考》试卷(附答案)

人教版九年级上册数学《月考》试卷(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1 )A .2B .C .D .22.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±3.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-47.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是 __________.2.分解因式:4ax 2-ay 2=____________.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是__________.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:242111x x x++=---2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.4.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、A6、B7、A8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (2x+y )(2x-y )3、13k <<4、5、6、8﹣2π三、解答题(本大题共6小题,共72分)1、13x =2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)略;(2)略.4、(1)略(2)菱形5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

九年级数学上学期12月考试卷.doc

九年级数学上学期12月考试卷.doc

九年级12月数学月考试卷(时间:120分钟总分:120分)一、精心选一选,相信自己的判断!(每小题3分,共30分)123456789101、下列命题为真命题的是()A、点确定一个圆B、度数相等的弧相等C、圆周角是直角的所对弦是直径D、相等的圆心角所对的弧相等,所对的弦也相等2、圆内接四边形ABCD, ZA, ZB, ZC的度数之比为3:4:6,贝UZ D的度数为()度A、60B、80C、100D、1203、如图,圆周角ZA=30,弦BC=3,则圆O的直径是()A、4B、3C、5D、64、如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C和D两点,AB=10cm,CD=6cm,则AC 长为()5•已知圆的内接正六边形的周长为18,那么圆的面积为((A) 18 JT(B) 9 JT6.如图力从/C是O0的两条切线,A 0.5cmB lcmC 1.5cm(3题) (4题)(6题)(C) 6 JT切点分别为〃、C,(D) 3 IT〃是优弧BC上的一点,已知Z场C=80°,那么ZBDC=()度.A、60B、8()C、D、1201007.在半径为3的圆中,150。

的圆心角所对的弧长是(.15A. 一7T4C. -7T4D.8、CD 是(DO 的一条弦,作直径AB,使AB 丄CD,垂足为E,若AB=10, CD=6,则BE 的长是()A. 1 或9B. 9C. 1D. 49. 已知:如图,00半径为5,您切00于点C, P0交©0于点、A,丹=4,那么化的长等于 ( )10. 如图所示,在同心圆中,两圆半径分别是2和1, ZA0B 二120度,则阴影部分的面积(10 题)二、填空题(每题3分,共18分)11、 ___________________________________________________ 若OO 的半径为5,弦AB 的弦心距为3,贝IJ4B 二 ________________________ ・12、 直线/与OO 有两个公共点A, B, O 到直线/的距离为5cm, AB 二24cm,则G )O 的半径是 ______ cm.13、 ___________________________________________________ 已知扇形的弧长为兀,半径为1,则该扇形的面积为 _______________________14、 _____________________________________________________________ 圆锥的高为373cm,底面圆半径为3cm,则它的侧面积等于___________________ 15、 如图5,已知AB 是OO 的直径,PA=PB 9 ZP=60° ,则弧0D(A ) 6( 2) V5 (C ) 2 Vio (D ) 2 V14Q. -7T4(9题)为(A.D. 7t所对的圆心角等于_________图516.如图所示,0是ZXABC的内心,ZB0C=100o , 则ZA 二三、细心做一做:(本大题共6小题,每小题12分,共72分〉17.(12分)如图4,己知(DO的半径是6cm,弦CB= 6巧cm,ODLBC.垂足为D求乙COB18.(12分)AB是(DO的直径,经过圆上点1)的直线CD恰使ZADC=ZB.求证:直线CD是00的切线;19、(12 分)在RtAABC 中,ZC二90 °, AC=5, BC二12,以C 为圆心,R 为半径作圆与斜边AB相切,求R的值。

