北师大版贵阳市2008年八年级(下)期未数学试题(含答案)

合集下载

北师大版八年级第二学期期末数学试卷及答案

北师大版八年级第二学期期末数学试卷及答案

北师大版八年级第二学期期末数学试卷及答案一、选择题(共10小题).1.下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5y C.x2>y2D.﹣>﹣3.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8x D.x2+1=x(x+)4.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°5.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.67.若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣28.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.9.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.410.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1B.1.5C.2D.2.5二、填空题(每小题3分,共18分)11.因式分解:3a2﹣27=.12.不等式﹣2x>﹣4的正整数解为.13.如果要使分式有意义,则x的取值范围是.14.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为度.15.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.16.如图在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得点O,A,B,C四点构成平行四边形,则C点坐标为.三、解答题(共52分,请写出必要的解题步骤)17.求不等式组的解集,并把解集在数轴上表示出来.18.先化简,再求值:÷(x﹣),其中x=﹣2.19.如图,在△ABC中,∠C=90°.请用尺规在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)20.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.21.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.23.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?24.如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是;(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a、b的值.参考答案一、选择题(共10小题).1.下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5y C.x2>y2D.﹣>﹣解:A、在不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项不符合题意.B、在不等式x<y的两边同时乘以﹣5,不等式号方向发生改变,即﹣5x>﹣5y,故本选项不符合题意.C、当0<x<y时,x2>y2才成立,故本选项符合题意.D、在不等式x<y的两边同时除以﹣,6,不等式号方向发生改变,即﹣>﹣,故本选项不符合题意.故选:C.3.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x(x+)解:A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;D、在等式的右边不是整式,故D不正确;故选:A.4.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.5.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5,则这个多边形是五边形.故选:B.6.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.6解:∵AB的中垂线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6,CD=.BC=BD+CD=6+3故选:C.7.若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣2解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.8.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.9.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.4解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选:C.10.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1B.1.5C.2D.2.5解:如图,作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠DEB=45°,∴△BDE是等腰直角三角形,设DH=BH=EH=a,∵DH∥AB∴△CDH∽△CAB,∴==,∵AD=1,AC=4,∴==,∴AB=a,CE=2a,∵AB2+BC2=AC2,∴a2+16a2=16,a2=,∴图中阴影部分的面积=×a×4a﹣×2a×a=a2=1.5.故选:B.二、填空题(每小题3分,共18分)11.因式分解:3a2﹣27=3(a+3)(a﹣3).解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3).故答案为:3(a+3)(a﹣3).12.不等式﹣2x>﹣4的正整数解为x=1.解:∵﹣2x>﹣4∴x<2∴正整数解为:x=1故答案为:x=113.如果要使分式有意义,则x的取值范围是x≠2.解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.14.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为50度.解:如图,∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°故答案为:50.15.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.16.如图在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得点O,A,B,C四点构成平行四边形,则C点坐标为(3,4)或(1,﹣2)或(﹣1,2).解:如图所示:∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),∴三种情况:①当AB为对角线时,点C的坐标为(3,4);②当OB为对角线时,点C的坐标为(1,﹣2);③当OA为对角线时,点C的坐标为(﹣1,2);故答案为(3,4)或(1,﹣2)或(﹣1,2).三、解答题(共52分,请写出必要的解题步骤)17.求不等式组的解集,并把解集在数轴上表示出来.解:解不等式x﹣3(x+1)<3得:x>﹣3,解不等式﹣≤1得:x≤2,∴不等式组的解集为:﹣3<x≤2,∴不等式组的解集在数轴上表示如图:18.先化简,再求值:÷(x﹣),其中x=﹣2.解:÷(x﹣)=÷=×=,当x=﹣2时,原式==﹣1.19.如图,在△ABC中,∠C=90°.请用尺规在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)解:如图作AB的垂直平分线,交AC于P.则PA=PB,点P为所求作的点.20.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.【解答】(1)解:∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,∴DE=CD=1,∵AC=BC,∠C=90°,∴∠B=45°,∴△BDE是等腰直角三角形,∴BD=DE=,∴AC=BC=CD+BD=+1;(2)证明:在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∵△BDE是等腰直角三角形,∴BE=DE=CD,∵AB=AE+BE,∴AB=AC+CD.21.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.22.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=CF;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.23.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.24.如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是a2﹣b2=(a+b)(a﹣b);(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a、b的值.解:(1)由图1可得阴影部分的面积=a2﹣b2,由图2可得阴影部分的面积=(a﹣b)(a+b),∴可得公式为a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)由題意可得:a﹣b=3,∵a2﹣b2=(a+b)(a﹣b)=57,∴a+b=19,∴,解得:,∴a,b的值分別是11,8.。

