2013届高三数学 章末综合测试题(1)集合与常用逻辑用语 新人教A版
高中数学章末综合检测(一)--集合与常用逻辑用语
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选 A
∵“x>0, y>0
”⇒“x1y>0”,
“x1y>0”⇒“yx>>00,
或x<0, y<0,
”
∴“x>0, y>0
”是“x1y>0”的充分不必要条件.故选 A.
8.已知集合 A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件 A⊆C⊆B
4.已知集合 A={0,1,2,4},集合 B={x∈R|0<x≤4},集合 C=A∩B,则集合 C 可表示
为( )
A.{0,1,2,4} C.{1,2,4}
B.{1,2,3,4} D.{x∈R|0<x≤4}
解析:选 C 因为集合 A 中的元素为 0,1,2,4,而集合 B 中的整数元素为 1,2,3,4,所以
16.(12 分)设集合 A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分 不必要条件,试求满足条件的实数 a 组成的集合.
解:∵A={x|x2-3x+2=0}={1,2},由于“x∈B”是“x∈A”的充分不必要条件, ∴B A. 当 B=∅时,得 a=0;
当 B≠∅时,则当 B={1}时,得 a=1;
12.某校高一某班共有 40 人,摸底测验数学成绩 23 人得优,语文成绩 20 人得优,两 门都不得优者有 6 人,则两门都得优者有________人.
解析:设两门都得优的人数是 x,则依题意得(23-x)+(20-x)+x+6=40,整理,得 -x+49=40,
解得 x=9,即两门都得优的人数是 9 人. 答案:9 13.设全集 U={x||x|<4,且 x∈Z},S={-2,1,3},若 P⊆U,(∁UP)⊆S,则这样的集合 P 共有________个. 解析:U={-3,-2,-1,0,1,2,3},∵∁U(∁UP)=P,∴存在一个∁UP,即有一个相应的 P(如当∁UP={-2,1,3}时,P={-3,-1,0,2};当∁UP={-2,1}时,P={-3,-1,0,2,3}等).由 于 S 的子集共有 8 个,∴P 也有 8 个.
2013届高三数学(理)寒假作业(1) 集合常用逻辑用语
高三数学寒假作业(一)集合常用逻辑用语一、选择题1.下列命题中是假命题的是( )(A)x R ∃∈, x 3<0 (B)“a>0”是“|a|>0”的充分不必要条件(C)x R ∀∈, 2x >0 (D)“a·b>0”是“a,b 的夹角为锐角”的充要条件2.(2012·安徽高考)命题“存在实数x ,使x >1”的否定是( )(A)对任意实数x,都有x >1 (B)不存在实数x ,使x≤1(C)对任意实数x,都有x≤1 (D)存在实数x,使x≤13.(2011·泰安模拟)下列命题中的真命题是( ) (A)3x R,sin x cos x 2∃∈+= (B)x (0,),∀∈π sin x >cos x(C)x (,0),∃∈-∞ 2x <3x (D)x (0)∀∈+∞,, e x >x+14.(2012·枣庄模拟)若集合A={x|x 2-x-2<0},B={x|-2<x <a},则“A∩B≠Ø”的充要条件是( )(A)a >-2 (B)a≤-2 (C)a >-1 (D)a≥-15.(2012·宁波模拟)设A={1,2,3},B={x|x ⊆A},则下列关系表述正确的是( )(A)A ∈B (B)A ∉B (C)A B ⊇ (D)A ⊆B6.集合A={0,12log 3,-3,1,2},集合B={y|y=2x ,x ∈A},则A∩B=( )(A){1} (B){1,2} (C){-3,1,2} (D){-3,0,1}7.(2012·临沂模拟)给出命题:若直线l 与平面α内任意一条直线垂直,则直线l 与平面α垂直,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )(A)3 (B)2 (C)1 (D)08.若“0<x <1”是“(x -a)[x-(a+2)]≤0”的充分不必要条件,则实数a 的取值范围是( )(A)(-∞,0]∪[1,+∞) (B)(-1,0)(C)[-1,0] (D)(-∞,-1)∪(0,+∞)9.(2012·山东高考)设命题p:函数y=sin 2x 的最小正周期为;2π命题q:函数y=cos x 的图象关于直线x 2π=对称,则下列判断正确的是( ) (A)p 为真 (B)q ⌝为假 (C)p ∧q 为假(D)p ∨q 为真10.定义差集A-B={x|x ∈A,且x ∉B},现有三个集合A ,B ,C 分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为( )二、填空题11.命题p:x R,∀∈函数()2f x 2cos x 3,=≤则p ⌝:______________.12.已知集合A={3,m 2},B={-1,3,2m-1}.若A ⊆B ,则实数m 的值为__________.13.若命题“x R,∃∈2x 2-3ax+9<0”为假命题,则实数a 的取值范围是_________.14.给出下列四个结论:①“若am 2<bm 2,则a <b”的逆命题是真命题;②设x ,y ∈R,则“x≥2或y≥2”是“x 2+y 2≥4”的充分不必要条件; ③函数y=log a (x+1)+1(a >0且a≠1)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2. 其中正确结论的序号是____________(填上所有正确结论的序号).15.集合x M {x |0},x 1=->集合12N {y |y x }==,则M ∩N=_________. 16.下列选项叙述错误的是.①命题“若x ≠1,则x 2-3x+2≠0”的逆否命题是“若x 2-3x+2=0,则x=1” ②若命题p :x R,∀∈ x 2+x+1≠0,则⌝p :x R ∃∈, x 2+x+1=0③若p ∨q 为真命题,则p,q 均为真命题④“x >2”是“x 2-3x+2>0”的充分不必要条件17.某班有学生60人,其中体育爱好者有32人,电脑爱好者有40人,还有7人既不爱好体育也不爱好电脑,则班上既爱好体育又爱好电脑的学生有______人.18.设命题p:C 2<C;命题q :对x R,∀∈x 2+4Cx+1>0,若p ∧q 为假,p ∨q 为真,则实数C 的取值范围是____________.高三数学寒假作业(一)1.D2.C.3.【解析】选D.A中3sin x cos x )42π+=+≤<, 故为假命题;B 中当x (0,)4π∈时,cos x >sin x,假命题; C 中x (,0)∀∈-∞,2x >3x,假命题;D 中由图知为真命题. 4. C.5. A. 6.选B.∵A={0,21log 3, -3,1,2},∴B={1,1138,, 2,4},∴A∩B={1,2}.7.【解析】选A.根据线面垂直的定义可知,原命题正确,所以逆否命题也正确;命题的逆命题为:若直线l 与平面α垂直,则直线l 与平面α内任意一条直线垂直,正确,所以否命题也正确,所以在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是3,故选A.8.选C.9. C.函数y=sin 2x 的最小正周期为2T 2π==π,所以命题p 假,函数y=cos x 的图象关于直线x=k π(k ∈Z)对称,所以命题q 假,q ⌝为真,p ∨q 为假.10.A.如图所示,A-B 表示图中阴影部分,故C-(A-B)所含元素属于C ,但不属于图中阴影部分,故选A.11.【解析】全称命题的否定是特称命题,故p :x R,⌝∃∈函数()2f x 2cos x 3.=+>答案:()2x R,f x 2cos x 3∃∈=函数> 12.【解析】∵A ⊆B,∴m 2=2m-1或m 2=-1(舍).由m 2=2m-1得m=1.经检验m=1时符合题意.13.【解析】因为“x R,∃∈2x 2-3ax+9<0”为假命题,则“x R,∀∈2x 2-3ax+9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故a -≤≤答案:a -≤≤14.【解析】①的逆命题为:“若a <b,则am 2<bm 2”,当m=0时,命题不成立.根据充分条件和必要条件的判断可知②正确.当x=0时,y=log a 1+1=1,所以函数图象恒过定点(0,1),所以③正确;根据正态分布的对称性可知P(-2≤ξ≤0)= P(0≤ξ≤2),P(ξ>2)=P(ξ<-2),所以P(ξ>2)=12P(20)10.80.1,22--≤ξ≤-==所以④错误,所以正确的结论有②③. 答案:②③ 15. (1,+∞)16.③17.1918.【解析】命题p:0<C<1,命题q:11C 22-<<,∵p ∧q 为假,p ∨q 为真,∴p和q有且仅有一个成立.若p成立,q不成立,则1C1 2≤<,若p不成立, q成立,则1C02-<≤,综上知,C的取值范围是11(,0,1).22-][。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)
第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。
2013版高考数学一轮复习 第一章集合与常用逻辑用语(单元总结与测试)精品学案 新人教A版
2013版高考数学一轮复习精品学案:第一章集合与常用逻辑用语单元总结与测试【章节知识网络】【章节巩固与提高】一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012·郑州模拟)集合={x|y=23x-,x∈R},={y|y=x2-1,x∈R},则∩=( )(){(-2,1),(2,1)} ()Ø(){z|-1≤z≤3} (){z|0≤z≤3}2.(预测题)设全集U={1,2,3,4,5},集合={1,a-2,5},U={2,4},则a的值为( ) ()3 ()4 ()5 ()63.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )4.“若a∉,则b∈”的否定是( )()若a∉,则b∉()若a∈,则b∉()若b∈,则a∉()若b∉,则a∈5.集合={y∈R|y=2x},={-1,0,1},则下列结论正确的是( )()∩={0,1} ()∪=(0,+∞)()(R)∪=(-∞,0) ()(R)∩={-1,0}6.(2012·福州模拟)下列结论错误的是( )()命题“若p,则q”与命题“若⌝q,则⌝p”互为逆否命题()命题p:∀x∈[0,1],ex≥1,命题q:∃x0∈R,x02+x0+1<0,则p∨q为真()“若am2<bm2,则a<b”的逆命题为真命题()若p∨q为假命题,则p、q均为假命题7.(2012·大连模拟)下列四个命题中的真命题为( ) ()∃x0∈R,使得sinx0-cosx0=-1.5()∀x∈R,总有x2-2x-3≥0()∀x∈R,∃y∈R,y2<x()∃x0∈R,∀y∈R,y·x0=y8.已知全集U=R,集合M={x||x|<2},P={x|x>a},并且M UP,那么a的取值范围是()(){2} (){a|a≤2}(){a|a≥2} (){a|a<2}9.(2012·厦门模拟)“lnx>1”是“x>1”的( )()充分不必要条件()必要不充分条件()充要条件()既不充分也不必要条件10.已知a>0,设p:存在a∈R,使y=ax是R上的单调递减函数;q:存在a∈R,使函数g(x)=lg(2ax2+2x+1)的值域为R,如果“p∧q”为假,“p∨q”为真,则a的取值范围是( )()(12,1) ()(12,+∞)()(0, 12]∪[1,+∞) ()(0,12)二、填空题(本大题共5小题,每小题4分,共20分.请把正确答案填在题中横线上)11.命题“∃x0∈R,使得2x+2x0+5=0”的否定是____________________.12.(2012·泉州模拟)若命题“∃x0∈R,使x02+(a-1)x0+1<0”是假命题,则实数a的取值范围为___________.13.(2012·合肥模拟)设集合U={1,3a+5,a2+1},={1,a+1},且U={5},则a=________.14.原命题:“设a,b,c∈R,若ac2>bc2,则a>b”的逆命题、否命题、逆否命题中真命题共有________个.15.(易错题)已知p:-4<x-a<4,q:(x-2)(3-x)>0,若⌝p是⌝q的充分条件,则实数a的取值范围是_________.三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(13分)(2012·汕头模拟)已知集合={x|2-a≤x≤2+a},={x|x2-5x+4≥0},(1)当a=3时,求∩,∪(U);(2)若∩=Ø,求实数a的取值范围.17.(13分)(2012·天水模拟)设={x|x2+4x=0},={x|x2+2(a+1)x+a2-1=0},其中x∈R ,如果∩=,求实数a的取值范围.18.(13分)设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x 轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.19.(13分)(2012·三明模拟)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x02+2ax0+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.20.(14分)已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0).若⌝p是⌝q的必要而不充分条件,求实数m的取值范围.20.(14分)求证:方程mx2-2x+3=0有两个同号且不相等的实根的充要条件是0<m <1 3.21. (14分)已知p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1, 1]恒成立;q:不等式ax2+2x-1>0有解,若p为真,q为假,求a的取值范围.答案解析1.【解析】选.由3-x2≥0得-3≤x≤3,∴={x|-3≤x≤3}.∵x2-1≥-1,∴={y|y≥-1}.∴∩={z|-1≤z≤3}.2.【解析】选.∵U={2,4},∴={1,3,5},∴a-2=3,∴a=5.3.【解析】选.由N={x|x2+x=0},得N={-1,0},则N M.故选.4.【解析】选.“若a ∉,则b ∈”的否定为“若a ∈,则b ∉”.5.【解析】选.因为={y∈R|y=2x}={y|y>0},R={y|y≤0},∴(R)∩={-1,0}.6.【解析】选.选项的逆命题“若a<b,则am2<bm2”,当m=0时不成立,故选.7.【解析】选.当x0=1时,对∀y∈R,y·x0=y 恒成立,故选.8. 【解题指南】首先化简集合M,然后利用数轴求出a的取值范围.【解析】选.∵M={x||x|<2}={x|-2<x<2},UP={x|x≤a},∴M UP⇔M(-∞,a]⇔a≥2,如数轴所示:9.【解析】选.若lnx>1,则x>e满足x>1,反之不成立,故选.10.【解析】选.由题意知p:0<a<1,q:0<a≤1 2,因为“p∧q”为假,“p∨q”为真,所以p、q一真一假.当p真q假时,得12<a<1,当p假q真时,a的值不存在,综上知12<a<1.11.【解析】特称命题的否定是全称命题,其否定为“∀x∈R,都有x2+2x+5≠0”. 答案:∀x∈R,都有x2+2x+5≠012.【解析】由题意可知对∀x∈R都有x2+(a-1)x+1≥0成立,∴Δ=(a-1)2-4≤0,解得-1≤a≤3.答案:[-1,3]13.【解析】由U={5}知5∈U且5∉,若3a+5=5,则a=0,不合题意. 若a2+1=5,则a=2或a=-2,当a=2时,={1,3},不合题意.当a=-2时,={1,-1},符合题意,故a=-2.答案:-214.【解析】∵“若ac2>bc2,则a>b”是真命题,∴逆否命题是真命题.又逆命题“若a>b,则ac2>bc2”是假命题,∴原命题的否命题也是假命题.答案:115.【解析】p:-4<x-a<4⇔a-4<x<a+4,q:(x-2)(3-x)>0⇔2<x<3,又⌝p是⌝q的充分条件,即⌝p⇒⌝q,等价于q⇒p,所以a42 a43-≤⎧⎨+≥⎩,解得-1≤a≤6.答案:[-1,6]【误区警示】解答本题时易弄错p、q的关系,导致答案错误,求解时,也可先求出⌝p、⌝q,再根据其关系求a的取值范围.16.【解析】(1)当a=3时,={x|-1≤x≤5},={x|x2-5x+4≥0}={x|x≤1或x≥4},U={x|1<x<4},∩={x|-1≤x≤1或4≤x≤5},∪(U )={x|-1≤x ≤5}.(2)当a <0时,=Ø,显然∩=Ø,合乎题意.当a ≥0时,≠Ø,={x|2-a ≤x ≤2+a},={x|x2-5x+4≥0}={x|x ≤1或x ≥4}. 由∩=Ø,得2a 12a 4-⎧⎨+⎩><,解得0≤a <1.故实数a 的取值范围是(-∞,1).17.【解析】={0,-4},又∩=,所以⊆. (1)=Ø时,Δ=4(a+1)2-4(a2-1)<0,得a <-1; (2)={0}或={-4}时,把x=0代入x2+2(a+1)x+a2-1=0中得a=±1,把x=-4代入x2+2(a+1)x+a2-1=0,得a=1或7,又因为Δ=0,得a=-1; (3)={0,-4}时,Δ=a+1>0,()22a 14a 10⎧-+=-⎪⎨-=⎪⎩,解得a=1.综上所述实数a=1或a ≤-1.18.【解析】∵函数y=loga(x+1)在(0,+∞)上单调递减,∴0<a <1,即p:0<a <1,∵曲线y=x2+(2a-3)x+1与x 轴交于不同的两点,∴Δ>0,即(2a-3)2-4>0,解得a <12或a >52.即q:a <12或a >52.∵p ∧q 为假,p ∨q 为真,∴p 真q 假或p 假q 真,即0a1 15a22⎧⎪⎨≤≤⎪⎩<<或⎧⎪⎨⎪⎩a>115 a<或a>22.解得12≤a<1或a>52.19.【解析】由“p且q”是真命题,则p为真命题,q也为真命题. 若p为真命题,a≤x2恒成立,∵x∈[1,2],∴a≤1.若q为真命题,即x2+2ax+2-a=0有实根,Δ=4a2-4(2-a)≥0,即a≥1或a≤-2,综上,实数a的取值范围为a≤-2或a=1.20.【证明】(1)充分性:∵0<m<13,∴方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,∴方程mx2-2x+3=0有两个同号且不相等的实根.(2)必要性:若方程mx2-2x+3=0有两个同号且不相等的实根,则有12412m03x x0m∆=-⎧⎪⎨=⎪⎩>>.∴0<m<13.综合(1)(2)可知,方程mx2-2x+3=0有两个同号且不相等的实根的充要条件是0<m<1 3.21.【解题指南】根据已知先得出p真时a的范围,再通过讨论a得到q真时a的范围,最后根据p真q假,得a的取值范围.【解析】∵x1,x2是方程x2-mx-2=0的两个实根,∴x1+x2=m,x1·x2=-2,=∴∴当m∈[-1,1]时,|x1-x2|max=3,由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立,可得:a2-5a-3≥3,∴a≥6或a≤-1,①若不等式ax2+2x-1>0有解,则当a>0时,显然有解,当a=0时,ax2+2x-1>0有解,当a<0时,∵ax2+2x-1>0有解,∴Δ=4+4a>0,∴-1<a<0,所以不等式ax2+2x-1>0有解时a>-1.∴q假时a的范围为a≤-1②由①②可得a的取值范围为a≤-1.【思想与方法解读】高考数学第一轮复习五建议古语云:授人以鱼,只供一饭。
