山东省泰安市肥城市第三中学高中数学 回归分析的基本思想及其初步应用学案 新人教A版选修2-3
2019-2020年高中数学 第一章《回归分析的基本思想及其初步应用》教案4 新人教A版选修1-2
2019-2020年高中数学第一章《回归分析的基本思想及其初步应用》教案4 新人教A版选修1-2教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、复习准备:1. 提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数和温度间的关系,还可用其它函数模型来拟合吗?2. 讨论:能用二次函数模型来拟合上述两个变量间的关系吗?(令,则,此时与间的关系如下:观察与的散点图,可以发现样本点并不分布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线来拟合与之间的关系. )小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.二、讲授新课:1. 教学残差分析:①残差:样本值与回归值的差叫残差,即.②残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.③残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.2. 例3中的残差分析:计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)3. 小结:残差分析的步骤、作用三、巩固练习:练习:教材P13 第1题2019-2020年高中数学第一章《基本初等函数(Ⅱ)》教案3 新人教B版必441 529 625 729 841 1024 12257 11 21 24 66 115 325100200300400050010001500ty修4一、教材分析1、本单元的教学内容的范围1.1 任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3 三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数求值2.本单元的教学内容在模块内容体系中的地位和作用(1)三角函数在高中课程中的地位和作用三角函数是基本初等函数之一,它是中学数学的重要内容之一,它的认知基础主要是几何中圆的性质、相似形的有关知识,在数学(Ⅰ)中建立的函数概念以及指数函数、对数函数的研究方法。
高中数学 3.1 回归分析的基本思想及其初步应用学案 新人教A版选修2-3(2021年整理)
2016-2017学年高中数学3.1 回归分析的基本思想及其初步应用学案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学3.1 回归分析的基本思想及其初步应用学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学3.1 回归分析的基本思想及其初步应用学案新人教A版选修2-3的全部内容。
3.1 回归分析的基本思想及其初步应用1.通过对典型案例的探究,了解回归分析的基本思想、方法及其初步应用.2.会求回归直线方程,并用回归直线方程进行预报.(重点)3.了解最小二乘法的思想方法,理解回归方程与一般函数的区别与联系.(难点)[基础·初探]教材整理1 回归直线方程阅读教材P80~P82探究上面倒数第一行,完成下列问题.1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.2.回归直线方程方程错误!=错误!x+错误!是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n)的回归方程,其中错误!,错误!是待定参数,其最小二乘估计分别为:错误!其中错误!=错误!错误!i,错误!=错误!错误!i,(错误!,错误!)称为样本点的中心.1.如图3。
1.1四个散点图中,适合用线性回归模型拟合其中两个变量的是________(填序号).图3。
1.1【解析】由图易知,①③两个图中的样本点在一条直线附近,因此适合用线性回归模型拟合.【答案】①③2.若y与x之间的一组数据为则y对x【解析】由表中数据得x=错误!=2,错误!=错误!=4.因回归直线必过样本中心点(x,错误!),所以y与x的回归直线一定经过的点是(2,4).【答案】(2,4)教材整理2 线性回归分析阅读教材P82探究~P89,完成下列问题.1.线性回归模型(1)表达式错误!(2)基本概念:①a和b为模型的未知参数.②e是y与bx+a之间的误差.通常e为随机变量,称为随机误差.③x称为解释变量,y称为预报变量.2.衡量回归方程的预报精度的方法(1)残差平方和法①错误!称为相应于点(x i,y i)的残差.②残差平方和错误!越小,模型的拟合效果越好.(2)残差图法残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.这样的带状区域的宽度越窄,说明模型的拟合精度越高.(3)利用相关指数R2刻画回归效果其计算公式为:R2=1-错误!;其几何意义:R2越接近于1,表示回归的效果越好.3.建立回归模型的基本步骤(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).选修2-3|第三章统计案例(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程).(4)按一定规则(如最小二乘法)估计回归方程中的参数.(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,残差呈现不随机的规律性等).若存在异常,则检查数据是否有误,或模型是否合适等.判断(正确的打“√”,错误的打“×”)(1)求线性回归方程前可以不进行相关性检验.