ECG Artifact Removal from EMG Recordingsusing Independent ComponentAnalysis and Adapted Filter

合集下载

RT1025 ECG PPG AFE 心率监测与生物潜能测量芯片解决方案评估板说明书

RT1025 ECG PPG AFE 心率监测与生物潜能测量芯片解决方案评估板说明书

RT1025 ECG/PPG AFE Cardioid Evaluation BoardPurposeThe RT1025 is an integrated AFE solution for Heart-Rate monitoring and Biopotential measurements. The RT1025 integrates low noise voltage and current sensing channels and is capable of sensing ECG (Electrocardiography) and PPG (Photoplethysmography) simultaneously. Richtek Technology developed an evaluation board with Android APP to evaluate the RT1025 performance. This document describes the operation manual of the RT1025 evaluation board. It includes the schematic, hardware and bench measure procedure.Table of ContentsPurpose (1)Introduction (2)Key Performance Summary Table (3)Bench Test Setup Conditions (4)Schematic, Bill of Materials & Board Layout (10)More Information (15)Important Notice for Richtek Evaluation Board (15)IntroductionGeneral Product InformationThe RT1025 is an integrated AFE solution for Heart-Rate monitoring and measurements. The RT1025 integrates low noise voltage and current sensing channels and is capable of sensing ECG (Electrocardiography) and PPG (Photoplethysmography) simultaneously. The RT1025 has > 100dB dynamic range and can sense pulses accurately by detecting the heart’s electric signals. The sampling rates of the high-precision voltage and current sensing channels in the RT1025 are configurable between 64 to 4kHz. The RT1025 solution need only few discrete components and is easy to use for low-power medical ECG/PPG, sports, and fitness applications. With high levels of integration and high-precision voltage and current sensing channels, the RT1025 solution is suitable for scalable medical instrumentation systems. The RT1025 is available in a 3.1mm x 3.4mm, 41-Ball, 0.4mm pitch, WL-CSP package.The Cardioid evaluation board (Cardioid Pad) was developed full function Android APP to evaluate the RT1025 performance. The evaluation board includes the RT1025 together with the BLE SiP and PPG modules to quickly evaluate the operation and performance of the RT1025. The detail schematic, hardware and bench measure procedure will be described in the following section. The evaluation board number is PCB106_V1 and the dimensions are 9cm x 5cm.Product Feature●Evaluation Board Features④Evaluation Board Number : PCB106_V1④Dimension : 9cm x 5cm●ECG Channel Feature④ 3 PCB ECG Electrodes④Ear phone Jack for 3 ECG Electrodes④Low Input-Referred Noise : 0.67µVrms (64Hz ODR, Gain = 12)④Dynamic Range : 110dB at Gain = 6④CMRR > 85dB at 60Hz④Data rate : 64SPS to 4k SPS●PPG Channel Features④G/Red/IR LED with PD Module④Boost Supply for Green LED④TX LED Current Range : 10 / 25 / 35 / 50 / 65 / 75 / 90 / 105mA, Each with 8-bit Current Resolution④Input-Referred Noise : 50pArms at 5µA Input Current④CMRR > 80dB at 60Hz④PGA Gain : 1 to 6V/V●Others④Connect with “Cardio EVK” Android APP④Programmable BLE SiP④I2C interface for display panel④USB Micro-B interface for Lithium-Ion Battery Charging④Operating Temperature Range : –20°C to 65°C④RoHS Compliant and Pb FreeKey Performance Summary Table* Note that EVB_RT1025WS_P0 kit does not include LIR2430 battery due to transport regulations. * LIR2430 is a rechargeable Lithium Coin Cell 3.6V, capacity 80mAh.Bench Test Setup ConditionsHeaders Description and PlacementCarefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may have occurred during transportation, please contact our distributors or e-*******************************.Test PointsThe EVB is provided with the connecter interfaces and pin names listed in the table below.Measurement ProcedureThe RT1025 supports the reading of samples and device status upon interrupt or via polling. It contains 4kB SRAM for data buffering. The device is internally clocked to offer high-precision clock with external crystal. The flexible timing control enable the users to control the PPG device timing for different application and to power down the device for power saving. In order to achieve the high speed data acquisition, the RT1025 device was configured as a slave of SPI mode. The Cardioid evaluation board is fully assembled and tested. The usage of the evaluation board was shown in below figure.1. Insert LIR2430 Battery in the battery case. The battery can be charged by applying 5V via the Micro USB port.●Once on, you should see a Red LED lighting for OK status●If no light is present, check connections or try replacing the Battery with a fresh one.●If Red LED is flashing, check the I2C or SPI device correct connections.2. Make sure the evaluation board connect to the Android APP for ECG/PPG measurement●Make sure Bluetooth is enabled on the phone/tablet.●Launch t he “Cardio EVK” application on your phone/t ablet.●Then, you will need to connect to the Cardioid evaluation board Hardware. Do this by selecting the “BLE ICON”that shows up upon opening the android application. Select the evaluation board ID (RTK_CARDIO_00XXXX) from pup-out menu for BLE paring.After the Cardioid evaluation board BLE connection is successfully established, the “BLE ICON” will become blue and the main GUI will launch.3. Put your fingers cover the VRLD and PPG sensor in the top, FR/FL in the bottom.4. Select “PPG+ECG“ tab firstly, then press“Measure” to start P PG+ECG data acquisitions. Note that it may takea while to get stable results.Press “Stop”, once you finish the measurement.5. Check the measurement results. Press “SAVE” to store the measured data for analysis.Please refer to the document APP_RT1025WS_P0-00_EN for more information about the Android APP.Typical Application CircuitUsing Cardioid evaluation board for ECG/PPG SensingSchematic, Bill of Materials & Board LayoutEVB Schematic DiagramFL VRLD_CON FRFL 2VRLD_CON2FR2FL VRLD_CONFRC1041uF / 0402 / 6.3V / X7R21E_CSN E_MISO E_MISO 2E_MOSI 2E_RSTB E_MOSI E_RSTB 2E_CSN 2E_PWD 2E_INT 2E_PWD E_INT JP4HEADER10X21234567891011121314151617181920G_INT 2G_INT22G_SCL 2G_SDA 2G_INT G_INT2G_SCL G_SDA AFE_VPPG1_EN 2AFE_VPPG0_EN 2AFE_VPPG0_ENAFE_VPPG1_ENE_CLK 2E_CLKDVDD_SYS EXT_Control3AFE_VBST_EN 2AFE_VBST_EN EXT_ControlE_CLK G_INT LDO_EN 2E_MOSI LDO_EN E_CSN E_MISOG_INT2G_SCLCHG_N CHG_N 2G_SDA E_INT AFE_VPPG1_EN AFE_VPPG0_EN E_RSTB E_PWD EXT_Control AFE_VBST_EN CHG_N LDO_EN I/FDVDD_SYSECG cable connector0.96" OLEDG_SDAG_SCL DVDD_SYSCON5JACK_CON/5P/EJ-3699M-GPAUDIOJACK/5P/SMD/EJ-3699M-GP 12354JP2NC/SIP-8P1122334455667788PCB LayoutTop View (1st layer)PCB Layout—Inner Side (2nd Layer)PCB Layout—Inner Side (3rd Layer)Bottom View (4th Layer)More InformationFor more information, please find the related datasheet or application notes from Richtek website .Important Notice for Richtek Evaluation BoardTHIS DOCUMENT IS FOR REFERENCE ONLY, NOTHING CONTAINED IN THIS DOCUMENT SHALL BE CONSTRUED AS RICHTEK’S WARRANTY, EXPRESS OR IMPLIED, UNDER CONTRACT, TORT OR STATUTORY, WITH RESPECT TO THE PRESENTATION HEREIN. IN NO EVENT SHALL RICHTEK BE LIABLE TO BUYER OR USER FOR ANY AND ALL DAMAGES INCLUDING WITHOUT LIMITATION TO DIRECT, INDIRECT, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES.。

ecg数据处理 c语言

ecg数据处理 c语言

ECG数据处理概述心电图(Electrocardiogram,简称ECG)是一种监测和记录心脏电活动的方法,通过测量心脏的电流变化来诊断心脏疾病。

ECG数据处理是指对采集到的心电图数据进行分析和处理,以获得更准确、有用的信息。

ECG数据采集ECG数据采集是ECG数据处理的前提,它可以通过多种方式进行,常见的有: 1.皮肤表面贴电极:将导电胶贴电极黏贴在身体各个部位,通过导联线连接到心电图仪器,利用人体导电性传导心电信号。

