导数应用(讲义凸凹性)
导数及其应用知识点总结
导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。
在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。
一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。
二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。
2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。
3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。
4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。
5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。
三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。
2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。
3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。
导数的应用单调与凹凸
例1
lnx 的凸凹性. 判断曲线 y = ln 的凸凹性
1 1 解 y′ = , y′′ = − 2 , y′′ < 0, x x 所以曲线 lnx 是凸的. 所以曲线 y =ln 在是凸的 ln
例2. 判断曲线 的凹凸性. 的凹凸性
y
y′ = 4 x 3 , 解:
O
故曲线 在 上是凹的. 上是凹的
例1 讨论函数 y = e x − x − 1的单调性 . 的单调性 解 Q y′ = e x − 1. 又 Q D : ( −∞ ,+∞ ).
在( −∞ ,0)内,
y ′ < 0,
函数单调减少; ∴函数单调减少;
在(0,+∞ )内, y′ > 0,
∴函数单调增加 .
注意:1.函数的单调性是一个区间上的性质, 注意:1.函数的单调性是一个区间上的性质,要用 函数的单调性是一个区间上的性质 导数在这一区间上的符号来判定, 导数在这一区间上的符号来判定,而不能用一点 处的导数符号来判别一个区间上的单调性. 处的导数符号来判别一个区间上的单调性.
y
y = f ( x)
A
B
y
A y = f ( x) Boaf ′( x ) ≥ 0
b
x
o a
f ′( x ) ≤ 0
b x
定理1 内可导, 定理 设函数 f (x)∈C[a, b], 在(a, b)内可导 若在 ∈ 内可导 若在(a, b)内 f ′(x) > 0, 则函数 y= f (x)在[a, b]上单调增加 对应 上单调增加,对应 内 在 上单调增加 的曲线在此区间上升. 的曲线在此区间上升 若在(a, 内 则函数y= 若在 b)内 f ′(x) < 0,则函数 f (x)在[a, b]上单调 则函数 在 上单调 减少,对应的曲线在此区间下降 减少 对应的曲线在此区间下降. 对应的曲线在此区间下降
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(解析版)
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)技法01端点效应(必要性探索)解题技巧知识迁移端点效应的类型1.如果函数f(x)在区间[a,b]上,f(x)≥0恒成立,则f(a)≥0或f(b)≥0.2.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),则f (a)≥0 或f (b)≤0 .3.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0,f (a)=0(或f(b)=0,f (b)≤0 则f (a)≥0 或f (b)≤0 .1(2023·全国·统考高考真题)已知函数f(x)=ax-sin xcos3x,x∈0,π2(1)当a=8时,讨论f(x)的单调性;(2)若f(x)<sin2x恒成立,求a的取值范围.【法一】端点效应一令g(x)=f(x)-sin2x,x∈0,π2,得g(0)=0,且g(x)<0在x∈0,π2上恒成立画出草图根据端点效应, 需要满足g (0)≤0,而g (x)=a-1+2sin2xcos4x-2cos2x则g (0)=a-3, 令g (0)≤0, 得a≤3当a≤3时, 由于g(0)=0, 只需证g (x)<0即可而g (x)含有参数a, 故可对g (x)进行放缩即g x =a-1+2sin2xcos4x-2cos2x≤3-1+2sin2xcos4x-2cos2x=5-3-2cos2xcos4x-4cos2x令t=cos2x, 其中0<t<1设h(t)=5-3-2tt2-4t则h (t)=6t3-2t2-4=-4t3-2t+6t3令p(t)=-4t3-2t+6则p (t)=-12t2-2<0, 故p(t)在(0,1)上递减, 得p(t)>p(1)=0则h (t)>0, 得h(t)在(0,1)上单调递增, 则h(t)<h(1)=0即g (x)<0, 满足g(x)<g(0)=0成立当a>3时,由于g 0 =a-3>0,故存在x0, 使得在0,x0上g (x)>0,所以g(x)在0,x0上单调递增, 则g(x)>g(0)=0, 不成立特上所述:a≤3.【法二】端点效应二(2)f(x)<sin2x⇒ax-sin xcos3x <sin2x⇒g(x)=ax-sin2x-sin xcos3x<0由于g(0)=0, 且g (x)=a-2cos2x-cos2x+3sin2xcos4x,注意到当g (0)>0, 即a>3时, ∃x0∈0,π2使g (x)>0在x∈0,x0成立, 故此时g(x)单调递减∴g(x)>g(0)=0, 不成立.另一方面, 当a≤3时, g(x)≤3x-sin2x-sin xcos3x≡h(x), 下证它小于等于0 .令h x =3-2cos2x-3-2cos2x cos2x=3cos4x+2cos2x-3-2cos2x cos4xcos4x =3cos4x-1+2cos2x1-cos2x cos2xcos4x=-cos2x-124cos2x+3cos4x<0.∴g(x)单调递减, ∴g(x)≤g(0)=0. 特上所述:a≤3.【法三】设g(x)=f(x)-sin2xg (x)=f (x)-2cos2x=g(t)-22cos2x-1=at2+2t-3t2-2(2t-1)=a+2-4t+2t-3t2设φ(t)=a+2-4t+2t -3 t2φ (t)=-4-2t2+6t3=-4t3-2t+6t3=-2(t-1)(2t2+2t+3)t3>0所以φ(t)<φ(1)=a-3.1°若a∈(-∞,3],g (x)=φ(t)<a-3≤0即g(x)在0,π2上单调递减,所以g(x)<g(0)=0.所以当a∈(-∞,3],f(x)<sin2x,符合题意.2°若a∈(3,+∞)当t→0,2t-3t2=-31t-132+13→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以∃t0∈(0,1),使得φt0 =0,即∃x0∈0,π2,使得g x0 =0.当t∈t0,1,φ(t)>0,即当x∈0,x0,g (x)>0,g(x)单调递增.所以当x∈0,x0,g(x)>g(0)=0,不合题意.综上,a的取值范围为(-∞,3].1(2023·全国·统考高考真题)已知函数f x =ax-sin xcos2x,x∈0,π2.(1)当a=1时,讨论f x 的单调性;(2)若f x +sin x<0,求a的取值范围.