()(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.()(3)利用线性回归方程求出的值是准确值.()(4)变量x与y之间的回归直线方程表示x与y之间的真实关系形式.( )(5)随机误差也就是残差.( )【解析】(1)×因为如果两个变量之间不具有线性相关关系,就不用求线性回归方程了,求出的回归直线方程当然也不能很好的反映两变量间的关系.(2)√因为由残差图的方法步骤可知,该说法正确.(3)×因为利用线性回归方程求出的值为估计值,而不是真实值.(4)×因为变量x与y之间的线性回归直线方程仅表示x与y之间近似的线性关系,x 与y之间满足y=bx+a+e,其中e为随机误差.(5)×因为随机误差e是真实值y与bx之间的误差,而残差错误!=y-错误!是随机误差e的估计量.【答案】(1)×(2)√(3)×(4)×(5)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们"探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]求线性回归方程(2016·临沂高二检测)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x3456y 2.534 4.5(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归直线方程错误!=错误!x +错误!;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4。
高中数学_回归分析的基本思想及其初步应用教学设计学情分析教材分析课后反思
《回归分析的基本思想及其初步应用》教学设计《回归分析的基本思想及其初步应用》学情分析一、学生情况分析本班级为高二理科学生,共有48名。
因为学生发展的不平衡,学生的对数学中的回归分析的理解能力差异很大。
随着社会的进步、科技的发展,很多学生在计算时爱运用计算器进行计算,忽略了手动计算能力。
因此,学生在统计分析中计算方面上还存在较大的问题,计算速度慢、准确率不高的现状比较普遍。
当然,我相信只在要教学过程中,多让学生动手,培养学生独立运算,这一问题还是能很好解决的。
学生在必修三中已掌握建立线性回归模型的知识,学会用最小二乘法建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。
但本节中的随机误差及残差的意义对学生来说仍是一个难点,在教学中,放慢节奏,结合实例,让学生观察、思考与讨论,从而了解随机误差产生的原因及残差出现的意义。
二、学生课前准备1、复习必修三回关于回归分析的相关内容,并预习《3.1回归分析的基本思想及其初步应用》。
2、学生在课前测量自己的脚印(赤脚)长度,以备上课时使用。
三、课程分析本节课中,最小二乘法公式、残差的意义及计算方法、相关指数R2的计算公式,都是难以记忆。
大多教师在授课时,忽略了对公式本身的体悟,只是单纯让学生去死记硬背,机械学习,导致学生运用公式却不知其味,做完题仍觉枯燥无味,过段时间全然忘却,究其原因,是因为学生没有理解公式的本质。
在此方面,我结合例1的回归直线分析,让学生真正理解公式的意义及记忆技巧,从而达到学生记住公式、会用公式的目的。
在数学教学中,“授之以鱼”永远不如“授之以渔”,只有引导学生理解公式的意义,在计算过程中发现技巧,才能让学生在学习的过程中体会到学习数学的乐趣,获得成就感。
同时,由于学生的能力有一定的差距,所以,对不同的学生亦有不同的要求。
对于理解能力和分析能力相对较弱的同学,要求可以适当降低,只要求他们能够理解残差意义,对照公式,能借助科学工具计算即可;对于理解能力和分析能力较好的同学,不仅让学生掌握回归分析中的公式及运算,更重要的是让他们在解决实际问题中寻找更好的模型的方法,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神。
高中数学回归分析的基本思想及其初步应用教案3 新人教A版选修1-2
第一课时 1.1回归分析的基本思想及其初步应用(一)(共4课时)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程第三步:代值计算②提问:身高为172cm的女大学生的体重一定是60.316kg吗?不一定,但一般可以认为她的体重在60.316kg左右.③解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身次函数y bx a高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e=++,其(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e中残差变量e中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.。
学高中数学专题回归分析的基本思想及其初步应用(课时)教案新人教A版选修
回归分析的基本思想及其初步应用(第二课时)【学情分析】:学生已掌握建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。
在教案中,要结合实例让学生了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和。
初步了解可以通过求回归模型的相关指数或利用残差分析不同的回归模型的拟合精确度。
在起点低的班级中注重让学生参与实践,鼓励学生通过收集数据,经历数据处理的过程,从而进一步体会回归分析中的数理计算,初步形成运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
让学生直观的观察、思考,借助于线性回归模型研究呈非线性关系的两个变量之间的关系。