高三数学上学期期末试题分类汇编 集合与常用逻辑用语 文 新人教A版
广东省13大市2013届高三上期末考数学文试题分类汇编集合与常用逻辑用语1、(潮州市2013届高三上学期期末)集合[0,4]A =,2{|40}B x x x =+≤,则AB = A .R B .{|0}x x ≠C .{0}D .∅答案:C2、(东莞市2013届高三上学期期末)设全集{}2,1,0,1,2U =--,集合{}1,1,2A =-,{}1,1B =-,则()U A C B 为A .{}1,2B .{}1C .{}2D .{}1,1-答案:C3、(佛山市2013届高三上学期期末)命题“2,11x x ∀∈+≥R ”的否定是 A .2,11x x ∀∈+<R B .2,11x x ∃∈+≤RC .2,11x x ∃∈+<RD .2,11x x ∃∈+≥R答案:C4、(广州市2013届高三上学期期末)已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 答案:D5、(惠州市2013届高三上学期期末).已知集合{}11A =-,,{}10B x ax =+=,若B A ⊆,则实数a 所有可能取值的集合为( )A .{}1-B .{}1C .{}11-,D .{}101-,,答案:D6、(江门市2013届高三上学期期末)已知全集{}4 3, , 2 , 1 , 0=U ,集合{}3 , 2 , 1=A ,{}4 , 2=B ,则=B A C U )(A .{} 2B .{} 4C .{}4 3, , 2 , 1 D .{}3 , 1 答案:B7、(茂名市2013届高三上学期期末)已知{}P =,{}|11Q x x =-≤≤,则P Q =( )A .{}2,0,1-B .{}0,1C .D .{}0 答案:B8、(汕头市2013届高三上学期期末)已知集合}5,3,1{=A ,集合},,2{b a B =,若A ∩B {1,3}=,则b a +的值是( ).A.10B.9C.4D.7 答案:C9、(增城市2013届高三上学期期末)设集合{9},{1,2,3},={3,4,5,6}U x x A B ==是小于的正整数集合集合则=⋂B C A C u uA .{3}B . {7,8}C . {4,5,6,7,8}D . {1,2,7,8} 答案:B10、(湛江市2013届高三上学期期末)已知集合A ={1,2,3,4},集合B ={2,3,4,5,6},则A ∪B =A 、{1,2,3,4} C 、{1,2,3,4,5,6}C 、{2,3,4,5,6}D 、{3,4}答案:B11、(肇庆市2013届高三上学期期末)设集合{1,2,3,4,5,6}U =,{1,2,3,5},{1,3,4,6}M N ==, 则()U M N =( )A .UB .{2,4,5,6}C .{2,4,6}D .{1,3}B 解析:{1,3}(){2,4,5,6}U M N M N =⇒=12、(中山市2013届高三上学期期末)设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为 ( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8答案:B13、(珠海市2013届高三上学期期末)已知集合),1(+∞-=M ,集合{}0)2(|≤+=x x x N ,则N M ⋂=A .]2,0[B . ),0(+∞C . ]0,1(-D . )0,1(-答案:C14、(潮州市2013届高三上学期期末)不等式10x ->成立的充分不必要条件是A .10x -<<或1x >B .01x <<C .1x >D . 2x >答案:D15、(东莞市2013届高三上学期期末)“11x<”是“1x >”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B16、(惠州市2013届高三上学期期末)若a ∈R ,则“3a = ”是“29a = ”的( )条件A .充分且不必要B .必要且不充分C .充分且必要D .既不充分又不必要 答案:A17、(江门市2013届高三上学期期末)设命题p :函数x y 2sin =的最小正周期为2π; 命题q :函数x xy 212+=是偶函数.则下列判断正确的是 A .p 为真 B .q ⌝为真 C .q p ∧为真 D .q p ∨为真 答案:D18、(湛江市2013届高三上学期期末)“2a a -=0”是“函数3()f x x x a =-+是增函数”的A 、充要条件B 、充分而不必要条件C 、必要不充分条件D 、既不充分也不必要条件答案:C19、(中山市2013届高三上学期期末)“22a b >”是 “22log log a b >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B 20、(珠海市2013届高三上学期期末)已知a ,b 是实数,则“⎩⎨⎧>>32b a ”是“5>+b a ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:A。
2013届高三一轮复习理科数学全能测试(一)集合集合与常用逻辑用语、函数概念与基本初等函数
2013届高三一轮复习理科数学全能测试(一) 集合与常用逻辑用语、函数概念与基本初等函数本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.参考公式:如果事件A,B 互斥,那么P (A+B )=P (A )+P (B );球的表面积公式:24R S π=(其中R 表示球的半径);球的体积公式:343V R π=(其中R 表示球的半径); 锥体的体积公式:Sh V 31=(其中S 表示锥体的底面积,h 表示锥体的高);柱体的体积公式Sh V =(其中S 表示柱体的底面积,h 表示柱体的高);台体的体积公式:)(312211S S S S h V ++=(其中21,S S 分别表示台体的上,下底面积,h 表示台体的高).第Ⅰ卷(选择题,共50分)1、【2012 浙江理】设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C RB)= ( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)2、【2011 浙江理 】若,a b 为实数,则“01m ab <<”是11a b b a <或>的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3、下列函数中既是奇函数,又在区间()1,1-上是增函数的为( )A .y x= B .sin y x = C .x x y e e -=+ D .3y x =-4、若函数()log (2)(0,1)a f x ax a a =->≠在区间()1,3内单调递增,则a 的取值范围是A .2[,1)3 B .2(0,]3 C .3(1,)2 D .3[,)2+∞ 5、奇函数()f x 在(0,)+∞上的解析式是()(1)f x x x =-,则在(,0)-∞上()f x 的函数解析式是( )A .()(1)f x x x =--B .()(1)f x x x =+C .()(1)f x x x =-+D .()(1)f x x x =-6、函数()f x 的定义域为R ,且满足:()f x 是偶函数,(1)f x -是奇函数,若(0.5)f =9,则(8.5)f 等于( )A .-9B .9C .-3D .07、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则()()222xf x x ⊕=-⊗是( )函数. ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数8、已知函数()()()()f x x a xb a b =-->其中的图象如下面右图所示,则函数()x g x a b =+的图象是 ( )9、若02log )1(log 2<<+a a a a ,则a 的取值范围是 ( )A .(0,1)B .(0,21)C .(21,1)D .(0,1)∪(1,+∞)10、设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当]0,2[-∈x 时,1)21()(-=x x f ,若在区间]6,2(-内关于x 的方程0log )()2(=-+x a x f (a >1)恰有3个不同的实根,则a 的取值范围是( )A.(1,2)B.),2(+∞C.)4,1(3D.)2,4(3非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11、命题“∃(12)x ∈,时,满足不等式240x mx ++≥”是假命题,则m 的取值范围 __________ 12、函数)12(log )(5+=x x f 的单调增区间是__________13、函数m x x f +=lg )(关于直线x=1对称,则m= 14、已知函数()()231f x mx m x =+-+的值域是[0,)+∞,则实数m 的取值范围是________________。
2013高考数学(人教A文)多考点综合练:集合、常用逻辑用语 不等式
多考点综合练(一)测试内容:集合、常用逻辑用语 不等式 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2012年福州市高三第一学期期末质量检查)已知集合A ={x|x>3},B ={x|2<x<4},那么集合A ∩B 等于 ( ) A .{x|x>3} B .{x|2<x<3} C .{x|3<x<4} D .{x|x<4}解析:A ∩B ={x|x>3}∩{x|2<x<4}={x|3<x<4},故选C. 答案:C 2.(2012年合肥第一次质检)集合A ={-1,0,4},集合B ={x|x2-2x -3≤0,x ∈N},全集为U ,则图中阴影部分表示的集合是 ( )A .{4}B .{4,-1}C .{4,5}D .{-1,0}解析:本题主要考查集合的运算与韦恩图.由图可知阴影部分表示的集合为(∁UB)∩A ,因为B ={x|-1≤x ≤3,x ∈N}={0,1,2,3},因此(∁UB)∩A ={4,-1},选B.本题为容易题. 答案:B3.(2012年河北省衡水中学期末检测)若集合A ={0,m2},B ={1,2},则“m =1”是“A ∪B ={0,1,2}”的 ( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件解析:当m =1时,m2=1,A ={0,1},A ∪B ={0,1,2},若A ∪B ={0,1,2},则m2=1或m2=2,m =±1或m =±2,故选B. 答案:B4.若a<b<0,则下列不等式中不一定成立的是 ( )A.1a >1bB.1a -b >1bC.-a>-bD .|a|>-b解析:∵1a -1b =b -a ab>0,∴A 一定成立;∵a<b<0,∴-a>-b>0, ∴-a>-b ,即C 一定成立; |a|=-a ;∴|a|>-b ⇔-a>-b ,成立,∴D 成立;当a =-2,b =-1时,1a -b =1-2+1=-1=1b ,所以B 不一定成立,故选B.答案:B5.设A 、B 是非空集合,定义A×B ={x|x ∈(A ∪B)且x ∉(A ∩B)}.已知A ={x|y =2x -x2},B ={y|y =2x ,x>0},则A×B 等于 ( )A .[0,1]∪(2,+∞)B .[0,1]∪[2,+∞)C .[0,1]D .[0,2]解析:∵A =[0,2],B =(1,+∞),∴A×B ={x|x ∈(A ∪B)且x ∉(A ∩B)}=[0,1]∪(2,+∞).故选A.答案:A6.(2012年厦门模拟)设命题p :若a>b ,则1a <1b ,q :若1ab <0,则ab<0.给出以下3个复合命题,①p ∧q ;②p ∨q ;③綈p ∧綈q.其中真命题的个数为 ( )A .0B .1C .2D .3解析:p 为假命题,q 为真命题,所以只有②正确,故选B. 答案:B7.在算式“4△+1□=30□×△”的两个□、△中,分别填入两个正整数,使它们的倒数之和最小.则这两个正整数构成的数对(□,△)应为 ( )A .(4,14)B .(6,6)C .(3,18)D .(5,10)解析:题中的算式可以变形为“4×□+1×△=30”.设x =□,y =△,则4x +y =30.30⎝⎛⎭⎫1x +1y =(4x +y)⎝⎛⎭⎫1x +1y =5+⎝⎛⎭⎫y x +4xy ≥5+2y x ·4x y =9,当且仅当y x =4xy ,即x =5,y =10时取等号,所求的数对为(5,10).故选D.答案:D8.若a>0,b>0,且a +b =4,则下列不等式恒成立的是 ( ) A.1ab >12B.1a +1b ≤1C.ab ≥2 D .a2+b2≥8解析:a +b =4≥2ab ,ab ≤2,ab ≤4 ∴1ab ≥14,故C 错,A 错. 1a +1b =a +b ab =4ab ≥1,故B 错.(a +b)2=a2+b2+2ab ≤2(a2+b2) ∴a2+b2≥8,故选D. 答案:D9.(2012年广东番禺模拟)已知命题p :“∀x ∈[0,1],a ≥ex ”,命题q :“∃x ∈R ,x2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是 ( ) A .[e,4] B .[1,4]C .[4,+∞)D .(-∞,1]解析:若p 真,则a ≥e ;若q 真,则16-4a ≥0⇒a ≤4,所以若命题“p ∧q ”是真命题,则实数a 的取值范围是[e,4].故选A. 答案:A10.(2012年辽宁)设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55解析:可行域如图所示:由⎩⎪⎨⎪⎧y =15,x +y =20得A(5,15),A 点为最优解, ∴zmax =2×5+3×15=55,故选D. 答案:D11.若不等式(a -2)x2+2(a -2)x -4<0对于x ∈R 恒成立,则a 的取值范围是( )A .(-2,2)B .[-2,2]C .(-2,2]D .[-2,2)解析:当a =2时,不等式-4<0恒成立;当a ≠2时,由⎩⎪⎨⎪⎧a -2<0Δ=4a -22+4×4a -2<0,解得-2<a<2, ∴符合要求的a 的取值范围是(-2,2],故选C. 答案:C12.设A ={x|x -1x +1<0},B ={x||x -b|<a},若“a =1”是“A ∩B ≠Ø”的充分条件,则实数b 的取值范围是 ( ) A .-2≤b ≤2 B .-2≤b<2 C .-2<b<2 D .b ≤2解析:A ={x|-1<x<1},当a =1时,B ={x|b -1<x<b +1}, 若“a =1”是“A ∩B ≠Ø”的充分条件, 则有-1≤b -1<1或-1<b +1≤1, 所以-2<b<2,故选C. 答案:C二、填空题(本大题共4小题,每小题5分,共20分)13.命题p :∀x ∈R ,f(x)≥m ,则命题p 的否定綈p 是______. 答案:∃x ∈R ,f(x)<m14.(2012年安徽)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析:①作出可行域,如图中阴影部分;②作出零线x -y =0并平移,判断A ,B 点坐标;③由⎩⎪⎨⎪⎧ x +2y =3,2x +y =3解得A(1,1),由⎩⎪⎨⎪⎧2x +y =3,x =0解得B(0,3),∴(x -y)max =1-1=0,(x -y)min =0-3=-3,∴x -y ∈[-3,0]. 答案:[-3,0]15.已知条件p :|x +1|>2,条件q :5x -6>x2,则非p 是非q 的________条件. 解析:∵p :x<-3或x>1,∴綈p :-3≤x ≤1. ∵q :2<x<3,∴綈q :x ≤2或x ≥3,则綈p ⇒綈q. 答案:充分不必要16.已知命题p :“∀x ∈[1,2],12x2-ln x -a ≥0”与命题q :“∃x0∈R ,x20+2ax0-8-6a =0”都是真命题,则实数a 的取值范围是______________.解析:若p 真,则∀x ∈[1,2],⎝⎛⎭⎫12x2-ln x min ≥a ,∴a ≤12;若q 真,则(2a)2-4×(-8-6a)=4(a +2)(a +4)≥0,∴a ≤-4或a ≥-2,∴实数a 的取值范围为(-∞,-4]∪⎣⎡⎦⎤-2,12. 答案:(-∞,-4]∪⎣⎡⎦⎤-2,12 三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.设全集U =R ,函数y =log2(6-x -x2)的定义域为A ,函数y =1x2-x -12的定义域为B.(1)求集合A 与B ; (2)求A ∩B ,(∁UA)∪B.解:(1)函数y =log2(6-x -x2)要有意义需满足6-x -x2>0,解得-3<x<2, ∴A ={x|-3<x<2}. 函数y =1x2-x -12要有意义需满足x2-x -12>0,解得x<-3或x>4,∴B ={x|x<-3或x>4}.(2)A ∩B =Ø,∁UA ={x|x ≤-3或x ≥2},∴(∁UA)∪B ={x|x ≤-3或x ≥2}.18.我们知道,如果集合A ⊆S ,那么S 的子集A 的补集为∁SA ={x|x ∈S ,且x ∉A}.类似地,对于集合A ,B ,我们把集合{x|x ∈A ,且x ∉B}叫做集合A 与B 的差集,记作A -B. 据此回答下列问题:(1)若A ={1,2,3,4},B ={3,4,5,6},求A -B ; (2)在下列各图中用阴影表示集合A -B ;(3)若集合A ={x|0<ax -1≤5},集合B ={x|-12<x ≤2},有A -B =Ø,求实数a 的取值范围.(4)解:(1)根据题意知A -B ={1,2}. (2)(3)A ={x|0<ax -1≤5},则1<ax ≤6,当a =0时,A =Ø,此时A -B =Ø,符合题意; 当a>0时,A =⎝⎛⎦⎤1a ,6a ,若A -B =Ø,则6a ≤2,即a ≥3; 当a<0时,A =⎣⎡⎭⎫6a ,1a ,若A -B =Ø,则6a >-12,即a<-12. 综上所述:实数a 的取值范围是a<-12或a ≥3或a =0. 19.