【答案】(1)f x 在0,π2上单调递减(2)a≤0【分析】(1)代入a=1后,再对f x 求导,同时利用三角函数的平方关系化简f x ,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数g x =f x +sin x,从而得到g x <0,注意到g0 =0,从而得到g 0 ≤0,进而得到a≤0,再分类讨论a=0与a<0两种情况即可得解;法二:先化简并判断得sin x-sin xcos2x<0恒成立,再分类讨论a=0,a<0与a>0三种情况,利用零点存在定理与隐零点的知识判断得a>0时不满足题意,从而得解.【详解】(1)因为a=1,所以f x =x-sin xcos2x,x∈0,π2,则f x =1-cos x cos2x-2cos x-sin xsin xcos4x=1-cos2x+2sin2xcos3x=cos3x-cos2x-21-cos2xcos3x=cos3x+cos2x-2cos3x,令t=cos x,由于x∈0,π2,所以t=cos x∈0,1 ,所以cos 3x +cos 2x -2=t 3+t 2-2=t 3-t 2+2t 2-2=t 2t -1 +2t +1 t -1 =t 2+2t +2 t -1 ,因为t 2+2t +2=t +1 2+1>0,t -1<0,cos 3x =t 3>0,所以f x =cos 3x +cos 2x -2cos 3x <0在0,π2 上恒成立,所以f x 在0,π2 上单调递减.(2)法一:构建g x =f x +sin x =ax -sin x cos 2x +sin x 0<x <π2 ,则g x =a -1+sin 2xcos 3x +cos x 0<x <π2 ,若g x =f x +sin x <0,且g 0 =f 0 +sin0=0,则g 0 =a -1+1=a ≤0,解得a ≤0,当a =0时,因为sin x -sin xcos 2x =sin x 1-1cos 2x ,又x ∈0,π2 ,所以0<sin x <1,0<cos x <1,则1cos 2x >1,所以f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sin xcos 2x <0,满足题意;综上所述:若f x +sin x <0,等价于a ≤0,所以a 的取值范围为-∞,0 .法二:因为sin x -sin x cos 2x =sin x cos 2x -sin x cos 2x =sin x cos 2x -1 cos 2x =-sin 3xcos 2x ,因为x ∈0,π2 ,所以0<sin x <1,0<cos x <1,故sin x -sin xcos 2x <0在0,π2 上恒成立,所以当a =0时,f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sinxcos 2x <0,满足题意;当a >0时,因为f x +sin x =ax -sin x cos 2x +sin x =ax -sin 3xcos 2x ,令g x =ax-sin3xcos2x0<x<π2,则g x =a-3sin2x cos2x+2sin4xcos3x,注意到g 0 =a-3sin20cos20+2sin40cos30=a>0,若∀0<x<π2,gx >0,则g x 在0,π2上单调递增,注意到g0 =0,所以g x >g0 =0,即f x +sin x>0,不满足题意;若∃0<x0<π2,gx0<0,则g 0 g x0<0,所以在0,π2上最靠近x=0处必存在零点x1∈0,π2,使得g x1 =0,此时g x 在0,x1上有g x >0,所以g x 在0,x1上单调递增,则在0,x1上有g x >g0 =0,即f x +sin x>0,不满足题意;综上:a≤0.【点睛】关键点睛:本题方法二第2小问讨论a>0这种情况的关键是,注意到g 0 >0,从而分类讨论g x 在0,π2上的正负情况,得到总存在靠近x=0处的一个区间,使得g x >0,从而推得存在g x >g0 =0,由此得解.2(2020·全国·统考高考真题)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.【答案】(1)当x∈-∞,0时,f'x <0,f x 单调递减,当x∈0,+∞时,f'x >0,f x 单调递增.(2)7-e24,+∞【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当a=1时,f x =e x+x2-x,f x =e x+2x-1,由于f x =e x+2>0,故f'x 单调递增,注意到f 0 =0,故:当x∈-∞,0时,f x <0,f x 单调递减,当x∈0,+∞时,f x >0,f x 单调递增.(2)[方法一]【最优解】:分离参数由f x ≥12x3+1得,e x+ax2-x≥12x3+1,其中x≥0,①.当x=0时,不等式为:1≥1,显然成立,符合题意;②.当x>0时,分离参数a得,a≥-e x-12x3-x-1x2,记g x =-e x-12x3-x-1x2,g x =-x-2e x-12x2-x-1x3,令h x =e x-12x2-x-1x≥0,则h x =e x-x-1,h x =e x-1≥0,故h'x 单调递增,h x ≥h 0 =0,故函数h x 单调递增,h x ≥h0 =0,由h x ≥0可得:e x-12x2-x-1≥0恒成立,故当x∈0,2时,g x >0,g x 单调递增;当x∈2,+∞时,g x <0,g x 单调递减;因此,g xmax=g2 =7-e2 4,综上可得,实数a的取值范围是7-e24,+∞.[方法二]:特值探路当x≥0时,f(x)≥12x3+1恒成立⇒f(2)≥5⇒a≥7-e24.只需证当a≥7-e24时,f(x)≥12x3+1恒成立.当a≥7-e24时,f(x)=ex+ax2-x≥e x+7-e24⋅x2-x.只需证明e x+7-e24x2-x≥12x3+1(x≥0)⑤式成立.⑤式⇔e2-7x2+4x+2x3+4e x≤4,令h(x)=e2-7x2+4x+2x3+4e x(x≥0),则h (x)=13-e2x2+2e2-9x-2x3e x=-x2x2-13-e2x-2e2-9e x=-x(x-2)2x+e2-9e x,所以当x∈0,9-e2 2时,h(x)<0,h(x)单调递减;当x∈9-e22,2,h (x)>0,h(x)单调递增;当x∈(2,+∞),h (x)<0,h(x)单调递减.从而[h(x)]max=max{h(0),h(2)}=4,即h(x)≤4,⑤式成立.所以当a≥7-e24时,f(x)≥12x3+1恒成立.综上a≥7-e2 4.[方法三]:指数集中当x≥0时,f(x)≥12x3+1恒成立⇒e x≥12x3+1-ax2+x⇒12x3-ax2+x+1e-x≤1,记g x =12x3-ax2+x+1e-x(x≥0),g x =-12x3-ax2+x+1-32x2+2ax-1e-x=-12x x2-2a+3x+4a+2e-x=-1 2x x-2a-1x-2e-x,①.当2a+1≤0即a≤-12时,gx =0⇒x=2,则当x∈(0,2)时,g x >0,g x 单调递增,又g0 =1,所以当x∈(0,2)时,g x >1,不合题意;②.若0<2a+1<2即-12<a<12时,则当x∈(0,2a+1)∪(2,+∞)时,gx <0,g x 单调递减,当x∈(2a+1,2)时,g x >0,g x 单调递增,又g0 =1,所以若满足g x ≤1,只需g2 ≤1,即g2 =(7-4a)e-2≤1⇒a≥7-e24,所以当⇒7-e24≤a<12时,g x ≤1成立;③当2a+1≥2即a≥12时,g x =12x3-ax2+x+1e-x≤12x3+x+1e-x,又由②可知7-e24≤a<12时,g x ≤1成立,所以a=0时,g(x)=12x3+x+1e-x≤1恒成立,所以a≥12时,满足题意.