2. 心脏内导电线:将导电线插入心脏,通过导联线连接到心电图仪器,直接测量心脏内的电活动。

3. 植入式心脏电极:将电极植入心脏组织中,通过无线信号传输心电信号至外部设备。

ECG信号特征提取ECG信号包含有心跳的时间序列数据,通过对ECG信号进行特征提取可以获得一些重要的信息,例如心率、心律不齐程度、ST段抬高或压低等。

常见的特征提取方法有: 1. R峰检测:R峰是ECG信号中QRS波群中最高的波峰,通过检测R峰的位置可以计算心率和心律不齐程度。

2. P波检测:P波代表房室传导,通过检测P波的位置可以判断心房的节律性。

3. ST段检测:ST段代表心室收缩后的复极期,通过检测ST段的抬高或压低可以判断心肌缺血情况。

ECG数据滤波ECG数据采集过程中会受到各种干扰,如电源干扰、运动伪差等,这些干扰会在ECG信号中引入噪声。

为了提高信号质量,常常需要对ECG数据进行滤波处理。

滤波的目标是去除噪声和伪差,同时保留ECG信号中的有用信息。

常见的滤波方法有:1. 高通滤波:主要用于去除直流成分和低频噪声,保留高频的ECG信号。

2. 低通滤波:主要用于去除高频噪声和高频振荡,保留低频的ECG信号。

3. 带通滤波:通过设置合适的通带,可以同时去除低频和高频噪声,保留中频的ECG信号。

ECG数据诊断与分析ECG数据处理的最终目的是对心脏状况进行诊断和分析,以辅助医生做出正确的判断和决策。

ECG Monitor ECG监护仪器

ECG Monitor ECG监护仪器

Journal of Biosciences and Medicines, 2015, 3, 18-23Published Online April 2015 in SciRes. /journal/jbm/10.4236/jbm.2015.34003Design and Implementation of Long-TermSingle-Lead ECG MonitorMeng Shen, Shijing XueNational Mobile Communications Research Laboratory, Southeast University, Nanjing, ChinaEmail: shenmeng_milink@Received January 2015AbstractSome heart diseases need long-term monitoring to diagnose. In this paper, we present a wearable single lead ECG monitoring device with low power consumption based on MSP430 and single-lead ECG front-end AD8232, which could acquire and store patient’s ECG data for 7 days continuously.This device is available for long-term wearing with a small volume. Also, it could detect user’s motion status with an acceleration sensor and supports Bluetooth 4.0 protocol. So it could be expanded to be a dynamic heart rate monitor and/or sleep quality monitor combined with smart phone. The device has huge potential of application for health care of human daily life.KeywordsSingle Lead ECG, Long-Term Monitor, Low Power Consumption1. IntroductionLong term ECG monitoring has a great significance to the clinical diagnosis of heart disease. Some diseases have the characteristics of sporadic and transient in ECG performance. Usually, the current Holter monitors can only monitor patient’s ECG for 24 hours continuously, unable to meet needs. For an example, 24-hour Holter monitor follow-up could not provide accurate heart rhythm status after surgical atrial fibrillation ablation thera-py [1]. Long term monitoring device needs to be portable, comfortable and has no interference on the user’s daily life. In recent years, many scholars and research institutions have designed many kinds of long-term ECG monitor devices, in order to record user’s long-term ECG signals in daily activities. S. Suave Lobodzinski et al.presented a wearable long-term 14-day patch ECG monitor that was attached directly to the skin and required no electrodes and wires [2].This paper presents a long-term single lead ECG monitoring device which uploads ECG data to computer through USB communication protocol and doing data analysis on computer. The system design is introduced in Section II, and software design is described in Section III. Section IV covers the experimental resaults and Section V is the conclusion.2. System Design2.1. Design Considerations & SpecificationsThe ECG monitor realizes long-term single lead ECG monitoring and motion data acquisition, also supportingwireless transmission with computer and mobile phone, specifically including the following functions: 1) Single lead ECG signal acquisition with sampling frequency 256 Hz and sampling precision 12 bit; 2) Motion status monitoring with 3D acceleration sensor with sampling frequency 64 Hz and sampling precision 16 bit; 3) Sto-rage of 7 days ECG data and motion data; 4) Support of USB interfaces, through which upload data to computer;5) Support of Bluetooth wireless communication, capable of communicating with mobile phone wirelessly.The system is used for long-term data acquisition and storage, so low-power design should be taken into con- sideration. Also, system must be small in volume and comfortable to be worn with no inference to user’s daily life.2.2. System ArchitectureSince the device is mainly used to record ECG and motion data which doesn’t involve in complex operations, single-chip microcomputer(SCM )is implemented in our system. Take the size and power comsuption into con- sideration, we choose MSP430F5524, a ultralow-power microcontroller of Texas Instrument Co. This chip is configured with integrated USB and PHY supporting USB 2.0, a high-performance 12-bit analog-to-digital con- verter (ADC), two universal serial communication interfaces (USCI) which can be used as SPI, IIC and UART respectively [3].The system consists of the following modules MCU control module, ECG analog front end, Bluetooth module, SD card storage module and motion sensor module, power management module. The system architecture of de-vice is shown in Figure 1.A fully integrated single lead ECG front-end AD8232 form ADI company is adopted for ECG acquisition. ST company’s three axis acceleration sensor is selected as motion sensor. Removable SD card is chosen as the ECG data storage unit, with a memory size of 4 GB, capable of 7 days’ storage of patient’s ECG data continuously. MSP430 communicate with SD card through SPI communication interface, implementation of ECG data’s read and write, and realize ECG data’ upload to computer based on USB communication protocol. Also, MCU com- municate with Bluetooth module CC2540 through serial port UART, realizing the communication between monitor and mobile phone. USB interface is supported directly by MSP430F5524.2.3. ECG AcquisitionWe use a fully integrated single lead ECG front-end AD8232 with low-power. This device is designed for extract, amplify, and filter small biopotential signal in the presence of noisy conditions, such as those created by motion or remote electrode placement. It consists of a specialized instrumentation amplifier (IA), an operational amplifier (A1), a right leg drive amplifier (A2), and a midsupply reference buffer (A3). The AD8232 contains a specialized instrumentation amplifier that amplifies the ECG signal while rejecting the electrode half-cell potential on the same stage. This is possible with an indirect current feedback architecture, which reduces size and power compared with traditional implementations. In addition, the AD8232 includes leads off detection circuitry and an automatic fast restore circuit that brings back the signal shortly after leads are reconnected [4].Figure 1. System architecture of ECG monitor.AD8232 is integrated with two-pole adjustable high-pass filter and three-pole low-pass filter, and right leg driven amplifier, providing convenient debugging interface.2.4. Motion SensorThe motion of human body in daily activities will bring interference to ECG signals [5]. In order to monitor human body’s motion in daily activities, the system is equipped with acceleration sensor. LIS3DH chip from ST Company is selected as the acceleration sensor, which can output three axis acceleration of digital signal, and communicate with MSP430 through SPI interface.2.5. Wireless TransmissionThe wireless communication module choose the low power Bluetooth chip CC2540 form TI [6], communicating with MSP430 through the internal integrated UART, realizing wireless communication with mobile phone. 2.6. Low Power Consumption DesignThe wearable ECG monitor device is used for the long-term ECG signal acquisition and storage of patients in daily life, so low power consumption design is important in system design.Based on the realization of low power consumption, the system uses the following points: 1) Choose the ultralow-power microcontrollers MSP430F5524 form TI as our system’ MCU; 2) Adopt the low-power, true system-on-chip Bluetooth CC2540 to realize wireless transmission; 3) The whole system adopts 3.3 V single power supply which powered by rechargeable lithium batteries. The battery voltage ranges from 3.7 V to 4.2 V and output constant voltage 3.3 V through a linear regulator CMOS PAM3101.3. Software DesignThe ECG monitor realizes continuous acquisition and storage of ECG signals and supports USB interface, through which enables data communications with computer.3.1. Main Program Design of MCUWhen device is power on, main program implements the initialization of AD converter, timer, SPI, USB and serial port modules first and then enable interrupt, entering the main loop program. In the loop program, USB interface state and electrode state are visited alternatively. When the device is connected to computer, device is accessed as a USB mass storage device class (MSC) and files in SD card is available directly by software of computer. The voltage of pin changes when electrode contact with the skin is detected. Once detection the voltage changes of pin, timer and AD converter start to work. The master flowchart is shown in Figure 2.3.2. Interrupt Service RoutineThe acquisition and storage of ECG data and motion data are implemented in the timer interrupt service routine. Interrupt service program flow chart is shown in Figure 3. The sampling frequency of ECG signal is 256 Hz. However, motion signal’s sampling frequency is set to 64 Hz, which means motion signal will be sampled after four ECG signal samplings. Sampling data will be cached in a data array with a length of 512 × 2 bytes. When the preceding 512 bytes block (block 1) finished, data will be written to SD card files as a data packet and the following 512 bytes block (block 2) keeps caching sampling data. When the following 512 bytes block (block 2) finished, sampling data will be written to SD card in the same way. The use of 512 × 2 bytes array separates the process of sampling and storage, keeping the continuity of storage data.3.3. Management of SD Card StorageIn this system, FAT32 file system is adopted for storage management. In SD card, cluster is defined as the sto-rage unit formed by 8 sectors with 512 bytes per sector. To avoid user’s wrong operations to files on SD card, functions of file creation and deletion are shielded in the SCSI Protocol layer from peripherals.A new file is created in the root directory of the FAT32and opened when the device start to collect data. In the monitoring process, ECG data and motion data are written to the file as a data packet with length of 512 bytes inFigure 2. Master flowchart.Figure 3. Interrupt service routine flowchart.binary code. The file is closed after the last data packet is written when the device stops monitor. Data structure is shown in Figure 4.3.4. USB CommunicationThis device adopts MSC communication protocol (namely the USB mass storage device class) to realize data transmission between device and the computer. MSC protocol is a transport protocol used between computer and mobile device.The device will be identified as MSC equipment when device is connected to the computer. MCU MSP- 430F5524 adopted in our system can work in the highest frequency of 20 MHz. In order to improve the trans-mission speed, SCSI command task is adjusted to the highest priority and only the system clock and statistical task are allowed. Finally, the data transfer speed reaches 250 KB per second.4. Experimental ResultsThe volume of device is 30 × 30 × 6 mm (about one ¥ coin size), with weight 12 g, very small and light, com- fortable to be worn. The system photo is shown as Figure 5.The system was tested (ECG monitor worn in the chest near the heart) and the ECG signal is shown in Figure6. As can be seen from the chart, the ECG waveforms maintain good character of ECG signals. P, QRS and T wave can be recognized easily, able to be used as clinical medical data analysis.Block1: data packet of 512bytes Array of 512x2 bytesFigure 4. Data structure in SD card.Figure 5. Picture of ECG monitor.Figure 6. Display of ECG waveform.Our system has been clinically tested and is asking for the SFDA certification, can be used as a medicinal product on 7 days’ single lead ECG screening.5. ConclusionIn this paper, we present a wearable single lead ECG monitoring device with low power consumption based on MSP430 and single-lead ECG front-end AD8232, which could monitor and store patient’s ECG data for 7 days continuously. This device is very convenient for long-term wearing with a small volume. Also, this system is equipped with an acceleration sensor and supports Bluetooth 4.0 protocol, could realizing patient’s dynamic heart rate monitor and sleep quality analysis combined with mobile phone, which is suitable for mobile health and has a huge potential of application.References[1]Hanke, T., Charitos, E.I., Stierle, U., et al. (2009) Twenty-Four-Hour Holter Monitor Follow-Up Does Not ProvideAccurate Heart Rhythm Status after Surgical Atrial Fibrillation Ablation Therapy: Up to 12 Months Experience with a Novel Permanently Implantable Heart Rhythm Monitor Device. Circulation, 120, S177-S184./10.1161/CIRCULATIONAHA.108.838474[2]Lobodzinski, S.S. and Laks, M.M. (2012) New Devices for Very Long-Term ECG Monitoring. Cardiology Journal, 19,210-214./10.5603/CJ.2012.0039[3]Reid, W. (1997) Mixed-Signal Microcontroller. Texas Instruments./cn/lit/ds/symlink/msp430f5524.pdf[4]Analog Devices, Inc. (2012) “AD8232” Rev. A. http://www.ntomsk.ru/uploads/datasheets/AD8232.pdf[5]Yoon, S., Lee, S., Yun, Y., et al. (2007) A Development of Motion Artifacts Reduction Algorithm for ECG Signal inTextile Wearable Sensor.World Congress on Medical Physics and Biomedical Engineering2006, Springer, Berlin, 1210-1213.[6]Texas Instruments (2010) CC2540 2.4-GHz Bluetooth R Low Energy System-on-Chip./cn/lit/ds/symlink/cc2540.pdf。