(1)求函数y =2xx2+1在x>0时的最大值;(2)已知x +y +xy =2,且x>0,y>0,求x +y 的最小值. 解:(1)因为x>0,所以y =2x x2+1=2x +1x,而x +1x ≥2,故0<1x +1x ≤12,则0<2x +1x ≤1,当且仅当x =1x 即x =1时,y 的最大值为1.(2)由xy =2-(x +y)及xy ≤⎝⎛⎭⎫x +y 22得2-(x +y)≤x +y 24, 即(x +y)2+4(x +y)-8≥0.解得x +y ≥23-2或x +y ≤-2-2 3. 因为x>0,y>0,所以x +y ≥23-2, 当且仅当x =y 且x +y +xy =2,即x =y =3-1时,x +y 的最小值为23-2.20.(2013届湖北省黄冈中学高三11月月考)已知p :f(x)=1-x3,且|f(a)|<2;q :集合A ={x|x2+(a +2)x +1=0,x ∈R},且A ≠Ø.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围. 解:若|f(a)|=|1-a3|<2成立,则-6<1-a<6,即当-5<a<7时p 是真命题;若A ≠Ø,则方程x2+(a +2)x +1=0有实数根, 由Δ=(a +2)2-4≥0,解得a ≤-4,或a ≥0, 即当a ≤-4,若a ≥0时q 是真命题;由于p ∨q 为真命题,p ∧q 为假命题,∴p 与q 一真一假,p 真q 假时,⎩⎪⎨⎪⎧-5<a<7-4<a<0,∴-4<a<0.p 假q 真时,⎩⎪⎨⎪⎧a ≤-5或a ≥7a ≤-4或a ≥0,∴a ≤-5或a ≥7.故知所求a 的取值范围是(-∞,-5]∪(-4,0)∪[7,+∞).21.某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所已知该工厂的工人人数最多是200人,根据限额,该工厂每天消耗电能不得超过160千度,消耗煤不得超过150吨,问怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大?解:设甲、乙两种产品每天分别生产x 吨和y 吨,则每天所得的产值为z =7x +10y 万元.依题意,得不等式组⎩⎪⎨⎪⎧2x +8y ≤160,3x +5y ≤150,5x +2y ≤200,x ≥0,y ≥0.(※)由⎩⎪⎨⎪⎧ 2x +8y =160,3x +5y =150,解得⎩⎨⎧x =2007,y =907.由⎩⎪⎨⎪⎧5x +2y =200,3x +5y =150,解得⎩⎨⎧x =70019,y =15019.设点A 的坐标为⎝⎛⎭⎫2007,907,点B 的坐标为⎝⎛⎭⎫70019,15019,则不等式组(※)所表示的平面区域是五边形的边界及其内部(如图中阴影部分).令z =0,得7x +10y =0,即y =-710x.作直线l0:y =-710x.由图可知把l0平移至过点B ⎝⎛⎭⎫70019,15019时,即x =70019,y =15019时,z 取得最大值6 40019. 答:每天生产甲产品70019吨、乙产品15019吨时,能获得最大的产值6 40019万元.22.某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即x10,0<x ≤10),每月卖出数量将减少y 成,而售货金额变成原来的z 倍.(1)设y =ax ,其中a 是满足13≤a<1的常数,用a 来表示当售货金额最大时的x 的值; (2)若y =23x ,求使售货金额比原来有所增加的x 的取值范围.解:(1)由题意知某商店定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是p ⎝⎛⎭⎫1+x 10元,n ⎝⎛⎭⎫1-y10元,npz 元, 因而npz =p ⎝⎛⎭⎫1+x 10·n ⎝⎛⎭⎫1-y 10, ∴z =1100(10+x)(10-y),在y =ax 的条件下, z =1100⎣⎡⎦⎤-a ⎝⎛⎭⎫x -51-a a 2+100+251-a 2a , 由于13≤a<1,则0<51-a a ≤10,要使售货金额最大,即使z 值最大, 此时x =51-a a .(2)由z =1100(10+x)⎝⎛⎭⎫10-23x >1,解得0<x<5.。
高中数学(新人教A版)必修第一册:第1章章末 集合与常用逻辑用语【精品课件】
达标检测
1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有
A.2个
√B.4个
C.6个
D.8个
2.命题p:“对任意一个实数x,均有x2≥0”,则 命题 的否定p为( C ) (A)存在x0∈R,使得x02 ≤0 (B)对任意x∈R,均有x2≤0 (C)存在x0∈R,使得 x02 <0 (D)对任意x∈R,均有x2<0
解题技巧: 1.若已知集合是用描述法给出的,则读懂集合的代表元 素及其属性是解题的关键. 2.若已知集合是用列举法给出的,则整体把握元素的共 同特征是解题的关键. 3.对集合中的元素要进行验证,保证集合内的元素不重 复.
【跟踪训练1】 设集合A={x∈Z|0<x<4},B={x|(x4)(x-5)=0},M={x|x=a+b,a∈A,b∈B},则集合M中元素 的个数为( )
解:CU B x x 1或x>2 可画数轴如下:
1
12
1
数形结合的思想 x 1 1 2数轴法 x
A B=x 1 x 2 A B=x x>-1
A (CU B) x x 2 A (CU B) x x 1或x 1
点评 (I),画数轴上方的线时,同一集合画同一高度,
不同的集合画不同的高度。
3 2
或
a≥32
解题技巧:
1.若所给集合是有限集,则首先把集合中的元素一一列举 出来,然后结合交集、并集、补集的定义来求解.另外,针对 此类问题,在解答过程中也常常借助Venn图来求解.这样处 理起来比较直观、形象,且解答时不易出错.
分析: 画出韦恩图,形 象地表示出各数 量关系的联系
方法归纳:解决这一类问题一般借用数形结合,借 助于Venn 图,把抽象的数学语言与直观 的图形结合起来
高中数学章末过关检测一集合与常用逻辑用语新人教A版必修第一册
章末过关检测(一) 集合与常用逻辑用语一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.[2022·福建福州高一期中]下列关系中,正确的有( )A.∅{0} B.{0,1}={(0,1)} C.Q∈Z D.{0}∈{0,1,2}2.已知集合M={1,2},则集合M的子集个数为( )A.1 B.2 C.3 D.43.命题“∀x∈R,x2+1>0”的否定是( )A.∃x∈R,x2+1>0 B.∃x∈R,x2+1≤0C.∀x∈R,x2+1<0 D.∀x∈R,x2+1≤04.已知集合A={x|0≤x≤3},B={x|1<x<4},则A∪B=( )A.{x|1<x≤3} B.{x|0≤x<4} C.{x|1≤x≤3} D.{x|0<x<4}5.“a=1”是“|a|=1”的( )A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.已知集合A={x|-1<x≤2},B={-2,-1,0,2,4},则(∁R A)∩B=( )A.∅ B.{-1,2} C.{-2,4} D.{-2,-1,4}7.设U为全集,则“A∩B=∅”是“A⊆∁U B”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件“∀x∈R,方程x2+4x+a=0有解”是真命题,则实数a的取值范围是( ) 8.已知命题:A.a<4 B.a≤4 C.a>4 D.a≥4二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.已知集合A,B是非空集合且A⊆B,则下列说法正确的是( )A.∃x∈A,x∈B B.∀x∈A,x∈BC.A∩B=A D.A∩(∁U B)≠∅10.下列命题中是假命题的有( )A.∀x∈R,x3≥0 B.∃x∈R,x3=3C.∀x∈R,x2-1=0 D.∃x∈Z,1<4x<311.下列说法中正确的有( )A.“x>3”是“x>2”的必要条件B.“x>1”是“x2>1”的充分不必要条件C.“x=2或x=-3”是“x2+x-6=0”的充要条件D.“a>b”是“a2>b2”的必要不充分条件12.已知p:x>1或x<-3,q:x>a,则a取下面那些范围,可以使q是p的充分不必要条件( )A.a≥3 B.a≥5 C.a≤-3 D.a<1三、填空题(本题共4小题,每小题5分,共20分.)13.命题“∀x>0,2x+1≥0”的否定是________.14.已知集合A={1,a2},B={a,-1},若A∪B={-1,a,1},则a=________.15.方程x2-2x+a=0有实根的充要条件为________.16.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个,其中的一个是________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)命题p:有一对实数(x,y),使x-3y+1<0.(2)命题q:∀x∈R,x2-4x+3>0.18.(本小题满分12分)已知集合A={x|x2-ax+3=0},(1)若1∈A,求实数a的值.(2)若集合B={x|2x2-bx+b=0},且A∩B={3},求A∪B.19.(本小题满分12分)已知全集为R,集合A={x|1≤x≤2},B={x|x<m或x>2m+1,m>0}.(1)当m=2时,求A∩B;(2)若A⊆∁R B,求实数m的取值范围.20.(本小题满分12分)已知命题p:∃x∈R,使x2-4x+m=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+4}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)已知集合A={x|-2≤x≤4},B={x|m-1<x<m2}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A∪B=A,求实数m的取值范围.22.(本小题满分12分)证明:“m<0”是“关于x的方程x2-2x+m=0有一正一负根”的充要条件.章末过关检测(一) 集合与常用逻辑用语1.解析:空集是任何非空集合的真子集,故A正确;{0,1}的元素为0,1,{(0,1)}的元素为(0,1),故B错误;因为Z⊆Q,故C错误;因为{0}{0,1,2},故D错误.答案:A2.解析:集合M={1,2},子集有:∅,{1},{2},{1,2},共4个.答案:D3.解析:全称量词命题的否定是存在量词命题,并将结论加以否定,所以命题“∀x ∈R,x2+1>0”的否定是:∃x∈R,x2+1≤0.答案:B4.解析:由A={x|0≤x≤3},B={x|1<x<4},则A∪B={x|0≤x<4}.答案:B5.解析:由a=1可推出|a|=1,由|a|=1,即a=1或a=-1,推不出a=1,故“a=1”是“|a|=1”的充分不必要条件.答案:B6.解析:因为A={x|-1<x≤2},B={-2,-1,0,2,4},所以∁R A={x|x≤-1或x>2},所以B∩(∁R A)={-2,-1,4}.答案:D7.解析:因为U为全集,若A∩B=∅,则A⊆∁U B;若A⊆∁U B,则A∩B=∅;所以“A∩B=∅”是“A⊆∁U B”的充要条件.答案:C8.解析:“∀x∈R,方程x2+4x+a=0有解”是真命题,故Δ=16-4a≥0,解得:a ≤4.答案:B9.解析:因为集合A,B是非空集合且A⊆B,所以∀x∈A,x∈B,即选项B正确,因此∃x∈A,x∈B,所以选项A正确;因为A⊆B,所以有A∩B=A,因此选项C正确;当A=B时,显然A⊆B成立,而A∩(∁U B)=A∩(∁U A)=∅,所以选项D不正确.答案:ABC10.解析:对选项A,当x=-1时,x3=-1<0,所以∀x∈R,x3≥0为假命题.对选项B,若x3=3,则x=33,所以∃x∈R,x3=3为真命题.对选项C ,若x 2-1=0,则x =±1,不满足∀x ∈R ,x 2-1=0,所以∀x ∈R ,x 2-1=0为假命题.对选项D ,1<4x <3,则14<x <34,所以不存在x ∈Z ,满足14<x <34, 即∃x ∈Z ,1<4x <3为假命题.答案:ACD11.解析:对于A ,“x >2”成立,“x >3”不一定成立,A 错误;对于B ,“x >1”可以推出“x 2>1”,取x =-2,得x 2>1,但-2<1,所以“x 2>1”不能推出“x >1”,B 正确;对于C ,x 2+x -6=0的两个根为x =2或x =-3,C 正确;对于D ,“a >b ”不能推出“a 2>b 2”,同时“a 2>b 2”也不能推出“a >b ”,D 错误. 答案:BC12.解析:p :x >1或x <-3,q :x >a ,q 是p 的充分不必要条件,故a ≥1,范围对应集合是集合{a |a ≥1}的子集即可,对比选项知AB 满足条件.答案:AB13.解析:因为命题“∀x >0,2x +1≥0”是全称量词命题,所以其否定是存在量词命题,即为∃x >0,2x +1<0.答案:∃x >0,2x +1<014.解析:因为A ={1,a 2},B ={a ,-1},A ∪B ={-1,a ,1},所以a =a 2,解得a =0或a =1(舍去,不满足集合元素的互异性).答案:015.解析:由题意可得Δ=4-4a ≥0,解得a ≤1.答案:a ≤116.解析:因为集合S ={0,1,2,3,4,5},根据题意知只要有元素与之相邻,则该元素不是孤立元素,所以S 中无“孤立元素”的4个元素的子集有{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个.其中一个可以是{0,1,2,3}.答案:6 {0,1,2,3}17.解析:(1)命题p 是存在量词命题.当x =0,y =1时,x -3y +1=-2<0成立,故命题p 是真命题.(2)命题q 是全称量词命题由x 2-4x +3=(x -1)(x -3)>0,得x <1或x >3.只有当x <1或x >3时,x 2-4x +3>0成立,故命题q 是假命题.18.解析:(1)因为1∈A ,故可得1-a +3=0,解得a =4.故实数a 的值为4.(2)因为A ∩B ={3},故3是方程x 2-ax +3=0的根,则9-3a +3=0,解得a =4,此时x 2-4x +3=0,即(x -1)(x -3)=0,解得x =1或x =3,故A ={1,3};又3是方程2x 2-bx +b =0的根,则18-3b +b =0,解得b =9,此时2x 2-9x +9=0,即(2x -3)(x -3)=0,解得x =3或x =32,故B ={3,32}; 故A ∪B ={1,3,32}. 19.解析:(1)当m =2时,B ={x |x <2或x >5},又A ={x |1≤x ≤2},所以A ∩B ={x |1≤x <2};(2)因为B ={x |x <m 或x >2m +1,m >0},所以∁R B ={x |m ≤x ≤2m +1},又A ⊆∁R B ,所以⎩⎪⎨⎪⎧m ≤12≤2m +1, 解得12≤m ≤1,即m ∈[12,1]. 所以实数m 的取值范围为[12,1]. 20.解析:(1)由题意,得关于x 的方程x 2-4x +m =0无实数根,所以Δ=16-4m <0,解得m >4,即B ={m |m >4};(2)因为A ={x |3a <x <a +4}为非空集合,所以3a <a +4,即a <2,因为x ∈A 是x ∈B 的充分不必要条件,则3a ≥4,即a ≥43, 所以43≤a <2. 21.解析:(1)因为A ={x |-2≤x ≤4},x ∈Z ,所以A ={-2,-1,0,1,2,3,4},A 中共有7个元素,则A 的非空真子集的个数为27-2=126;(2)因为A ∪B =A ,所以B ⊆A ,因为m 2-m +1=(m -12)2+34>0,故B ≠∅, 则⎩⎪⎨⎪⎧m 2≤4m -1≥-2,解得:-1≤m ≤2,从而实数m 的取值范围为[-1,2]. 22.证明:充分性:若m <0,则关于x 的方程x 2-2x +m =0有一正一负根,证明如下: 当m <0时,Δ=(-2)2-4m =4-4m >0,所以方程x 2-2x +m =0有两个不相等的实根,设两根分别为x 1,x 2,则x 1x 2=m <0,所以方程x 2-2x +m =0有一正一负根,故充分性成立,必要性:若“关于x 的方程x 2-2x +m =0有一正一负根”,则m <0,证明如下:设方程x 2-2x +m =0一正一负根分别为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(-2)2-4m =4-4m >0x 1x 2=m <0,所以m <0,所以若“关于x 的方程x 2-2x +m =0有一正一负根”,则m <0, 故必要性成立,所以“m <0”是“关于x 的方程x 2-2x +m =0有一正一负根”的充要条件.。
高中数学 第一章 常用逻辑用语章末综合测评(含解析)新人教A版高二选修2-1数学试题