综上,a≥7-e2 4.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!3(2022·全国·统考高考真题)已知函数f(x)=xe ax-e x.(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N ∗,证明:112+1+122+2+⋯+1n 2+n>ln (n +1).【答案】(1)f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)a ≤12(3)见解析【分析】(1)求出f x ,讨论其符号后可得f x 的单调性.(2)设h x =xe ax -e x +1,求出h x ,先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论h x 符号,最后就a ≤0结合放缩法讨论h x 的范围后可得参数的取值范围.(3)由(2)可得2ln t <t -1t对任意的t >1恒成立,从而可得ln n +1 -ln n <1n 2+n 对任意的n ∈N *恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当a =1时,f x =x -1 e x ,则f x =xe x ,当x <0时,f x <0,当x >0时,f x >0,故f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)设h x =xe ax -e x +1,则h 0 =0,又h x =1+ax e ax -e x ,设g x =1+ax e ax -e x ,则g x =2a +a 2x e ax -e x ,若a >12,则g 0 =2a -1>0,因为g x 为连续不间断函数,故存在x 0∈0,+∞ ,使得∀x ∈0,x 0 ,总有g x >0,故g x 在0,x 0 为增函数,故g x >g 0 =0,故h x 在0,x 0 为增函数,故h x >h 0 =0,与题设矛盾.若0<a ≤12,则h x =1+ax e ax -e x =e ax +ln 1+ax -e x ,下证:对任意x >0,总有ln 1+x <x 成立,证明:设S x =ln 1+x -x ,故S x =11+x -1=-x 1+x<0,故S x 在0,+∞ 上为减函数,故S x <S 0 =0即ln 1+x <x 成立.由上述不等式有e ax +ln 1+ax -e x <e ax +ax -e x =e 2ax -e x ≤0,故h x ≤0总成立,即h x 在0,+∞ 上为减函数,所以h x <h0 =0.当a≤0时,有h x =e ax-e x+axe ax<1-1+0=0, 所以h x 在0,+∞上为减函数,所以h x <h0 =0.综上,a≤1 2 .(3)取a=12,则∀x>0,总有xe 12x-e x+1<0成立,令t=e 12x,则t>1,t2=e x,x=2ln t,故2t ln t<t2-1即2ln t<t-1t对任意的t>1恒成立.所以对任意的n∈N*,有2ln n+1n<n+1n-nn+1,整理得到:ln n+1-ln n<1n2+n,故112+1+122+2+⋯+1n2+n>ln2-ln1+ln3-ln2+⋯+ln n+1-ln n=ln n+1,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.技法02函数凹凸性解题技巧知识迁移凹函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2>f x 1+x22 .凸函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2<f x 1+x22.1在△ABC 中, 求sin A +sin B +sin C 的最大值.因为函数y =sin x 在区间(0,π)上是上凸函数, 则13(sin A +sin B +sin C )≤sin A +B +C 3 =sin π3=32即sin A +sin B +sin C ≤332, 当且仅当sin A =sin B =sin C 时, 即A =B =C =π3时,取等号.上述例题是三角形中一个重要的不等式:在△ABC 中,sin A +sin B +sin C ≤332.2(2021·黑龙江模拟)丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数f (x )在(a ,b )上的导函数为f (x ),f (x )在(a ,b )上的导函数为f (x ),若在(a ,b )上f (x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,则实数m 的取值范围是()A.e -1,+∞B.e -1,+∞C.e 4-14,+∞D.e 4-14,+∞因为f (x )=e x -x ln x -m 2x 2,所以f (x )=e x -1+ln x -mx =e x -mx -ln x -1,f (x )=e x -m -1x,因为f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,所以f (x )=e x -m -1x<0对于x ∈(1,4)恒成立,可得m >e x -1x对于x ∈(1,4)恒成立,令g x =e x -1x,则m >g x max ,因为g x =e x +1x 2>0,所以g x=e x-1x 在(1,4)单调递增,所以g x max <g 4 =e 4-14,所以m ≥e 4-14,【答案】C1(全国·高考真题)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【答案】(Ⅰ)(0,+∞);(Ⅱ)见解析【详解】试题分析:(Ⅰ)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(Ⅱ)借助(Ⅰ)的结论来证明,由单调性可知x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.设g (x )=-xe 2-x -(x -2)e x ,则g '(x )=(x -1)(e 2-x -e x ).则当x >1时,g '(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.试题解析:(Ⅰ)f '(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(Ⅰ)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(Ⅱ)设a >0,则当x ∈(-∞,1)时,f '(x )<0;当x ∈(1,+∞)时,f '(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a 2,则f(b)>a2(b-2)+a(b-1)2=a b2-32b>0,故f(x)存在两个零点.(Ⅲ)设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(Ⅱ)不妨设x1<x2,由(Ⅰ)知x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-xe2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.