图形的位似 导学案
4.8 图形的位似 第一课时导学案
丹东市第二十四中学 4.8图形的位似第一课时主备:曹玉辉副备:李春贺孙芬审核: 2014-9-18一、学习准备:1、相似多边形的定义、性质?二、学习目标:1、知道位似图形及其有关概念,知道位似图形上任意一对对应点到位似中心的距离之比等于位似比2、利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展自己的数学应用意识和动手操作能力三、自学提示:(一)自主学习:1、在我们生活中经常见到很多这样一类相似的图形。
比如:相底上的景与其洗出相片上的景、放映机通过光把幻灯片上的图放大到屏幕上等等。
不管是放大的还是缩小的都没有改变图形形状,与原图形是相似的。
2、请观察下列图形,并归纳有什么特征。
BB B3、位似图形:如果两个多边形不仅,而且对应顶点的连线,对应边,像这样的两个图形叫做位似图形,这个点叫做。
4、位似图形的性质:(1)对应线段______ 。
(2)任意一对对应点和位似中心在___________,它们到位似中心的距离之比等于_____________.(二)合作学习:5、利用位似将图形放大或缩小例如以O为位似中心,把△ABC放大2倍以O为位似中心,把△ABC缩小到原来的1/2。
BCBCBCAOBC四、学习小结: 五、夯实基础:1、如图D 、E 分别是AB 、AC 上的点(1)如果DE ∥BC ,那么△ADE 和△ABC 是位似图形吗?为什么?(2)如果△ADE 和△ABC 是位似图形,那么DE ∥BC 吗?为什么? 2、下列说法中正确的是( )A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个 D .位似中心到对应点的距离之比都相等 3、 下列图形中位似中心在图形上的是( )六、能力提升:1如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若:2:3AB FG =,则下列结论正确的是( )A.23DE MN =B.32DE MN =C.32A F =∠∠D.23A F =∠∠2、 如图,五边形ABCDE 与五边形'''''A B C D E 是位似图形,3、 点O 为位似中心,12'OD OD =,则''A B :AB =___________. 4、 如图,ABC △与A B C '''△是位似图形, =2cm , 则A B ''O .布置作业: CD.C.B.A.E'D'C'B'A'E DCB A G F N M H DC B A′A B C A B C ′′。
最新北师大版九年级4.8 图形的位似导学案及答案
第1课时位似图形及其画法1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.阅读教材P113-114,自学,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.自学反馈学生独立完成后集体订正①两个多边形不仅,而且对应点的连线相交于一点,对应边互相,像这样的两个图形叫做位似图形,这个点叫做.②下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似③用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在( )A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置位似的三要素即是判定位似的依据,也是位似图形的性质活动1 小组讨论例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.解:1.在原图形上取A、B、C、D、E、F、G,在图形外任取一点P;2.作射线AP、BP、CP、DP、EP、FP、GP;3.在这些射线上依次取A′、B′、C′、D′、E′、F′、G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′、B′、C′、D′、E′、F′、G′、A′.所得到的图形就是符合要求的图形.在作位似图形时,按要求作出各点的对应点后,注意对应点之间的连线,不要错连.活动2 跟踪训练(独立完成后展示学习成果)1.例1中的位似中心为点,如果把位似中心选在原图形的内部,那么所得图形是怎样的?如果点A′、B′、C′、D′、E′、F′、G′取在AP、BP、CP、DP、EP、FP、GP的延长线上时,所得的图形又是怎样的?(试着画一画)当位似中心在原图形的外部时,两个图形可能在位似中心的两侧或同侧.2.如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?3.如图,以O为位似中心,将△ABC放大为原来的两倍.第2小题可根据位似的三要素得出对应线段平行;第3小题可有两种情况,画出其中一种即可.4.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′= .活动1 小组讨论例2请画出如图所示两个图形的位似中心.解:如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.活动2 跟踪训练(独立完成后展示学习成果)如图,图中的小方格都是边长为1的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.①画出位似中心点O;②求出△ABC与△A1B1C1的相似比;③以点O为位似中心,再画一个△A2B2C2,使它与△ABC的相似比等于1.5.活动3 课堂小结学生试述:这节课你学到了些什么?