使用ECG编辑修饰心电门控双源MDCT血管成像中带状伪影的新技术

使用ECG编辑修饰心电门控双源MDCT血管成像中带状伪影的新技术
Du le e g f h e rf r ign sn o o a ya e a- n r yCT o eh at o a o igc r n r r r t d t y
王 丹译 章 士正 校
se o i n o arils h m i-iia x e in e ( O : tn ss a d my c da c e a nt l p r c D I i i e e
国际 医 学放 射 学 杂 志 It t nlJunlo dclR do g 0 9 Jn3 () ne i a ora fMe i ail y2 0 a ;21 ma o a o
均行 T E、V M、 c E I B Q c及 1 R 检查 。 .TM I 5 梯度 回波电影 , 使
原 文 栽 于 E r do,0 8 1 (1 :46 2 1 . u Rail2 0 ,8 1 )2 0 - 4 3
时进行 了传统的冠状动脉造影 ( A ) C G 检查 。由 1 位有经验 的 介人心脏病专家对上述结果进行 回顾性分析。 结果 5 %的病 0 人诊断准确。 对于所有病人 , S T均获得足够好的影像质量 DC 并可准确显示解剖变异 。 因此 , S T可作为一种准确显示冠 DC 状动脉变异 的起源 、 走行及形态 的诊断工具。 关键词 双源 c ; T 冠状动脉变异 ; 冠状动脉血管成像 ; 心
9 0 B G o i e , h eh r n s - al . . ne a .m g l 70R , rnn n T e tel d. m igd j g @r u c. g N a e :e o d n
摘要 本研究 的 目的是评价 双源 C ( S T 显示 冠状 动 TDC ) 脉 变异 的能力 。早期发现 和评估冠状动脉变异非常重要 , 因 为它可能伴有 心肌缺血并 可能引起猝 死。在 2 0例行增 强 3 DC S T的病人 中, 1 有 6例 [2例男性 , 1 平均年 龄( 0 1 ) ] 5 ̄4 岁 检测 到了冠状动脉变异 ( 发生率 为 7 , %)包含 了 6种不 同的 变异类 型 ( 例冠状 动脉瘘 , 3 4例旋 支变 异 , 4例右冠状动 脉 变异 , 3例左冠状动 脉变异 , 1例左冠状动 脉主干缺如 , 1例

Edwards HemoSphere 高级监护仪 操作手册说明书

Edwards HemoSphere 高级监护仪 操作手册说明书

HemoSphere高级监护仪操作手册Edwards Lifesciences2Edwards HemoSphere 高级监护仪操作手册由于产品在不断改进中,价格和规格可能会发生变化,恕不另行通知。

无论是根据用户意见还是产品持续改进而导致本手册发生更改,都会重新发布本手册。

在本手册的正常使用中,如果发现任何错误、遗漏或不正确的数据,请联系 Edwards 技术支持部门或您当地的 Edwards 代表。

Edwards 技术支持部门美国和加拿大(24 小时) . . . . . . . . . . . . . . 800.822.9837 或************************美国和加拿大境外(24 小时). . . . . . . . . . 949.250.2222欧洲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8001.8001.801 或***************************英国. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ***********-按 4爱尔兰. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01 8211012 按 4注意美国联邦法律规定,本器械只能由医生直接销售或遵医嘱销售。

制造商Edwards Lifesciences LLCOne Edwards WayIrvine, CA 92614美国制造商标Edwards 、Edwards Lifesciences 、E 字徽标、Acumen 、Acumen HPI 、Acumen IQ 、CCOmbo 、CCOmbo V 、CO-Set 、CO-Set+、FloTrac 、FloTrac IQ 、HemoSphere 、HemoSphere Swan-Ganz 、HypotensionPrediction Index 、HPI 、PediaSat 、Swan 、Swan-Ganz 、Time-In-Target 和TruWave 均为 Edwards Lifesciences Corporation 的商标。

利用ECG AFE简化病人监护仪设计

利用ECG AFE简化病人监护仪设计
设 备的 元件 系统 中不难发 现 ,许 多数 据 采集 系统都 存在典 型 的信 号链 ,包
括信 号 采集 、信 号调理 与处 理 以及工
作通信 。如果再深 7 、 探究 , 就会发现有
很多的设计问题需要理解 ,比如有关信
号完整 I 生 和共模抑制对信号的影 响等问 题等等。保证使用 电 气连接设备的病人
的安全同样至关重要 ,但这会增加设计 的复杂度。 病人有时可能需要进行除颤 , 在这时候 ,我们必须防止系统 自身受到 此类活动的影 响。不仅如此 ,还 有其他
的许多行系统的最终设计。
图 1是 1 2导 联 E G ( 电 图 ) C 心
图1 导联E 1 2 CG监控器件的典型信号链
最左 侧 的校 准信 号代 表 1 A 信 复 杂性 较低 ,而且可 采用 后端信 号处 都销往全 球 ,设 计人 员必 须考 虑最坏 C L mV 号 的 1 mm 垂 直偏 转 。1 0 mV的 C L 理 ,整体系统的灵活性大大增强 。 A 情况 下的交流 主电源输入范 围。 例如 ,
电 极 就 位 以后 ,就 可 以开 始 测 量 心 脏 的 电性 活 动 。 图 5显 示 的 是
典 型 的 1 导 联 E G打 印 结 果 。横 2 C
轴 方 向每 个 大 正 方 形 为 2 0 ,每 0 ms 个 小 正 方 形 为 4 ms 0 。纵 轴 方 向 当
图5 E CG波形, 心律
利 用E 简 化病人 监护仪 设计 CG AF E
S mp i it f a ePa in ntr s n U ig ECGAF i l Pon - - r t t f y o C e Mo i i sn o De g E
■ ADI 司 公

脑电培训

脑电培训

Part 1: Basic principles of EEGIntroduction of EEG •什么是脑电?•脑电的产生机制•脑电节律•脑电伪迹和干扰•脑电信号的预处理(滤波和重参考)•事件相关电位ERP•EEG vs. ERP什么是脑电(EEG)?•EEG is the electrical activity, which is normally recorded at the scalp of human brain, generated by the firing of neurons within the brain.脑细胞无时无刻不在进行自发性、节律性、综合性的电活动。

将这种电活动的电位作为纵轴,时间为横轴,记录下来的电位与时间相互关系的平面图即为脑电图( electroencephalograph, EEG)。

脑电的产生机制神经细胞:上1000亿个,感受环境的变化,再将信息传递给其它神经元,并指令机体作出反应。

是脑内信息加工的主要部分每个神经细胞通过突触与成千上万个神经细胞相连,形成了复杂的结构信号的传递:树突:将传入的信息传递到胞体胞体:不仅仅含有神经元的细胞核和维持其生命的系统,还要承担评估来自于树突以及直接来自于其它神经元的信息静息电位( resting potential)当神经元处于静息状态时测到的电位变化。

– 用两根微电极,一根插入到神经元的轴突内,一根与神经元细胞膜相连,结果发现轴突内为负,外为正,相差将近70mv。

– 可见,在静息状态下,神经元也是自发放电的。

动作电位( active potential)可兴奋细胞受到足够强的刺激(阈刺激或阈上刺激)时,在静息电位的基础上,细胞膜发生一次快速可传播的电位变化称动作电位。