【考点】导数及其应用【名师点睛】对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简.解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.2(2021·全国·统考高考真题)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【答案】(1)f x 的递增区间为0,1,递减区间为1,+∞;(2)证明见解析.【分析】(1)首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令1a =m,1b=n,命题转换为证明:2<m+n<e,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)f x 的定义域为0,+∞.由f x =x1-ln x得,f x =-ln x,当x=1时,f′x =0;当x∈0,1时f′x >0;当x∈1,+∞时,f'x <0.故f x 在区间0,1内为增函数,在区间1,+∞内为减函数,(2)[方法一]:等价转化由b ln a-a ln b=a-b得1a1-ln1a=1b1-ln1b,即f1a =f1b .由a≠b,得1a≠1b.由(1)不妨设1a∈(0,1),1b∈(1,+∞),则f1a>0,从而f1b >0,得1b∈(1,e),①令g x =f2-x-f x ,则g (x)=ln(2-x)+ln x=ln(2x-x2)=ln[1-(x-1)2],当x∈0,1时,g′x <0,g x 在区间0,1内为减函数,g x >g1 =0,从而f2-x>f x ,所以f2-1 a>f1a =f1b ,由(1)得2-1a<1b即2<1a+1b.①令h x =x+f x ,则h'x =1+f x =1-ln x,当x∈1,e时,h′x >0,h x 在区间1,e内为增函数,h x <h e =e,从而x+f x <e,所以1b+f1b<e.又由1a∈(0,1),可得1a<1a1-ln1a=f1a =f1b ,所以1a+1b<f1b+1b=e.②由①②得2<1a+1b<e.[方法二]【最优解】:b ln a-a ln b=a-b变形为ln aa -ln bb=1b-1a,所以ln a+1a=ln b+1b.令1a=m,1b=n.则上式变为m1-ln m=n1-ln n,于是命题转换为证明:2<m+n<e.令f x =x1-ln x,则有f m=f n,不妨设m<n.由(1)知0<m<1,1<n<e,先证m+n>2.要证:m +n >2⇔n >2-m ⇔f n <f 2-m ⇔f (m )<f 2-m ⇔f m -f 2-m <0.令g x =f x -f 2-x ,x ∈0,1 ,则g ′x =-ln x -ln 2-x =-ln x 2-x ≥-ln1=0,∴g x 在区间0,1 内单调递增,所以g x <g 1 =0,即m +n >2.再证m +n <e .因为m 1-ln m =n ⋅1-ln n >m ,所以需证n 1-ln n +n <e ⇒m +n <e .令h x =x 1-ln x +x ,x ∈1,e ,所以h 'x =1-ln x >0,故h x 在区间1,e 内单调递增.所以h x <h e =e .故h n <e ,即m +n <e .综合可知2<1a +1b<e .[方法三]:比值代换证明1a +1b>2同证法2.以下证明x 1+x 2<e .不妨设x 2=tx 1,则t =x 2x 1>1,由x 1(1-ln x 1)=x 2(1-ln x 2)得x 1(1-ln x 1)=tx 1[1-ln (tx 1)],ln x 1=1-t ln tt -1,要证x 1+x 2<e ,只需证1+t x 1<e ,两边取对数得ln (1+t )+ln x 1<1,即ln (1+t )+1-t ln tt -1<1,即证ln (1+t )t <ln tt -1.记g (s )=ln (1+s )s ,s ∈(0,+∞),则g (s )=s1+s-ln (1+s )s2.记h (s )=s 1+s -ln (1+s ),则h ′(s )=1(1+s )2-11+s <0,所以,h s 在区间0,+∞ 内单调递减.h s <h 0 =0,则g 's <0,所以g s 在区间0,+∞ 内单调递减.由t ∈1,+∞ 得t -1∈0,+∞ ,所以g t <g t -1 ,即ln (1+t )t <ln t t -1.[方法四]:构造函数法由已知得ln a a -ln b b =1b -1a ,令1a =x 1,1b=x 2,不妨设x 1<x 2,所以f x 1 =f x 2 .由(Ⅰ)知,0<x1<1<x2<e,只需证2<x1+x2<e.证明x1+x2>2同证法2.再证明x1+x2<e.令h(x)=1-ln xx-e(0<x<e),h (x)=-2+ex+ln x(x-e)2.令φ(x)=ln x+ex-2(0<x<e),则φ′(x)=1x-ex2=x-ex2<0.所以φx >φe =0,h′x >0,h x 在区间0,e内单调递增.因为0<x1<x2<e,所以1-ln x1x1-e<1-ln x2x2-e,即1-ln x11-ln x2>x1-ex2-e又因为f x1=f x2,所以1-ln x11-ln x2=x2x1,x2x1>x1-ex2-e,即x22-ex2<x21-ex1,x1-x2x1+x2-e>0.因为x1<x2,所以x1+x2<e,即1a+1b<e.综上,有2<1a+1b<e结论得证.【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于x1+x2-e<0的式子,这是本方法证明不等式的关键思想所在.3(陕西·高考真题)已知函数A(1,1).(1)若直线y=kx+1与f(x)的反函数的图像相切, 求实数k的值;(2)设x>0, 讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小, 并说明理由.【答案】(1)k=1 e2(2)当m>e24时两曲线有2个交点;当m=e24时两曲线有1个交点;当m<e24时两曲线没有交点(3)f(a)+f(b)2>f(b)-f(a)b-a,理由见解析.【分析】(1)设切点(x0,kx0+1),利用导数的几何意义得到方程组可得答案;(2)e x=mx2(x>0)⇔m=e xx2(x>0),转化为y=m与g(x)=e xx2(x>0)图象交点的个数问题;(3)作差得到e ab-a1+e b-a-21-e b-a2b-a,令b-a=t>0,构造新函数g(t)=(t+2)e t+t-2,求导即可得到答案.【详解】函数f(x)=e x,x∈R⇒f (x)=e x(1)函数1x0=k⇒kx0=1,f(x)=e x,x∈R的反函数为y=ln x,x>0,y =1x,设切点坐标为(x0,kx0+1)则1x0=k⇒kx0=1,ln x0=2⇒x0=e2⇒k=1e2.(2)令f(x)=mx2即e x=mx2(x>0)⇒m=e xx2(x>0),设g(x)=e xx2(x>0)有g (x)=e x(x-2)x3(x>0),当x∈(0,2],g (x)<0,当x∈[2,+∞),g (x)>0所以函数g(x)在(0,2]上单调递减,在[2,+∞)上单调递增,g(x)min=g(2)=e24,所以当m>e24时,两曲线有2个交点;当m=e24时,两曲线有1个交点;当m<e24时,两曲线没有交点.(3)f(a)+f(b)2>f(b)-f(a)b-a.f a +f b2-f b -f ab-a=e a+e b2-e a-e bb-a=e a1+e b-a2-1-e b-ab-a=e ab-a1+e b-a-21-e b-a2b-a∵a<b,令b-a=t>0∴上式=e a t1+e t-21-e t2t=e a2t⋅t+2e t+t-2令g(t)=(t+2)e t+t-2,则g (t)=(t+3)e t+1>0恒成立,∴g(t)>g(0)=0,而e a2t >0,∴e a2t⋅t+2e t+t-2>0,故f(a)+f(b)2>f(b)-f(a)b-a.【点睛】本题考查函数、导数、不等式、参数等问题,属于难题.第二问运用数形结合思想解决问题,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.技法03洛必达法则解题技巧知识迁移洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。