教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈①相似平行位似中心②D③D【合作探究1】活动2 跟踪训练1.P 略2.平行因为位似的两个图形的对应边平行3.略4.2【合作探究2】活动2 跟踪训练①略②12③略第2课时坐标中的位似关系1.使学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用.阅读教材P115-117,自学“做一做”与“例2”,掌握以原点为位似中心的两个位似图形对应顶点的坐标规律自学反馈学生独立完成后集体订正①如图,在平面直角坐标系中,有两点A(6,3)、B(6,0),以原点O为位似中心,相似比为13,把线段AB缩小,观察对应点之间坐标的变化,你有什么发现?②在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点坐标的比为.③△ABC和△A1B1C1最新原点位似且点A(-3,4),它的对应点A1(6,-8),则△ABC和△A1B1C1的相似比是.④已知△ABC三顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O为位似中心,相似比为2,把△ABC放大得到其位似图形△A1B1C1,则△A1B1C1各顶点的坐标分别为A1,B1,C1.注意分两种情况.活动1 小组讨论例1将图形中的△ABC作下列移动,画出相应的图形,指出三个顶点的坐标所发生的变化.①向上平移4个单位;②最新y轴成轴对称;③以点A为位似中心,放大到2倍.解:①平移后得△A1B1C1,横坐标不变,纵坐标都加4;②△ABC最新y轴成轴对称的图形为△A2B2C2,纵坐标不变,横坐标为对应点横坐标的相反数;③放大后得△AB3C3,A的坐标不变,B3在B的基础上纵坐标不变,横坐标加AB的长,C3的横坐标在C的横坐标的基础上加AB的长,纵坐标在C的纵坐标系的基础上加BC的长.考虑图形在平面直角坐标系中作何种变换,弄清点的坐标的变化情况;作位似变换时,求出顶点坐标即可.活动2 跟踪训练(独立完成后展示学习成果)1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比( )A.完全没有变化B.扩大成原来的2倍C.面积缩小为原来的14D.最新纵轴成轴对称2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( )A.只有1个B.可以有2个C.有2个以上但有限D.有无数个活动1 小组讨论例2 如图所示的△ABC,以A点为位似中心,放大为原来的2倍,画出一个相应的图形,并写出相应的点的坐标.解:根据题意,图中的△AB1C1就是满足题意的三角形,其中A点的坐标不变,仍是(-3,-1),B1、C1的坐标分别为(3,-3),(1,3).解决本题的关键就是要作出正确的图形,否则求出的点的坐标就会发生错误.活动2 跟踪训练(独立完成后展示学习成果)在平面直角坐标系中,将坐标为(0,0)、(2,4)、(2,0)、(4,4)、(6,0)的点用线段顺次连结起来形成一个图案.①将这五个点的纵坐标不变,横坐标变为原来的13,求上述点的坐标,将所得的五个点用线段顺次连接起来,所得图案与原图案相比有什么变化?②横坐标不变,纵坐标分别减去3呢?③横坐标都加上3,纵坐标不变呢?④横、纵坐标都乘以-1呢?⑤横、纵坐标分别变成原来的2倍呢?面积如何变化?活动3 课堂小结1.本节学习的数学知识:以原点为位似中心,位似图形对应点之间的坐标的关系.2.本节学习的数学方法:运用数形结合的方法解题.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈①略②k或-k③1 2④A1(2,4)或(-2,-4)、B2(2,0)或(-2,0)、C1(6,6)或(-6,-6)【合作探究1】活动2 跟踪训练1.C2.B【合作探究2】活动2 跟踪训练①横向缩小1 3②向下平移3个单位长度③向右平移3个单位长度④最新原点作中心对称变换⑤以原点为位似中心作位似变换,相似比为2,面积扩大4倍。
第四章 图形的位似 复习课导学案
图3EDCB A 丹东市第二十四中学 第四章 图形的相似 复习课导学案主备:曹玉辉 副备:李春贺 孙芬 审核: 2014-9-18 一、学习准备:相似图形的性质及判定;位似图形的性质。
二、复习目标 1、 通过阅读材料,熟记相似图形、位似图形的性质及相似三角形判定;2、 通过标杆题组的学习,能够利用相似图形的性质解决简单问题并会作位似图形。
三、复习提示:考点1、线段的比、成比例线段:(1) 叫做这两条线段的比; (2)四条线段a 、b 、c 、d ,如果 那么这四条线段叫做成比例线段。
记作 或 ,其中 叫做比例内项, 叫做比例外项。
考点2、比例的基本性质:(字母表示) 基本性质: ;合分比性质: ;等比性质: 。
例:已知x +2y 3y =53,则xy= . 考点3、相似三角形的概念、性质(1) 的三角形叫做相似三角形; (2)相似三角形的性质:① ; ② ; ③ ; ④ 。
例:如图3,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°,DE//BC. 则∠AED 的度数是 。
考点4、两个三角形相似的条件(1) ;(2) ;(3) ;例:如图在△ABC 中D 是AB 边上一点,连接CD , 要使△ADC 与△ABC 相似,应添加的条件是考点5、位似图形(1)如果两个图形 ,那么这两个图形叫做位似图形;(2)位似图形的性质① ; ② ;CB ③ 。