【教案目标】:(1)知识与技能:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和;了解偏差平方和分解的思想;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。
(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。
(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。
【教案重点】:1、了解判断刻画模型拟合效果的方法——相关指数和残差分析;2、通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。
【教案难点】:1、解释残差变量的含义;2、了解偏差平方和分解的思想。
【课前准备】:课件【教案过程设计】:54.362.8偏差平方和=回归平方和+残差平方和,所以关系。
师:提出问题,引导学生寻找变换的方法,在学生1.94。
泰安市肥城市第三中学高中数学回归分析的基本思想及其初步应用学案新人教A版选修
山东省泰安市肥城市第三中学高中数学 回归分析的基本思想及其初步应用学案 新人教A 版选修2-3学习内容学习指导 即时感悟 【学习目标】1、了解随机误差、残差等概念;2、掌握建立回归模型的步骤;3、通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用。
【学习重点】1、求回归直线方程,并且会利用回归直线方程进行估计;2、利用R 2表示拟合效果。
【学习难点】利用R 2表示拟合效果。
【回顾·复习】1、在回归直线方程a x b yˆˆˆ+=中,如何求a ˆ,b ˆ 解:见选修2-3课本P802、回归直线方程a x b yˆˆˆ+=一定通过哪个点? 解:()y x ,【自主·合作·探究】一般的,建立回归模型的基本步骤:(1)_______________________________________________________ (2)_______________________________________________________ (3)_______________________________________________________ (4)_______________________________________________________ (5)____________________________________________________ 例1、从某大学中随机选取8名女大学生,其身高/cm 和体重/kg 数据如下表所示: 编号 1 2 3 4 5 6 7 8 身高 165 165 157 170 175 16 5 155 170 体重 48 57 50 54 64 61 43 59问题:画出散点图,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重.解:由于问题中要求根据身高预报体重,因此选 为自变量x , 为因变量.(1)画散点图:从散点图可以看出 和 有比较好的 相关关系. (2) x = ,y = ,81i i i x y ==∑ ,821i i x ==∑所以81822188i ii ii x yx y b xx==-==-∑∑ ,a y bx =-≈于是得到回归直线的方程为(3)身高为172cm 的女大学生,由回归方程可以预报其体重为 y =解:见见选修2-3课本P81例1例2:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.温度/x C 21 23 25 27 29 产卵数/y 个711212466观察图中的散点图,能否直接用线性回归方程来建立两个变量之间的关系?050100150200250300350010203040温度产卵数解:见见选修2-3课本P86例2例3关于x 与y 有如下数据: x 2 45 6 8y 30 40 60 50 70为了对x 、y 两个变量进行统计分析,现有以下两种线性模型:6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.解:第一个模型拟合效果好【当堂达标】1、下列两个变量具有相关关系的是( C ) A. 正方体的体积与边长 B. 人的身高与视力C.人的身高与体重D.匀速直线运动中的位移与时间2、已知回归直线方程0.50.81y x =-,则25x =时,y 的估计值为 11.693、观察两个相关变量的如下数据: x -1-2-3-4-554321y-0.9 -2 -3.1 -3.9 -5.1 5 4.1 2.9 2.1 0.9则两个变量间的回归直线为( B ) A .0.51y x =-B .y x =C .20.3y x =+D .1y x =+4、某班5名学生的数学和物理成绩如下表:学生 学科A B C D E 数学成绩(x ) 88 76 75 64 62 物理成绩(y ) 7865706260(1)画散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)该班某学生数学成绩为96,试预测其物理成绩; 解:(1)(2)404.19652.0ˆ+=x y(3)当x=96时,82ˆ≈y【反思·提升】(3)试预测宣传费支出为10万元时,销售额多大? 解:(1)(2)5.175.6ˆ+=x y(3)当x=10时,5.82ˆ=y2、(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 解:(1)(2)35.07.0ˆ+=x y(3)19.65吨 x 3 4 5 6y 2.5 3 4 4.5。
高中数学 第一章回归分析的基本思想及其初步应用教案3 新人教A版选修1-2