局部电位阈下刺激会引起少量的Na+内流,从而产生较小幅度的去极化,只不过这种去极化不足以诱发动作电位,而且仅限于受刺激部位。

这种产生于受刺激部位、较小幅度的去极化称为局部电位。

脑机融合控制中脑电伪迹处理方法

脑机融合控制中脑电伪迹处理方法
适应的沉浸式交互和融合⑶.目前,这种BCIC/BMIC已成为国际前沿研究热点,研究旨在变革传统的人机 交互和融合方式,提高人类的生活质量.这类BCIC/BMIC系统的典型控制信号源Electroencephalo­ gram, EEG),其在头皮采集,每个电极的记录值是大量神经元电活动的综合结果⑷.尽管该采集方法无 创、设备便携,价格不昂贵,其时间分辨率高适合实时控制,然而EEG信号信噪比低、空间分辨率低、含有 强的伪迹(如眼动伪迹、肌动伪迹、电极移动和线路噪声等),这给BCIC/BMIC中脑电信号的处理带来了巨 大的挑战⑸.
作者简介:熊馨(1984 -),女,博士,讲师.主要研究方向:脑机接口及其应用.E-maU:xiongxin840826@ 163. com 通信作者:伏云发(1969 -),博士,教授.主要研究方向:脑信息处理与脑机交互融合控制.E -maU:£y£@ ynu. edu. cn
第3期
熊 馨,杨秋红,周建华,等:脑机融合控制中脑电伪迹处理方法
中图分类号:TP391 文献标志码:A
文章编号:1007 -855X(2021)03 -0056 - 15
Removing Artifacts from EEG for Brain - Machine Integration Control
XIONG Xin1, YANG Qiuhong1, ZHOU Jianhua1, XU Baolei2, LI Yongcheng2, YIN Xuxian2, FU Yunfa1
1脑电中存在的伪迹
脑电信号是一种非线性非平稳性的中枢神经电生理信号,具有丰富的节律活动(其常用的频带范围为 0 ~30 Hz,gamma波则高于30 Hz),并且其瞬变响应中也含有丰富的波形信息(如幅值、潜伏期和相位等事 件相关电位(Event - related potentials, ERPs)信息),它们隐含着一定的神经科学含义,可表征大脑功能的 动态变化.

医用心电图分析软件的操作流程

医用心电图分析软件的操作流程

医用心电图分析软件的操作流程心电图(Electrocardiogram,简称ECG)是一种用来记录心脏电活动的方法。

医用心电图分析软件是一种计算机程序,用于辅助医生对心电图图像进行分析和诊断。

本文将介绍医用心电图分析软件的操作流程。

1. 软件安装与启动首先,根据提供的软件安装包,将医用心电图分析软件安装在个人电脑或医院的工作站上。

安装完成后,双击软件图标启动软件。

2. 患者信息录入在软件的主界面上,点击“患者信息”或类似的选项,进入患者信息录入页面。

在此页面中,输入患者的基本信息,如姓名、年龄、性别等。

同时,还可以录入其他辅助信息,如病历号、病史等。

输入完成后,点击“保存”或类似的按钮,将患者信息保存至软件数据库中。

3. 心电图导入在软件的主界面上,点击“心电图导入”或类似的选项,进入心电图导入页面。

在此页面中,用户可以选择从心电图仪器导出的心电图文件,通过点击“浏览”或类似的按钮,选择心电图文件所在的路径。

选定心电图文件后,点击“导入”或类似的按钮,将心电图文件导入到软件中。

4. 心电图预处理在心电图导入成功后,软件将自动进行心电图的预处理工作。

预处理包括滤波、放大缩小、基线校正等操作,以提高心电图的清晰度和可读性。

用户可以在主界面上查看心电图的预处理结果,对不满意的部分进行调整。

5. 心电图分析点击软件界面上的“心电图分析”或类似的选项,进入心电图分析页面。

在此页面中,软件将自动识别和定位心脏电活动中的各个波形和间期,并计算出相应的测量数据。

例如,软件可识别P波、QRS波群和T波,并测量它们的振幅、间期、斜率等参数。

此外,软件还能够检测异常波形、心律失常和心脏缺血等疾病迹象,辅助医生进行诊断。

6. 分析结果显示软件将分析结果以图像和数据的方式呈现在分析页面上。

用户可以通过放大、缩小、平移等操作来查看心电图的细节。

同时,软件还会将分析结果以报告的形式输出,方便用户复制或打印。

7. 保存和导出在分析页面上,用户可以选择保存或导出心电图分析结果。

GE Innova 3100IQ 全数字心血管和介入成像系统 fact sheet说明书

GE Innova 3100IQ 全数字心血管和介入成像系统 fact sheet说明书

GE Innova 3100IQ Fact SheetGE INNOVA 3100IQALL-DIGITAL CARDIOVASCULAR AND INTERVENTIONAL IMAGING SYSTEM Description and OverviewThe GE Innova® 3100IQ is an all-digital X-ray imaging system that’s optimized for cardiovascular, angiographic and interventional imaging.Cardiologists in the cardiac cath lab use the GE Innova 3100 IQ to view inside the body while performing diagnostic procedures and treating potential coronary artery blockages that could cause heart attacks or other serious cardiovascular damage.In addition, the GE Innova 3100IQ is also used in angiographic procedures to assist physicians in diagnosing and treating a wide range of vascular conditions throughout the body. It enables physicians to more easily visualize vascular detail through all body thickness and view fine vessel detail right to the skin surface of the extremities.Thanks to its design and the optimum size of its digital flat panel detector, theInnova 3100IQ allows physicians to perform cardiac, angiographic, vascular and interventional procedures on one system in one room.In many cases, the detailed images produced by the GE Innova 3100IQ enhance physicians’ ability to treat their patients using minimally invasive techniques in lieu of major surgery.Major Features & BenefitsThe ability to view hard-to-see small blood vessels and anatomy with greater clarity, even in larger patients who are generally more difficult to image.Revolutionary image quality that allows physicians to visualize the smallest medical instruments and devices such as catheters, guidewires and stents during procedures that require exacting precision.Considerable reduction in overall radiation exposure needed for an exam compared to conventional fluoroscopy systems.Basic X-ray Description and OverviewX-ray is a medical diagnostic tool that allows the visualization of internal structures within the human body. This aids physicians in diagnosing disease, viewing internal abnormalities and assessing the extent of trauma damage.Traditional X-ray TechnologyIn a traditional X-ray system, an imaging chain – comprised of an image intensifier, a TV pickup tube or CCD camera and a set of lenses – creates an analog X-ray signal. This signal is then translated into digital format through a multi-step process. Each step of the process through the analog devices introduceselectronic noise and what is called “artifact” into the signal, both of which degrade the quality of theX-ray image.The GE All-Digital DetectorThe Innova 3100IQ uses GE’s patented all-digital flat panel X-ray detector technology, which enables physicians to visualize small, fine vessels and anatomy with exceptional detail.The GE digital detector on the Innova 3100IQ system replaces the entireimaging chain of a traditional X-ray image intensifier system. Byconverting X-ray signals into digital images at the point of acquisition, thedetector captures information with minimal loss over the full range oftypical exposures to produce exceptional image clarity. It also minimizesthe artifacts and distortions associated with conventional X-ray systems.By eliminating many of the components and conversion steps that typically degrade image quality in traditional X-ray image intensifier systems, the Innova 3100’s detector provides superior image quality that allows physicians to see more than ever before when performing cardiovascular and interventional procedures, which in turn helps to increase their clinical confidence.The detector delivers exceptional image quality at a reduced radiation dose to both the patient and the physician compared to traditional X-ray exams. This is due in large part to the detector’s highDetective Quantum Efficiency, or DQE, a widely recognized measure of image quality over patient dose. The higher DQE, when compared to traditional systems, allows for outstanding object detect-ability.The detector provides improved contrast dynamic range compared to conventional X-ray systems.This dramatically increases the visibility of hard-to-see blood vessels, anatomy and interventional devices such as stents and catheters. It enables the system to provide images with fine detail from the thickest, densest parts of the body to the periphery of the extremities in a single image.The detector’s sensitivity to exposu re by X-rays is linear across the range of usable exposures, while traditional image intensifier systems vary greatly in their sensitivity to exposure.GE’s Commitment to Cardiac CareGE Healthcare is a global leader in medical information and technology. GE offers a comprehensive range of high-performance cardiology systems designed to help cardiologists optimize productivity and cardiac disease management while maximizing efficiency. Its offerings include networking and productivity tools, healthcare information systems, patient monitoring systems, conventional and digital X-ray, computed tomography (CT), cardiovascular magnetic resonance (CVMR), ultrasound, nuclear medicine, stress testing, ECG, Holter, electrophysiology, hemodynamic recording, radiopharmaceuticals, diagnostic contrast agents and a full range of value-added services to help healthcare providers achieve the best possible return on their cardiology investments.About GE HealthcareGE Healthcare provides transformational medical technologies that will shape a new age of patient care. GE Healthcare’s expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, disease research, drug discovery and biopharmaceuticals is dedicated to detectingdisease earlier and tailoring treatment for individual patients. GE Healthcare offers a broad range of services to improve productivity in healthcare and enable healthcare providers to better diagnose, treat and manage patients with conditions such as cancer, A lzheimer’s and cardiovascular diseases.GE Healthcare is a $14 billion unit of General Electric Company (NYSE: GE) that is headquartered in the United Kingdom. Worldwide, GE Healthcare employs more than 42,500 people committed to serving healthcare professionals and their patients in more than 100 countries. For more information about GE Healthcare, visit our website at .American Heart Association Web site# # #。

ecgarts graphic的实际应用

ecgarts graphic的实际应用

ecgarts graphic的实际应用1. 什么是ecgarts graphic?Ecgarts graphic是一种用于可视化数据的图形方法。

它采用线条和图案的组合,以独特的方式呈现数据,使人们能够更好地理解数据的模式和趋势。

这种图形方法通常用于展示复杂的数据集,以揭示数据中隐藏的信息和关系。

2. Ecgarts graphic的实际应用领域有哪些?Ecgarts graphic在多个领域都有广泛的应用,以下是几个重要的领域:- 生物医学研究:Ecgarts graphic可以用来可视化医学图像、基因组数据和临床试验结果,有助于医学专家更好地分析和解释数据。