北师大版八年级下册数学期末试卷及答案

北师大版八年级下册数学期末试卷及答案

北师大版八年级下册数学期末试卷及答案推荐文章八年级上册数学教学计划热度:2019八年级上册数学教学计划热度:八年级数学全等三角形教学反思热度:人教版八年级数学教材分析热度:八年级数学教材分析热度:八年级数学期末考试将至。

复习不仅要做到温故而知新,更要起到整理知识。

下面是小编为大家精心整理的北师大版八年级下册数学期末试卷及参考答案,仅供参考。

北师大版八年级下册数学期末试卷题目选择题(每小题3分,共24分)1.下列关于的方程:① ;② ;③ ;④( ) ;⑤ = -1,其中一元二次方程的个数是( )A.1B.2C.3D.42.已知α为锐角,且sin(α-10°)=22,则α等于( )A.45°B.55°C.60°D.65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图( )A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变4.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有两个不相等的实数根,则整数m的最小值为( )A.﹣3B.﹣2C.﹣1D.2(第4题图) (第5题图) (第6题图)5.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )A.(6,0)B.(6,3)C.(6,5)D.(4,2)6.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( )A. B. C. D.7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2B.﹣2C.3D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个(第7题图) (第8题图) (第12题图) (第13题图)填空题(每小题3分,共21分)9.计算:﹣14+ ﹣4cos30°=.10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数的图象无公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程(m-2)x²+2x-1=0有实数根,求m的取值范围。

2008学年度8年级下学期期末测试数学试题及其答案1.1(印刷版)

2008学年度8年级下学期期末测试数学试题及其答案1.1(印刷版)