第三课时1.1回归分析的基本思想及其初步应用(三)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程:一、复习准备:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程./y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课: 1. 探究非线性回归方程的确定: ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e-=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.2. 小结:用回归方程探究非线性回归问题的方法、步骤. 三、巩固练习:(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy =e x +.)。
回归分析的基本思想及其初步应用 说课稿 教案 教学设计
教学目标知识与技能能根据散点分布特点,建立不同的回归模型;知道有些非线性模型通过变换可以转化为线性回归模型;通过散点图及相关指数比较不同模型的拟合效果.过程与方法通过将非线性模型转化为线性回归模型,使学生体会“转化”的思想;让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观通过案例的解决,开阔学生的思路,培养学生的探索精神和转化能力,并通过合作学习,培养学生的团队合作意识.重点难点教学重点:通过探究使学生体会有些非线性模型运用等量变换、对数变换可以转化为线性回归模型;教学难点:如何启发学生“对变量作适当的变换(等量变换、对数变换)”,变非线性为线性,建立线性回归模型.教学过程引入背景材料我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,在棉花的种植过程中,病虫害的防治是棉农的一项重要任务,如果处置不当就会造成棉花的减产.其中红铃虫就是危害棉花生长的一种常见害虫,在1953年,我国18省曾发生红铃虫大灾害,受灾面积300万公顷,损失皮棉约二十万吨.如图就是红铃虫的有关图片:红铃虫喜高温高湿,适宜各虫态发育的温度为25~32 ℃,相对湿度为80%~100%,低于20 ℃和高于35 ℃卵不能孵化,相对湿度60%以下成虫不产卵.冬季月平均气温低于-4.8 ℃时,红铃虫就不能越冬而被冻死.为采取有效防治方法,有必要研究红铃虫的产卵数和温度之间的关系.现收集了红铃虫的产卵数y和温度x之间的7组观测数据列于下表:(1)试建立y与x之间的回归方程;并预测温度为28 ℃时产卵的数目.(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?学生活动:类比前面所学过的建立线性回归模型的步骤,动手实施.活动结果:(1)画散点图:通过计算器求得线性回归方程:y ^=19.87x -463.73.当x =28 ℃时,y ^=19.87×28-463.73≈93,即温度为28 ℃时,产卵数大约为93. (2)进行回归分析计算得: R 2≈0.746 4,即这个线性回归模型中温度解释了74.64%产卵数的变化.设计目的:通过背景材料,加深学生对问题的理解,并明白“为什么要学”.体会问题产生于生活,并通过问题的解决复习建立回归模型的基本步骤.探究新知提出问题:结合数据可以发现,随着自变量的增加,因变量也随之增加,气温为28 ℃时,估计产卵数应该低于66个,但是从推算的结果来看93个比66个却多了27个,是什么原因造成的呢?学生活动:分组合作讨论交流.学情预测:由于我们所建立的线性回归模型的相关指数约等于0.746 4,即解释变量仅能解释预报变量大约74.64%的变化,所占比例偏小.这样根据我们建立的模型进行预报,会存在较大的误差.我们还可以从残差图上分析一下我们所建立的回归模型的拟合效果:画出残差图根据残差图可以发现,残差点分布的带状区域较宽,并不集中,这表明我们所建立的回归模型拟合效果并不理想.之所以造成预报值偏差太大的原因是所选模型并不理想.实际上根据散点图也可以发现,样本点并没有很好地集中在一条直线附近,故变量之间不会存在很强的线性相关性.设计目的:引导学生对结果进行分析,从而发现存在的问题,激发好奇心、求知欲.同时培养学生对问题的洞悉能力,增强对结果的敏感自检能力.理解新知提出问题:如何选择合适的回归模型进行预测呢?学生活动:学生讨论,教师合理引导学生观察图象特征,联想学过的基本函数. 学情预测:方案一:建立二次函数模型y =bx 2+a. 方案二:建立指数函数模型y =c 1ac 2x.提出问题:如何求出所建立的回归模型的系数呢?我们不妨尝试解决方案一中的系数. 学生活动:分组合作,教师引导学生观察y =bx 2+a 与y =bx +a 的关系.学情预测:通过比较,发现可利用t =x 2,将y =bx 2+a(二次函数)转化成y =bt +a(一次函数).求出x ,t ,y 间的数据转换表:利用计算器计算出y 和t 的线性回归方程:y ^=0.367t -202.54, 转换回y 和x 的模型:y ^=0.367x 2-202.54.当x =28 ℃时,y ^=0.367×282-202.54≈85,即温度为28 ℃时,产卵数大约为85. 计算相关指数R 2≈0.802,这个回归模型中温度解释了80.2%产卵数的变化.提出问题:提出问题“如果选用指数模型,是否也能转换成线性模型,如何转化?” 学生活动:独立思考也可相互讨论.教师可启发学生思考“幂指数中的自变量如何转化为自变量的一次幂?”可引导学生回忆对数的运算性质以及指对数关系.学情预测:可利用取对数的方法,即在y =c 1ac 2x 两边取对数,得log a y =c 2x +log a c 1. 提出问题:在上面的运算中,由于底数a 不确定,对于x 的值无法求出相应的log a y ,这时可取a =10时的情况,以便利用计算器进行计算,试求出回归模型.