江西初三初中数学月考试卷带答案解析

江西初三初中数学月考试卷带答案解析

江西初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列计算错误的是【】A.B.C.D.2.使有意义的x的取值范围是……………………………………………【】A.x≥3B.x≥3且x≠-1C.x≤3D.x<33.在式子中,是最简二次根式的式子有【】个A.2B.3C.1D.04.把的根号外的因式移到根号内的结果是………………………………【A.B.C.D.5.下列方程①;②③;④;⑤,其中一元二次方程有…………………………【】A.1个B.2个C.3个D.4个6.一元二次方程–5x+3x2 ="12" 的二次项系数、一次项系数、常数项分别是……【】A.-5,3,12B.3,-5,12C.3,-5,-12D.-3,5,-127.已知一个三角形的两边长是方程的根,则第三边y长的取值范围是………………………………………………………………………………【】A.y<8B.2<y<8C.3<y<5D.无法确定8.对任意实数y,多项式的值是一个……………………………【】A.负数B.非负数C.正数D.无法确定正负9.下列方程没有实数根的是………………………………………………………【】A.x2-x-1=0B.x2-6x+5=0C.D.2x2+x+1=0.10.在一幅长80cm,宽50cm的矩形北京奥运风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,那么x满足的方程是……………【】A .x 2+130x -1400=0B .x 2+65x -350="0"C .x 2-130x -1400=0D .x 2-65x -350=0二、填空题1.计算:= .2.若方程无解,则b 应满足的条件是: 。

3.关于的一元二次方程的一个根是0,则的值为 。

九年级十月月考数学试卷.doc

九年级十月月考数学试卷.doc

九年级十月月考数学试卷一、选择题(每小题3分,共30分)1 •已知a 为任意实数,那么下列各式一定有意义的是:4•关于x 的一元二次方程(a+c ) 三边的三角形的形状是: A 、以a 为斜边的直角三角形 C 、以c 为斜边的直角三角形5•将量角器按如图所示的方式放置在三角形纸板上,使点c 在半圆上,点A 、B 的读数 分别为86°、30° ,则ZACB 的大小为: A. 15°B 、30°C 、28°D 、56°6.RtAABC, AB=AC=2, ZBAC=90° ,能完全覆盖使此三角形的最小圆的面积是: A 、兀B 、2兀C 、3兀D 、4兀7•如图,在厶ABC 中,ZCAB=70° ,在同一平面内,将ZXABC 绕点A 旋转到ZkABf 的位置,使得CC' 〃AB,则ZBAB'=A 、如-1B 、如+iD 、2•化简V8-x/2(V2 + 2)的结果是:A 、・2B 、V2-2C 、2D 、4A /2-23 •下列说法正确的是:B 、若历 =~Cl 9 则a<0C 、若a>0,贝U 二次根式件与2是同类二次根式 a/昭亍"有两个相等的实数根,那么以a 、b 、c 为B 、以b 为底边的等腰三角形 D 、以c 为底边的等腰三角形A、15°B、30°C、28°D、56°8•在一幅长60cm,宽40cm的矩形风景面的四周镶一条金色纸边,制成一幅矩形挂图, 如图所示,如果要使整个挂图面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是:A、(60+2x) (40+2x) =2816B、(60+x) (40+x) =2816C、(60+2x) (40+x) =2816D、(60+x) (40+2x) =28169•如图所示,AABC和AA,B‘ C'关于点O成中心对称,则下列结论正确的有:①AB二A' BJ ②AO二A' O; (3)AC/7A, C';④ZAOB=ZA, OB'A、1个B、2个C、3个D、4个10.已知m = 1 + A/2,n = \ - V2 ,则代数式\lm2-3mn的值为:A、9B、±3C、3D、511 •下列一元二次方程中,两实数根的和为3的方程是:A、x2一3x+3=0B、x2一3x一3=0C、x2+3x+3=0D、x2+3x一3=012.根据关于x的一元二次方程x2+px+q=0,可列表如下:则方程x2+px+q=0的正数解满足:A、解的整数部分是0,十分位数是5B、解的整数部分是0,十分位是8。