导数的定义与性质解析与归纳
导数的定义与性质解析与归纳引言:导数作为微积分中的一个重要概念,在数学领域中有着广泛的应用。
导数的定义和性质是理解和应用导数的基础。
本文将对导数的定义进行解析,并探讨导数的性质,最后对所得到的结论进行归纳。
一、导数的定义解析导数是函数改变率的一种表示,它描述了函数在特定点的变化趋势。
导数的定义可以从极限的角度进行解析。
设函数 f(x) 在点 x0 的某一邻域内有定义,如果极限lim {x→x0} [f(x)-f(x0)]/(x-x0)存在,则称该极限值为函数 f(x) 在点 x0 处的导数,记作 f'(x0) 或dy/dx |x=x0。
二、导数的性质解析导数具有一些特殊的性质,这些性质对于理解导数的应用十分重要。
1. 导数的唯一性如果函数 f(x) 在某一点 x0 处可导,则该点的导数唯一。
2. 导数与函数连续性的关系如果函数 f(x) 在一点 x0 可导,那么 f(x) 在该点必连续。
但反过来不一定成立,即函数在某一点处连续并不一定可导。
3. 基本运算法则导数具有一些基本的运算法则,如常数乘法法则、和差法则、积法则、商法则等。
这些运算法则有助于简化导数的计算。
4. 链式法则对于复合函数,导数的求解可以应用链式法则。
链式法则是导数计算中的重要工具之一,可用于求解复杂函数的导数。
三、导数的归纳与应用通过对导数的定义和性质的分析,我们可以得出一些重要结论,并将其应用到实际问题中。
1. 导数与函数单调性的关系函数在某一区间上单调增加,当且仅当其导数在该区间上大于零;函数在某一区间上单调减少,当且仅当其导数在该区间上小于零。
2. 导数与函数的极值点在函数的定义域内,如果函数在某一点 x0 处可导,并且导数在该点处为0,则该点可能是函数的极值点。
3. 导数与函数的凹凸性函数在某一区间上为凹函数,当且仅当其导数在该区间上递增;函数在某一区间上为凸函数,当且仅当其导数在该区间上递减。
4. 导数与函数的图像特征通过分析导数的符号和变化趋势,可以推测函数的图像特征,如拐点、水平渐近线等。
二阶导数的应用---曲线的凹凸性与拐点
二阶导数的应用---曲线的凹凸性与拐点教学目标与要求通过学习,使学生掌握利用二阶导数的符号判定函数在某一区间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解拐点的定义和意义。
教学重点与难点教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。
教学难点:理解拐点的定义和意义。
教学方法与建议证明曲线凹凸性判定定理时,除了利用"拉格朗日中值定理”证明外,还可用"泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。
在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。
教学过程设计1•问题提出与定义函数的单调性对于描绘函数图形有很大作用,但仅仅由单调性还不能准确描绘出函数的图形。
比如,如果在区间L r上,丿' ■,则我们知道丿,在区间-'•〔上单调增,但作图(参见图1)的时候,我们不能判断它增加的方式(是弧V匸U,还是弧二注),即不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性态、作图等是很有必要的!在图1中,对于上凸的曲线弧A~-'~,取其上任意两点,不妨取:1作割线,我们总会发现不论两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式来描述。
同理,对于上凹的曲线弧上:匸,总可用不等式1 2来描述。
由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上连续,如果对i上任意两点",勺,恒有1 2则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有1 2则称「I在I上的图形是(向上)凸的,或简称为凸弧。
如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。
函数的导数与导数应用知识点总结
函数的导数与导数应用知识点总结函数的导数是微积分中的重要概念,用来描述函数在某一点的变化率。
导数应用则是指在解决实际问题时利用导数的性质和计算方法进行分析和求解。
下面将对函数的导数与导数应用的知识点进行总结。
一、函数的导数函数的导数在数学中是指函数在某一点的变化率,可以用来描述函数的变化速度和曲线的陡峭程度。
导数常用符号表示为f'(x),表示函数f(x)在点x处的导数。
1. 导数的定义函数f(x)在点x处的导数定义为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h,其中lim表示极限,h表示x的增量。
2. 导数的几何意义函数在某一点的导数等于该点切线的斜率,也就是函数曲线在该点处的斜率。
3. 导数的基本性质导数具有以下基本性质:- 函数常数的导数为0,即常数函数的导数为0。
- 导数的和差法则,即导数的和(差)等于各导数的和(差)。
- 导数的常数倍法则,即函数乘以一个常数后,导数等于该常数乘以原函数的导数。
- 导数的乘积法则,即两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数加上另一个函数的导数乘以其中一个函数。
- 导数的商法则,即两个函数的商的导数等于分子函数的导数乘以分母函数减去分母函数的导数乘以分子函数,再除以分母函数的平方。
二、导数应用导数应用广泛应用于数学、物理、经济等领域,在解决实际问题时具有重要的意义。
以下是几个常见的导数应用知识点。
1. 最值问题导数可以用来求函数的最值问题,即求函数在一段区间上的最大值或最小值。
要求函数在区间内取得最值,需找到导数等于零或不存在的点,然后通过二阶导数的正负来判断最值是极大值还是极小值。
2. 函数图像的凹凸性和拐点导数可以用来分析函数图像的凹凸性和拐点。
当导数大于零时,函数图像凹向上,当导数小于零时,函数图像凹向下。
拐点是指函数图像由凹向上变为凹向下或由凹向下变为凹向上的点。
3. 斜率问题导数可以代表函数曲线在某一点处的斜率,因此可以用来分析曲线的特性和斜率问题。
高等数学 第四章 导数的应用 4-2曲线的凸凹性与拐点
e +e >e 2
x y
x+ y 2
( x ≠ y)
证 设 f (t ) = et
Q f ′′(t ) = et > 0 ∴ 曲线 y = f (t )是凸的
∀ 从而 x, y ∈ R, x ≠ y, 有
f ( x) + f ( y) x+ y ) > f( 2 2
即
e +e >e 2
x y
x+ y 2
例3 求曲线 解
2 5 ′ = ( x − 2)3 , y
的拐点. 的拐点
1 − 10 3= 10 y′′ = ( x − 2)
3
9
1 , 3 9 x−2
x
y′′ y
(−∞, 2) −∞
2
不存在
(2, + ∞)
−
凹
+
凸 的拐点 .