学生活动:合作协作,讨论解决.根据数据,可求得变量z 关于x 的回归方程:z ^=0.118x -1.665. 转换回y 和x 的模型:y ^=100.118x-1.665.当x =28 ℃时,y ^≈44,即温度为28 ℃时,产卵数大约为44.计算相关指数R 2≈0.985,这个回归模型中温度解释了98.5%产卵数的变化. 提出问题:试选择合适的方法,比较方案一和方案二在数据拟合程度上的效果有什么不同?学生活动:独立思考也可相互讨论,教师加以适当的引导提示. 活动结果:无论从图形上直观观察,还是从数据上分析,指数函数模型都是更好的模型.设计目的:引导学生进行不同模型的比较,体会“虽然任意两个变量的观测数据都可以用线性回归模型来拟合,但不能保证这种模型对数据的拟合效果最好,为更好地刻画两个变量之间的关系,要根据观测数据的特点来选择回归模型”.提出问题:由上面的分析可以看出,回归模型不一定是线性回归模型,对于非线性回归模型,我们的处理方法是什么?学生活动:独立思考,回顾上面的解决过程.学情预测:选用非线性回归模型时,一般思路是转化成线性回归模型,往往要用“等量变换、对数变换”等方法.设计目的:让学生整理建立非线性回归模型的思路. 运用新知例1试建立y 与x 之间的回归方程.思路分析:先画出散点图,根据散点图确定回归模型的类型,然后求y 与x 之间的回归方程.解:根据上表中的数据,作出散点图由图可以看出,样本点分布在某指数函数曲线y =c 1ec 2x 的周围,于是令z =lny ,则上表变换后如下:作出散点图从图中可以看出,变换后的样本点分布在某条直线附近,因此可用线性回归模型来拟合. 由表中数据可得,z 与x 之间的线性回归方程为z ^=0.69x +1.112, 则y 与x 之间的回归方程为y ^=e 0.69x+1.112.【变练演编】例2混凝土的抗压强度X 较易测定,其抗弯强度Y 不易测定,已知X 与Y 由关系式Y =AX b 表示,工程中希望由X 估算出Y ,以便应用.现测得一批对应数据如下:试求Y 对X 的回归方程.思路分析:题目中已经给出回归模型为Y =AX b 类型,故只要通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤即可.解:对Y =AX b 两边取自然对数得:lnY =blnX +lnA ,做变换y =lnY ,x =lnX ,a =lnA ,根据公式可求得y ^=0.64x +0.017 2,则 Y ^=e 0.64lnx+0.017 2=1.02X 0.64.变式1:若X 与Y 的关系由关系式Y ^=β^X b +α^表示,试根据给出的数据求Y 对X 的回归方程.活动设计:学生分组讨论,尝试解决.活动成果:Y ^=0.086X +13.005.变式2:试选择合适的方法比较上述两种回归模型,相对于给出的数据哪一个的拟合效果更好?活动成果:计算残差平方和与相关指数,对于模型Y =AX b,残差平方和Q ^(1)=9.819,相关指数R 21=0.930 4;对于模型Y ^=β^X b+α^,残差平方和Q ^(2)=12.306,相关指数R 22=0.908,故模型Y =AX b 的拟合效果较好.设计意图:熟悉判断回归模型拟合效果的方法. 【达标检测】1.变量x ,y 的散点图如图所示,那么x ,y 之间的样本相关系数r 最接近的值为( )A .1B .-0.5C .0D .0.5 2.变量x 与y 之间的回归方程表示( ) A .x 与y 之间的函数关系 B .x 与y 之间的不确定性关系 C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 3.非线性回归分析的解题思路是__________.答案:1.C 2.D 3.通过变量置换转化为线性回归分析 课堂小结1.数学知识:建立回归模型及残差图分析的基本步骤;非线性模型向线性模型的转换方法;不同模型拟合效果的比较方法:相关指数和残差的分析.2.数学思想:数形结合的思想,化归思想及整体思想.3.数学方法:数形结合法,转化法,换元法.。
人教A版高中数学选修回归分析的基本思想及其初步应用教案新(3)
凡事豫(预)则立,不豫(预)则废。
3.1回归分析的基本思想及其初步应用(三)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程:一、复习准备:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课: 1. 探究非线性回归方程的确定: ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的线的附近,因此可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 三、巩固练习:(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy =e x +.)。
高中数学3.1《回归分析基本思想及其初步应用(二)》教案新人教版A选修23
3.1 回归剖析的基本思想及其初步应用(二)一、基本说明1所属模块:高中数学选修 2-32年级:高二年级3 教材第一版单位:人民教育第一版社A4所属的章节:第三章第一节5 学时数:40分钟多媒体教室二、教课方案教课目标:经过典型事例的研究,进一步认识回归剖析的基本思想、方法及初步应用.教课要点:经过研究使学生领会有些非线性模型经过变换能够转变为线性回归模型,认识在解决实质问题的过程中找寻更好的模型的方法 .教课难点:认识常用函数的图象特色,选择不一样的模型建模,并经过比较有关指数对不一样的模型进行比较.教课过程:一、复预引入问题 1:成立回归模型的一般基本步骤是哪五步?问题 2:残差及有关指数R2如何对回归方程拟合程度进行剖析?问题 3:依据例 2 所给的样本数据作散点图,并察看散点图,判断样本数据组( x i , y i ) 拥有线性关系吗?二、讲解新课:例 2、一只红铃虫的产孵数y 和温度 x 有关,现采集了7 组数据列于表3-3 中,温度 x/℃21232527293235产卵数 y/个711212466115325(1)试成立产卵数y 与温度 x 之间的回归方程;并展望温度为28o C 时产卵数量。