章末综合测评(一) 常用逻辑用语(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中是命题的为()①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④∀x∈R,5x-3>6.A.①③B.②③C.②④D.③④D[①不能判断真假,②是疑问句,都不是命题;③④是命题.]2.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”的逆否命题是() A.若△ABC是等腰三角形,则它的任何两个内角相等B.若△ABC中任何两个内角不相等,则它不是等腰三角形C.若△ABC中有两个内角相等,则它是等腰三角形D.若△ABC中任何两个内角相等,则它是等腰三角形C[将原命题的条件否定作为结论,为“△ABC是等腰三角形”,结论否定作为条件,为“有两个内角相等”,再调整语句,即可得到原命题的逆否命题,为“若△ABC中有两个内角相等,则它是等腰三角形”,故选C.]3.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数B[根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.]4.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.]5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B .∃x 0∈R ,使得f (x 0)≤0成立C .∀x ∈R ,使得f (x )>0成立D .∀x ∈R ,f (x )≤0成立A [“关于x 的不等式f (x )>0有解”等价于“存在实数x 0,使得f (x 0)>0成立”.故选A .]6.若命题(p ∨(q ))为真命题,则p ,q 的真假情况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假C [由(p ∨(q ))为真命题知,p ∨(q )为假命题,从而p 与q 都是假命题,故p 假q 真.]7.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,使得(x +1)e x ≤1B [因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,p (x ),故p :∃x 0>0,使得(x 0+1)e x 0≤1.]8.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .pB .p ∨qC .q ∧pD .qC [很明显命题p 为真命题,所以p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以q 是真命题.所以p ∨q 为假命题,q ∧p 为真命题,故选C .]9.条件p :x ≤1,且p 是q 的充分不必要条件,则q 可以是( )A .x >1B .x >0C .x ≤2D .-1<x <0B [∵p :x ≤1,∴p :x >1,又∵p 是q 的充分不必要条件,∴p ⇒q ,q 推不出p ,即p 是q 的真子集.]10.下列各组命题中,满足“p ∨q ”为真,且“p ”为真的是( )A .p :0=∅;q :0∈∅B .p :在△ABC 中,若cos 2A =cos 2B ,则A =B ;q :函数y =sin x 在第一象限是增函数C .p :a +b ≥2ab (a ,b ∈R );q :不等式|x |>x 的解集为(-∞,0)D .p :圆(x -1)2+(y -2)2=1的面积被直线x =1平分;q :过点M (0,1)且与圆(x -1)2+(y -2)2=1相切的直线有两条C [A 中,p 、q 均为假命题,故“p ∨q ”为假,排除A ;B 中,由在△ABC 中,cos 2A =cos 2B ,得1-2sin 2A =1-2sin 2B ,即(sin A +sin B )(sin A -sin B )=0,所以A -B =0,故p 为真,从而“p ”为假,排除B ;C 中,p 为假,从而“p ”为真,q 为真,从而“p ∨q ”为真;D 中,p 为真,故“p ”为假,排除D .故选C .] 11.已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若“p ∨q ”为假命题,则实数m 的取值X 围为( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [由题意知p ,q 均为假命题,则p ,q 为真命题.p :∀x ∈R ,mx 2+1>0,故m ≥0,q :∃x ∈R ,x 2+mx +1≤0,则Δ=m 2-4≥0,即m ≤-2或m ≥2,由⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2得m ≥2.故选A .] 12.设a ,b ∈R ,则“2a +2b =2a +b ”是“a +b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [利用基本不等式,知2a +b =2a +2b ≥22a ·2b ,化简得2a +b ≥22,所以a +b ≥2,故充分性成立;当a =0,b =2时,a +b =2,2a +2b =20+22=5,2a +b =22=4,即2a +2b ≠2a +b ,故必要性不成立.故选A .]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题“不等式x 2+x -6>0的解为x <-3或x >2”的逆否命题是________.若-3≤x ≤2,则x 2+x -6≤0[“不等式x 2+x -6>0的解为x <-3或x >2”即为:“若x 2+x -6>0,则x <-3或x >2”,根据逆否命题的定义可得:若-3≤x ≤2,则x 2+x -6≤0.]14.写出命题“若x 2=4,则x =2或x =-2”的否命题为________.若x 2≠4,则x ≠2且x ≠-2 [命题“若x 2=4,则x =2或x =-2”的否命题为“若x 2≠4,则x ≠2且x ≠-2”.]15.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值X 围是________. (-∞,-1][命题“∃t ∈R ,t 2-2t -a <0”是假命题.则∀t ∈R ,t 2-2t -a ≥0是真命题,∴Δ=4+4a ≤0,解得a ≤-1.∴实数a 的取值X 围是(-∞,-1].]16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若p 是q 的充分条件,则实数a 的取值X 围是________.[-1,6][p :-4<x -a <4⇔a -4<x <a +4,q :(x -2)(3-x )>0⇔2<x <3.因为p 是q 的充分条件,即p ⇒q ,所以q 是p 的充分条件,即q ⇒p ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)将命题“一组对边平行且相等的四边形是平行四边形”改写成“若p ,则q ”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.[解]“若p ,则q ”的形式:若一个四边形的一组对边平行且相等,则这个四边形是平行四边形.(真命题)逆命题:若一个四边形是平行四边形,则这个四边形的一组对边平行且相等.(真命题) 否命题:若一个四边形的一组对边不平行或不相等,则这个四边形不是平行四边形.(真命题)逆否命题:若一个四边形不是平行四边形,则这个四边形的一组对边不平行或不相等.(真命题)18.(本小题满分12分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有的矩形都是正方形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使x 30+3=0.[解](1)q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题. (2)r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0. 19.(本小题满分12分)(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?[解](1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊆{x |x <-1或x >3}, 则只要-m 2≤-1,即m ≥2, 故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件.(2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊇{x |x <-1或x >3}, 则这是不可能的,故不存在实数m 使2x +m <0是x 2-2x -3>0的必要条件.20.(本小题满分12分)已知p :x 2-8x -33>0,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,求正实数a 的取值X 围.[解]解不等式x 2-8x -33>0,得p :A ={x |x >11或x <-3};解不等式x 2-2x +1-a 2>0,得q :B ={x |x >1+a 或x <1-a ,a >0}.依题意p ⇒q 但q p ,说明A B .于是有⎩⎪⎨⎪⎧ a >0,1+a ≤11,1-a >-3或⎩⎪⎨⎪⎧ a >0,1+a <11,1-a ≥-3,解得0<a ≤4,所以正实数a 的取值X 围是(0,4].21.(本小题满分12分)证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. [证明](充分性)若a =1,则函数化为f (x )=2x -12x +1(x ∈R ).因为f (-x )=2-x -12-x +1=12x-112x +1=1-2x 1+2x=-2x -12x +1=-f (x ),所以函数f (x )是奇函数. (必要性)若函数f (x )是奇函数,则f (-x )=-f (x ),所以a ·2-x +a -22-x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x 2x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x =-a ·2x -a +2,所以2(a -1)(2x +1)=0,解得a =1.综上所述,函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. 22.(本小题满分12分)已知命题p :方程x 2+mx +1=0有两个不相等的实根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若p ∨q 为真,q 为假,某某数m 的取值X 围.[解]由方程x 2+mx +1=0有两个不相等的实根,得Δ=m 2-4>0,解得m >2或m <-2. ∴命题p 为真时,m >2或m <-2;命题p 为假时,-2≤m ≤2.由不等式4x 2+4(m -2)x +1>0的解集为R ,得方程4x 2+4(m -2)x +1=0的根的判别式Δ′=16(m -2)2-16<0,解得1<m <3.∴命题q 为真时,1<m <3;命题q 为假时,m ≤1或m ≥3.∵p ∨q 为真,q 为假,∴p 真q 假,∴⎩⎪⎨⎪⎧m >2或m <-2,m ≤1或m ≥3,解得m <-2或m ≥3. ∴实数m 的取值X 围为(-∞,-2)∪[3,+∞).。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
高中数学人教A版选修1-1第1章常用逻辑用语章末综合测评及解析
高中数学人教A版选修1-1 第一章常用逻辑用语章末综合测评(1)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“经过两条相交直线有且只有一个平面”是()A.全称命题B.特称命题C.p∨q形式D.p∧q形式【解析】此命题暗含了“任意”两字,即经过任意两条相交直线有且只有一个平面.【答案】 A2.(2015·湖南高考)设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由于函数f(x)=x3在R上为增函数,所以当x>1时,x3>1成立,反过来,当x3>1时,x>1也成立.因此“x>1”是“x3>1”的充要条件,故选C.【答案】 C3.(2014·湖北高考)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x∉R,x2≠x D.∃x∈R,x2=x【解析】全称命题的否定,需要把全称量词改为特称量词,并否定结论.【答案】 D4.全称命题“∀x∈Z,2x+1是整数”的逆命题是()A.若2x+1是整数,则x∈ZB.若2x+1是奇数,则x∈ZC.若2x+1是偶数,则x∈ZD.若2x+1能被3整除,则x∈Z【解析】易知逆命题为:若2x+1是整数,则x∈Z.【答案】 A5.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧¬q B.¬p∧qC.¬p∧¬q D.p∧q【解析】命题p为真命题,命题q为假命题,所以命题¬q为真命题,所以p∧¬q为真命题,故选A.【答案】 A6.(2015·皖南八校联考)命题“全等三角形的面积一定都相等”的否定是()A.全等三角形的面积不一定都相等B.不全等三角形的面积不一定都相等C.存在两个不全等三角形的面积相等D.存在两个全等三角形的面积不相等【解析】命题是省略量词的全称命题.易知选D.【答案】 D7.原命题为“若a n+a n+12<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真B.假,假,真C.真,真,假D.假,假,假【解析】从原命题的真假入手,由于a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q 的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】q⇒¬p等价于p⇒¬q,¬pD⇒/q等价于¬qD⇒/p.故p是¬q的充分而不必要条件.【答案】 A9.一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根的充分不必要条件是()A.a<0 B.a>0C.a<-1 D.a>1【解析】一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根⇔3a<0,解得a<0,故a<-1是它的一个充分不必要条件.【答案】 C10.设集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(∁U B)的充要条件是()【导学号:26160027】A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5【解析】 ∵P (2,3)∈A ∩(∁U B ),∴满足⎩⎪⎨⎪⎧ 2×2-3+m >0,2+3-n >0,故⎩⎪⎨⎪⎧m >-1,n <5. 【答案】 A11.下列命题中为真命题的是( )A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b =-1D .a >1,b >1是ab >1的充分条件【解析】 对于∀x ∈R ,都有e x >0,故选项A 是假命题;当x =2时,2x =x 2,故选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,a b 无意义,故选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题.【答案】 D12.下列命题中真命题的个数为( )①命题“若x =y ,则sin x =sin y ”的逆否命题为真命题;②设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β ”是“tan α<tan β ”的充要条件; ③命题“自然数是整数”是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1<0.”A .1B .2C .3D .4【解析】 ①命题“若x =y ,则sin x =sin y ”为真命题,所以其逆否命题为真命题;②因为x ∈⎝ ⎛⎭⎪⎫-π2,π2 时,正切函数y =tan x 是增函数,所以当α,β∈⎝ ⎛⎭⎪⎫-π2,π2时,α<β⇔tan α<tan β,所以“α<β”是“tan α<tan β”的充要条件,即②是真命题;③命题“自然数是整数”是全称命题,省略了“所有的”,故③是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1≥0”,故④是假命题.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设p :x >2或x <23;q :x >2或x <-1,则¬p 是¬q 的________条件.【解析】 ¬p :23≤x ≤2.¬q :-1≤x ≤2.¬p ⇒¬q ,但¬qD ⇒/ ¬p .∴¬p 是¬q 的充分不必要条件.【答案】 充分不必要14.若命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,则实数a 的取值范围是________.【解析】 若对于任意实数x ,都有x 2+ax -4a >0,则Δ=a 2+16a <0,即-16<a <0;若对于任意实数x ,都有x 2-2ax +1>0,则Δ=4a 2-4<0,即-1<a <1,故命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是真命题时,有a ∈(-1,0).而命题“对于任意实数 x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,故a ∈(-∞,-1]∪[0,+∞).【答案】 (-∞,-1]∪[0,+∞)15.给出下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b ≤-1,则关于x 的方程x 2-2bx +b 2+b =0有实数根”的逆否命题;④若sin α+cos α>1,则α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】 ②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等”的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】 ①③16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若¬p 是¬q 的充分条件,则实数a 的取值范围是________.【解析】 p :a -4<x <a +4,q :2<x <3,∵¬p 是¬q 的充分条件(即¬p ⇒¬q ),∴q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,∴-1≤a ≤6. 【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)指出下列命题的构成形式,并写出构成它的命题:(1)36是6与18的倍数;(2)方程x2+3x-4=0的根是x=±1;(3)不等式x2-x-12>0的解集是{x|x>4或x<-3}.【解】(1)这个命题是p∧q的形式,其中p:36是6的倍数;q:36是18的倍数.(2)这个命题是p∨q的形式,其中p:方程x2+3x-4=0的根是x =1;q:方程x2+3x-4=0的根是x=-1.(3)这个命题是p∨q的形式,其中p:不等式x2-x-12>0的解集是{x|x>4};q:不等式x2-x-12>0的解集是{x|x<-3}.18.(本小题满分12分)写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除.【解】(1)逆命题:若两个三角形相似,则它们一定全等,为假命题;否命题:若两个三角形不全等,则它们一定不相似,为假命题;逆否命题:若两个三角形不相似,则它们一定不全等,为真命题.(2)逆命题:若一个自然数能被5整除,则它的末位数字是零,为假命题;否命题:若一个自然数的末位数字不是零,则它不能被5整除,为假命题;逆否命题:若一个自然数不能被5整除,则它的末位数字不是零,为真命题.19.(本小题满分12分)写出下列命题的否定并判断真假:(1)所有自然数的平方是正数;(2)任何实数x 都是方程5x -12=0的根;(3)∀x ∈R ,x 2-3x +3>0;(4)有些质数不是奇数.