- 金融和经济学:Ecgarts graphic可以用来展示股市指数、货币交易等金融数据,以帮助投资者进行决策和预测市场走势。

- 环境科学:Ecgarts graphic可以用来展示气象数据、海洋生态系统的变化以及污染物的分布情况,有助于研究人员理解和评估环境问题。

- 社交媒体分析:Ecgarts graphic可以用来可视化社交媒体上的数据,如用户行为、网络关系和话题趋势,以帮助企业和研究者了解用户行为和市场趋势。

- 教育领域:Ecgarts graphic可以用来揭示学生的学习过程和表现,帮助教育工作者更好地了解学生需求和改进教学方法。

3. 如何创建Ecgarts graphic?创建Ecgarts graphic的过程包括以下几个步骤:- 收集数据:首先需要收集待可视化的数据,确保数据具有足够的准确性和完整性。

- 数据预处理:对数据进行清洗和格式化处理,以确保数据适合进行可视化。

这可能包括去除异常值、填充缺失值等处理。

- 选择合适的图形类型:根据所要表达的信息和数据类型,选择适合的Ecgarts图形类型。

例如,折线图适用于展示趋势和变化,饼图适用于比例关系等。

- 设计图形:根据所选图形类型,设计并绘制Ecgarts图形。

这包括选择合适的颜色、线条形状和标签等,以确保图形清晰易读,能够有效传达数据信息。

ecg特征提取范文

ecg特征提取范文

ecg特征提取范文ECG(心电图)特征提取是指从心电信号中提取出有意义的特征,以便用于心脏疾病诊断和监测。

本文将介绍几种常用的ECG特征提取方法。

1.R峰检测:R峰是心电信号中QRS波群中最大的波峰,代表心脏收缩。

R峰检测是ECG特征提取中的一个重要步骤。

常用的R峰检测方法有阈值法、基于差分的方法和基于模板匹配的方法等。

2.心率变异性(HRV):心率变异性是指心率在不同时间点上的变化。

可以通过计算RR间期(R峰到R峰的时间间隔)的标准差、均方根差等统计量来评估HRV。

HRV被广泛应用于心脏病风险评估、疾病监测和心理压力评估等方面。

3. QRS复杂度:QRS复杂度是衡量QRS波群形态变化的指标,可以用于诊断心律失常和心肌缺血等心脏疾病。

常用的QRS复杂度计算方法有Fractal、Lyapunov指数和Higuchi维度等。

4.ST段分析:ST段是QRS波群和T波之间的部分,是评估心肌缺血和心肌缺氧的重要指标。

ST段的形态、斜率和偏移等特征可以通过计算QRS波群和T波的时间和振幅特征来获取。

5.QT间期:QT间期是指从QRS波群起点到T波终点的时间间隔,是评估心室去极化和再极化过程的指标。

QT间期的异常可以导致心律失常,因此对QT间期进行分析可以帮助提早发现和预防心脏疾病。

6.波形变异性:波形变异性是指心电波形形态的变化,可以通过计算心电信号的波形变异性指数来评估。

波形变异性也可以用于疾病监测和心理压力评估等方面。

此外,还有一些高级的特征提取方法,如小波变换、奇异值分解和独立成分分析等。

这些方法可以提取心电信号的局部特征、频谱特征和非线性特征。

这些特征在不同的心脏疾病诊断和监测中有着不同的应用。

总之,ECG特征提取是从心电信号中提取有意义的特征,以便用于心脏疾病诊断和监测。

以上介绍的特征提取方法只是一部分,随着科技的不断发展,还会有更多更高级的特征提取方法被开发和应用。

这些ECG特征可以用于自动诊断系统、移动健康监测设备和互联网医疗等领域,为人们提供更好的心脏健康管理服务。

MEMRSECG心电网络系统使用说明书

MEMRSECG心电网络系统使用说明书

第1篇一、案件背景本案涉及一起因劳动争议引起的劳动仲裁案件。

申请人李某,男,35岁,原系某私营企业(以下简称“该公司”)的员工。

李某于2010年1月1日进入该公司工作,担任销售经理职位。

双方签订的劳动合同约定,合同期限为三年,自2010年1月1日起至2013年1月1日止。

合同中约定,李某的月工资为人民币10,000元,公司按月支付。

此外,合同中还约定了双方的劳动纪律、保密条款等。

2012年10月,李某因个人原因提出辞职,并向公司递交了书面辞职报告。

公司收到辞职报告后,认为李某的行为违反了公司规章制度,遂以李某违反劳动合同为由,拒绝支付其经济补偿金。

双方就此产生争议,李某遂向当地劳动争议仲裁委员会申请仲裁。

二、争议焦点本案的争议焦点主要集中在以下几个方面:1. 李某是否违反了公司规章制度?2. 公司是否有权拒绝支付李某经济补偿金?3. 劳动仲裁委员会应如何处理本案?三、案件分析1. 李某是否违反了公司规章制度根据李某提供的证据,其辞职前并未违反公司规章制度。

然而,公司认为李某在离职前一个月内未完成销售任务,违反了公司的销售管理规定。

公司提供的证据包括销售报表、销售业绩考核表等。

劳动仲裁委员会在审理过程中,对双方提供的证据进行了审查。

根据《中华人民共和国劳动法》第三条的规定,劳动者享有平等就业和选择职业的权利,享有取得劳动报酬的权利,享有休息休假的权利,享有获得劳动安全卫生保护的权利,享有接受职业技能培训的权利,享有社会保险和福利的权利,享有提请劳动争议处理的权利,享有法律规定的其他劳动权利。

在本案中,李某享有选择职业的权利,其在离职前并未违反公司规章制度,因此,李某的行为并不构成违反公司规章制度。

2. 公司是否有权拒绝支付李某经济补偿金根据《中华人民共和国劳动合同法》第四十七条的规定,用人单位依照本法规定解除或者终止劳动合同,应当向劳动者支付经济补偿。

经济补偿按劳动者在本单位工作的年限,每满一年支付一个月工资的标准向劳动者支付。

EEG伪影详解和过滤工具的汇总(二)

EEG伪影详解和过滤工具的汇总(二)

EEG伪影详解和过滤工具的汇总(二)在《EEG伪影类型详解和过滤工具的汇总(一)》,我们详细介绍了EEG伪影类型和产生原因,这篇文章,我们主要介绍常见脑电伪影的处理技术。

脑电伪影过滤技术(通过数据分析)根据数据分析,处理伪影主要有四种方法:1.脑电伪影剔除第一种方法是对带有伪影的脑电周期进行选择和剔除。

不同的技术定义了一种模式(通常是上述伪影之一)来选择要去除的脑电图epoch。

模式识别方法的范围从脑电图专家的目视检查,到在时域或频域的自动统计(Nolanet al., 2010)。

例如,在ERPs协议中,自己可以定义一个统计阈值,以删除振幅明显更高的试验。

剔除是一种非常昂贵的方法,因为虽然它可以消除几乎所有的伪影,但同时也消除了该epoch的所有有价值的EEG信息。

通常,你会尽可能保留更多的脑电图数据,特别是当记录很短的时候。

2. 过滤这些技术的目标是消除伪影,同时保持尽可能多的EEG图信息。

这种分类包括以下技术:简单的线性滤波器去除某些频段(Panych et al .,1989);回归方法使用参考信号从EEG中去除EOG或ECG信号(Wallstrom et al ., 2004),自适应滤波器与参考信号(Marque et al ., 2005),维纳滤波器(Sweeney et al ., 2012)或贝叶斯过滤器(Sameni et al ., 2007)。

例如,我们可以使用线性滤波器去除50 Hz或60 Hz的交流电干扰。

这也将消除EEG信息(脑电波),不过,这种高频通常不是EEG研究的重点。

另一个示例是使用EOG信号作为参考通道,以通过回归或自适应滤波器从受污染的EEG信号中去除这些信息。

回归方法假设记录的脑电图是真实脑电图和伪影(EOG)的结合。

回归滤波器计算在单个EEG通道中存在的参考(EOG)的比例,并将其减去。

3.盲源分离这些是分离技术,试图将脑电图分解成基于不同数学考虑(如正交性或独立性)的信号源的线性组合。

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法ECGScanner-C开源使用方法ECGScanner-C是一款开源的心电图扫描软件,它可以帮助医生快速准确地分析心电图数据。

本文将介绍ECGScanner-C的使用方法,以帮助用户更好地了解和使用该软件。

一、安装ECGScanner-C1. 下载源代码:用户可以通过在GitHub上搜索ECGScanner-C并下载源代码的方式来获取ECGScanner-C的安装文件。