(2)你所成立的模型中温度在多大程度上解说了产卵数的变化?设计企图:由散点图,联合线性回归模型的回归剖析的基本步新知识生长点。
(学生描绘步骤,教师演示剖析数据,议论拟合函数模型。
)骤,诱出350300250数200卵产 15010050010203040温度研究 1:剖析散点图,预计样本数据组(x i , y i ) 的回归方程的拟合模型。
1、议论:察看右图中的散点图,发现样本点并无散布在某个带状地区内,即两个变量不呈线性有关关系,所以不可以直接用线性回归模型y=ax+b 来成立两个变量之间的关系 .2、研究非线性回归方程确实定:① 假如散点图中的点散布在一个直线状带形地区,能够选线性回归模型来建模;假如散点图中的点散布在一个曲线状带形地区,就需选择非线性回归模型来建模.y=bx 2+a, 也象某一条指数函数曲线y=C1e C2x ② 依据已有的函数知识,能够发现样本点散布象某一条抛物线(此中 c1 ,c2是待定的参数),故可考虑用以上两个模型来拟合两个变量.③抛物型:将 y=bx 2+a 进行平方变换:令 t=x 2,产卵数 y 和温度 x 之间二次函数模型y=bx2+a 就转变为产卵数 y 和温度的平方 t 之间线性回归模型 y=bt+a温度21232527293235温度的平方 t44152962572984110241225产卵数 y / 个711212466115325产卵数 y/ 个350300250200150100t 500150300450600750900 1050 1200 1350察看互换数据后的散点图能够发现抛物线模型的拟合成效不是很好,由于散点图不可一条直线。
回归分析的基本思想及其初步应用 说课稿 教案 教学设计
回归分析的基本思想及其初步应用整体设计教材分析1.教材的地位和作用高中新课程中增加了有关统计学初步的内容,先后出现在必修3和选修12(文科)、选修23(理科)中.《数学3(必修)》中的“统计”一章,给出了运用统计的方法解决问题的思路.“线性回归分析”是其介绍的一种分析、整理数据的方法.在这一部分中,学习了如何画散点图、利用最小二乘法的思想、利用计算器求回归直线方程、利用回归直线方程进行预报等内容.然而在大量的实际问题中,两个变量不一定都呈线性相关关系,它们可能呈指数关系或对数关系等非线性关系,本节就是在学习了如何建立线性回归模型的基础上,探索如何建立非线性关系的回归模型.通过本节的学习,使学生了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,学会以科学的态度评价两个变量的相互关系,培养学生运用所学内容解决实际问题的能力.2.课时划分《回归分析的基本思想及其初步应用》的教学分四个课时完成.第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果;第二课时:从相关系数、相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用.第一课时教学目标知识与技能通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.过程与方法让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观从实际问题中发现已有知识的不足,激发好奇心、求知欲;通过寻求有效的数据处理方法,开阔学生的思路,培养学生的探索精神和转化能力;通过案例的分析,使学生了解回归分析在生活实际中的应用,增强数学“取之生活,用于生活”的意识,提高学习兴趣.重点难点教学重点:理解回归分析的基本思想,掌握求回归直线方程的步骤以及对随机误差e 的认识.教学难点:掌握利用回归分析的基本思想处理实际问题的方法,理解随机误差的来源和对预报变量的影响.教学过程引入新课“名师出高徒”这句谚语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?活动设计:学生独立思考回答问题.学情预测:学生可能会说“有名气的老师不一定能教出厉害的学生”.教师提问:为什么?学情预测:两者之间有一定的关系,但不是必然关系,即名师也不一定出高徒,二者之间是相关关系.设计意图:复习两个变量之间的关系,为线性分析做好铺垫.提出问题:我们知道函数关系是一种确定性关系,而相关关系是一种非确定性关系.上面所提的“名师”与“高徒”之间的关系就是相关关系.那么,在一般情况下,人的身高与体重之间是什么关系?试设计一个方案,来分析某大学女大学生的身高与体重之间的关系,并以此为依据来预报身高172 cm 的女大学生的体重.学生活动:学生独立思考,小组合作交流讨论.活动结果:可以采用统计的方法解决这一问题,先采用随机抽样的方法,从在校女大学生中抽取样本,记录其身高和体重,然后通过所得数据建立线性回归模型,并根据所得模型来预报身高为172 cm 女生的体重.其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.设计目的:合理设计问题,使学生进一步掌握用统计方法解决问题的基本步骤:提出问题、收集数据、分析整理数据、进行预测或决策.探究新知的女大学生的体重.学生活动:分组合作探究,查阅课本中的计算公式. 活动结果:1.画散点图选取身高为自变量x ,体重为因变量y ,画出散点图形象展示两个变量之间的关系,并判断二者是否具有线性关系.由散点图可以发现,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归直线近似刻画它们之间的关系.2.