-1-2008学年第二学期八年级 数学科期末测试题(答案附后)一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出来,填入下表中相对应的表格.) 1.如图1,在等腰梯形ABCD 中,AD BC ∥,70B ∠=, 则C =∠(※).(A )60 (B ) 68 (C )70 (D )1102. 某校8年级(2)班的10名同学某天的早餐费用分别为(单位:元):2 、5、3、3 、4、5 、3 、6 、5、3, 在这组数据的众数是(※).a (A )3 (B ) 3.5 (C )4 (D )6 3. 如图2是一个外轮廓为矩形的机器零件平面示意图, 根据图中的尺寸(单位:m m ),可以计算出两圆孔 中心A 和B 的距离为(※)m m .(A )120 (B ) 135 (C ) (D )150 4. 下列运算正确的是(※).(A )61233()b a b a -= (B )121231111R R R R ++==(C ) 51233()b a b a -= (D )1212112R R R R +=+5.如图3,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为(※).D(A )(-3,2) (B)(-2,-3) (C )(3,-2) (D )(2,-3)A D CB图1 图2图3-2-6. 下面命题中错误..的是(※). (A )梯形是轴对称图形(B )三角形的三条中线交于一点(C )菱形的四条边都相等 (D )有一个角是直角的菱形是正方形7.已知广州市的土地总面积约为7434 km 2,人均占有的土地面积S (单位:km 2/人)随全市人口n (单位:人)的变化而变化,则S 与n 的函数关系式为(※). B (A )7434S n = (B )7434S n=(C ) 7434n S = (D )7434nS =8.如图4,直线l 上有三个正方形A 、B 、C ,若A 、C 的面积分别为5和11,则正方形B 的面积为(※).C(A )4(B )6(C )16(D )559. 如图5,函数y x m =+与(0)my m x=≠在同一坐标 系内的图象可能是(※).b10. 矩形的面积为12cm 2,周长为14cm ,则它的对角线长为(※).(A )5cm (B )6cm (C(D)二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.当_________x =时,分式11x x +-的值为0. 12.点(1,3)在反比例函数ky x=的图象上,则_________.k = 13.人体中成熟的红细胞的平均直径为0.00000077m ,用科学记数法表示0.00000077的结果为 .14.写出命题“直角三角形两直角边的平方和等于斜边的平方”的逆命题:. 15. 如图6,在菱形ABCD 中,对角线6AC cm =,5BC cm =,则菱形ABCD 的面积为 .xxxx 图5 (B )(A) (C) (D)图4-3-16. 如图7是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这10天日平均气温的方差大小关系为:2S 甲 2S 乙.三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,每题3分)计算: (1)2324510m m n n ÷; (2)2235325953x x x x x ÷⨯--+.图71 2 3 4 5 6 7 8 9 10ODCBA 图6-4-如图8,是反比例函数5m y x-=(1) 图象的另一支位于哪个象限?常数m (2) 在这个函数图象的某一支上任取两点(,)A a b 若a c <,那么b 和d 有怎样的大小关系?19.(本小题满分7分)在“心系灾区”自愿捐款活动中,某班50名同学的捐款情况如下表: (1)问这个班级捐款总数是多少元? (2)求这50名同学捐款的平均数、中位数. (3)从表中你还能得到什么信息?(只写一条即可)图8-5-有一道试题:“先化简,再求值:22361()399x x x x x -+÷+--,其中“x =.小亮同学在做题时把“x =x =,但他的计算结果确也是正确,请你说明这是什么原因?21.(本小题满分8分)如图9,在梯形ABCD 中,AE BC ⊥于E ,DF BC ⊥于F ,且BE CF =. (1) 求证:梯形ABCD 为等腰梯形;(2) 若2AD AE ==,4BC =,求腰AB 的长.图9FEDCB A-6-22.(本小题满分8分)某中学八年级同学去距学校10千米远的工厂参加综合实践活动,一部分同学骑自行车先走,半小时后,其余同学再乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学的速度的2.5倍,求骑车同学和汽车的速度.23.(本小题满分8分)如图9,已知ABC ∆的两边AB 、AC 的中点分别为M 、N . (1) 线段MN 是ABC ∆的什么线? (2) 求证://MN BC ,且12MN BC =.图9B-7-如图10,已知(4,2)A -、(,4)B n -是一次函数y kx b =+的图象与反比例函数m y x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式; (2) 根据图象写出使一次函数的值小于反比 例函数的值的x 的取值范围.(3)过A 作AC y ⊥轴于点C ,过B 作BD y ⊥ 轴于点,D 连结AD 、BC ,试判断四边形ADBC 是否是平行四边形?并求出此四边形的面积。

2008年秋八年级北师大版数学期末试卷(含答案)

2008年秋八年级北师大版数学期末试卷(含答案)