0
因此点 ( 2 , 0 ) 为曲线
例4 求曲线 解
的拐点. 的拐点
(−∞, 0] 及 [2, + ∞) 上是凸的 上是凸的, 故该曲线在 −∞ 3 2 [ 在 0, ]上 是凹的, 是凹的 点 (0, 1) 及 3 2 11 ( , )均为拐点. 均为拐点 3 27
x +1 例4-2 求证曲线 y = 2 有位于一直线的三个拐点 有位于一直线的三个拐点. x &;1 y′ = 3 , y′′ = . 3 9 x x 3 x
1 1 1 − (2, + ∞) x (−∞, − 5) − 5 (−5,0) 0 + − + 不存在 y′′ 0 y 凸 凹 凸 拐点
因此 的拐点 .
y x 续 例5 设 = f ( x)在 = x0的某邻域内具有三阶连
掌握函数与导数的曲线的凹凸性与拐点的教学案例
掌握函数与导数的曲线的凹凸性与拐点的教学案例函数与导数的曲线的凹凸性与拐点是高中数学课程中的重要内容之一。
通过学习这一部分知识,学生可以更深入地理解函数的性质和变化规律。
本文将介绍一个教学案例,旨在帮助学生掌握函数与导数的曲线的凹凸性与拐点的概念和求解方法。
案例名称:汽车行驶过程中的凹凸性与拐点案例背景:在现实生活中,汽车的运动可以用函数来描述。
假设一辆汽车以恒定的速度行驶,在某个时间段内,我们可以用函数y=f(x)表示汽车的位移与时间的关系,其中y表示汽车的位移,x表示时间。
案例目的:通过分析汽车运动函数的图像,引导学生理解凹凸性和拐点的概念,以及如何利用导数来判断和求解凹凸性与拐点。
案例步骤:步骤一:引入函数与导数的概念首先,向学生介绍函数与导数的概念。
通过例子和图像展示,让学生理解函数的图像与数学表达之间的关系,以及导数代表了函数的变化率。
步骤二:绘制汽车运动函数的图像将一段时间内汽车的位移与时间的关系表示为一个函数,绘制出汽车运动函数的图像。
通过实际示范和实时调整,引导学生理解函数图像的特点和变化。
步骤三:分析函数的凹凸性在函数图像上,标注出函数的上凹区间和下凹区间,并引导学生思考:在哪些区间上函数是凹的?在哪些区间上函数是凸的?质疑学生的观点,并给予指导和解释。
步骤四:引入导数的概念向学生介绍导数的定义和几何意义。
阐明导数的正负和零点与函数的凹凸性之间的关系。
通过图像和实例演示,帮助学生理解导数与凹凸性的联系。
步骤五:求解拐点在函数图像上标注出函数的拐点,并引导学生思考:什么样的情况下函数有拐点?如何通过导数来判断和求解拐点的位置?通过实例和讲解,帮助学生掌握拐点的求解方法。
步骤六:练习与应用提供一些练习题和应用题,让学生运用所学知识分析和解决实际问题。
同时,引导学生思考函数图像的变化对应着现实问题中什么变化,并就此展开讨论。
案例总结:通过这个教学案例,学生能够通过实际生活中汽车运动的例子,理解函数的凹凸性与拐点的概念,掌握用导数来判断和求解凹凸性与拐点的方法。
高数课件第三章中值定理及导数的应用第四节:单调性凹凸性
设f ( x) x x 1 I [1, 0], 证明:
5
f ( 1) 1 0,
f (0) 1 0,
由零点定理, f (x) 在 (-1, 0) 内至少有一个实根,
f ( x ) 5 x 4 1 0,
因此 f (x) 在 (- , + ) 内单调增加,
x ( , 0) y y 凹
0 0 1
(0 , 2 ) 3
(2 , ) 3 0
2 3 11 27
凸
凹
2) 上 2 在 ( 0 , ( , 0 ) 上向上凹 , 故该曲线在 及 ( 3 , ) 3 2 , 11 ) 均为拐点. ( 点 ( 0 , 1 ) 及 向上凸 , 3 27
y cos x sin x , y sin x cos x ,
y cos x sin x . 3 7 令 y 0, 得 x1 , x2 . 4 4
f ( 3 ) 2 4
0,
f (
在[0,2 ]内曲线有拐点为 ( 3 ,0), ( 7 ,0).