最新人教版九年级上学期第三次月考数学试卷及解析.docx

最新人教版九年级上学期第三次月考数学试卷及解析.docx

九年级(上)第三次月考数学试卷一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根3.下列四个点,在反比例函数y=的图象上的是()A.C.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= .10.反比例函数的图象在一、三象限,则k应满足.11.将方程x2+10x+1=0配方后,原方程变形为.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= .15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.18.解不等式组:.19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?参考答案与试题解析一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形【考点】中心对称图形;轴对称图形.【分析】根据多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:A、是轴对称图形,也是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是中心对称图形,也是轴对称图形,故选项错误.故选:B.【点评】本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根【考点】根的判别式.【分析】首先确定一元二次方程的各项系数及常数项,代入根的判别式进行计算,根据数值的正负判定即可.【解答】解:∵a=3,b=﹣1,c=2,∴b2﹣4ac=(﹣1)2﹣4×3×2=﹣23<0,∴方程没有实数根.故选:C.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.下列四个点,在反比例函数y=的图象上的是()A.C.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵1×(﹣6)=﹣6,2×4=8,3×(﹣2)=6,(﹣6)×(﹣1)=6,∴点(3,﹣2)在反比例函数y=的图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒【考点】利用频率估计概率.【专题】计算题.【分析】黄豆的频率为,利用大量反复试验时,频率接近于概率,可得,即可求出原黄豆的数量.【解答】解:设原黄豆数为x,则染色黄豆的概率为解得x=450.故选C.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体【考点】由三视图判断几何体.【分析】根据三视图可知主视图和左视图都是矩形,俯视图为一个圆形,故这个几何体为圆柱体.【解答】解:本题中,圆锥体的主视图和俯视图不可能是矩形,球体的三视图中不可能由矩形,长方体的俯视图不可能是圆,故选D.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,要熟悉特殊几何体的特点.6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】分别求出选项中所有三角形的边长,求出与原三角形的比,若对应边的比相同,则相似.【解答】解:原图三边长为,2,;A、三边长分别为2,,3,对应边的比为,=,=,两三角形不相似,故本选项错误;B、三边长分别为2,4,2,对应边的比为,=,=,两三角形相似,故本选项正确;C、三边长分别为2,3,,对应边的比为,,=,两三角形不相似,故本选项错误;D、三边长分别为,,4,对应边的比为,,,两三角形不相似,故本选项错误;故选B.【点评】本题考查了相似三角形的判定,求出三边的比,若三边的比相等,则两三角形相似.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】对y=﹣,由x1<0<x2<x3知,A点位于第二象限,y1最大,第四象限,y随x增大而增大,y2<y3,故y2<y3<y1.【解答】解:∵y=﹣中k=﹣3<0,∴此函数的图象在二、四象限,∵点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3,∴A点位于第二象限,y1>0,B、C两点位于第四象限,∵0<x2<x3,∴y2<y3,∴y2<y3<y1.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上点的坐标.8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题;分类讨论.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx﹣k 的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k的图象过一、三、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= a(a﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3﹣6a2+9a=a(a2﹣6a+9)=a(a﹣3)2.故答案为:a(a﹣3)2.【点评】本题考查了提公因式法,公式法分解因式的知识.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.10.反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.11.将方程x2+10x+1=0配方后,原方程变形为x+5)2=24 .【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上25配方得到结果即可.【解答】解:方程x2+10x+1=0,移项得:x2+10x=﹣1,配方得:x2+10x+25=24,即(x+5)2=24,故答案为:(x+5)2=24.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为 6 .【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:由于点A是反比例函数图象上一点,则S△AOB=|k|=3;又由于函数图象位于一、三象限,则k=6.故答案为6.【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为100(1﹣m%)2=81 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】利用等量关系:原价×(1﹣降低率)2=25,把相关数值代入即可.【解答】解:第一次降价后的价格为100×(1﹣m%),第二次降价后的价格为100×(1﹣m%)×(1﹣m%)=36×(1﹣m%)2,列方程为100(1﹣m%)2=81.故答案为:100(1﹣m%)2=81.【点评】本题考查由实际问题抽象出一元二次方程,求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= 4:9 .【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】先根据平行线分线段成比例求出AD:AB的值,即两相似三角形的相似比,再根据相似三角形面积的比等于相似比的平方即可求解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴AD:DB=2:1,∴AD:AB=2:3∴S△ADE:S△ABC=4:9.【点评】本题是考查比例性质和相似三角形面积比等于相似比的平方.15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是2cm2.【考点】菱形的性质.