下载完成后,解压源代码文件到指定目录。

2. 安装依赖库:ECGScanner-C依赖于一些第三方库,如OpenCV和Matplotlib等。

在安装ECGScanner-C之前,需要先安装这些依赖库。

用户可以通过在终端中运行相应的命令来安装这些依赖库,具体的命令可以在ECGScanner-C的官方文档中找到。

3. 编译源代码:在安装了依赖库之后,用户需要进入源代码所在的目录,并执行编译命令来生成可执行文件。

编译命令通常是在终端中运行"make"命令。

二、使用ECGScanner-C1. 准备心电图数据:在使用ECGScanner-C之前,用户需要准备好心电图数据。

心电图数据通常以文本文件的形式存在,每行代表一个时间点的采样数据。

用户可以使用文本编辑器打开心电图数据文件,确保数据格式正确。

2. 运行ECGScanner-C:在终端中进入ECGScanner-C的安装目录,并执行运行命令。

运行命令通常是在终端中输入"./ECGScanner-C"。

3. 导入心电图数据:在ECGScanner-C的界面中,用户可以选择导入心电图数据文件。

用户可以通过点击"导入"按钮或使用命令行参数的方式来导入心电图数据。

4. 扫描心电图数据:导入心电图数据后,用户可以点击"扫描"按钮来让ECGScanner-C开始扫描心电图数据。

软件会自动分析心电图数据,并输出分析结果。

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法ECGScanner-C 是一个开源的心电图扫描仪项目,本文将介绍它的使用方法。

一、项目简介ECGScanner-C 是基于 C 语言开发的一个心电图扫描仪项目,旨在提供一个简单易用的心电图扫描解决方案。

该项目采用模拟信号采集技术,通过传感器将心电信号转化为数字信号,并通过算法对心电图进行处理和分析。

二、安装和配置1. 硬件要求:ECGScanner-C 需要连接到一台计算机上,需要准备好相应的心电信号传感器和数据线。

2. 软件要求:确保计算机上已安装 C 语言编译器和相应的串口库。

3. 下载和编译:从项目的官方仓库中下载源代码,并使用 C 语言编译器编译生成可执行文件。

三、使用步骤1. 连接硬件:将心电信号传感器连接到计算机上的串口或 USB 接口,并确保连接稳定。

2. 运行程序:在命令行中执行编译生成的可执行文件,启动心电图扫描程序。

3. 设置参数:根据需要,可以通过命令行参数或配置文件来设置扫描的相关参数,如采样率、滤波器类型等。

4. 开始扫描:在程序启动后,按下开始扫描按钮或输入相应的命令,开始进行心电图扫描。

5. 数据采集:程序将实时采集心电信号,并将数据以文件或实时流的形式保存下来。

6. 数据处理:可以通过内置的算法对心电图进行滤波、去噪和波形分析等处理。

7. 结果展示:处理后的心电图可以通过图形界面或命令行输出展示,以供用户进行查看和分析。

四、注意事项1. 数据安全:请确保在扫描过程中保护好采集到的心电数据,避免泄露或损坏。

2. 仪器校准:定期对心电信号传感器进行校准,以确保测量结果的准确性。

3. 数据分析:心电图仅供参考,不能替代专业医生的诊断,如有异常情况请及时就医。

五、项目优势1. 开源免费:ECGScanner-C 是完全开源的项目,用户可以自由获取、使用和修改源代码。

2. 灵活可定制:用户可以根据自己的需求对程序进行定制和扩展,以满足不同的应用场景。

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法

ecgscanner-c开源使用方法ECGScanner-C开源使用方法ECGScanner-C是一个开源的心电图扫描器,用于读取和分析心电图数据。

本文将介绍ECGScanner-C的使用方法,包括安装、配置和使用。

一、安装ECGScanner-C1. 下载ECGScanner-C源代码,并解压到本地目录。

2. 确保系统已安装C编译器(如GCC)和相应的开发库(如libusb)。

3. 打开终端,切换到ECGScanner-C源代码目录。

4. 运行以下命令进行编译和安装:$ make$ sudo make install二、配置ECGScanner-C1. 连接ECGScanner-C设备到计算机的USB接口。

2. 在终端中运行以下命令,查看设备是否被正确识别:$ lsusb检查输出结果中是否包含ECGScanner-C的设备信息。

3. 添加udev规则,以便非root用户也能访问ECGScanner-C设备。

在终端中运行以下命令创建一个udev规则文件:$ sudo nano /etc/udev/rules.d/99-ecgscanner-c.rules在文件中添加以下内容,并保存:SUBSYSTEM=="usb", ATTR{idVendor}=="xxxx", ATTR{idProduct}=="xxxx", MODE="0666"将xxxx替换为ECGScanner-C设备的idVendor和idProduct,可以通过lsusb命令查看获得。

4. 重新加载udev规则,使其生效:$ sudo udevadm control --reload-rules三、使用ECGScanner-C1. 打开终端,运行以下命令启动ECGScanner-C:$ ecgscanner-c2. ECGScanner-C将自动搜索并连接到已连接的ECGScanner-C设备。

一种用于家庭睡眠监护的脑电预处理算法

一种用于家庭睡眠监护的脑电预处理算法

2011年5月中国医学物理学杂志Ma y .,2011第28卷第3期Chinese Journal of Medical PhysicsVol.28.No.3一种用于家庭睡眠监护的脑电预处理算法张婷婷,汪丰(东南大学生物科学与医学工程学院,东南大学移动通信国家重点实验室,江苏南京210096)摘要:目的:睡眠是人体重要的生理活动,对睡眠进行合理的分期,是研究睡眠质量诊断,睡眠疾病的基础。

脑电是描述睡眠过程中最显著和最直观的信号,但是由于脑电信号本身比较微弱,心电干扰会随机地出现在脑电信号中,本文的主要目的就是基于手机的家庭睡眠分析的需要,设计一种简单的心电抑制算法。

方法:通过参考心电信号的R 波检测,提取R 峰位置,作为脑电信号中的心电干扰的参考点,建立模板来替换脑电信号中的心电伪迹。

结果:从处理后的脑电信号的时域图和频谱图可以看出,心电伪迹得到了有效抑制。

结论:将原始脑电信号的各频带能量分布和自适应算法以及本文所提出的算法滤除心电伪迹后的能量分布加以比较,可见抑制心电干扰后,睡眠各期的分段谱特征差异性加大,从而更有利于后面的睡眠各期的自动分类。

关键词:睡眠监护;EEG ;ECG ;伪迹;QRS 波检测;自适应滤波DOI 编码:doi :10.3969/j.issn.1005-202X.2011.03.021中图分类号:TP399文献标识码:A文章编号:1005-202X (2011)03-2653-05A New EEG Preprocessing Algorithm Applied to Home Sleep Health-careZHANG Ting-ting ,WANG Feng(School of Biological Science &Medical Engineering,Southeast University,National Mobile Communications Research Laboratory,Southeast University,Nanjing Jiangsu 210096)Abstract:Objective:Sleep is an important physiological activity of human.It is the basis for reasonable sleep stages to study the sleep quality and diagnose sleep disorders.EEG is the most significant and most intuitive signal in describing sleep,but the EEG signal is very faint,and the amplitude of the random presence of the ECG artifacts is very large.This paper tries to use a simple method to eliminate the ECG artifacts in view of the need of the home sleep health-care on mobile.Methods:By means of R peak detection of the reference ECG signal,we make the R peak position as the reference point of the ECG artifacts in the EEG signal,and then build a template to replace the artifacts.Results:From the time-domain graph and the spectral graph of the processed EEG,we can see that the ECG artifacts have been effectively suppressed.Conclusions:After eliminating the ECG artifacts,the spectral features differences of each Sleep stage are increased,thus,it will be more conducive to the Automatic sleep stage classification.Key words:sleep health-care;EEG;ECG;artifacts;QRS detection;adaptive filtering前言睡眠是一种重要的生理现象是机体复原、整合和巩固记忆的重要环节,是健康不可缺少的组成部分。

心电数据标准格式

心电数据标准格式

心电数据标准格式
心电数据通常以多种标准格式进行存储和交换,其中一些常见的格式包括:
1. MIT-BIH格式:MIT-BIH是一种常用的心电图数据格式,常用于存储和交换心电图数据。

这种格式通常包括时间序列数据和相关的注释文件,用于记录心电信号和事件标记。

2. EDF/EDF+格式:European Data Format(EDF)和其扩展格式EDF+也被用于存储生物医学信号,包括心电数据。

它们支持多种生理信号的记录,并提供了一种标准化的文件格式。

3. SCP-ECG格式:Standard Communications Protocol for Computer-Assisted Electrocardiography(SCP-ECG)是一种用于存储心电图的国际标准格式,旨在实现不同设备之间的数据交换和互操作性。

4. HL7格式:Health Level Seven(HL7)是医疗领域中用于数据交换的国际标准之一,它包括了一系列标准规范,其中包括了一些用于心电数据交换的规范。

5. JSON/XML格式:有时心电数据也可以以JSON(JavaScript Object Notation)或XML (eXtensible Markup Language)等通用数据交换格式进行存储和传输,这种格式在软件开发和数据传输中较为常见。

这些格式都有各自的特点和应用场景,选择特定的格式通常取决于数据交换的需求、设备兼容性以及应用软件的要求。

在处理心电数据时,确保选择与应用环境兼容的格式以便有效地存储和交换数据。

2便携式心电记录仪系统分析与设计

2便携式心电记录仪系统分析与设计

半个周期 0.5秒 0.5秒 0.5秒 0.5秒
记录仪在显示器上回放心 电信号片段 显示标志任务进程的标识 停止执行当前的任务更新 显示 警告用户并停止执行当前 任务 关闭显示器 离开待用模式,为显示器 加电。