方法2:
设函数 f ( x) 在 x0 的邻域内三阶可导
,
P154 15 且 f ( x0 ) 0,而 f ( x0 ) 0 ,
那末 ( x0 , f ( x0 )) 是曲线 y f ( x) 的拐点.
例10 求曲线 y sin x cos x ( [0,2 ] 内 ) 的拐点. 解
y
y f ( x)
B
A
o
a
b
x
即 f ( x) 在 [ a , b ] 上单调减少.
由单调性判断可知:
若 f ( x) 0 f ( x) 单调减少 曲线 y f ( x) 是凸的.
二阶导数的应用---曲线的凹凸性与拐点(学习材料)
二阶导数的应用---曲线的凹凸性与拐点●教学目标与要求通过学习,使学生掌握利用二阶导数的符号判定函数在某一区间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解拐点的定义和意义。
●教学重点与难点教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。
教学难点:理解拐点的定义和意义。
●教学方法与建议证明曲线凹凸性判定定理时,除了利用“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。
在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。
●教学过程设计1. 问题提出与定义函数的单调性对于描绘函数图形有很大作用,但仅仅由单调性还不能准确描绘出函数的图形。
比如,如果在区间上,,则我们知道在区间上单调增,但作图(参见图1)的时候,我们不能判断它增加的方式(是弧,还是弧),即不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性态、作图等是很有必要的!在图1中,对于上凸的曲线弧,取其上任意两点,不妨取作割线,我们总会发现不论两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式来描述。
同理,对于上凹的曲线弧,总可用不等式来描述。
由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上连续,如果对I上任意两点,,恒有则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有则称在I 上的图形是(向上)凸的,或简称为凸弧。
如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。
2. 凹凸性判定定理的引入yOy f x=()xyOy f x=()曲线凹凸性的定义自然能判别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来说判断起来也不容易。
导数凹凸反转经典例题
导数凹凸反转经典例题
导数在凹凸性上的应用主要涉及到函数的二阶导数。
若函数在某区间的二阶导数大于0,则函数在此区间为凹函数;若二阶导数小于0,则为凸函数。
以下是三个关于导数凹凸反转的经典例题及其答案:
例题1:
f(x)=x3
求该函数在x=0附近的凹凸性。
答案1:
首先求一阶导数:f′(x)=3x2
再求二阶导数:f′′(x)=6x
对于x<0,有f′′(x)<0,函数在此区间为凸函数;
对于x>0,有f′′(x)>0,函数在此区间为凹函数。
因此,在x=0处,函数从凸变为凹。
例题2:
f(x)=x4−2x2
求该函数在实数范围内的凹凸性变化点。
答案2:
首先求一阶导数:f′(x)=4x3−4x
再求二阶导数:f′′(x)=12x2−4
令二阶导数为0,解得:x=±33
对于x<−33和x>33,有f′′(x)>0,函数为凹函数;
对于−33<x<33,有f′′(x)<0,函数为凸函数。
因此,在x=−33和x=33处,函数的凹凸性发生变化。
例题3:
f(x)=ln(x)
判断该函数在(0,+∞)上的凹凸性。
答案3:
首先求一阶导数:f′(x)=x1
再求二阶导数:f′′(x)=−x21
在(0,+∞)区间内,有f′′(x)<0,因此函数在此区间为凸函数,无凹凸性反转点。
二阶导数与凹凸性
二阶导数与凹凸性
二阶导数是描述函数变化率的变化量,也是函数的曲率的量度。
凹凸性指的是函数的局
部变化率的性质:当函数的某个点的二阶偏导数为正时,函数在此处的曲率呈凹性,曲线在这个点呈上凸;如果函数的某个点的二阶偏导数为负,那么函数在这个点的曲率是凹性,曲线在这个点呈下凸。
二阶导数在函数分析中发挥着重要作用,可以用来表示曲线的凹凸性。
比如,二次函数
f(x)=ax2+bx+c(a≠0),有f''(x)=2a,当a>0,即二阶导数为正时,函数f(x)在所有的实数
中单调递增,曲线处于凹性;当a<0,则f''(x)<0,曲线处于凸性。
另外,二阶导数可以用来求取函数的极值。
设f(x)在区间[a,b]上有极值点x0,且f(x0)为最大值,当且仅当若f''(x0)<0时,即当函数的这个点的二阶偏导数为负时,函数才会在这个
点处取得极大值。
总之,通过二阶导数,我们可以得出函数的凹凸性,从而进一步的了解函数的特性,也可以帮助我们求取函数的极值。
二阶导数与函数凹凸性证明
二阶导数与函数凹凸性证明函数的凹凸性是微积分中的重要概念,与函数的二阶导数密切相关。
在本文中,我们将证明二阶导数与函数凹凸性之间的关系。
首先,我们先来定义函数的凹凸性。
设函数f(x)在区间I上有定义,对于任意的x1和x2属于I,以及0≤t≤1,若满足以下两个条件:1. f((1-t)x1+tx2)≤(1-t)f(x1)+tf(x2),则称函数f(x)在区间I上是凹函数;2. f((1-t)x1+tx2)≥(1-t)f(x1)+tf(x2),则称函数f(x)在区间I上是凸函数。
接下来我们证明:若函数f(x)在区间I上具有二阶导数,则f(x)的凹凸性与其二阶导数的正负性之间有关。
我们分别证明凹函数和凸函数的情况。
证明一:凹函数的二阶导数推导假设函数f(x)在区间I上是凹函数且具有二阶导数,则有:f((1-t)x1+tx2) ≤ (1-t)f(x1)+tf(x2)对上式两边关于t求导,并且忽略关于t的函数:f''((1-t)x1+tx2)(x2-x1) ≤ f'(x2)-f'(x1)由于(1-t)x1+tx2是x1和x2的线性组合,根据拉格朗日中值定理,存在c属于(x1, x2),使得:f''(c)(x2-x1)=f'(x2)-f'(x1)将上式代入原不等式,得:f''(c)(x2-x1) ≤ f''((1-t)x1+tx2)(x2-x1)由于x2-x1不等于0且为常数,所以可以除以(x2-x1),并且令d=(1-t)x1+tx2,得:f''(c)≤f''(d)这意味着函数f(x)的二阶导数在区间I上是非递减的,即二阶导数的正负性与函数凹凸性之间存在关联。