【解】 (1)所有自然数的平方是正数,假命题;否定:有些自然数的平方不是正数,真命题.(2)任何实数x 都是方程5x -12=0的根,假命题;否定:∃x 0∈R,5x 0-12≠0,真命题.(3)∀x ∈R ,x 2-3x +3>0,真命题;否定:∃x 0∈R ,x 20-3x 0+3≤0,假命题.(4)有些质数不是奇数,真命题;否定:所有的质数都是奇数,假命题.20.(本小题满分12分)(2016·汕头高二检测)设p :“∃x 0∈R ,x 20-ax 0+1=0”,q :“函数y =x 2-2ax +a 2+1在x ∈[0,+∞)上的值域为[1,+∞)”,若“p ∨q ”是假命题,求实数a 的取值范围.【解】 由x 20-ax 0+1=0有实根,得Δ=a 2-4≥0⇒a ≥2或a ≤-2.因为命题p 为真命题的范围是a ≥2或a ≤-2.由函数y =x 2-2ax +a 2+1在x ∈[0,+∞)上的值域为[1,+∞),得a ≥0.因此命题q 为真命题的范围是a ≥0.根据p ∨q 为假命题知:p ,q 均是假命题,p 为假命题对应的范围是-2<a <2,q 为假命题对应的范围是a <0.这样得到二者均为假命题的范围就是⎩⎨⎧-2<a <2,a <0⇒-2<a <0.21.(本小题满分12分)(2016·惠州高二检测)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.【解】 (1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3,由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3.若p ∧q 为真,则2≤x <3,所以实数x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分不必要条件,则B A ,所以⎩⎨⎧0<a <2,3a >3⇒1<a <2,所以实数a 的取值范围是(1,2). 22.(本小题满分12分)已知二次函数f (x )=ax 2+x ,对任意x ∈[0,1],|f (x )|≤1恒成立,试求实数a 的取值范围. 【导学号:26160028】【解】 由f (x )=ax 2+x 是二次函数,知a ≠0.|f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1],① 当x =0,a ≠0时,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x ,当x ∈(0,1]时恒成立.设t =1x ,则t ∈[1,+∞),所以-t 2-t ≤a ≤t 2-t .令f (t )=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,t ∈[1,+∞), 所以f (t )max =-2.令g (t )=t 2-t =⎝ ⎛⎭⎪⎫t -122-14,t ∈[1,+∞), 所以g (t )min =0.所以只需-2≤a ≤0.综上所述,实数a 的取值范围是[-2,0).高中数学人教A版选修1-1 第一章常用逻辑用语章末综合测评(2)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·宜昌高二检测)下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是( )A.1B.2C.3D.4【解析】选D.①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.【补偿训练】下列命题是真命题的是( )A.y=tanx的定义域是RB.y=的值域为RC.y=的递减区间为(-∞,0)∪(0,+∞)D.y=sin2x-cos2x的最小正周期是π【解析】选D.当x=kπ+,k∈Z时,y=tanx无意义,A错;函数y=的定义域为.答案:【拓展延伸】完美解决参数问题通过已知条件,探索命题的真假,然后求解参数的取值范围,是逻辑用语部分常见的、基本的题型.解决此类问题要从三个方面入手:(1)熟练掌握真值表,判断单个命题p,q的真假.(2)具备丰富的基础知识储备,求解单个命题成立的参数范围.(3)辅助应用集合的运算确定参数的最后范围.15.(2016·徐州高二检测)已知命题p:≤1,命题q:x2-2x+1-m2<0(m>0),若p是q的充分不必要条件,则实数m的范围是.【解析】命题p首先化简为-1≤x≤3,命题q是二次不等式,p是q的充分不必要条件说明当-1≤x≤3时不等式x2-2x+1-m2<0恒成立,故又m>0,故可解得m>2.答案:(2,+∞)16.给出下列命题:①数列,3,,,3…的一个通项公式是;②当k∈(-3,0)时,不等式2kx2+kx-<0对一切实数x都成立;③函数y=sin2-sin2是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内.其中,真命题的序号是.【解析】①数列,3=,,,3=…的被开方数构成一个以3为首项,以6为公差的等差数列,故它的一个通项公式是,故①正确;②当k∈(-3,0)时,因为Δ=k2+3k<0,故函数y=2kx2+kx-的图象开口朝下,且与x轴无交点, 故不等式2kx2+kx-<0对一切实数x都成立,故②正确;③函数y=sin2-sin2=sin2-cos2=-cos=sin2x,是周期为π的奇函数,故③正确;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确.故真命题的序号是①②③④.答案:①②③④【补偿训练】下列正确命题有.①“sinθ=”是“θ=30°”的充分不必要条件;②如果命题“(p或q)”为假命题,则p,q中至多有一个为真命题;③设a>0,b>1,若a+b=2,则+的最小值为3+2;④函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,则a的取值范围是a<-1或a>.【解析】①由θ=30°可得sinθ=,反之不成立,因此“sinθ=”是“θ=30°”的必要不充分条件;②命题“(p或q)”为假命题,则p,q都是假命题;③a+b=2,所以a+b-1=1,+=(a+b-1)=3++≥3+2,最小值为3+2;④由题意得f(-1)f(1)<0,所以(-5a+1)(a-1)<0,所以a<-1或a>.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除.(3)∀x∈{x|x>0},x+≥2.(4)∃x0∈Z,log2x0>2.【解析】(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知f(x)=x2,g(x)=-m,若对∀x1∈,∃x2∈,有f(x1)≥g(x2),求实数m的取值范围.【解析】根据题意知,f(x1)min≥g(x2)min,当x1∈时,f(x1)min=0.当x2∈时,g(x2)=-m的最小值为g(2)=-m.因此0≥-m,解之得m≥.故实数m的取值范围是.19.(12分)(2016·马鞍山高二检测)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x 轴上所截的线段的长度为1的充要条件,证明你的结论.【解题指南】先求出必要条件,再证明其充分性.【解析】必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.故所求的充要条件是G2-4F=1.20.(12分)(2016·汕头高二检测)已知p:-2≤1-≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要不充分条件,求实数m的取值范围.【解题指南】先解不等式求出p真和q真的条件.p真:-2≤x≤10;q真:1-m≤x≤1+m,然后利用p是q的必要不充分条件,根据集合之间的包含关系建立关于m的不等式,求出m的取值范围.【解析】由x2-2x+1-m2≤0,得1-m≤x≤1+m,所以q:A={x|x>1+m或x<1-m,m>0}.由-2≤1-≤2,得-2≤x≤10.所以p:B={x|x>10或x<-2},因为p是q的必要不充分条件,所以A B,所以21.(12分)(2016·聊城高二检测)设命题p:函数f(x)=lg的定义域为R:命题q:3x-9x<a对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围. 【解析】要使函数f(x)=lg的定义域为R,则不等式ax2-x+>0对于一切x∈R恒成立,若a=0,则不等式等价为-x>0,解得x<0,不满足恒成立.若a≠0,则满足条件即解得即a>2,所以p:a>2.因为g(x)=3x-9x=-+≤,所以要使3x-9x<a对一切的实数x的恒成立,则a>,即q:a>.要使p且q为假,则p,q至少有一个为假命题.当p,q都为真命题时,满足即a>2,所以p,q至少有一个为假命题时有a≤2,即实数a的取值范围是a≤2.22.(12分)(2016·福州高二检测)已知a>0,b>0,函数f(x)=ax-bx2.(1)求证:∀x∈R均有f(x)≤1是a≤2的充分条件.(2)当b=1时,求f(x)≤1,x∈恒成立的充要条件.【解析】(1)f(x)=ax-bx2=-b+,因为∀x∈R,f(x)≤1,所以≤1,又a>0,b>0,所以a≤2,所以∀x∈R均有f(x)≤1是a≤2的充分条件.(2)因为b=1,所以f(x)=ax-x2,当x=0时,f(x)=0≤1成立,当x∈(0,1]时,f(x)≤1恒成立,即a≤x+在(0,1]上恒成立,又=2,此时x=1, 所以0<a≤2,当0<a≤2时,a≤x+在(0,1]上恒成立,所以f(x)≤1在(0,1]上恒成立,所以f(x)≤1,x∈(0,1]上恒成立的充要条件为0<a≤2.高中数学人教A版选修1-1 第一章常用逻辑用语章末综合测评(1)(30分钟50分)一、选择题(每小题3分,共18分)1.(2016·三明高二检测)命题:“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】选D.x2<1的否定为x2≥1;-1<x<1的否定为x≥1或x≤-1,故原命题的逆否命题为若x≥1或x≤-1,则x2≥1.2.(2016·长沙高二检测)命题p:∀x>0,e x>1,则p是( )A.∃x0≤0,≤1B.∃x0>0,≤1C.∀x>0,e x≤1D.∀x≤0,e x≤1【解析】选A.p是∃x0>0,≤1.3.命题p:x>2是x2>4的充要条件;命题q:若>,则a>b,则( )A.“p∨q”为真B.“p∧q”为真C.p真q假D.p,q均为假【解析】选A.命题p:x>2是x2>4的充要条件是假命题;命题q:“若>,则a>b”是真命题,所以“p∨q”为真.4.(2016·茂名高二检测)“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=<1,即<,不能推出0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=<<1,所以直线y=x+b与圆x2+y2=1相交. 【补偿训练】设向量a=(1,x),b=(2,1-x),则“x=-1”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.由a⊥b可得:x+2=0⇒x=2或x=-1,所以“x=-1”是“a⊥b”的充分而不必要条件.5.下列命题中的真命题是( )A.∃x0∈R,使得sinx0cosx0=B.∃x0∈(-∞,0),>1C.∀x∈R,x2>x-1D.∀x∈(0,π),sinx>cosx【解析】选C.由sinx0cosx0=,得sin2x0=>1,故A错误;结合指数函数和三角函数的图象,可知B,D错误;因为x2-x+1=+>0恒成立,所以C正确.6.(2016·安康高二检测)“直线x-y-k=0与圆(x-1)2+y2=2有两个不同的交点”的一个充分不必要条件可以是( )A.-1<k<3B.-1≤k≤3C.0<k<3D.k<-1或k>3【解析】选C.“直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点”等价于<,也就是k∈(-1,3).四个选项中只有(0,3)是(-1,3)的真子集,故充分不必要条件可以是0<k<3. 【补偿训练】已知命题p:在△ABC中,“C>B”是“sinC>sinB”的充分不必要条件;命题q:“a>b”是“ac2>bc2”的充分不必要条件,则下列选项中正确的是( )A.p真q假B.p假q真C.“p∨q”为假D.“p∧q”为真【解析】选C.在△ABC中,设角C与角B所对应的边分别为c,b,由C>B,知c>b,由正弦定理=可得sinC>sinB,当sinC>sinB时,易证C>B,故“C>B”是“sinC>sinB”的充要条件.当c=0时,由a>b得ac2=bc2,由ac2>bc2易证a>b,故“a>b”是“ac2>bc2”的必要不充分条件,即命题p是假命题,命题q也是假命题,所以“p∨q”为假.二、填空题(每小题4分,共12分)7.在下列结论中,①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“p”为假的必要不充分条件;④“p”为真是“p∧q”为假的必要不充分条件.正确的是.【解析】①“p∧q”为真是同时为真,可得到“p∨q”为真,反之不成立;②“p∧q”为假说明至少一个为假,此时“p∨q”可真可假;③中当“p”为假时可得到“p∨q”为真,所以“p∨q”为真是“p”为假的必要不充分条件;④“p”为真可得“p∧q”为假.答案:①③8.(2016·嘉峪关模拟)已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的范围是. 【解析】因为不等式|x-1|>m的解集是R,所以m<0,即p:m<0.若f(x)=在区间(0,+∞)上是减函数,则2-m>0,即m<2,即q:m<2.若p或q为真命题,p且q为假命题,则p,q一真一假.若p真,q假,则此时m无解,若p假,q真,则解得0≤m<2.综上:0≤m<2.答案:0≤m<2【补偿训练】设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是.【解析】设方程x2+2mx+1=0的两根分别为x1,x2,由得m<-1,所以p:m<-1;由方程x2+2(m-2)x-3m+10=0无实根,可得Δ2=4(m-2)2-4(-3m+10)<0,知-2<m<3,所以q:-2<m<3. 由p∨q为真,p∧q为假,可知命题p,q一真一假,当p真q假时,此时m≤-2;当p假q真时,此时-1≤m<3,所以m的取值范围是m≤-2或-1≤m<3.答案:(-∞,-2]∪=4(b2+d2-2bd)=4(b-d)2≥0,即Δ1,Δ2中至少有一个大于或等于0,所以两方程至少有一个有实根,即“p或q”为真命题.11.(2016·临汾高二检测)已知c>0,设命题p:函数y=c x在R上为减函数,命题q:当x∈时,函数f=x+>恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围. 【解题指南】根据指数函数的图象和性质可求出命题p为真命题时,c的取值范围;根据对勾函数的图象和性质,结合函数恒成立问题的解答思路,可求出命题q为真命题时,c的取值范围,进而根据“p或q”为真命题,“p且q”为假命题,可知p和q一真一假,分类讨论后,综合讨论结果,即可求出答案.【解析】因为c>0,所以如果命题p:函数y=c x在R上为减函数,是真命题,那么0<c<1.如果命题q:当x∈,函数f=x+>恒成立是真命题,又因为函数f=x+≥2,当且仅当x=时,即x=1时,函数f(x)=2,所以当x∈,函数f(x)∈>,所以<2,即c>.又因为p或q为真命题,p且q为假命题,所以p或q一个为真命题一个为假命题. 如果p为真命题q为假命题,那么0<c<1且c≤,所以0<c≤;如果p为假命题q为真命题,那么c≤0或c≥1且c>,所以c≥1.综上所述,c的取值范围为0<c≤或c≥1.。
2013年高中数学全国各地高考真题分类汇编A单元 集合与常用逻辑用语
A 单元 集合与常用逻辑用语A1 集合及其运算1.A1[2013·新课标全国卷Ⅰ] 已知集合A ={x|x 2-2x >0},B =x }-5<x <5,则( )A .A ∩B = B .A ∪B =RC .B AD .A B1.B [解析] A ={x|x<0或x>2},故A ∪B =R .1.A1[2013·北京卷] 已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1 B ,∴A ∩B ={-1,0},故选B.1.A1[2013·广东卷] 设集合M ={x|x 2+2x =0,x ∈R },N ={x|x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D.2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)① x ∈(-∞,1),f(x)>0;② x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则 x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x =12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c,又a ,b ,c 为三角形三边,则定有a +b>c ,故对 x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n <1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知, x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集.4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8.1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4 z =-4i ,故选C.2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D.1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( ) A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}.1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}.1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}.2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3 A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧m km ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a<0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a上单调递增,在区间12a ,1a上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点,∴sin φ=0,∴φ=k π,k ∈Z ,故选A.2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A.3.A2[2013·湖北卷] 在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(瘙 綈 q)C.