5 6 7 8
用户按下按钮“停止” 用户按下按钮“停止” 电量不足 进入待用模式 用户按下某个按钮将记 录仪从待用模式唤醒
便携式心电记录仪系统分析与设计
----UML应用案例 ----UML应用案例
心电记录仪外形
上 左 OK 右
记录 删除回放 菜单 停止 Nhomakorabea下
产品的主要功能
可以存储20个心电波(ECGWave),每个心电波的长度 可以存储20个心电波(ECGWave),每个心电波的长度 由内存的大小来决定。 具有屏幕菜单,使用方便。 可以设置闹铃,提示用户时间到。 具有LCD显示器可以显示心电波形、心电波形的记录时间 具有LCD显示器可以显示心电波形、心电波形的记录时间 和记录日期、当前时间和当前日期。当前的时间和日期问 题出现在显示器上。 显示器还显示电池使用情况指标。当电量不足时,系统发 出蜂鸣声提醒用户。 具有待用模式(Stand具有待用模式(Stand-by Mode),这样可以节省能量。 Mode),这样可以节省能量。 当不用时,系统关闭外设;当用户随便按一个按键时,系 统激活,返回正常工作状态。
进 进 进 进
随机的 随机的 随机的 随机的
1秒 1秒 1秒 1秒
需求分析
一、识别参与者
用户可以使用系统记录心电信号。 用户可以使用系统回放记录的心电信号。 用户可以删除系统中存放的心电信号。 用户可以设置闹铃。 用户可以更换电池。 用户可以更改当前时间。 用户可以观察时间。 用户可以听到闹铃。 用户可以看到提示信息。 所以本系统的参与者只有一个:用户(User) 所以本系统的参与者只有一个:用户(User)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abstract ² Surface electromyography (sEMG) recordings from trunk or limb muscles are often easily corrupted by electrocardiography (ECG) signals. In order to remove or reduce ECG in sEMG so as to improve the practicability, a novel signal filtering method with joint independent component analysis (ICA) and adaptive filtering (AF) is proposed in this paper. The method is validated with synthetic noisy EMG signals derived from 8-channel real sEMG added with 8-channel ECG recordings. Two groups of sEMG signals and two groups of ECG signals were used to examine the performance of the proposed method in our validation study. Experimental results demonstrate that the ICA+AF signal filtering method achieves better performance on reduction ECG artifact than the conventional Butterworth High-pass filter with 30 Hz cutoff frequency. The proposed method also performed well with 8-channel real ECG contaminated sEMG signals.I. I NTRODUCTIONElectromyography (EMG) measures muscular activities represented by the summation of action potentials occurring in motor units. EMG analysis of a muscle serves as a practical means of collecting important physiological and pathophysiological behavior information. Compared to the routine intramuscular EMG examination using needle electrodes, the surface EMG (sEMG), due to its noninvasive fashion, has much broader application prospect in a wide range of fields from human movement and kinesiology through clinical diagnostics and pathology to rehabilitative treatment [1-4].Because of the complexity of sEMG measurement and its weak nature, sEMG is easily corrupted by noises such as the signals from other physiological origins or electromagnetic interference from ambient environment [5-6]. For example, the electrocardiography (ECG) signal is likely to contaminate the EMG signal recorded from truk or limb muscles, especially close to the heart [7]. This makes ECG interference a major obstacle encountered in EMG analysis.*Research supported by the National Nature Science Foundation of China under Grant 61271138.X. Chen is with the Department of Electronic Science and Technology, University of Science and Technology of China (USTC), Hefei 230027 China (corresponding author to provide phone: +86-0551-6360-1175; e-mail: xch@ ).Y. Li and X. Zhang are with the Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027 China (e-mail: liyun5@).P. Zhou is with the Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611 USA, with the Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611 USA, and also with the Institute of Biomedical Engineering, USTC, Hefei 230027 China (e-mail: p-zhou@).Many previous efforts have been made to retrieve the EMG signal from the ECG contaminated recordings. Removal of ECG interference from EMG signals cannot be simply achieved by applying conventional digital filters, since both of the true EMG signal and ECG interference overlapped each other in amplitude and frequency. Redfern et al. also suggested that a high-pass filter with a cutoff frequency of approximate 30Hz could yield relatively optimal performance in balancing ECG cancellation and excessive EMG degradation [10]. Another simplistic, yet potentially effective, procedure is based on the gating method which is designed to simply cut out the signal segments overlapping with QRS complexes in amplitude, thus suffering from the loss of portions of useful EMG signals.Recently, several advanced signal processing algorithms such as adaptive filtering (AF) and independent component analysis (ICA) have been developed and studied for removing ECG from EMG recordings[8][9][11]. The AF technique is able to adjust their parameters based on the statistical properties of inputs, which allow adaption to track the dynamic changes in the signal and noise components. However, the adaptive filters therein require a synchronic series of clean ECG noise as the reference signal for adaptive calculation, which can be further obtained in the following two ways. One is to derive the reference signal directly from the noisy EMG recordings by applying a band-pass filter. But sometimes unsatisfactory reference signal could result in residual ECG artifacts apparent in the denoised signal. The other way is to measure the ECG signal during EMG data collection. Likewise, such a solution may raise additional concerns and costs in experiments. On the contrary, ICA is the most popular blind source separation algorithm, which has shown its advantage for separation of an component from multi-channel EMG recordings by the different statistical properties of the ECG and EMG sources. ICA is always applied on the multi-channel recordings since it requires at least as many channels (sensors) as sources.With the multi-channel sEMG recordings, the ECG contamination in each channel comes from the same source (heart), hence should be synchronous, while EMG in different channels are supposed to be different in muscles. The application of an ICA algorithm to multi-channel sEMG recordings with ECG contamination is prone to extract the ECG component, which is exactly synchronized with ECG contamination in each channel, offering a qualified reference signal for performing adaptive filters on each channel. Taking advantage of such property, in this paper, we investigate the combined approach of ICA and AF technique to remove ECG contamination from multi-channel EMG signals.ECG Artifact Removal from EMG Recordings using IndependentComponent Analysis and Adapted Filter*Yun Li, Student Member, IEEE , Xiang Chen, Member, IEEE , Xu Zhang, Member, IEEE ,and Ping Zhou, Member, IEEE6th Annual International IEEE EMBS Conference on Neural Engineering San Diego, California, 6 - 8 November, 2013II.M ETHODA. Independent Component AnalysisICA is a multivariate statistical approach to blind source separation, which aims to recover a set of mutually independent components (ICs) when only mixtures of these sources with unknown coefficients are observed[12][13]. Generally, the raw sEMG recordings, especially from trunk muscle, are mixtures of useful signals (true EMG) and artifacts (ECG). Since EMG generated from skeletal muscle and ECG generated from cardiac muscle can be regarded as physiologically independent processes, the ICA approach is performed with the attempt to separate the ECG-artifact IC from raw multi-channel SEMG signals. Thereafter, it is easy to obtain the ECG-concentrated signal. The detailed concept and principle of ICA algorithm could be found in [12-14]. In this study, the ICA method is implemented using the well-known FastICA software package as a MATLAB toolbox.B. Adaptive FilterThe principle of the adaptive filter used for ECG interference removal is presented as follows. The original noisy EMG signal x(t) of an individual channel could be considered as a combination of clean EMG signal s(t) and ECG artifact n(t):x(t)= s(t)+ n(t) (1) The ECG artifact, n(t), is then estimated by modeling the reference signal, derived from ICA, nr(t) via a finite impulse response (FIR) digital filter, denoted as its impulse response h(t):Q (t)= h(t)* nr (t) (2) where * denotes the convolution operator.7KH GHQRLVHG (0* VLJQDO GHQRWHG DV V W FRXOG EH REWDLQHG E\ VXEWUDFWLQJ WKH HVWLPDWH RI (&* QRLVH Q (t) from the original contaminated EMGV W [ W - Q (t) (3) The FIR filter used for estimating ECG contamination is implemented in an adaptive way that the filter parameters (i.e., the coefficients of h(t)) are updated by a correction criterion. Multiple correction criteria such as least mean squares (MLS) and recursive least squares (RLS) could be used to implement the adaptive filter. In this paper, an adaptive filter based on the RLS algorithm was developed, which can reach optimal performance, according to previous findings in [8-9].With the reference ECG noise derived from ICA analysis of multi-channel EMG signals, the adaptive filter could then be applied to each EMG channel for producing its denoised version respectively.C. Evaluation dataset descriptionSynthetic noisy EMG signals were derived from relatively clean sEMG recordings added with typical ECG recordings to examine the performance of the proposed methods in the validation study. The dataset used in this study was recorded from 2 healthy subjects (2 males, 29 and 35 years). The study was approved by Institutional Review Board of Northwestern University (Chicago, IL, USA). Written informed consent was obtained from all subjects prior to the study. There were two groups of EMG data and two groups of ECG data, each group with 8-channel recordings over a period of 25 seconds. All the evaluation dataset used in this study was recorded by a Refa 128 EMG system (TMS International BV, Enschede, Netherlands) at a sampling rate of 2000 Hz per channel. One EMG data group (EMG 1) was selected from the dataset used in our pilot study[15], where a flexible piece of 64-channel high-density EMG electrode array was used to place above the thenar muscles for EMG recordings when a healthy subject was asked to perform some voluntary muscle contractions. The other EMG data group was recorded via 8 individual electrodes placed on the left biceps brachii of another healthy male subject while the subject