例:如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的 比值是 .【例题精讲】例题1. 已知a 2=b 3=c 4,且a ,b ,c 都是正数,则a +3b -2c2a +b= .例题2.( 西双版纳州)已知△ABC ∽△C B A ''',且ABC S ∆∶C B A S ''''∆=16∶9,若AB =2,则B A ''= .例题3 .如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )例4.如图10,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)ABC四、学习小结:五、能力提升:(一)填空题1.如图2所示,在△ABC 中,DE∥BC,若13AD AB =,DE=2,则BC 的长为________. 2.如图3所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作DE⊥BC 交AB 于E ,若ED=1,BD=2,则DC 的长为________.图3O ABCD E B ′′E ′3.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为___________米.二、选择题4.(2012·聊城)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论中不正确的是( )A .BC =2DEB .△ADE ∽△ABC C .AD AE =AB ACD .S △ABC =3S △ADE5.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若AO ∶OC =OB ∶OD ,则下列结论中一定正确的是( ) A .①与②相似 B .①与③相似 C .①与④相似 D .②与④相似六、能力提升:6.如图所示,在6×8的网格图中,每个小正方形的边长均为1.点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A′B′C ′,使△A′B′C ′和△ABC 位似,且位似比为1∶2.(2)连接(1)中的AA ′,求四边形AA′C′C 的周长(结果保留根号).布置作业: 【评价反思】自我 评价 反思学习态度 A B C D 学习效果 A B C D 合作情况 ABCD尚需改进第1题 第2题 2米第3题9.6米。
九年级数学《位似(1)》导学案
九年级数学《位似(1)》导学案学习目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.学习重点:位似图形的有关概念、性质与作图.难点:利用位似将一个图形放大或缩小.自主学习一、课前准备(预习教材P47~ P48练习,找出疑惑之处)细读课本,试解答P48练习.二、新课导学※互动探究探究任务一:认识位似图形,探究位似图形的性质【问题1】观察图片:【问题2】思考:图中有多边形相似吗?如果有,那么这种相似有什么特征?归纳:位似图形的概念如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.这个点叫做位似中心. 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.※探究升华【例1】、已知:四边形ABCD。
求作:四边形A′B′C′D′,使它与四边形ABCD的相似比为21(用三种不同的作法)OO OABCDABCDABCDA B C OC OA BB 'C ' A '第1题变式练习:如图,以O 为位似中心, 将△ABC 放大为原来的两倍.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1、关于对位似图形的表述,下列命题正确的是 .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都 经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比.2、图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都 在正方形的顶点上.(1)以点O 为位似中心,在方格图中将△ABC 放大为原来 的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转 90,画出旋转后得到的△A ″B′C″,并求边A′B′在旋转过程中扫过的图形面积.课后作业1、如图,△ABC 与△A′B′C ′是位似图形,点O 是位似中心,若OA=2A A′,S △ABC =8,则S △A′B′C ′=________.2、如图(2),五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形, 且位似比为21. 若五边形ABCDE 的面积为17 cm 2, 周长为20 cm , 那么五边形A ′B ′C ′D ′E ′的面积为________,周长为________. 3、如图,正三角形ABC 的边长为33+。
位似图形导学案
位似图形导学案第一篇:位似图形导学案23.5位似图形导学案教学目标:1.了解位似图形及其有关概念。
2.掌握位似图形的性质。
3.利用图形的位似解决一些简单的实际问题。
教学重点:探索并掌握位似图形的定义和性质。
教学难点:运用定义和性质解决简单的位似图形问题。
教学过程:一、自主学习1.预习课本80页,将下面的三角形ABC放大到2倍,也就是使所得的三角形与原三角形的相似比为。
画出图形并写出步骤。