2008年秋八年级北师大版数学期末试卷班级: 座位: 姓名: 成绩:________一、单项选择题(每题3分,共30分)1.下列各数中是无理数的是( ).(A )2 (B )2 (C )38 (D )7222.9的平方根是( ).(A )3 (B )-3 (C )±3 (D )±33.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ). (A )1、2、3 (B )2、3、4 (C )3、4、5 (D )4、5、6 4.下列图案中,是中心对称图形的是( ).(A ) (B ) (C ) (D )5.位于坐标平面上第四象限的点是 ( ).(A ) (0,-4) (B ) (3,0) (C ) (4,-3) (D ) (-5,-2) 6.根据下列表述,能确定位置的是( ). (A )某电影院2排 (B )南京市大桥南路 (C )北偏东30° (D )东经118°,北纬40°7.已知⎩⎨⎧==1,2y x是方程kx -y =3的一个解,那么k 的值是( ).(A ) 2 (B ) -2 (C ) 1 (D ) -1 8.下列一次函数中,y 的值随着x 值的增大而减小的是( ).(A )y =x (B )y =-x (C )y =x +1 (D )y =x -1 9.如图,将两块全等的直角三角板拼接在一起.这个图形可以看作是由一块直角三角板绕着直角顶点经过一次旋转后得到的,那么旋转的角度是( ). (A )30° (B )60° (C )90° (D )180°10.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组( ).(A )⎩⎨⎧==+yx y x 5.2,20 (B )⎩⎨⎧=+=yx y x 5.1,20 (C )⎩⎨⎧==+yx y x 5.1,20 (D )⎩⎨⎧+==+5.1,20y x y x二、填空题(每题3分,共15分)11.如果一次函数y =x +b 经过点A (0,3),那么b = . 12.某中学举行广播操比赛,六名评委对某班打分如下: 7.5分,8.2分,7.8分,9.0分,8.1分,7.9分.去掉一个最高分和一个最底分后的平均分是 分.13.如图,在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,AB =OA =4,则AD = .14.如图,矩形AOCD 中,A 、C 坐标分别为(-4,0)、(0,2),则D 点坐标是( ). 15.写出两个无理数,使这两个无理数的积为有理数,那么 这两个无理数可以是 和 .三、化简(每小题5分,共10分)16.32218-+. 17.(3+2)2.四、解方程组(每小题5分,共10分)18.⎩⎨⎧=-=;1,2y x x y 19.⎩⎨⎧-=-=+.12,4y x y xODCBA(第13题)20.对于边长为2的正△ABC,建立适当的直角坐标系,写出各个顶点的坐标.21.在平面直角坐标系中,将坐标是(0,4),(1,0),(2,4),(3,0),(4,4)的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有什么变化?六、(每题6分,共18分)22.蜡烛燃烧,每小时耗去4.8厘米,已知蜡烛原来的长度为24厘米,设燃烧x小时后剩下的长度为y厘米.(1)写出y与x之间的函数关系式;(2)经过多长时间后,蜡烛点完?23(1)求销售的运动鞋尺码的平均数、众数和中位数;(2)你认为该专柜应多进哪种尺码的运动鞋?24.小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?七、(本题5分)25.中心对称图形都可以过对称中心作一条直线把它分成面积相等的两部分.例如:经过圆心的直线把圆分成两个面积相等的两部分.请你各画一条直线将下面的两个图形分成面积相等的两部分.参考答案及评分标准一、单项选择题(每题2分,共20分)二、填空题(每题2分,共10分) 11.3 12.8 13. 43 14.(-4,2) 15.开放性试题,答案不唯一,可以是形如ba和ca,或者a+b和a-b等三、化简(每小题4分,共8分)16.解:原式=2223+-3……………………2分=1.…………………………………4分17.解:原式=32+2×3×2+(2)2…………2分=9+62+2 =11+62.………………………4分四、解方程组(每小题5分,共10分) 18.解:将①代入②,得 x -2x =1,-x =1,x =-1.………3分将x =-1代入①,得y =-2.………………4分所以原方程组的解是⎩⎨⎧-=-=.2,1y x …………………5分19.解:①+②,得3x =3,x =1.………………3分 将x =1代入①,得 1+y =4,y =3.………………4分所以原方程组的解是⎩⎨⎧==.3,1y x …………………5分五、(每题6分,共12分) 20.解法一:如图,以边BC 所在直线为x 轴,以边BC 的中垂线为y 轴,建立直角坐标系.…2分此时B 、C 点的坐标分别为(-1,0)、(1,0). …………4分在Rt △ABO 中,AB =2,BO =1,则AO =22BO AB -=3.所以A 点的坐标为(0,3).………………………6分解法二:以点B 为坐标原点,以边BC 所在直线为x 轴,建立直角坐标系. 则A (1,3)、B (0,0)、C (2,0).可仿照解法一给分. 21.解:(1)画出符合要求的图形.………………………2分(2)画出符合要求的图形,并说明所得的图案与原图案关于x 轴对称.……6分 六、(每题6分,共18分) 22.解:(1)y =24-4.8x ;………………………3分(2)当x =5时,y =0,因此经过5小时后,蜡烛点完.……………6分 23.解:(1)销售的运动鞋尺码的平均数、众数和中位数分别是21.8、22、22;……4分(其中平均数算对得2分,众数和中位数找对各得1分) (2)因为尺码为22的运动鞋卖得最多,所以应多进22码的运动鞋.……………6分 24.解:设小颖投中x 个,爸爸投中y 个,则⎩⎨⎧==+.3,20y x y x ……………………3分 将②代入①,得 x +3x =20,x =5. ……………………4分将x =5代入②,得 y =15. ……………………5分 所以小颖投中5个,爸爸投中15个. ……………6分七、(本题6分) 25.解:如图(1),先作出平行四边形的对角线,经过对角线的交点任意作一条直线(如果只作一条对交线也可以给分).…………………………3分如图(2),先作出两个正方形的中心,经过这两个中心作直线,即为所求.………6分① ②(1)(2)。