证明二:凸函数的二阶导数推导假设函数f(x)在区间I上是凸函数且具有二阶导数,则有:f((1-t)x1+tx2) ≥ (1-t)f(x1)+tf(x2)对上式两边关于t求导,并且忽略关于t的函数:f''((1-t)x1+tx2)(x2-x1) ≥ f'(x2)-f'(x1)由于(1-t)x1+tx2是x1和x2的线性组合,根据拉格朗日中值定理,存在c属于(x1, x2),使得:f''(c)(x2-x1)=f'(x2)-f'(x1)将上式代入原不等式,得:f''(c)(x2-x1) ≥ f''((1-t)x1+tx2)(x2-x1)由于x2-x1不等于0且为常数,所以可以除以(x2-x1),并且令d=(1-t)x1+tx2,得:f''(c)≥f''(d)这意味着函数f(x)的二阶导数在区间I上是非递增的,即二阶导数的正负性与函数凹凸性之间存在关联。
二阶导数的应用---曲线的凹凸性与拐点
二阶导数的应用---曲线的凹凸性与拐点教学目标与要求通过学习,使学生掌握利用二阶导数的符号判定函数在某一区间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解拐点的定义和意义。
教学重点与难点教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。
教学难点:理解拐点的定义和意义。
教学方法与建议证明曲线凹凸性判定定理时,除了利用"拉格朗日中值定理”证明外,还可用"泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。
在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。
教学过程设计1•问题提出与定义函数的单调性对于描绘函数图形有很大作用,但仅仅由单调性还不能准确描绘出函数的图形。
比如,如果在区间[弘切上丿⑴,一]巩町®则我们知道『°)在区间切上单调增,但作图(参见图1)的时fj候,我们不能判断它增加的方式(是弧ROB,还是弧卫盗),即不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性0工态、作图等是很有必要的!在图1中,对于上凸的曲线弧/DE,取其上任意两点,不妨取作割线,我们总会发现不论两点的位置,害V线段总位于弧段的下方,这种位置关系可以用不等式二丄[』(可)+/(%)]来描述。
同理,对于上凹的曲线弧匸:壬‘,总可用不等式I 2来描述。
由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设1 -在区间I上连续,如果对I上任意两点…-,■:,恒有则称 「r i 上的图形是(向上)凹的,简称为凹弧;如果恒有则称在I 上的图形是(向上)凸的,或简称为凸弧。
如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于 左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。
二阶导数的应用---曲线的凹凸性与拐点
二阶导数的应用曲线的凹凸性与拐点之袁州冬雪创作讲授方针与要求通过学习,使学生掌握操纵二阶导数的符号断定函数在某一区间上凹凸性的方法,为更好地描画函数图形打好基础,同时,懂得拐点的定义和意义.讲授重点与难点讲授重点:操纵函数的二阶导数断定曲线的凹凸性与拐点.讲授难点:懂得拐点的定义和意义.讲授方法与建议证明曲线凹凸性断定定理时,除了操纵“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果操纵“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生贯通不到思想,摸不着头脑.在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性其实不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关.讲授过程设计1. 问题提出与定义函数的单调性对于描画函数图形有很大作用,但仅仅由单调性还不克不及准确描画出函数的图形.比方,如果在区间上,,则我们知道在区间上单调增,但作图(拜见图1)的时候,我们不克不及断定它增加的方式(是弧,还是弧),即不克不及断定曲线的凹凸性,所以研究曲线的凹凸性对于掌控函数的性态、作图等是很有需要的!在图1中,对于上凸的曲线弧,取其上任意两点,无妨取作割线,我们总会发现不管两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式.来描绘同理,对于上凹的曲线弧,总可用不等式来描绘.由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上持续,如果对I上任意两点,,恒有则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有则称在I上的图形是(向上)凸的,或简称为凸弧.如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点.2. 凹凸性断定定理的引入曲线凹凸性的定义自然能辨别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来讲断定起来也不容易.因此,我们就想可否用其它方法来断定曲线的凹凸性.函数的单调性能由的符号确定,而对于凹凸性它束手无策,所以我们猜测凹凸性是否和有关?颠末分析,并操纵泰勒公式,可证实我们的猜测是正确的,函数图形的凹凸性的确和的符号有关,于是得到了断定曲线凹凸性的定理.在上持续, 在内具有二阶持续导数,那末:(1)若在内>0,则在上的图形是凹的;(2)若在内<0,则在上的图形是凸的.3. 辨别凹凸性和拐点举例例1. 断定曲线y x3的凹凸性.解y3x 2,y6x.由y0, 得x0因为当x<0时,y<0, 所以曲线在(,0]内为凸的;因为当x>0时,y>0, 所以曲线在[0,)内为凹的.例2. 求曲线y2x 33x 22x14的拐点.解y6x 26x12,.令y0, 得因为当时,y0;当时,y0,所以点(,??是曲线的拐点例??求函数的凹凸区间和拐点.解:函数的定义域为,,且,令,得.列表:()0+0-0+有拐点有拐点由表可知,当时,曲线有拐点和,表中暗示曲线是凹的,⌒暗示曲线是凸的.函数的图像如图(3)所示.4. 确定曲线y f(x)的凹凸区间和拐点的步调:(1)确定函数y f(x)的定义域;(2)求出在二阶导数f`(x);(3)求使二阶导数为零的点和使二阶导数不存在的点;(4)断定或列表断定, 确定出曲线凹凸区间和拐点;注: 根据详细情况(1)(3)步有时省略.5 学生黑板操练操练 1.断定下列曲线的凹凸性及拐点.(1),(2),(3).6.小结1 在讲授函数单调性时要注意借助几何图形停止直观说明,使导数符号与曲线形态特征相连系,加深对辨别法的懂得.2 对于函数凹凸性、拐点,要注意借助几何图形停止直观说明,使导数符号与曲线形态特征相连系,加深对辨别法的懂得.作业 P75:1,2,3。