was continuously performing elbow flexion/extension movements. The size of each individual electrode is 10 mm in diameter while the recordingVV Figure 1. The results for ECG artifact removal applied on a typical 8-channel synthetic noisy sEMG signals: (a) 8-channel clean sEMG data;(b) 8-channel ECG artifact; (c) 8-channel synthetic noisy EMG signal; (d) The extracted independent components after ICA; (e) 8-channel denoised sEMG data.surface is 5 mm in diameter. After that, other 8 electrodes were placed above the chest muscle. Thus, the ECG interference was then obviously present in each of the 8 channels placed on left biceps brachii, from which two trails of recordings were collected respectively when the subject was asked to stay relaxed without any voluntary muscle contraction, thereby resulting in two ECG data groups.Each of the two EMG data groups could be superposed by each of the two ECG groups, generating the four groups of the synthetic signals.In addition, the real EMG signals with ECG artifact should be collected to examine the effects of real signals on the performance of the proposed methods. After the ECG recording trail, with the 16 electrodes placed on chest muscle and left biceps brachii respectively, the real noisy 8-channel EMG signal with ECG contamination was collected from the biceps brachii when the subject was asked to voluntarily perform elbow flexion/extension movements.D. Performance evaluationTo evaluate the performance of the proposed method for ECG artifact removal, conventional Butterworth high-pass filter at 30 Hz cutoff frequency (denoted as BW30) was used to compare. In order to have an objective comparison of the two ECG removal methods, signal-to-error ratio (SER) of the denoised EMG was used to evaluate the overall improvement of signal quality.III.R ESULTSFig. 1 illustrates the results of the proposed methods for ECG artifact removal applied on the typical 8-channel synthetic noisy sEMG signals. The 8-channel clean sEMG data (Fig. 1a) was superposed by an 8-channel ECG artifact at a SNR of 2dB, resulting in an 8-channel synthetic noisy EMG signal (Fig. 1c). After the ICA performed on the synthetic noisy signal, the independent components (Fig. 1d) were thenextracted. The number of extracted ICs was equal to the number of input channels (e.g., recording electrodes). The extracted ICs were normalized after centering and whitening process of ICA[11]. It is obviously that the fourth channel (IC4) in Fig. 1d is the IC that is dominated by ECG artifact. Then the selected ECG IC was used as a reference in the following adaptive filtering process. After that, the denoised version of signal in each channel is shown in Fig. 1e respectively.The SERs of the processed data after the proposed ECG removal method (ICA+AF) applied on the four groups of synthetic data with different signal-to-noise ratio (SNR) were calculated respectively and summarized in the Table 1. At the same time, the resultant SERs of the data after BW30 were also evaluated for the comparison purpose. It is found that the proposed method based on the combination of ICA and AF significantly outperforms the conventional BW30 in removing ECG artifact from multi-channel EMG recordings (paired student t-test, p<0.001, with each of the four datasets). The proposed method was further applied on a real multi-channel sEMG data with ECG contamination in this study. The experimental result was presented in Fig. 2 where the top tracing was the original ECG contaminated sEMG signal, the middle one was the extracted independent source component and the bottom one was the processed denoising sEMG signal. It is obviously that the seventh channel (IC7) in Fig. 2b is the IC that is dominated by ECG artifact. Then theVVVTime (s)Figure 2. The results for ECG artifact removal applied on a real 8-channel noisy sEMG signals: (a) 8-channel original ECG contaminated sEMG signals; (b) 8-channel extracted independent source components; (c) 8-channel denoised sEMG data.selected ECG IC was used as a reference in the adaptive filtering process.IV.D ISCUDSSION AND CONCLUSIONIn this study, a novel method for ECG artifact removal from multi-channel EMG recordings was described. The proposed method consisted of two-step procedures, namely extracting the ECG IC by applying the ICA algorithm on the multi-channel noisy recordings and then removing the ECG artifact in each channel by using adaptive filter with the extracted ECG IC employed as the reference. It was found that by applying the proposed method on both synthetic and real EMG signals, ECG artifacts could be successfully removed from multi-channel sEMG recordings. In the validation study, the proposed method yielded better performance in removing ECG artifact than the conventional BW 30 method.The traditional adaptive filters, used in some previous studies, applied on the ECG contamination removal require a synchronic series of clean ECG noise as the reference signal for adaptive calculation. One benefit of our method is that it provides an automatic way to obtain a reference input for the widely used adaptive filter by applying ICA on multi-channel EMG recordings. Compared to other approaches using adaptive filters for ECG rejection in previous studies[8][9], the proposed method in this study requires no additional recordings of ECG, thus facilitating the experimental procedure. Furthermore, according to the ICA property, the reference signal derived from the original EMG recordings is definitely synchronized with the ECG contamination. The synchronization of the reference and the targeted noise is strictly required by the adaptive filtering technique and potentially helpful in improving the performance of adaptive filters.The basic idea of ICA is to reconstruct the original independent source signals from the observation sequences by finding a linear mapping such that the demixed sequences are statistically independent. In this study, the number of extracted ICs was equal to the number of input channels (e.g., recording electrodes). This method can be work when the minimum number of electrode no less than the number of the original independent source signals.In addition, many previous studies have been reported based on adaptive filters for removing ECG from EMG recordings, where the presented noisy signal was always ECG-dominant. In this case, the adaptive filter was likely to yield satisfactory effect of suppressing ECG noise when the reference signal was good enough. However, if the ECG contamination has similar amplitude to the EMG, the noise reduction performance is more sensitive to how synchronized the reference signal is with the contaminated noise. In contrast, the ICA applied on the EMG recordings with ECG contamination is able to derive ECG-dominant IC that is suitable for adaptive filters, as demonstrated in Fig. 2. Consequently, the proposed method could also yield satisfactory performance when the ECG artifact is not dominated in the noisy EMG recordings.R EFERENCES[1]0 $ 2VNRHL DQG + +X ³0\RHOHFWULF FRQWURO V\VWHPV²AVXUYH\ ´Biomedical Signal Processing and Control, 2(4): 275-294, Oct.2007.[2]Y. Li, X. Chen, X. Zhang, K. Wang, Z. Jane Wang, ASign-Component-Based Framework for Chinese Sign Language Recognition Using Accelerometer and sEMG Data, IEEE Trans. on Biomedical Engineering, vol. 59, no. 10, pp. 2695 ± 2704, Oct. 2012.[3]X. Li, A. Suresh, P. Zhou, W. Rymer. Alterations in the SpikeAmplitude Distribution of the Surface Electromyogram Post-Stroke.IEEE Trans on Biomedical Engineering, 2012 Jun 19. [Epub ahead of print] (in press)[4]X. Zhang, P. Zhou, Sample entropy analysis of surface EMG forimproved muscle activity onset detection against spurious background spikes, Journal of Electromyography and Kinesiology, vol. 22, pp.901±907,2012.[5]H. Chan, Y. Tsai, L. Meng, T. Wu, The Removal of Ocular Artifactsfrom EEG Signals Using Adaptive Filters Based on Ocular SourceComponents, Annals of Biomedical Engineering, vol. 38, no. 11, pp.3489±3499, Nov. 2010.[6] C. J. DeLuca, L.D. Gilmore, M. Kuznetsov, S.H. Roy, Filtering thesurface EMG signal Movement artifact and baseline noisecontamination, Journal of Biomechanics, vol. 43, pp. 1573±1579,2010.[7]J.N.F. Mak, Y. Hu, K.D.K. Luk, An automated ECG-artifact removalmethod for trunk muscle surface EMG recordings, MedicalEngineering & Physics, vol. 32, pp. 840±848, 2010.[8] C. Marque, C. Bisch, R. Dantas, S. Elayoubi, V. Brosse, C. Perot,Adaptive filtering for ECG rejection from surface EMG recordings,Journal of Electromyography and Kinesiology, vol. 15, pp. 310 ± 315, 2005.[9]G. Lu, J.S. Brittain, P. Holland, J. Yianni, A.L. Green, J.F. Steina, T.Z.Aziza, S. Wanga, Removing ECG noise from surface EMG signalsusing adaptive filtering, Neuroscience Letters, vol. 462, pp. 14-19, Sep.2009.[10]M.S. Redfern, R.E. Hughes, D.B. Chaffin, High-pass filtering toremove electrocardiographic interference from torso EMG recordings, Clin Biomech, vol. 8, pp. 44 ± 48, 1993.[11]J.D. Costa Junior, D.D. Ferreira, J. Nadal, A.M.F.L. Miranda de Sá,Reducing electrocardiographic artifacts from electromyogram signals with Independent Component Analysis, 32nd Annual InternationalConference of the IEEE EMBS, 2010.[12] A. Hyvärinen, J. Karhunen, E. Oja. Independent Component Analysis,New York: John Wiley & Sons, 2001.[13]J. Yang, H. Sakai, A New Adaptive Filter Algorithm for SystemIdentification using Independent Component Analysis, IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no.8, pp. 1549-1554, 2007.[14]N.W. Willigenburg, A. Daffertshofer, I. Kingma, J.H. van Dieën,Removing ECG contamination from EMG recordings: A comparisonof ICA-based and other filtering procedures, Journal ofElectromyography and Kinesiology, vol. 22, no. 3, pp. 485 ± 493, June 2012.[15]P. Zhou, P.E. Barkhaus, X. Zhang, W.Z. Rymer, Characterizing thecomplexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy, Journal of Neural Engineering,vol. 8, no. 6, 2011.。

相关文档
最新文档