2.预习课本81页,画三角形ABC的相似图形,使得原图形与所画图形的相似比为1:2,且位于位似中心的两侧。
二、合作探究1.用刻度尺和量角器量一量,上边两个三角形是否相似?2.你能否用演绎推理的说明它们是否相似?如果可以,能否写出步骤?3.通过课本的预习,你还有其他的画法吗?4.观察你所画的位似图形,你能找到它们的对应边吗?它们的对应边之间有什么关系?三、展示点拨小组讨论,展示讨论结果,补充下面填空。
1.位似图形的定义:如果两个多边形不仅,而且对应顶点的连线,像这样的相似叫做位似。
位似图形中,对应顶点连线的交点叫,这时的相似比又叫做。
2.位似图形的性质有哪些?3.位似中心可以取在多边形的哪里?四、达标检测1.关于对位似图形的表述,下列命题正确的是。
(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比。
2.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A.只能选在原图形的外部; B.只能选在原图形的内部; C.只能选在原图形的边上; D.可以选择任意位置。
3.如图,△ABC与△A′B′C′是位似图形,且位似比是1︰2,若AB =2cm,则A′B′是 cm,并在图中画出位似中心O。
B′ CA C ′A ′B 4.已知五边形ABCDE和点O,请你以O为位似中心画五边形ABCDE的位的图形1AB1=A′B′C′D′E′,使得相似比=,即2A'B'25.已知:E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EOF缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)五、反思总结这节课你有什么收获?第二篇:图形的位似说课稿《图形的位似》说课稿各位老师,下午好,今天我说课的课题是《图形的位似》。
图形的位似导学案
CBA图形的位似【学习目标】1、理解位似图形的意义,能根据位似图形的特征,将一个图形实行放大和缩小。
2、理解位似图形的性质、选择适当的方式实行图形的放大和缩小。
【复习引入】1、如图,△ABC 与△ADB 相似,AD=4,CD=6,求这两个三角形的相似比为___________.2、如图,三个矩形中相似的是( )A 甲和乙B 乙和丙C 甲和丙D 没有相似矩形【自学检测】1、如图:已知,点O 和△ABC ,(1)画射线OA 、OB 、OC ,分别在OA 、OB 、OC 上取点2'''===OC OC OB OB OA OA , (2)画△'''C B A . A ′、B ′、C ′,使思考:1. △'''C B A 与△ABC 是否相似?为什么?△'''C B A 与△ABC 有什么特殊的位置关系?位似图形欣赏,找出位似中心:6 4.564861、根据以下要求画图:(1)如左图,以AB 的中点O 为位似中心,按比例尺1:2,把矩形ABCD 缩小。
(2)如右图,以点B 为位似中心,按比例尺2:1,把△ABC 放大。
【课堂检测】1、以下说法错误的选项是 ( )A 、位似图形一定是相似图形B 、相似图形不一定是位似图形C 、位似图形能够是相似比不等于1的相似形D 、位似图形中每组对应点所在的直线必定相互平行2、按如下方法将△ABC 的三边缩小来原来的12:如下图,任取一点O ,•连AO ,•BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则以下说法中准确的个数是 。
① △ABC 与△DEF 是位似图形;② △ABC 与△DEF 是相似图形;③ △ABC 与△DEF 是周长的比为2:1;④ △ABC 与△DEF 面积比为4:1· O B C D A B A C3、如图,已知O 是坐标原点,B ,C 两点的坐标分别为(31)(21)-,,,.(1)以O 点为位似中心在y 轴的左侧..将OBC △放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)假如OBC △,BC 边上一点M 的坐标为()x y ,,写出M 的对应点M '的坐标.【课后巩固】1、某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图3所示),则小鱼上的点(a ,b )对应大鱼上的点.( )A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )2、如图,已知△AOD 与△COB 是位似,AC=15cm,AO=5cm,AD=3cm,则BC= 。
九年级数学上册 第23章23.5 位似图形导学案
——————————教育资源共享步入知识海洋————————23.5位视图形【学习目标】1.了解图形的位似。
2.会利用位似图形将一个图形放大或缩小。
3.体验动手作图的乐趣,感受数学美。
【重点】位似图形的定义及与相似的关系【难点】位似图形的准确作图,动手能力的落实。
【使用说明与学法指导】1.认真阅读课本P80-P81,了解什么是位似数形,理解位似与相似的关系;并将书本中重要的内容用双色笔画上横线;并完成导学案,完成过程中将疑惑记录在“我的疑惑”栏内,准备课上讨论质疑;预习案一、预习导学:1. 图中每一组多边形都相似吗?观察下面的四个图,你发现每个图中的两个多边形各对应点的连线有什么特征?2.概括:位似图形:如果两个多边形不仅,而且对应顶点的连线,对应边或,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称为.掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是图形,而相似图形不一定是图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.二、我的疑惑合作探究探究一:把图中的四边形ABCD 缩小到原来的21.小结:探究二:如图,以O 为位似中心,将ABC 放大为原来的两倍。