建立回归方程由计算器可得a ^=-85.712,b ^=0.849. 于是得到回归方程为y ^=0.849x -85.712. 3.预报和决策当x =172时,y ^=0.849×172-85.712=60.316(kg). 即一名身高为172 cm 的女大学生的体重预报值为60.316 kg.设计目的:进一步熟悉线性回归分析的具体步骤.提高学生的数据处理能力,并让学生在应用中进一步掌握公式的应用.理解新知提出问题:散点图可以直观地判断两个变量是否具有线性相关性,那么还有什么方法可以描述线性相关性的强弱?学生活动:独立思考或相互讨论.活动结果:还可以通过必修3中的相关系数r来衡量两个变量之间的线性相关关系的强弱.提出问题:如何根据相关系数r描述线性相关性的强弱?相关系数的计算公式是什么?学生活动:独立思考或相互讨论,查阅课本.活动结果:其具体计算公式是r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑j=1n(y j-y)2当r>0时,表示两个变量正相关;当r<0时,表示两个变量负相关.r的绝对值越接近1,表明两个变量的线性相关性越强,r的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,当|r|>0.75时,认为两个变量有很强的线性相关关系.提出问题:在本例中,身高和体重的线性相关系数是多少?我们建立的线性回归方程是否有实际意义?学生活动:独立计算,求解相关系数.活动结果:利用计算器可求得r=0.798,这表明体重与身高有很强的线性相关关系,从而表明我们建立的回归模型是有意义的.设计目的:复习判断变量线性相关的方法,进一步熟悉线性相关系数的计算公式.提出问题:身高为172 cm的女大学生的体重一定是60.316 kg吗?学生活动:独立思考也可相互讨论.学情预测:不一定,但一般可以认为她的体重在60.316 kg左右.提出问题:为什么根据得到的一次函数求出的结论不一定是实际值?产生误差的原因是什么?学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次函数y=bx+a来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).在数据表中身高为165 cm的3名女大学生的体重分别为48 kg、57 kg 和61 kg,如果能用一次函数来描述体重与身高的关系,那么身高为165 cm的3名女大学生的体重应相同.这就说明体重不仅受身高的影响还受其他因素的影响,如生理因素、饮食锻炼、测量工具等其他因素.为了更准确地刻画身高和体重的关系,可用下列线性回归模型来表示:y=bx+a+e.我们把自变量x称作解释变量,因变量y称作预报变量,e称为随机误差.提出问题:函数模型y=bx+a与线性回归模型y=bx+a+e有什么关系?学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:线性回归模型:y=bx+a+e当理想化时,即所有人的遗传因素都一样、所有人的生活方式都一样、所有测量都没有误差等等,此时e=0,线性回归模型就变成函数模型了.因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.设计目的:突破本节课的难点,充分认识随机误差e 的来源和对预报变量的影响. 运用新知例1)有如下统计数据:若由此资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用为多少?分析:正确理解计算b ^,a ^的公式和准确的计算,是求线性回归方程的关键. 解:(1)由上表中的数据列成下表故x =4,y=5,∑i =15x 2i =90,∑i =15x i y i =112.3,于是b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=112.3-5×4×590-5×42=1.23,a ^=y -b ^x =5-1.23×4=0.08,∴回归直线方程为y ^=b ^x +a ^=1.23x+0.08.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元),估计当使用10年时的维修费用为12.38万元.点评:由于本节课题目计算量大,公式较多,所以在求解时易出现公式乱用,数据出错等问题,对这一点,同学们在解题时尤为需要注意.【变练演编】例2其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有线性相关关系;(2)如果y 与x 具有线性相关关系,求线性回归方程.思路分析:先根据数据计算相关系数,然后根据相关系数的大小,判断两个变量是否线性相关.解:(1)由已知表格中的数据,利用计算器进行计算得x =71,y=72.3,∑i =110x i y i =51 467,∑i =110x 2i =50 520,∑i =110y 2i =52 541,r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑j =1n(y j -y )2≈0.785 3>0.75,故两个变量有很强的线性相关关系.(2)y 与x 具有线性相关关系,可设线性回归方程为y ^=a ^+b ^x ,则b ^=∑i =110(x i -x )(y i -y )∑i =110(x i -x )2≈1.22,a ^=y -b ^x =72.3-1.22×71=-14.32, 所以y 关于x 的线性回归方程为y ^=1.22x -14.32.点评:本题通过计算相关系数,将两个变量相关性的判断转化为数据大小的比较.变式:在确定上题中y 与x 的线性相关关系中,是否还有别的方法?若有,请加以说明. 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:还可以通过画散点图的方法来判断两个变量是否具有相关性.