【分析】根据已知条件和菱形的性质,可推出△ABD为等边三角形,AB=2cm,∠OAB=30°,根据锐角三角函数推出OA的长度,求得AC的长度,再根据菱形面积等于两对角线乘积的一半计算即可求解.【解答】解:∵菱形ABCD周长为8cm,∠BAD=60°,∴AB=AD=BD=2cm,∠OAB=30°,OA=OC,AC⊥BD,∴OA=cm,∴AC=2cm.∴菱形ABCD的面积=ACBD=×2×2=2(cm2).故答案为:2cm2.【点评】本题主要考查菱形的性质、锐角三角函数等知识点,解题的关键是根据有关性质推出边和相关角的度数,解直角三角形.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.【考点】翻折变换(折叠问题).【分析】先根据折叠的性质得∠C′BD=∠CBD,再利用矩形的性质得AD∥BC,则∠EDB=∠CBD,所以∠EDB=∠C′BD,根据等腰三角形的判定定理得EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,根据勾股定理得62+x2=(8﹣x)2,然后解方程即可.【解答】解:∵矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,∴∠C′BD=∠CBD,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C′BD,∴EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AB2+AE2=BE2,∴62+x2=(8﹣x)2,解得x=,即AE的长为.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程整理得x2+2x﹣3=0,然后分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)利用提取公因式法分解因式求得方程的解即可.【解答】解:(1)x2+2x+1=4,x2+2x﹣3=0(x+3)(x﹣1)=0,∴x﹣1=0,x+3=0,∴x1=1,x2=﹣3(2)x(x﹣3)+x﹣3=0.(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x2=﹣1.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.18.解不等式组:.【考点】解一元一次不等式组.【专题】计算题;压轴题.【分析】分别解两个不等式,再求其公共部分即可.【解答】解:解不等式,由①得x<4,由②得x≤1,∴原不等式组的解集是x≤1.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)过A作y轴垂线,截取DA1=DA,B1D=BD,过C作y轴垂线,截取C1E=CE,连接A1B1,A1C1,B1C1,△A1B1C1为所求三角形,写出点C1的坐标即可;(2)连接OA1,OB1,OC1,取OA1中点A2,取OB1中点B2,取OC1中点C2,连接A2B2,A2C2,B2C2,△A2B2C2为所求三角形.【解答】解:(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,如图所示,根据题意得:点C1的坐标为(﹣4,﹣1);(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2,如图所示.【点评】此题考查了作图﹣位似变换,作图﹣轴对称变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?【考点】列表法与树状图法.【专题】压轴题.【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【解答】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2中,概率是=.【点评】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.【解答】证明:连接DE.∵有矩形ABCD,∴AD∥BC,∠C=90°.∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)【点评】此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)【考点】一元二次方程的应用.【专题】几何图形问题;数形结合.【分析】本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x)(20﹣x)米2,进而即可列出方程,求出答案.【解答】解法(1):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(20﹣x)(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:20×32﹣(20+32)x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.【点评】这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.【考点】矩形的性质;菱形的性质.【分析】(1)根据矩形性质推出AD∥BC,根据平行线的性质得出∠PDO=∠QBO,根据全等三角形的判定ASA证△PDO≌△BQO,根据全等三角形的性质推出即可.(2)由菱形的性质得出BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠PDO=∠QBO,∵O为BD中点,∴OB=OD,在△PDO和△QBO中,,∴△PDO≌△BQO(ASA),∴OP=OQ.(2)解:当AP=时,四边形PBQD是菱形;理由如下:∵OB=OD,OP=OQ,∴四边形PBQD是平行四边形,当四边形PBQD是菱形时,BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得:X2+32=(4﹣x)2,解得:x=,即当AP为厘米时,四边形PBQD是菱形.【点评】本题考查了矩形的性质,全等三角形的性质和判定,平行四边形的判定,菱形的判定与性质;题目比较好,综合性比较强.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据A、B两点在反比例函数的图象上,且点A的纵坐标和点B的横坐标都是2,求出A、B两点的坐标,运用待定系数法求出直线AB的解析式;(2)求出点M的坐标,根据面积公式求出△AOB的面积;(3)根据图象结合交点坐标即可求得.【解答】解:(1)A、B两点在反比例函数的图象上,A的纵坐标是2,则横坐标为﹣4,A点的坐标(﹣4,2),B的横坐标为2,则纵坐标为﹣4,B点的坐标(2,﹣4),设一次函数解析式为y=kx+b,,解得.故直线AB的解析式为y=﹣x﹣2.(2)设直线AB与y轴的交点为M,则点M的坐标为(0,﹣2),△AOB的面积=△AOM的面积+△BOM的面积=×2×4+×2×2=6.(3)当x<﹣4或0<x<2时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.【解答】解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BCAC=ABCD.∴CD===4.8.∴线段CD的长为4.8.(2)由题可知有两种情形,设DP=t,CQ=t.则CP=4.8﹣t.①当PQ⊥CD时,如图a∵△QCP∽△△ABC∴=,即=,∴t=3;②当PQ⊥AC,如图b.∵△PCQ∽△ABC∴=,即=,解得t=,∴当t为3或时,△CPQ与△△ABC相似;(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=,解得t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质等知识,在解答此题时要注意进行分类讨论.。