.o小结: 拓展:三角尺在灯泡O 的照射下在墙上的影子形成影子(如图)。
现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长比是?我本节课的收获与反思:。
九年级数学上册 1.4 图形的位似(第2课时)导学案
1.4 图形的位似一、学习目标:⒈ 巩固位似图形及其有关概念.⒉ 会用图形的坐标的转变来表示图形的位似变换,把握把一个图形按必然大小比例放大或缩小后,点的坐标转变的规律.二、学习重点难点:重点:用图形的坐标的转变来表示图形的位似变换.难点:把一个图形按必然大小比例放大或缩小后,点的坐标转变的规律. 三、教与学方式:引导启发,实验探讨,观看试探四、学习进程:(一)、温习导入:作出位似图形的位似中心。
(二)、探讨新知:一、自主学习如图,∆ABC三个极点坐标别离为A(2,3),B (2,1),C (6,2)。
(1)将△ABC 向左平移三个单位取得△A 1B 1C 1,写出A 一、B 一、C1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个极点A 二、B 二、C2的坐标; (1) (2) (4)(5) (6)(3)将△ABC 绕点O 旋转180°取得△A 3B 3C 3,写出A3、B3、C3三点的坐标. 二、精讲点拨:例2:(1)如图,在平面直角坐标系中,有两点A (6,3),B (6,0).以原点O 为位似中心,相似比为3:1, 把线段A B 缩小.观看对应点之间坐标的转变,你有什么发觉?(2)如图,∆ABC 三个极点坐标别离为A(2,3),B (2,1),C (6,2)。
以点O 为位似中心,相似比为22,将∆ABC 放大,观看对应极点坐标的转变,你有什么发觉?(三)、学以致用:一、巩固新知:△ABO 的极点坐标别离为A (-1,4),B (3,2),O (0,0),试将△ABC 放大为△EFO ,使△EFO 与△ABO 的相似比为2.5∶1,求点E 和点F 的坐标.(四)、达标测评:一、△ABC 的三个极点坐标别离为A(2,-2),B(4,-5),C(5,-2),以原点O 为位 yxo W x y z似中心,将这个三角形放大为原先的2倍.试写出放大后三个极点的坐标。
北师大版九年级数学上册《图形的相似》导学案:图形的位似(第一课时)
北师大版九年级数学上册《图形的相似》导学案图形的位似(第一课时)【学习目标】1.探索并了解位似图形的有关概念,能利用位似将一个图形放大或缩小;2.经历探索位似图形的定义与性质的过程,进一步体会位似图形的特征,发展空间观念.【知识梳理】阅读课本第123-124页内容,完成下列问题.1.如果两个每组对应顶点A,A′的,且有,那么这样的两个多边形叫做,点O叫做 .实际上,k就是这两个相似多边形的 .2. 位似多边形的性质:如果两个多边形是位似图形,且对应边平行或在同一直线上,那么图形上任意一对对应点到位似中心的距离之比都等于 . 【典型例题】知识点一:位似多边形的概念1.下列3个图形中是位似图形的有个.知识点二:位似多边形的性质2.下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边有何位置关系?知识点三:位似多边形的作图3.如图 1-30,已知△ABC 与点 O . 以点 O 为位似中心,画出△A'B'C',使它与△ABC 是位似图形,并且相似比为 3∶2 .画法一:(位似中心在图形的同一侧)画法二:(位似中心在图形之间).【巩固训练】 1.下列说法中正确的是( ) A.位似图形可以通过平移而相互得到 B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.下列图形中位似中心在图形上的是( )3.如图,已知△EFH 和△MNK 是位似图形,那么其位似中心是点( )A.AB.BC.CD.D4.如图,△ABC 与△A 1B 1C 1为位似图形,点O 是它们的位似中心,位似比是1:2,已知△ABC 的面积为3,那么△A 1B 1C 1的面积是 .5.已知△ABC 与点O , 以O 为位似中心,画出△A ’B ’C ’,使它与△ABC 是位似图形,并且相似比为1:2.【拓展延伸】6. 如图,在8×6网格图中,每个小正方形边长均为1,点O 和四边形ABCD 的顶点均在小正方形的顶点上。
图形的位似导学案
4.8图形的位似北师大版-数学-九年级-第四章-第8节主备人:田里丰课类:新授课审定人:九年级数学教研组(配套课件电子白板实施授课)一、从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展 二、 1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.组织教学:1.通过让学生观察一组形状相同大小不同的图形,导出图形的位似2.了解位似图形上任意一对对应点到位似中心的距离之比等于位似比展示目标:1.自学目标(基础知识):理解位似多边形的定义及相关性质2.合作目标(重点知识):能利用图形的位似将一个图形放大或缩小3.探究目标(难点知识):利用位似图形的定义能判断两个图形是否是位似图形及位似图形的性质的运用4.情感态度价值观目标:利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展自己的数学应用意识和动手操作能力导学达标:1.(学生经过小组讨论交流的方式总结得出:)特点:(1)两个图形相似: (2)每组对应点所在的直线交于一点。