北师大版八年级下 期末数学试题 6套(含答案).

北师大版八年级下 期末数学试题 6套(含答案).

A、x≥32B 北师大版八下学期期末考试题1一、选择题(5×3=15分)1、不等到式2x-3≥0的解集是()322B、x>C、x<D、x<2332、如图,线段AB:BC=1:2,那么AC:BC等于()A、1:3B、2:3C、3:1D、3:2A B C3、如图,ΔABC中,DE∥BC,如果AD=1,DB=2,那么DE BC2111A、B、C、D、3432的值为()AD E4、若x2+mxy+9y2是一个完全平方式,则m=()CA、6B、12C、±6D、±125、调查某班级的的对数学老师的喜欢程度,下列最具有代表性的样本是()A、调查单数学号的学生B、调查所有的班级干部C、调查全体女生D、调查数学兴趣小组的学生二、填空题(8×3=24分)x2-96、对于分式,当x________时,分式有意义,当x________时,分式的值为0.x+37、不等式2x-2≤7的正整数解分别是_________.Ax32x-y8、已知=,则=______.y5y B E FC9、如图,在ΔABC中,EF∥BC,AE=2BE,则ΔAEF与梯形BCFE的面积比_______.10、分解因式:m2(x-y)+4n2(y-x)=___________________________.11、下列调查中,____适宜使用抽样调查方式,_____适宜使用普查方式.(只填相应的序号)①张伯想了解他承包的鱼塘中的鱼生长情况;②了解全国患非典性肺炎的人数;③评价八年级十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道.12、把命题“对顶角相等”改写成:如果_________________________________________,那么_____________________________________________。

13、设C是线段AB的黄金分割点(AC>BC),AB=4cm,则AC=________.三、解答题(本大题共10小题,14~17题每小题7分,18~21题每小题8分,22题10分,23题11分,共81分)14、分解因式:x2(x-y)+(y-x)⎛3x x⎫x2-115、先化简,再求值: -⎪•⎝x-1x+1⎭x,其中x=2-2.16、解不等式组⎨⎧2x-5<0⎩x-2(x+1)<0,并把解集在数轴上表示出来17、解方程:x+14-x-1x2-1=118、如图,AB表示路灯,CD表示小明所在的位置,小明发现在CD的位置上,他的影子长是自己身高的2倍,他量得自己和身高为1.6米,此时他离路灯的距离为6.8米,你能帮他算出路灯的高度吗?ACE D B19、如图,梯形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC,ΔABD与ΔBCD相似吗?为什么?D AC B20、如图,已知∠BED=∠B+∠D,求证:AB∥CD.A BEC D21、某中学部分同学参加全国初中数学竞赛,取得了优异成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频数分布直方图”如图。