人教版九年级上册数学《月考》考试卷(可打印)

人教版九年级上册数学《月考》考试卷(可打印)

人教版九年级上册数学《月考》考试卷(可打印)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x 2.若二次根式51x-有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤53.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤75.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539B .2539+C .18253+D .25318+二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)=__________.2.分解因式:3x 9x -=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程:22142x x x +=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、A5、A6、C7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)12、()()x x 3x 3+-3、0x ≥且1x ≠.4、55、146、45︒三、解答题(本大题共6小题,共72分)1、x=-32、11m m +-,原式=.3、(1)略;(2)略;(3)10.4、河宽为17米5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。

人教版九年级上册数学月考考试题及答案【完美版】

人教版九年级上册数学月考考试题及答案【完美版】

人教版九年级上册数学月考考试题及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A.15 B.18 C.21 D.248.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.C. D.10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.2539B.2539+C.18253+D.25318+二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____.2.分解因式:2ab a-=_______.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图,直线343y x=-+与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、A6、A7、A8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、a (b +1)(b ﹣1).3、23x -<≤4、5、x=26、(6)三、解答题(本大题共6小题,共72分)1、无解2、3.3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)略;(2)AC .5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。

九年级月考(三)数学(人教新课标版).doc

九年级月考(三)数学(人教新课标版).doc

九年级月考(三)数学(人教新课标版)一、填空题(每小题2分,共20分)1.如果22021y x y x +=++-,则=2.观察下列各式:6415,5314,4213222⨯=-⨯=-⨯=-……试猜想120072-=3.如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位。

4.若一元二次方程)0(02≠=++a c bx ax 有一根是1,则a+b+c= 5.已知代数式)9(-x x 与代数式9x -9的值相等,则x =6.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm 。

如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm 。

7.一副三角板按如图所示叠放在一起,若固定△AOB ,将△ACD 绕着公共顶点A ,按顺时针方向旋转α度(0<α<180),当△ACD 的边CD 与△AOB 的边AB 平行时,相应的旋转角α的值是8.已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径长 cm .9.如图,已知BC 的等腰三角形纸片ABC 的底边,AD ⊥BC ,∠BAC ≠90°,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形 个。