自我评价:我是 年级 班学生 学习本课(节),我有如下收获:第2页1. 请同学们阅读课本113页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形....,这个交点叫做位似中心....,这时两个相似图形的相似...组内互评:1.指出下图中的图形是否是位似图形?若是,指出位似中心。
苏科版九年级下册6.6 图形的位似学案
课题:6.6 图形的位似(导学案) (新课)一、教学目标1.通过“观察——操作——思考”的活动过程,认识位似图形;2.会利用位似的性质将一个图形放大或者缩小.二、教学过程1.自主先学,温故知新操作思考①.操作:(1)如图,已知点O 和△ABC .画射线OA 、OB 、OC ,分别在OA 、OB 、OC 上取点A′、B′、C′,使12OA OB OC OA OB OC '''===.(2)画△A′B′C′. ②.观察:通过刚才的操作,你发现了③.思考:你能否再编一个问题,把△ABC 放大?巩固练习阅读课本P76-77,解决下面问题:①.下列说法中,错误的是 ( )A .位似图形一定是相似图形;B .相似图形不一定是位似图形;C .位似图形上任意一对对应点到位似中心的距离之比等于位似比;D .位似图形中每组对应点所在的直线必互相平行.②. 如图,△ABC 与△A ′B ′C ′是位似图形,且位似比是1:2,若AB =2cm ,则A′B′= ,请在图中画出位似中心O .2.组织互学,巩固提高①.如图所示△ABC 与△A′B′C′及△ABC 与△A′′B′′C′′是否分别相似?②.△ABC 与△A′B′C′及△ABC 与△A′′B′′C′′中,对应顶点所在的直线,在位置上有什么特点?③.对应边在位置上又有什么特点? AB B④.位似形定义:如果两个多边形不仅相似,而且对应顶点所在直线相交于一点,那么这两个多边形叫做位似形,这个点叫做位似中心.如上图,△ABC与△A′B′C′及△ABC与△A′′B′′C′′是位似形,点O是位似中心.利用位似可以按所给相似比把一个图形放大或缩小.3.提升研学,适度强化例1.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(5,4)、B(3,0),分别将点A,B的横坐标、纵坐标都乘2.得到相应的点A′,B′坐标.(1)画△OA′B′;(2)△OA′B′与△OAB是位似形吗?为什么?归纳结论:位似图形的性质:①.两个位似形一定是相似形;②.对应顶点所在的直线都经过同一点;③.对应边互相平行(或在同一直线);④.任意一组对应点到位似中心的距离之比等于相似比.4.迁移再学,拓展延申例2.如图①,E是线段BC的中点,分别以B、C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在线段BC的同侧.(1) AE和ED的数量关系为,AE和ED的位置关系为.(2) 在图①中,以点E为位似中心,作△EGF与△EAB位似,H是BC所在直线上的一点,连接GH、HD,分别得到图②和图③.①在图②中,点F在BE上,△EGF与△EAB的相似比为1∶2,H是EC的中点.求证:GH=HD,且GH⊥HD.②在图③中,点H在BC的延长线上,△EGF与△EAB的相似比是k∶1.若BC=2,请直接写出当CH的长为多少时,恰好使得GH=HD,且GH⊥HD(用含k的代数式表示).5.当堂训练,及时反馈1.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,下列说法错误的是()A. △ABC∽△A′B′C′B. 点C、O、C′在同一条直线上C. AO∶AA′=1∶2D. AB∥A′B′2. 如图,“小鱼”与“大鱼”是位似图形.如果“小鱼”上的一个“顶点”的坐标为(a,b),那么“大鱼”上对应“顶点”的坐标为()A. (-a,-2b)B. (-2a,-b)C. (-2a,-2b)D. (-2b,-2a)3. 如图,在平面直角坐标系中,矩形OABC的顶点坐标分别为O(0,0)、A(2,0)、B(2,1)、C(0,1).以坐标原点O为位似中心,将矩形OABC放大为原图形的2倍,记所得矩形为OA1B1C1,点B的对应点为B1,且点B1在OB的延长线上,则点B1的坐标为.4.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为.5. 已知△ABC的三个顶点的坐标分别是A(0,0)、B(2,2)、C(3,1),以点A为位似中心将△ABC放大得到△DEF,使△DEF与△ABC的对应边的比为2∶1(△DEF∽△ABC),请求出△DEF各顶点的坐标.6.归纳小结,颗粒归仓(1)知识层面:(2)方法层面:。
《图形的位似》导学案
4.7 图形的位似导学案学习目标1.理解图形的位似概念,掌握位似图形的性质。
2.会利用作位似图形的方法把一个图形进行放大或缩小。
3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。
学习重难点重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小;难点是直角坐标系中图形的位似变化与对应点坐标的关系。
导学过程一、新知学习1.概念学习下列两幅图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?如果两个图形不仅________,而且每组对应点所在的直线__________,那么这样的两个图形叫做_________, 这个点叫做________。