(瘙 綈 p)∧(瘙 綈 q) D.p∨q3.A[解析] “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.7.A2[2013·山东卷] 给定两个命题p,q,若瘙 綈 p是q的必要而不充分条件,则p是瘙 綈 q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.A[解析] ∵瘙 綈 p是q的必要不充分条件,∴q是瘙 綈 p的充分而不必要条件,又“若p,则瘙 綈 q”与“若q,则瘙 綈 p”互为逆否命题,∴p是瘙 綈 q的充分而不必要条件.3.F1,A2[2013·陕西卷] 设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.C[解析] 由已知中|a·b|=|a|·|b|可得,a与b同向或反向,所以a∥b.又因为由a∥b,可得|cos〈a,b〉|=1,故|a·b|=|a|·|b||cos〈a,b〉|=|a|·|b|,故|a·b|=|a|·|b|是a∥b的充分必要条件.4.A2[2013·四川卷] 设x∈Z,集合A是奇数集,集合B是偶数集.若命题p: x∈A,2x∈B,则()A.B.C.D.4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos(ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos(ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k ⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3 A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧m km ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧mk m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)① x ∈(-∞,1),f(x)>0;② x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则 x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x >a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对 x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n <1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知, x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N ,如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.。
2013高考数学各省题目分类整理:集合与逻辑用语
2013高考:集合于逻辑用语【2013高考题组】(一)集合运算问题1、(2013北京,文理1)已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B = ( )A 、{0}B 、{1,0}-C 、{0,1}D 、{1,0,1}-2、(2013全国大纲,文1)设全集{1,2,3,4,5}U =,集合{1,2}A =,则U A =ð( )A 、{1,2}B 、{3,4,5}C 、{1,2,3,4,5}D 、∅3、(2013全国课标I ,文1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A 、{1,4}B 、{2,3}C 、{9,16}D 、{1,2}4、(2013全国课标I ,理1)已知集合2{|20}A x x x =->,{|B x x =<<,则( )A 、AB =∅ B 、A B R =C 、B A ⊆D 、A B ⊆5、(2013全国课标II ,文1)已知集合{|31}M x x =-<<,{|3,2,1,0,1}N x =---,则M N = ( )A 、{2,1,0,1}--B 、{3,2,1,0}---C 、{2,1,0}--D 、{3,2,1}---6、(2013全国课标II ,理1)已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N = ( ) A 、{0,1,2} B 、{1,0,1,2}- C 、{1,0,2,3}- D 、{0,1,2,3}7、(2013山东,文2)已知集合A 、B 均为全集{1,2,3,4}U =的子集,且(){4}U A B = ð,{1,2}B = 则U A B = ð( )A 、{3}B 、{4}C 、{3,4}D 、∅8、(2013安徽,文2)已知{|10}A x x =+>,{2,1,0,1}B =--,则()R A B = ð( )A 、{2,1}--B 、{2}-C 、{1,0,1}-D 、{0,1}9、(2013浙江,文1)设集合{|2}S x x =>-,{|41}T x x =-≤≤,则S T = ( )A 、[4,)-+∞B 、(2,)-+∞C 、[4,1]-D 、(2,1]-10、(2013浙江,理2)设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R S T = ð( )A 、(2,1]-B 、(,4]-∞-C 、(,1]-∞D 、[1,)+∞11、(2013天津,文理1)已知集合{|2}A x R x =∈≤,{|1}B x R x =∈≤,则A B = ( )A 、(,2]-∞B 、[1,2]C 、[2,2]-D 、[2,1]-12、(2013辽宁,文1)已知集合{0,1,2,3,4}A =,{|2}B x x =<,则A B = ( )A 、{0}B 、{0,1}C 、{0,2}D 、{0,1,2}13、(2013辽宁,理2)已知集合4{|0log 1}A x x =<<,{|2}B x x =≤,则A B = ( )A 、(0,1)B 、(0,2]C 、(1,2)D 、(1,2]14、(2013陕西,文1)设全集为R ,函数()f x =M ,则R M ð为( )A 、(,1)-∞B 、(1,)+∞C 、(,1]-∞D 、[1,)+∞15、(2013陕西,理1)设全集为R ,函数()f x =M ,则R M ð为( )A 、[1,1]-B 、(1,1)-C 、(,1][1,)-∞-+∞D 、(,1)(1,)-∞-+∞16、(2013湖南,文10)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则()U A B = ð 。
新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 习题课件(精选配套习题,含解析)
A.1
B.2
C.3
D.4
解析:方程 x2-5x+6=0 的解为 x=2 或 x=3,x2-x-2=0 的解为 x=2 或 x=-1,所以集合 M 中含有 3 个元素.
4.设x∈N,且1x∈N,则x的值可能是( B )
A.0
B.1
C.-1
D.0或1
解析:∵-1∉N,∴排除C;0∈N,而 10 无意义,排除A、D, 故选B.
——能力提升—— 14.若11-+aa∈A,且集合 A 中只含有一个元素 a,则 a 的值为 ______-__1_±__2___.
解析:由题意,得11- +aa=a, ∴a2+2a-1=0且a≠-1,∴a=-1± 2.
15.已知数集 A 满足条件:若 a∈A,则1-1 a∈A(a≠1),如果 a=2,试求出 A 中的所有元素.
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
解析:根据集合中元素的互异性可知,一定不是等腰三角形.
8.有下列说法:
①集合 N 中最小的数为 1;②若-a∈N,则 a∈N;③若 a∈
N,b∈N,则 a+b 的最小值为 2;④所有小的正数组成一个集合.
其中正确命题的个数是( A )
A.0
解析:深圳不是省会城市,而广州是广东省的省会.
10.设直线 y=2x+3 上的点集为 P,点(2,7)与点集 P 的关系 为(2,7)___∈__ P(填“∈”或“∉”).
解析:直线 y=2x+3 上的点的横坐标 x 和纵坐标 y 满足关系: y=2x+3,即只要具备此关系的点就在直线上.由于当 x=2 时,y =2×2+3=7,∴(2,7)∈P.
(2)不能.理由:若-5 为集合 A 中的元素,则 a-3=-5 或 2a-1=-5.
新教材高中数学第一章集合与常用逻辑用语章末检测新人教A版必修第一册
第一章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( ) A .{0}=∅ B .{(1,2)}={1,2} C .{∅}=∅D .0∈N【答案】D 【解析】由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.选D .2.已知集合A ={1,2},B ={1},则下列关系正确的是( ) A .B ∉A B .B ∈A C .B ⊆AD .A ⊆B【答案】C 【解析】因两个集合之间不能用“∈或∉”,首先排除选项A 、B,因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.“-2<x <4”是“x <4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A 【解析】根据(-2,4)(-∞,4),即“-2<x <4”是“x <4”的充分不必要条件.故选A .4.命题p :“x 2-3x -4=0”,命题q :“x =4”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B 【解析】根据题意,p :“x 2-3x -4=0”,即x =4或-1,则有若q :x =4成立,则p :“x 2-3x -4=0”成立,反之若p :“x 2-3x -4=0”成立,则q :x =4不一定成立,即p 是q 的必要不充分条件.故选B .5.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为⎩⎪⎨⎪⎧x >0,y >0⇒1xy >0,1xy >0⇒⎩⎪⎨⎪⎧x >0,y >0或⎩⎪⎨⎪⎧x <0,y <0,所以“⎩⎪⎨⎪⎧x >0,y >0”是“1xy>0”的充分不必要条件.故选A .6.已知集合P ={a ,b },Q ={M |M ⊆P },则P 与Q 的关系为( ) A .P ⊆Q B .Q ⊆P C .P ∈QD .P ∉Q【答案】C 【解析】因为集合P 的子集有∅,{a },{b },{a ,b },所以集合Q ={∅,{a },{b },{a ,b }},所以P ∈Q .故选C .7.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( )A B C D【答案】C 【解析】因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C .8.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是( )A .(-∞,2]B .(2,4]C .[2,4]D .(-∞,4]【答案】D 【解析】因为B ⊆A ,当B =∅时,即m +1≥2m -1,所以m ≤2;当B ≠∅时,有⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,所以2<m ≤4.综上可得m ≤4.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题正确的有( ) A .A ∪∅=∅ B .∁U (A ∪B )=∁U A ∪∁U B C .A ∩B =B ∩AD .∁U (∁U A )=A【答案】CD 【解析】在A 中,A ∪∅=A ,故A 错误;在B 中,∁U (A ∪B )=(∁U A )∩(∁U B ),故B 错误;在C 中,A ∩B =B ∩A ,故C 正确;在D 中,∁U (∁U A )=A ,故D 正确.故选CD .10.若x 2-x -2<0是-2<x <a 的充分不必要条件,则实数a 的值可以是( ) A .1 B .2 C .3D .4【答案】BCD 【解析】由x 2-x -2<0,解得-1<x <2.又x 2-x -2<0是-2<x <a 的充分不必要条件,所以(-1,2)(-2,a ),则a ≥2.所以实数a 的值可以是2,3,4.故选BCD .11.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 可能为( )A .2B .-2C .-3D .1【答案】AC 【解析】由题意得2=3x 2+3x -4或2=x 2+x -4,若2=3x 2+3x -4,即x2+x -2=0,所以x =-2或x =1,检验:当x =-2时,x 2+x -4=-2,与元素互异性矛盾,舍去;当x =1时,x 2+x -4=-2,与元素互异性矛盾,舍去.若2=x 2+x -4,即x 2+x -6=0,所以x =2或x =-3,经验证x =2或x =-3为满足条件的实数x .故选AC .12.下列条件能成为x >y 的充分条件的是( ) A .xt 2>yt 2B .xt >ytC .x 2>y 2D .0<1x <1y【答案】AD 【解析】由xt 2>yt 2可知,t 2>0,故x >y ,故A 为充分条件;由xt >yt 可知,t ≠0,当t <0时,有x <y ,当t >0时,有x >y ,故B 不是;由x 2>y 2,则|x |>|y |,推不出x >y ,故C 不是;由0<1x <1y ,因为函数y =1x在区间(0,+∞)上单调递减,可得x >y >0,故D 是充分条件.故选AD .三、填空题:本题共4小题,每小题5分,共20分.13.已知集合A ={x |x 2+ax +2=0},且满足1∈A ,则集合A 的子集个数为________. 【答案】4 【解析】依题意得1+a +2=0,解得a =-3,则x 2-3x +2=0,解得x 1=1,x 2=2,所以A ={1,2},所以集合A 的子集个数为22=4.14.已知集合A ={-2,1},B ={x |ax =2},若A ∪B =A ,则实数a 值集合为________. 【答案】{0,-1,2} 【解析】因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B=⎩⎨⎧⎭⎬⎫2a ,则2a =-2或2a=1,解得a =-1或2,所以实数a 值集合为{0,-1,2}. 15.(2021年黄冈高一期中)设条件p :|x -2|<3,条件q :0<x <a ,其中a 为正常数,若p 是q 的必要不充分条件,则a 的取值范围是____________.【答案】{a |0<a ≤5} 【解析】由|x -2|<3,得-3<x -2<3,即-1<x <5.所以p :-1<x <5.因为q :0<x <a ,a 为正常数,所以要使p 是q 的必要不充分条件,则0<a ≤5.16.命题p :∃a ,b ∈R ,方程ax +b =0无解的否定是________________________,命题p 的否定是________(填“真”或“假”)命题.【答案】∀a ,b ∈R ,方程ax +b =0至少有一解 假四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知集合A ={-2,2},B ={x |(x -2)(ax -1)=0}. (1)若a =1,求A ∩B ;(2)若A ∪B =A ,求实数a 的值.解:(1)因为A ={-2,2},当a =1时,B ={1,2},所以A ∩B ={2}. (2)由A ∪B =A 得B ⊆A .当a =0时,B ={2}符合题意,当a ≠0时,由(x -2)(ax -1)=0得a (x -2)⎝⎛⎭⎪⎫x -1a =0,而B ⊆A ,所以1a =2或1a =-2,解得a =12或a =-12.所以a 的取值集合为⎩⎨⎧⎭⎬⎫-12,0,12.18.已知全集为R ,A ={x |(x -2)2>1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x +2 >0,求: (1)A ∩B ;(2)A ∪(∁R B ).解:(1)A ={x |x -2<-1或x -2>1}={x |x <1或x >3},B ={x |x <-2或x >-1}, 所以A ∩B ={x |-1<x <1或x <-2或x >3}.(2)∁R B ={x |-2≤x ≤-1},所以A ∪(∁R B )={x |x <1或x >3}. 19.已知集合A ={x |a ≤x ≤a +3},B ={x |x <-2或x >6}. (1)若a =5,求A ∪B ;(2)若A ∩B =∅,求实a 的取值范围.解:(1)若a =5,则A ={x |5≤x ≤8},又B ={x |x <-2或x >6},所以A ∪B ={x |x <-2或x ≥5}.(2)因为A ={x |a ≤x ≤a +3},B ={x |x <-2或x >6},A ∩B =∅,所以⎩⎪⎨⎪⎧a ≥-2a +3≤6,解得-2≤a ≤3.所以实数a 的取值范围是[-2,3].20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求满足下列条件的a 的值. (1)9∈(A ∩B );(2){9}=A ∩B .解:(1)因为9∈(A ∩B ),所以9∈B 且9∈A . 所以2a -1=9或a 2=9,所以a =5或a =±3. 检验知a =5或a =-3.(2)因为{9}=A ∩B ,所以9∈(A ∩B ).所以a =5或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},与A ∩B ={9}矛盾,故舍去;当a =-3时,A ={-4,-7,9},B ={-8,4,9},A ∩B ={9},满足题意.综上可知a =-3.21.已知集合A ={x |a ≤x ≤a +3},B ={x |x <-6或x >1}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =B ,求a 的取值范围.解:(1)因为A ∩B =∅,所以⎩⎪⎨⎪⎧a ≥-6,a +3≤1,解得-6≤a ≤-2.所以a 的取值范围是{a |-6≤a ≤-2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<-6或a >1,解得a <-9或a >1. 所以a 的取值范围是{a |a <-9或a >1}.22.设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.证明:充分性:因为∠A =90°,所以a 2=b 2+c 2. 于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0, 所以x 2+2ax +(a +c )(a -c )=0. 所以[x +(a +c )][x +(a -c )]=0.所以该方程有两根x 1=-(a +c ),x 2=-(a -c ).同样另一方程x 2+2cx -b 2=0也可化为x 2+2cx -(a 2-c 2)=0, 即[x +(c +a )][x +(c -a )]=0,所以该方程有两根x 3=-(a +c ),x 4=-(c -a ). 可以发现x 1=x 3,所以方程有公共根.必要性:设x 是方程的公共根,则⎩⎪⎨⎪⎧x 2+2ax +b 2=0,①x 2+2cx -b 2=0.②①+②,得x =-(a +c ),x =0(舍去).代入①并整理,得a 2=b 2+c 2.所以∠A =90°.所以结论成立.。