10.如图,半径为30cm 的转轮转120°角时,传送带上的物体A 平移的距离为 cm 。

(结果保留π)二、选择题(选择题(每小题3分,共18分) 11.下列计算正确的是( )A .416±=B .12223=-C .41624=÷D .2632=⨯ 12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A .2cmB .3cmC .23cmD .52cm13.等腰△ABC 的腰AB=AC=4cm ,若以A 的圆心,2cm 为半径的圆与BC 相切,∠BAC的度数为( )A .30°B .60°C .90°D .120°14.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC//QR ,则∠AOQ= ( )A .60°B .65°C .72°D .75°15.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .π23B .π34C .4D .2+π2316.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x ,根据题意得方程为 ( ) A .50175)1(2=+xB .50+502)1(x +=175C .50(1+x )+502)1(x +=175D .50+50(1+x )+502)1(x +=175三、解答题(每小题5分,共20分)17.计算:.344)311272(--18.如图,某建筑工地上一钢管的横截面是圆环形。

初三与数学月考试卷.doc

初三与数学月考试卷.doc

初三与数学月考试卷题号—••-四五六七八九总分分数一、选择题(共8个小题,每小题4分,共32分).B. -3C. ±3D. 812. 2007年某省全面实施义务教育经费保障机制,全面免除农村约2320000名学生的学杂费,2320000用科学记数法表示为()•4. 232X106B. 2xl06C. 0.232x1()7 D. 2.32X1063.如右图,/\ABC中,ZB = 50°, ZC = 60°,点D是BC边上的任意一点,DE丄AB于&DFYAC^F,那么ZEDF等于()•A. 80°B. 110°C. 130°D. 140°4.有五张写有2、-3、0、兀、的不透明卡片,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从屮随机抽取一•张卡片,抽到写有无理数卡片的概率是()•1 2 3A. —B. —C.—5 5 55.为T 了解贯彻执行国家提侣的“阳光体育运动" 的实施情况,将某班40名同学一周的体育锻炼情况绘制了如图所示的条形统计图.根据统计图提供的数据,该班40名同学一周参加体育锻炼时间的众数是().B. 8C. 141. 9的平方根是()•二填空题(本题共16分,每小题4分)9■ 因式分解:a 3 —4a = ________________________10. _________________________________________ 如果兀+ 3| + (8 —2y)2=0,那么△二 _________________________________________________ 11. 小说《达•芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数从小到大的顺序排列为:1, 1,2, 3, 5, 8…,则这列数的笫8个数是 _______________12. 如右图,在由12个边长都为1且有一个锐角为60。

九年级数学第四次月考试卷及答案-(人教新课标版)

九年级数学第四次月考试卷及答案-(人教新课标版)

名校调研·九年级第四次月考试卷 数学(人教新课标版)一、选择题(每小题3分。

共24分)1.cos60︒的值是 ( )A .32B .12C .3D .1 2.抛物线24y x =-的最小值是 ( )A .0B .4-C .2D .2-3.如图所示,AB 、CD 相交于点0,连接AC ,BD ,添加下列一个条件后,仍不能判定△AOC ≅△DOB 的是 ( )A .∠A=∠DB .AO OC OD OB= C .∠B=∠C D .AC AO BD OD = 4.将二次函数2y x =的图象向左平移1个单位,再向下平移2个单位后,所得图象的表达 式是 ( )A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-5.在Rt △ABC 中,如果各边都缩小2倍,那么锐角A 的余弦值 ( )A .没有变化B .扩大2倍C .缩小2倍D .不能确定6.如图所示是小明做的一个风筝的支架,AB=40 cm .BP=60cm ,且△ABC △APQ ,则它们的相似比是 ( ) A .3:2 B .2:3C .2:5D .3:5,7.二次函数2(1)1y x m x =-++,当1x >时,Y 随z 的增大而增大,则m的取值范围是(已知二次函数2(0)y ax bx c a =++≠的对称轴是2b x a=-) ( ) A .1m ≤ B .1m ≥ C .3m ≥- D .3m ≤-8.如图所示,Rt △ABC 中,∠C=90 ︒,AC=4,BC=8,P 是AB 上一动点,直线PC ⊥ AC 于点Q ,设AQ= x ,则图中阴影部分的面积Y 与x 之间的函数关系的图象是 ( )二、填空题(每小题3分。