上图中的___________都是位似图形,点_____是它们的位似中心;放电影时,__________也是位似图形,_______就是它们的位似中心。
2.练一练:判断下列各对图形哪些是位似图形,哪些不是。
(1)五边形ABCDE 与五边形A′B′C′D′E′;(2)在平行四边形ABCD 中,△ABO 与△CDO(3)正方形ABCD 与正方形A′B′C′D′(4)等边三角形ABC 与等边三角形A′B′C′(5)△ABC 与△ADE (①DE ∥BC ; ②∠AED =∠B )ABCDE O A ′B ′C ′D ′E ′ABCDEO A ′D ′E ′ABDOABCD A ′B ′C ′D ′ABCO′B ′C ′ABCDE ABCDE通过上面几个练习,我们可以知道:图形相似,___________________,是判断位似图形两个不可缺少的条件。
3.如图P ,E ,F 分别是AC ,AB ,AD 的中点,四边形AEPF 与四边形ABCD 是位似图形吗?如果是位似图形,说出位似中心和位似比。
二、预习典例 1.位似图形的性质一般地,位似图形有以下性质:_________________________之比等于位似比。
2.作位似图形例:如图,请以坐标原点O 为位似中心,作ABCD 的位似图形,并把ABCD 的边长放大3倍。
浙教版数学九年级上册_《图形的位似》导学案1
4.7 图形的位似学案
学习目标:了解位似图形的概念;
了解位似图形的性质和以坐标原点为位似中心的图形位似的性质;
能利用位似将一个图形放大或缩小
重点难点:重点:是位似图形的性质和应用
难点:弄清位似形与相似形之间的区别与联系.
【课前自学课堂交流】
【预习部分】
一、结合位似的定义判断:
练习1、下列每组图中的两个多边形,是位似图形的是
注意:1、两个位似形一定是相似形,但是两个相似形不一定是位似形;
2、两个位似图形的相似比又称为位似比,这样除了图形本身的对应线段成比例之外,位似图
形与一般的相似图形相比,有了更多的比例线段.
练习2、右图四边形ABCD 和四边形EFGD 是位似图形,它们的位似中心是( )
(A )点E (B )点F
(C )点G (D )点D
练习3、已知上图中,AE ∶ED=3∶2,则四边形ABCD
与四边形EFGD 的位似比为( )
(A )3∶2 (B )2∶3
(C )5∶2 (D )5∶3
【课堂交流】
二、利用位似形将一个图形放大或缩小.
①位似形在位似中心的同侧;
②位似形在位似中心的两侧;
③位似中心在位似形的内部;
④位似中心在位似形的一条边上;
⑤位似中心在位似形的一个顶点上;……
练习、正方形网格中有一条简笔画“鱼”,请你以点为位似中心放大,使新图形与原图形的对应线段的比是(不要求写作法).
O 2
:1。
北师大版九年级数学上册导学案 图形的位似导学案
自学课本113-114页,掌握下面的问题并能牢记:
⒈如果两个多边形不仅_____________,而且__________________________,那么这样的两个图形叫做位似图形;这个点叫做_____________。
⒉两个位似图形的位似比也就是指他们的______________比。
二、合作交流
(一)[做一做]:
1判断:
⑴两个相似图形一定是位似图形( )
⑵两个位似图形一定是相似图形( )
⑶已知△ABC和△A1B1C1,如果顶点所在直线AA1,BB1,CC1相交于同一点O,那么△ABC与△A1B1C1是位似图形( )
2如图,D、E分别是AB、AC上的点,
⑴如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?
重点:.理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一性质将图形放大或缩小,并培养学生数学学习的能力。
装订线
难点:理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一性质将图形放大或缩小,并培养学生数学学习的能力。
学法指导及使用说明:
知识链接:三角形相似的性质
科目
数学
课题
§4.6图形的位似
主备人
王昭灵
审核人
学案
类型
新授
学案
编号
SX201491078
学 习 目 标
1、了解位似图形及其有关概念,并能依据概念准确地进行判断说明。
2、理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一性质将图形放大或缩小。
3、在学习过程中发展自己的动手操作能力和数学应用知识。
1.4 图形的位似 导学案2
§1.4图形的位似(2)
一、知识点回顾
1. 位似图形:如果两个多边形不仅相似,而且对应顶点的连线,对应边,像这样的两个图形叫做位似图形,这个点叫做。
2. 位似图的性质:
1、位似图形一定,位似比等于;
2、位似图形对应点和位似中心在;
3、任意一对对应点到位似中心的距离之比等于
或;
4、对应线段或者在。
二、探究
1.(1)在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,
C
1( )或A
2
(,)B
2
(,)C
2
( )。
归纳:
例1. 如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.
三、练习
1. △ABO 的顶点坐标分别为A(-1,4),B(3,2),O(0,0),
试画出将△ABO 放大为△EFO ,使△EFO 与△ABO 的相似 比为2.5∶1的图形,写出点E 和点F 的坐标.