2013届高三人教A版数学章末综合测试题(1)集合与常用逻辑用语
2013届高三数学章末综合测试题(1)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.1.设全集U={1,2,3,4,5},集合A={1,a-2,5},∁U A={2,4},则a的值为()A.3B.4C.5D.6解析:由∁U A={2,4},可得A={1,3,5},∴a-2=3,a=5.答案:C2.设全体实数集为R,M={1,2},N={1,2,3,4},则(∁R M)∩N等于()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}解析:∵M={1,2},N={1,2,3,4},∴(∁R B)∩N={3,4}.答案:B3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是() A.(∁U M∩∁U N)∩SB.(∁U(M∩N))∩SC.(∁U N∩∁U S)∪MD.(∁U M∩∁U S)∪N解析:由集合运算公式及Venn图可知A正确.答案:A4.已知p:2+3=5,q:5<4,则下列判断错误的是()A.“p或q”为真,“p”为假B.“p且q”为假,“q”为真C.“p且q”为假,“p”为假D.“p且q”为真,“p或q”为真解析:∵p为真,∴p为假.又∵q为假,∴q为真.∴“p且q”为真,“p或q”为真.答案:DA.0 B.1C .2D .4答案:C6.已知集合A ={(x ,y )|y =lg(x +1)-1},B ={(x ,y )|x =m },若A ∩B =∅,则实数m 的取值范围是( )A .m <1B .m ≤1C .m <-1D .m ≤-1解析:A ∩B =∅即指函数y =lg(x +1)-1的图像与直线x =m 没有交点,结合图形可得m ≤-1.答案:D7.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:依题意所选选项能使不等式2x 2-5x -3≥0成立,但当不等式2x 2-5x -3≥0成立时,却不一定能推出所选选项.由于不等式2x 2-5x -3≥0的解为x ≥3,或x ≤-12.答案:D8.命题p :不等式⎪⎪⎪⎪x x -1>x x -1的解集为{x |0<x <1};命题q :0<a ≤15是函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数的充分不必要条件,则( )A .p 真q 假B .“p 且q ”为真C .“p 或q ”为假D .p 假q 真解析:命题p 为真,命题q 也为真.事实上,当0<a ≤15时,函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数,但若函数在(-∞,4]上是减函数,应有0≤a ≤15.故“p 且q ”为真.答案:B9.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p 且q ”是真命题; ②命题“p 且(q )”是假命题; ③命题“(p )或q ”是真命题; ④命题“(p )或(q )”是假命题. 其中正确的是( ) A .②③ B .①②④ C .①③④D .①②③④解析:命题p :∃x 0∈R ,使tan x 0=1为真命题, 命题q :x 2-3x +2<0的解集是{x |1<x <2}也为真命题, ∴p 且q 是真命题,p 且(q )是假命题, (p )或q 是真命题,(p )或(q )是假命题, 故①②③④都正确. 答案:D10.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线开口可以向上,因此否命题也是假命题.故选D.答案:D11.若命题“∀x ,y ∈(0,+∞),都有(x +y )⎝⎛⎭⎫1x +a y ≥9”为真命题,则正实数a 的最小值是( )A .2B .4C .6D .8解析:(x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +yx≥1+a +2a =(a +1)2≥9,所以a ≥4,故a 的最小值为4.答案:B12.设p :y =c x (c >0)是R 上的单调递减函数;q :函数g (x )=lg(2cx 2+2x +1)的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎦⎤0,12∪[1,+∞) D.⎝⎛⎭⎫0,12 解析:由y =c x (c >0)是R 上的单调递减函数, 得0<c <1,所以p :0<c <1, 由g (x )=lg(2cx 2+2x +1)的值域为R , 得当c =0时,满足题意.当c ≠0时,由⎩⎪⎨⎪⎧c >0,Δ=4-8c ≥0,得0<c ≤12.所以q :0≤c ≤12.由p 且q 为假命题,p 或q 为真命题可知p 、q 一假一真. 当p 为真命题,q 为假命题时,得12<c <1,当p 为假命题时,c ≥1,q 为真命题时,0≤c ≤12.故此时这样的c 不存在. 综上,可知12<c <1.答案:A第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知命题p :∃x ∈R ,x 3-x 2+1≤0,则命题p 是____________________. 解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论. 答案:∀x ∈R ,x 3-x 2+1>014.若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是__________. 解析:∵“∃x ∈R,2x 2-3ax +9<0”为假命题,∴“∀x ∈R,2x 2-3ax +9≥0”为真命题. ∴Δ=9a 2-4×2×9≤0,解得-22≤a ≤2 2. 故实数a 的取值范围是[-22,22]. 答案:[-22,22]15.已知命题p :“对∀x ∈R ,∃m ∈R 使4x -2x +1+m =0”,若命题p 是假命题,则实数m 的取值范围是__________.解析:命题p 是假命题,即命题p 是真命题,也就是关于x 的方程4x -2x +1+m =0有实数解,即m =-(4x -2x +1).令f (x )=-(4x -2x +1),由于f (x )=-(2x -1)2+1,所以当x ∈R 时f (x )≤1,因此实数m 的取值范围是(-∞,1].答案:(-∞,1]16.已知集合A ={x ∈R |x 2-x ≤0},函数f (x )=2-x +a (x ∈A )的值域为B .若B ⊆A ,则实数a 的取值范围是__________.解析:A ={x ∈R |x 2-x ≤0}=[0,1]. ∵函数f (x )=2-x +a 在[0,1]上为减函数,∴函数f (x )=2-x +a (x ∈A )的值域B =⎣⎡⎦⎤12+a ,1+a . ∵B ⊆A ,∴⎩⎪⎨⎪⎧12+a ≥0,1+a ≤1.解得-12≤a ≤0.故实数a 的取值范围是⎣⎡⎦⎤-12,0. 答案:⎣⎡⎦⎤-12,0 三、解答题:本大题共6小题,共70分.17.(10分)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B 和A ∪B ;(2)若C ={x |4x +p <0},C ⊆A ,求实数p 的取值范围.解析:(1)依题意,得A ={x |x 2-x -2>0}={x |x <-1,或x >2}, B ={x |3-|x |≥0}={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3}, A ∪B =R .(2)由4x +p <0,得x <-p4,而C ⊆A ,∴-p4≤-1.∴p ≥4.18.(12分)已知命题p :关于x 的不等式x 2-2ax +4>0对一切x ∈R 恒成立;命题q :函数y =log (4-2a )x 在(0,+∞)上递减.若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.解析:命题p 为真,则有4a 2-16<0,解得-2<a <2; 命题q 为真,则有0<4-2a <1,解得32<a <2.由“p ∨q 为真,p ∧q 为假”可知p 和q 满足: p 真q 真、p 假q 真、p 假q 假.而当p 真q 假时,应有⎩⎪⎨⎪⎧-2<a <2,a ≥2或,a ≤32,即-2<a ≤32, 取其补集得a ≤-2,或a >32,此即为当“p ∨q 为真,p ∧q 为假”时实数a 的取值范围,故a ∈(-∞,-2]∪⎝⎛⎭⎫32,+∞ 19.(12分)已知命题p :|x -8|<2,q :x -1x +1>0,r :x 2-3ax +2a 2<0(a >0).若命题r是命题p 的必要不充分条件,且r 是q 的充分不必要条件,试求a 的取值范围.解析:命题p 即:{x |6<x <10}; 命题q 即:{x |x >1}; 命题r 即:{x |a <x <2a }.由于r 是p 的必要而不充分条件,r 是q 的充分而不必要条件,结合数轴应有⎩⎨⎧1≤a ≤6,2a ≥10.解得5≤a ≤6,故a 的取值范围是[5,6].20.(12分)已知集合A ={x |2-a ≤x ≤2+a },B ={x |x 2-5x +4≥0}. (1)当a =3时,求A ∩B ,A ∪(∁U B );(2)若A ∩B =∅,求实数a 的取值范围. 解析:(1)∵a =3,∴A ={x |-1≤x ≤5}. 由x 2-5x +4≥0,得x ≤1,或x ≥4, 故B ={x |x ≤1,或x ≥4}.∴A ∩B ={x |-1≤x ≤1或4≤x ≤5}. A ∪(∁U B )={x |-1≤x ≤5}∪{x |1<x <4} ={x |-1≤x ≤5}.(2)∵A =[2-a,2+a ],B =(-∞,1]∪[4,+∞),且A ∩B =∅,∴⎩⎪⎨⎪⎧2-a >1,2+a <4,解得a <1. 21.(12分)已知函数f (x )=2x 2-2ax +b ,f (-1)=-8.对∀x ∈R ,都有f (x )≥f (-1)成立.记集合A ={x |f (x )>0},B ={x ||x -t |≤1}.(1)当t =1时,求(∁R A )∪B ;(2)设命题p :A ∩B =∅,若p 为真命题,求实数t 的取值范围. 解析:由题意知(-1,-8)为二次函数的顶点, ∴f (x )=2(x +1)2-8=2(x 2+2x -3).由f (x )>0,即x 2+2x -3>0得x <-3,或x >1, ∴A ={x |x <-3,或x >1}. (1)∵B ={x ||x -1|≤1}={x |0≤x ≤2}. ∴(∁R A )∪B ={x |-3≤x ≤1}∪{x |0≤x ≤2} ={x |-3≤x ≤2}.(2)由题意知,B ={x |t -1≤x ≤t +1},且A ∩B =∅,∴⎩⎪⎨⎪⎧ t -1≥-3,t +1≤1⇒⎩⎪⎨⎪⎧t ≥-2,t ≤0,∴实数t 的取值范围是[-2,0].22.(12分)已知全集U =R ,非空集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -2x -3a -1<0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -a 2-2x -a <0.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解析:(1)当a =12时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 2<x <52, B =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <94. ∁U B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤12,或x ≥94. (∁UB )∩A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 94≤x <52. (2)若q 是p 的必要条件, 即p ⇒q ,可知A ⊆B ,由a 2+2>a ,得B ={x |a <x <a 2+2},当3a +1>2,即a >13时,A ={x |2<x <3a +1},∴⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.∴⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13;综上,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.。
人教课标版高中数学选修1-1第一章《常用逻辑用语》章末综合检测A卷
第一章《常用逻辑用语》章末综合检测A 卷(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①二次函数是偶函数吗?②2>2;③sin π2=1;④x 2-4x +4=0. 其中是命题的有( )A .1个B .2个C .3个D .4个2.命题“∀x ∈R ,x 2-x +2≥0”的否定是( )A .∃x ∈R ,x 2-x +2≥0B .∀x ∈R ,x 2-x +2≥0C .∃x ∈R ,x 2-x +2<0D .∀x ∈R ,x 2-x +2<03.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若命题p :x =2且y =3,则⌝p 为( )A .x ≠2或y ≠3B .x ≠2且y ≠3C .x =2或y ≠3D .x ≠2或y =35.下列命题中是全称命题并且是真命题的是( )A .每个二次函数的图象与x 轴都有两个不同的交点B .对任意非正数c ,若a ≤b +c ,则a ≤bC .存在一个菱形不是平行四边形D .存在一个实数x 使不等式x 2-3x +7<0成立6.命题p :a 2+b 2<0(a ,b ∈R );命题q :(a -2)2+|b -3|≥0(a ,b ∈R ),下列结论正确的是( )A .“p ∨q ”为真B .“p ∧q ”为真C .“⌝p ”为假D .“⌝q ”为真7.“等式sin(α+γ)=sin 2β成立”是“α,β,γ”成等差数列的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.给定下列命题( )①“x >1”是“x >2”的充分不必要条件;②“若sin α≠12,则α≠π6”; ③“若xy =0,则x =0且y =0”的逆否命题;④命题“∃x 0∈R ,使x 20-x 0+1≤0”的否定.其中真命题的序号是( )A .①②③B .②④C .③④D .②③④9.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0=2,则下列判断正确的是( )A .p 是真命题B .q 是假命题C .⌝p 是假命题D .⌝q 是假命题10.已知a 、b ∈R ,那么“0<a <1且0<b <1”是“ab +1>a +b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是__________.12.若“x ∈[2,5]或x ∈{x |x <1或x >4}是假命题,则x 的取值范围是________.13.已知四个命题:(1)∃x ∈Z ,x 2=3;(2)∃x ∈R ,x 2=3;(3)∀x ∈R ,x 2+x +1>0;(4)∀x ∈R ,x 2+x +1<0.其中真命题有________个.14.给定两个命题p ,q ,p :若x +y ≤4或xy ≤4,则x ≤2或y ≤2;q :有一个偶数是质数.则“p ∧q ”为________(填“真”或“假”)命题.15.在下列四个结论中,正确的是________.(填上你认为正确的所有答案的序号)(1)“x ≠0”是“x +|x |>0”的必要不充分条件;(2)已知a ,b ∈R ,则“|a +b |=|a |+|b |”的充要条件是ab >0;(3)“a >0,且Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集是R ”的充要条件;(4)“x ≠1”是“x 2≠1”的充分不必要条件.三、解答题(本大题共5小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤)16.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2;(3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.17.已知命题p :{x |1-c <x <1+c ,c >0},命题q :(x -3)2<16,且p 是q 的充分不必要条件,试求c 的取值范围.18.已知命题p :x -5x<0,命题q :函数y =log 2(x 2-x -12)有意义. (1)若p ∧q 为真命题,求实数x 的取值范围;(2)若p ∨ q 为假命题,求实数x 的取值范围.19.