共18分)9.与抛物线22y x =形状相同,且顶点是(3,2)的抛物线的解析式是___________。

10.如图,PA 是⊙O 的切线,A 为切点,PD 交⊙O 于点B ,PA=8,OB=3,则tan ∠APO 的值是___________11.如图所示,在平面直角坐标系xOy 中,A(2,O),B(2,1),A`(4,0),若△OAB ≅△OA`B`(∠B=∠B`),请写出满足条件的点B`的坐标___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题3分,共18分)
1、如果2(21)12a a -=-,则( )
A .a <12 B. a ≤12 C. a >12 D. a ≥12
2、已知关于x 的一元二次方程20x bx c -+=的两根分别为121,2x x ==-,则b 与c 的值
分别为( )
A .1,2b c =-=
B .1,2==-b c
C .1,2==b c
D .1,2b c =-=-
3、已知两圆的直径分别为2cm 和4cm ,圆心距为3cm ,则这两个圆的位置关系是( )
A .相交
B . 外切
C .外离
D .内含
4、如果一个扇形的半径是1,弧长是3
π,那么此扇形的圆心角的大小为( ) A .30°B .45°C .60°D .90°
5、如图是二次函数2
y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是
A .15x -<<
B .5x >
C .15x x <->且
D .15x x <->或
6、二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的
最大值为( )
A.-3
B.3
C.-5
D.9
二、填空题(每题3分,共24分)
7、当2x =时,2211x x x
---=_____________. (第5题图) y x
8、如果关于x 的一元二次方程2
6+=0x x c -(c 是常数)没有实根,那么c 的取值范围是____________.
9、随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是____________.
10、将二次函数y=x 2的图像向下平移1个单位,再向左平移3个单位.则平移后的二次函数的解析式为____________.
11、已知函数122)3(++-=x x k y 的图象与x 轴有交点,则k 的取值范围是____________.
12、一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的
增大而减小.这个函数解析式为_________________________(写出一个即可)
13、若二次函数c bx ax y ++=2的图象经过点(-2,10),且一元二次方程02=++c bx ax 的根为21
-
和2,则该二次函数的解析关系式为 。

14、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .
三、(每题6分,共24分)
15、先化简,再求值:2222211()()b a ab b a a ab a a b
-+÷+⋅+-,其中23,23a b =+=-
16、已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.
求证:无论m 取何值,原方程总有两个不相等的实数根;
17、先化简,再求值:235(2)362m m m m
m -÷+---,其中m 是方程2310x x +-=的根.
18、24122
1348+⨯-÷ 四、(每题8分,共16分)
19、如图,⊙O 几△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D 。

(1)求证:△ABC ∽△BDC 。

(2)若AC=8,BC=6,求△BDC 的面积。

20、在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x ,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y ,组成一对数(x ,y ).
(1)用列表法或树形图表示出(x ,y )的所用可能出现的结果;
(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.
五、(每题9分,共18分)
21、在平面直角坐标系x Oy 中,二次函数2m m 33m 0y x x =+(-)-(>)的图象与x 轴交
于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .
(1)求点A 的坐标;(4分)
(2)当∠ABC=45°时,求m 的值;(5分)
22、如图,平面直角坐标系中,抛物线32212+-=
x x y 交y 轴于点
A.P为抛物线上一点,且与点A不重合.连结AP,以AO、AP为邻边作
OAPQ,
PQ所在直线与x轴交于点B.设点P的横坐标为m.
(1)点Q落在x轴上时m的值.
(2)若点Q在x轴下方,则m为何值时,线段BQ的长取最大值,并求出这个最大
值.
六、(每题10分,共20分)
23、某网店以每件60元的价格进一批商品, 若以单价80元销售,每月可售出300件, 调查表明:单价每上涨1元,该商品每月的销量就减少10件。

(1)请写出每月销售该商品的利润y
(元)与单价上涨x(元)间的函数关系式;
(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?
24、如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛
物线
2
4
=
9
y x bx c
-++
经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设
CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线
2
4
=
9
y x bx c
-++
的对称轴l上,若存在点F,使△DFQ为直角三
角形,
请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.。

相关文档
最新文档