如选取x 的值作为自变量,y 的值作为因变量,画出散点图.由图可知两个变量有线性相关性,求其回归直线方程是有实际意义的. 设计意图:进一步熟悉判断变量线性相关的各种方法. 【达标检测】1.对于回归分析,下列说法错误的是( )A .在回归分析中,两个变量的关系若是非确定关系,那么其中一个变量不能由另一个变量唯一确定B .回归系数可以是正的,也可以是负的C .回归分析中,如果r 2=1或r =±1,说明变量x 与变量y 之间完全线性相关D .相关样本系数r ∈(-1,1)2.下列各组变量之间具有线性相关关系的是( )A .出租车费与行使的里程B .学习成绩与学生身高C .身高与体重D .铁的体积与质量3.若劳动生产率x(千元)与月工资y(元)之间的回归直线方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案:1.D 2.C 3.B 课堂小结(给学生1~2分钟的时间默写本节的主要基础知识、方法、例题、题目类型、解题规律等;然后用精炼的、准确的语言概括本节的知识脉络、思想方法、解题规律)1.知识收获:进一步学习回归分析的基本思想以及求回归直线方程的步骤,正确认识随机误差e 的产生原因、了解线性回归模型与函数的不同之处.2.方法收获:线性回归方程的求法、用样本估计总体的统计思想.3.思维收获:体会模型诊断的思想,提高利用回归方法解决实际问题的能力,培养探索和创新的精神.设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学内容
学习指导
即时感悟
【学习目标】
1、了解随机误差、残差等概念;
2、掌握建立回归模型的步骤;
3、通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用。
【学习重点】
1、求回归直线方程,并且会利用回归直线方程进行估计;
解:见见选修2-3课本P81例1
例2:一只红铃虫的产卵数 和温度 有关,现收集了7组观测数据列于下表中,试建立 与 之间的回归方程.
温度
21
23
25
27
29
32
35
产卵数 个
7
11
21
24
66
1 15
325
观察图中的散点图,能否直接用线性回归方程来建立两个变量之间的关系?
解:见见选修2-3课本P86例2
2、已知回归直 线方程 ,则 时,y的估计值为11.69
3、观察两个相关变量的如下数据:
x
-1
-2
-3
-4
-5
5
4
3
2
1
y
-0.9
-2
-3.1
-3.9
-5.1
5
4.1
2.9
2.1
0.9
则两个变量间的回归直线为( B)
A. B. C. D.
4、某班5名学生的数学和物理成绩如下表:
学生
学科
A
B
C
D
E
数学成绩(x)
88
76
75
64
62
物理成绩(y)
7 8
65
70
62
60
(1)画散点图;
(2)求物理成 绩y对数学成绩x的回归直线方程;
( 3)该班某学生数学成绩为96,试预 测其物理成绩;
解:(1)
(2)
(3)当x=96时,
【反思·提升】
(3)试预测宣传费支出为10万元时,销售额多大?
解:(1)
(2)
(3)当x=10时,
例3关于x与y有如下数据:
x
2
4
5
6
8
y
30
40
60
50
70
为了对x、y两个变量进行统计分析,现有以下两种线性模型: , ,试比较哪一个模型拟合的效果更好.
解:第一个模型拟合效果好
【当堂达标】
1、下列两个变量具有相关关系的是( C)
A.正方体的体积与边长B.人的身高与视力
C.人的身高与体重D.匀速直线运动中的位移与时间
2、利用R2表示拟合效果。
【学习难点】利用R2表示拟合 效果。
【回顾·复习】
1、在回归直 线方程 中,如何求 ,
解:见选修2-3课本P80
2、回归直线方程 一定通过哪个点?
解:
【自主·合作·探究】
一般的,建立回归模型的基本步骤:
(1)_________________________________ ______________________
59
问题:画出散点图 ,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.
解:由于问题中要求根据身高预报体重,因此选为自变量x,
为因变量.
(1)画散点图:
从散点图可以看出和有比较好的相关关系.
(2) =, =, ,
所以 ,
于是得到回归直线的方程为
(3)身高为172cm的 女大学生,由回归方程可以预报其体重为
2、(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据
3
4
5
6
3
4
4.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出 关于 的 线性回归方程 ;
(3)已知该厂技改前100吨甲产品的生产 能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(5)_______________________ _____________ ________________
例1、从某大学中随 机选取8 名女大学生,其身高/cm和体重/kg数据如下表所示:
编号
1
2
3
4
5
6
7
8
身高
165
165
157
170
175
16 5
155
170
体重
48
57
50
54
64
61
43
(2)_______________________________________________________
(3)_______________________________________________________
(4)________ ______________ ____________________________ _____
(参考数值 )
解:(1)
(2)
(3)19.65吨