设函数f (x )=x |x -a |+b ,求证:f (x )为奇函数的充要条件是a 2+b 2=0.20.对于函数f (x ),若命题“∀x 0∈R ,f (x 0)≠x 0”的否定为真命题,则称x 0为函数f (x )的不动点.(1)若函数f (x )=x 2-mx +4有两个相异的不动点,求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)>0的解集为N ,若“x ∈N ”是“x ∈M ”的充分不必要条件,求实数a 的取值范围.参考答案一、选择题1.解析:选B.只有②和③是命题,语句①是疑问句,语句④含有变量x ,不能判断真假.2.解析:选C.“≥”的否定是“<”,全称命题的否定是特称命题.3.解析:选A.因为“a >0”⇒“|a |>0”,但是“|a |>0”⇒“a >0或a <0”,所以“|a |>0” “a >0”,故“a >0”是“|a |>0”的充分不必要条件.4.解析:选A.由于“且”的否定为“或”,所以⌝p :x ≠2或y ≠3.故选A.5.解析:选B.A 、B 为全称命题,但A 为假命题,B 是真命题.6.解析:选A.显然p 假q 真,故“p ∨q ”为真,“p ∧q ”为假,“⌝p ”为真,“⌝q ”为假,故选A.7.解析:选B.α,β,γ成等差数列⇒sin(α+γ)=sin 2β;反之不成立,如α+γ=π3,2β=2π3. 8.解析:选B.“x >1”是“x >2”的必要不充分条件,①错误;②的逆否命题为:若α=π6,则sin α=12正确,故②正确;若xy =0,则x =0或y =0,③错误;④正确. 9.解析:选D.因为∀x ∈R,2x 2+2x +12=(2x +12)2≥0,所以p 为假命题; 当x 0=3π4时,sin x 0-cos x 0=22-(-22)=2, 故命题q 为真命题.10.解析:选A.由0<a <1且0<b <1可推知(a -1)(b -1)>0,由(a -1)(b -1)>0⇒⎩⎪⎨⎪⎧a >1b >1或⎩⎪⎨⎪⎧a <1,b <1.故“0<a <1且0<b <1”是“ab +1>a +b ”的充分不必要条件.二、填空题11.答案:圆的切线到圆心的距离等于半径12.解析:由题意知⎩⎪⎨⎪⎧x <2或x >51≤x ≤4,解得1≤x <2. 故x ∈[1,2).答案:[1,2)13.解析:当x 2=3时,x =±3,故命题(1)为假命题;命题(2)为真命题;函数y =x 2+x +1图象开口向上,且12-4×1×1=-3<0,y 值恒大于0,故命题(3)为真命题,(4)为假命题. 答案:214.解析:直接判断p 的真假较为困难,可转化为判断命题p 的逆否命题,易得p 的逆否命题为“若x >2且y >2,则x +y >4且xy >4”,显然是真命题,而原命题与其逆否命题等价,从而命题p 为真命题;对于命题q ,易知存在一个偶数2,2为质数,从而命题q 亦为真命题.故“p ∧q ”为真命题.答案:真15.解析:(1)由x ≠0推不出x +|x |>0,如x =-1,但x +|x |=0,而x +|x |>0⇒x ≠0,故(1)正确;(2)a =0时,也有|a +b |=|a |+|b |,故(2)错误,应该是“|a +b |=|a |+|b |”的充分不必要条件是ab >0;(3)由二次函数的图象可知(3)正确;(4)x =-1时,有x 2=1,故(4)错误,正确的应该是“x ≠1”是“x 2≠1”的必要不充分条件,所以(1)(3)正确.答案:(1)(3)三、解答题16.解:(1)若一个数能被6整除,则这个数为偶数,是真命题.(2)若a -1+|b +2|=0,则a =1且b =-2,真命题.(3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.17.解:命题p 对应的集合A ={x |1-c <x <1+c ,c >0},由(x -3)2<16可解得命题q 对应的集合B ={x |-1<x <7},因为p 是q 的充分不必要条件,所以AB . 所以⎩⎪⎨⎪⎧ c >01-c ≥-11+c <7或⎩⎪⎨⎪⎧ c >0,1-c >-1,1+c ≤7.解得0<c ≤2.所以c 的取值范围是0<c ≤2.18.解:由x -5x<0,得0<x <5, 要使函数y =log 2(x 2-x -12)有意义,需x 2-x -12>0,解得x <-3或x >4.(1)若p ∧q 为真命题,则需满足⎩⎪⎨⎪⎧ 0<x <5,x <-3或x >4, 解得4<x <5.(2)若p ∨⌝q 为假命题,则p 与⌝q 都为假命题,∴⌝p 与q 都为真命题,∵⌝p :x ≤0或x ≥5,∴满足⎩⎪⎨⎪⎧ x ≤0或x ≥5,x <-3或x >4, 解得x <-3或x ≥5.19.证明:充分性:∵a 2+b 2=0,∴a =b =0,∴f (x )=x |x |.∵f (-x )=-x |-x |=-x |x |,-f (x )=-x |x |,∴f (-x )=-f (x ),∴f (x )为奇函数.必要性:若f (x )为奇函数,则对一切x ∈R ,f (-x )=-f (x )恒成立.即-x |-x -a |+b =-x |x -a |-b 恒成立.令x =0,则b =-b ,∴b =0,令x =a ,则2a |a |=0,∴a =0.∴a 2+b 2=0.20.解:(1)由题意知方程x 2-mx +4=x ,即x 2-(m +1)x +4=0有两个相异的实根,所以Δ=[-(m +1)]2-16>0,解得m >3或m <-5,即M ={m |m <-5或m >3}.(2)解不等式(x -a )(x +a -2)>0,当a >1时,N ={x |x >a 或x <2-a };当a <1时,N ={x |x >2-a 或x <a };当a =1时,N ={x |x ≠1}.因为“x ∈N ”是“x ∈M ”的充分不必要条件,所以N M .当a >1时,⎩⎪⎨⎪⎧ 2-a ≤-5,a ≥3,解得a ≥7;当a <1时,⎩⎪⎨⎪⎧ a ≤-5,2-a ≥3,解得a ≤-5;当a =1时,不合题意,舍去.综上可得实数a 的取值范围是a ≥7或a ≤-5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013届高三数学章末综合测试题(1)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.1.设全集U={1,2,3,4,5},集合A={1,a-2,5},∁U A={2,4},则a的值为( ) A.3 B.4C.5 D.6解析:由∁U A={2,4},可得A={1,3,5},∴a-2=3,a=5.答案:C2.设全体实数集为R,M={1,2},N={1,2,3,4},则(∁R M)∩N等于( )A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}解析:∵M={1,2},N={1,2,3,4},∴(∁R B)∩N={3,4}.答案:B3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是( ) A.(∁U M∩∁U N)∩SB.(∁U(M∩N))∩SC.(∁U N∩∁U S)∪MD.(∁U M∩∁U S)∪N解析:由集合运算公式及Venn图可知A正确.答案:A4.已知p:2+3=5,q:5<4,则下列判断错误的是( )A.“p或q”为真,“p”为假B.“p且q”为假,“q”为真C.“p且q”为假,“p”为假D.“p且q”为真,“p或q”为真解析:∵p为真,∴p为假.又∵q为假,∴q为真.∴“p且q”为真,“p或q”为真.答案:DA.0 B.1C.2 D.4答案:C6.已知集合A ={(x ,y )|y =lg(x +1)-1},B ={(x ,y )|x =m },若A ∩B =∅,则实数m 的取值范围是( )A .m <1B .m ≤1C .m <-1D .m ≤-1解析:A ∩B =∅即指函数y =lg(x +1)-1的图像与直线x =m 没有交点,结合图形可得m ≤-1.答案:D7.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:依题意所选选项能使不等式2x 2-5x -3≥0成立,但当不等式2x 2-5x -3≥0成立时,却不一定能推出所选选项.由于不等式2x 2-5x -3≥0的解为x ≥3,或x ≤-12.答案:D8.命题p :不等式⎪⎪⎪⎪⎪⎪x x -1>x x -1的解集为{x |0<x <1};命题q :0<a ≤15是函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数的充分不必要条件,则( )A .p 真q 假B .“p 且q ”为真C .“p 或q ”为假D .p 假q 真解析:命题p 为真,命题q 也为真.事实上,当0<a ≤15时,函数f (x )=ax 2+2(a -1)x+2在区间(-∞,4]上为减函数,但若函数在(-∞,4]上是减函数,应有0≤a ≤15.故“p且q ”为真.答案:B9.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p 且q ”是真命题; ②命题“p 且(q )”是假命题; ③命题“(p )或q ”是真命题; ④命题“(p )或(q )”是假命题. 其中正确的是( ) A .②③ B .①②④ C .①③④D .①②③④解析:命题p :∃x 0∈R ,使tan x 0=1为真命题, 命题q :x 2-3x +2<0的解集是{x |1<x <2}也为真命题, ∴p 且q 是真命题,p 且(q )是假命题, (p )或q 是真命题,(p )或(q )是假命题, 故①②③④都正确. 答案:D10.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线开口可以向上,因此否命题也是假命题.故选D.答案:D11.若命题“∀x ,y ∈(0,+∞),都有(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9”为真命题,则正实数a 的最小值是( )A .2B .4C .6D .8解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +ax y +y x≥1+a +2a =(a +1)2≥9,所以a ≥4,故a 的最小值为4.答案:B12.设p :y =c x(c >0)是R 上的单调递减函数;q :函数g (x )=lg(2cx 2+2x +1)的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则c 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎦⎥⎤0,12∪[1,+∞) D.⎝ ⎛⎭⎪⎫0,12 解析:由y =c x(c >0)是R 上的单调递减函数, 得0<c <1,所以p :0<c <1, 由g (x )=lg(2cx 2+2x +1)的值域为R , 得当c =0时,满足题意.当c ≠0时,由⎩⎪⎨⎪⎧c >0,Δ=4-8c ≥0,得0<c ≤12.所以q :0≤c ≤12.由p 且q 为假命题,p 或q 为真命题可知p 、q 一假一真. 当p 为真命题,q 为假命题时,得12<c <1,当p 为假命题时,c ≥1,q 为真命题时,0≤c ≤12.故此时这样的c 不存在. 综上,可知12<c <1.答案:A第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知命题p :∃x ∈R ,x 3-x 2+1≤0,则命题p 是____________________. 解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论. 答案:∀x ∈R ,x 3-x 2+1>014.若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是__________. 解析:∵“∃x ∈R,2x 2-3ax +9<0”为假命题, ∴“∀x ∈R,2x 2-3ax +9≥0”为真命题. ∴Δ=9a 2-4×2×9≤0,解得-22≤a ≤2 2. 故实数a 的取值范围是[-22,22]. 答案:[-22,22]15.已知命题p :“对∀x ∈R ,∃m ∈R 使4x-2x +1+m =0”,若命题p 是假命题,则实数m 的取值范围是__________.解析:命题p 是假命题,即命题p 是真命题,也就是关于x 的方程4x-2x +1+m =0有实数解,即m =-(4x-2x +1).令f (x )=-(4x -2x +1),由于f (x )=-(2x -1)2+1,所以当x ∈R时f (x )≤1,因此实数m 的取值范围是(-∞,1].答案:(-∞,1]16.已知集合A ={x ∈R |x 2-x ≤0},函数f (x )=2-x+a (x ∈A )的值域为B .若B ⊆A ,则实数a 的取值范围是__________.解析:A ={x ∈R |x 2-x ≤0}=[0,1]. ∵函数f (x )=2-x+a 在[0,1]上为减函数,∴函数f (x )=2-x+a (x ∈A )的值域B =⎣⎢⎡⎦⎥⎤12+a ,1+a .∵B ⊆A , ∴⎩⎪⎨⎪⎧12+a ≥0,1+a ≤1.解得-12≤a ≤0.故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-12,0. 答案:⎣⎢⎡⎦⎥⎤-12,0 三、解答题:本大题共6小题,共70分.17.(10分)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B 和A ∪B ;(2)若C ={x |4x +p <0},C ⊆A ,求实数p 的取值范围.解析:(1)依题意,得A ={x |x 2-x -2>0}={x |x <-1,或x >2},B ={x |3-|x |≥0}={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3},A ∪B =R .(2)由4x +p <0,得x <-p4,而C ⊆A ,∴-p4≤-1.∴p ≥4.18.(12分)已知命题p :关于x 的不等式x 2-2ax +4>0对一切x ∈R 恒成立;命题q :函数y =log (4-2a )x 在(0,+∞)上递减.若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.解析:命题p 为真,则有4a 2-16<0,解得-2<a <2; 命题q 为真,则有0<4-2a <1,解得32<a <2.由“p ∨q 为真,p ∧q 为假”可知p 和q 满足:p 真q 真、p 假q 真、p 假q 假.而当p 真q 假时,应有⎩⎪⎨⎪⎧-2<a <2,a ≥2或,a ≤32,即-2<a ≤32,取其补集得a ≤-2,或a >32,此即为当“p ∨q 为真,p ∧q 为假”时实数a 的取值范围,故a ∈(-∞,-2]∪⎝ ⎛⎭⎪⎫32,+∞ 19.(12分)已知命题p :|x -8|<2,q :x -1x +1>0,r :x 2-3ax +2a 2<0(a >0).若命题r 是命题p 的必要不充分条件,且r 是q 的充分不必要条件,试求a 的取值范围.解析:命题p 即:{x |6<x <10}; 命题q 即:{x |x >1}; 命题r 即:{x |a <x <2a }.由于r 是p 的必要而不充分条件,r 是q 的充分而不必要条件,结合数轴应有⎩⎪⎨⎪⎧1≤a ≤6,2a ≥10.解得5≤a ≤6,故a 的取值范围是[5,6].20.(12分)已知集合A ={x |2-a ≤x ≤2+a },B ={x |x 2-5x +4≥0}. (1)当a =3时,求A ∩B ,A ∪(∁U B ); (2)若A ∩B =∅,求实数a 的取值范围. 解析:(1)∵a =3,∴A ={x |-1≤x ≤5}. 由x 2-5x +4≥0,得x ≤1,或x ≥4, 故B ={x |x ≤1,或x ≥4}.∴A ∩B ={x |-1≤x ≤1或4≤x ≤5}.A ∪(∁UB )={x |-1≤x ≤5}∪{x |1<x <4}={x |-1≤x ≤5}.(2)∵A =[2-a,2+a ],B =(-∞,1]∪[4,+∞),且A ∩B =∅,∴⎩⎪⎨⎪⎧2-a >1,2+a <4,解得a <1.21.(12分)已知函数f (x )=2x 2-2ax +b ,f (-1)=-8.对∀x ∈R ,都有f (x )≥f (-1)成立.记集合A ={x |f (x )>0},B ={x ||x -t |≤1}.(1)当t =1时,求(∁R A )∪B ;(2)设命题p :A ∩B =∅,若p 为真命题,求实数t 的取值范围. 解析:由题意知(-1,-8)为二次函数的顶点, ∴f (x )=2(x +1)2-8=2(x 2+2x -3).由f (x )>0,即x 2+2x -3>0得x <-3,或x >1, ∴A ={x |x <-3,或x >1}.(1)∵B ={x ||x -1|≤1}={x |0≤x ≤2}. ∴(∁R A )∪B ={x |-3≤x ≤1}∪{x |0≤x ≤2} ={x |-3≤x ≤2}.(2)由题意知,B ={x |t -1≤x ≤t +1},且A ∩B =∅,∴⎩⎪⎨⎪⎧t -1≥-3,t +1≤1⇒⎩⎪⎨⎪⎧t ≥-2,t ≤0,∴实数t 的取值范围是[-2,0].22.(12分)已知全集U =R ,非空集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x -3a -1<0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -a 2-2x -a <0. (1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解析:(1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2<x <52, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <94. ∁U B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤12,或x ≥94. (∁U B )∩A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪94≤x <52. (2)若q 是p 的必要条件, 即p ⇒q ,可知A ⊆B ,由a 2+2>a ,得B ={x |a <x <a 2+2},当3a +1>2,即a >13时,A ={x |2<x <3a +1},∴⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.∴⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13;综上,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.。