3. 如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)
是对应点,△ABC 的面积是2
3
,则△A ′B ′C ′的面积是________________.
6
4
2
2
4
6
5
5
6
4
2
2
4
6
8
5
5
10
15
学后感:。
北师大版九年级数学上册导学案图形的位似 (1)
A DBC E(2) 北师大版九年级数学上册导学案年级九班级学科 数学课题 4.8图形的位似(1) 第 1 课时 总 课时编制人审核人使用时间第 周星期使用者课堂流程 具 体 内 容学习 目标 1.理解位似多边形的定义及相关性质。
2.能利用图形的位似将一个图形放大或缩小.学法指导温故 知新1. 相似多边形的定义是什么?2. 相似三角形的定义是什么?(3分钟) 1.课前自己独立完成,学科长检查。
教 学知识点1:位似多边形(阅读书上P113内容)1.如果两个相似多边形每组对应点所在的直线都经过同一个点,那么这样的两个多边形叫做 。
这个点叫做 。
例1:指出下图中的图形是否是位似图形?若是,指出位似中心。
位似中心为位似中心为注意:位似多边满足两个条件:(1)是相似多边形;(2)两多边形每组对应点所在的直线都经过同一点。
2.自学书上P113-P114例11)在这道例题中,=DE AB ,DF AC = ,=EFBC. 你发现了什么?(8分钟) 2.自己阅读课本,把看不明白得用红笔画出来,然后对子之间相互交流。
(10分钟)3.自己独立完成,完成有困难的与本组成员合作完成。
(10分钟)4.学科长带领本组成员审题并分析该题的解题思路,达到共同完成得目的。
P (1)A CB 2)在这道例题中,满足条件的△DEF 可以在以点O 的另一侧吗?你如果可以,你能试着画一下吗?如图:知识点2:位似多边形的画法 一般步骤为:(1)确定位似中心; (2)确定原图形的关键点,通常是多边形的顶点;(3)确定位似比; (4)找出新多边形的对应关键点。
3.总结自己的发现:我的收获及存在的问题:(4分钟)5.老师提问:每组抽查两名同学回答。
流 程课堂检测1. 关于对位似图形的表述,下列命题正确的是_________ .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.2.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,点A和点A1是一对对应点,P是位似中心,且2 PA=3 PA1,则五边形ABCDE和五边形A1B1C1D1E1的相似比等于 ( )A、32.B、23.C、53.D、35.(10分钟)6.学生独立完成,老师巡查,学科长负责批阅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的位似导学案
姓名:
一、图形的位似定义
1、定义:
2、位似与相似的关系:
二、定义练习:
1、关于对位似图形的表述,下列命题正确的是_________ .(只填序号)
①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;
③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.
三、利用位似作图
(一)利用位似中心画出另一位似图
1、如图,平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.
2、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.
(1)点A的坐标为_________ ,点C的坐标为_________ .
(2)将△ABC向左平移7个单位,请画出平移后的△A
1B
1
C
1
.若M为△ABC内的一点,其坐标
为(a,b),则平移后点M的对应点M
1
的坐标为_________ .
(3)以原点O为位似中心将△ABC缩小,使变换后的△A
2B
2
C
2
与△ABC对应边的比为1:2.请
在网格内画出△A
2B
2
C
2
,并写出点A
2
的坐标:_________ .
3、如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A
1B
1
C
1
和△A
2
B
2
C
2
;
(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A
1B
1
C
1
;
(2)以图中的O为位似中心,将△A
1B
1
C
1
作位似变换且放大到原来的两倍,得到△A
2
B
2
C
2
.
4、如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请在网格中画出
.....△OAB的一个位似图形,使两个图形以O为位似中心,且所画图形与△OAB的位似比为2︰1。
5、已知五边形ABCDE 和点O ,请你以O 为位似中心画五边形ABCDE 的位的图形A ′B ′C ′D ′E ′,使得相似比=2
1
,
(二)利用两位似图找位似中心
1、如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A'B'C'是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)直接写出△ABC 与△A′B′C′的位似比;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O 中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.
2、图中的两个三角形是位似图形,它们的位似中心是( )A .P B .O C .M D .N
3、如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点。
若ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 。
4、如图,△ABC 与△A′B′C′是位似图形,且位似比是1︰2,若AB =2cm ,则A′B′是 cm ,并在图中画出位似中心O 。
5、如图,在平面直角坐标系中,ABC ∆的顶点坐标为)3,2(-A 、)2,3(-B 、)1,1(-C 。
(1)若将ABC ∆向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111C B A ∆; (2)画出
′
A B
C A B C
′
′。