北师大版数学八年级下册期末测试卷(有答案)【最新】

北师大版数学八年级下册期末测试卷(有答案)【最新】

期末测试(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分) 1.下列四个图形中,是中心对称图形的是(D)2.不等式2x -1≤5的解集在数轴上表示为(A)3.下列从左到右的变形,是分解因式的是(D)A .xy 2(x -1)=x 2y 2-xy 2B .x 2+x -5=(x -2)(x +3)+1 C .(a +3)(a -3)=a 2-9 D .2a 2+4a =2a(a +2) 4.下列运算正确的是(D) A.a a -b -b b -a =1 B.m a -n b =m -n a -bC.b a -b +1a =1aD.2a -b -a +b a 2-b 2=1a -b5.(丽水中考)一个多边形的每个内角均为120°,则这个多边形是(C)A .四边形B .五边形C .六边形D .七边形 6.若实数a ,b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是(A)A .-2B .2C .-50D .50 7.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B) A .4 cm ,8 cm ,4 cm ,8 cm B .5 cm ,7 cm ,5 cm ,7 cm C .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cm D .3 cm ,9 cm ,3 cm ,9 cm8.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A =2∠D =100°,则∠α的度数是(A) A .50° B .60° C .40° D .30°9.如图,点D ,E ,F 分别为△ABC 三边的中点,若△DEF 的周长为10,则△ABC 的周长为(C) A .5 B .10 C .20 D .4010.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6 cm,则AC=(D)A.6 cm B.5 cm C.4 cm D.3 cm11.如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是(A)A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD12.(天门中考)如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为(C)A.4 cm B.3 cm C.2 cm D.1 cm13.(河北中考)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是(B)A.13x=18x-5 B.13x=18x+5 C.13x=8x-5 D.13x=8x+514.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为(D)A.3 B.4 C.5 D.615.如图所示,在四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是(B)A.4个 B.3个 C.2个 D.1个二、填空题(本大题共5小题,每小题5分,共25分)16.(衡阳中考)如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直达A ,B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得MN =20 m ,则池塘的宽度AB 为40m.17.(江西中考)因式分解:ax 2-ay 2=a(x +y)(x -y).18.(宿迁中考)关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x>1的解集为1<x<3,则a 的值为4.19.在数轴上,点A ,B 对应的数分别为4,x -5x +1,且点A 到点1的距离等于点B 到点1的距离(A ,B为不同的点),则x 的值为1.20.如图,点A ,E ,F ,C 在一条直线上,若将△DEC 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE =CF ,DE ⊥AC 于点E ,BF ⊥AC 于点F ,且AB =CD.则当点E ,F 不重合时,BD 与EF 的关系是互相平分.三、解答题(本大题共7小题,共80分)21.(8分)解不等式组⎩⎪⎨⎪⎧x 2-1<0,①x -1≤3(x +1),②并把解集在数轴上表示出来.解:解不等式①,得x <2. 解不等式②,得x ≥-2. ∴不等式组的解集为-2≤x <2. 不等式组的解集在数轴上表示为:22.(8分)(天门中考)如图,在△ABC 中,AB =AC ,AD 是角平分线,点E 在AD 上,请写出图中两对全等三角形,并选择其中的一对加以证明.解:图中的全等三角形有:△ABD ≌△ACD ,△ABE ≌△ACE ,△BDE ≌△CDE. 选△ABD ≌△ACD 进行证明. 证明:∵AB =AC ,AD 是角平分线, ∴BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD(SSS).23.(10分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.图甲 图乙(1)将△ABC 平移,使点P 落在平移后的三角形内部,在图甲中画出示意图;(2)以点C 为旋转中心,将△ABC 旋转,使点P 落在旋转后的三角形内部,在图乙中画出示意图. 解:(1)平移后的三角形如图所示(答案不唯一). (2)旋转后的三角形如图所示.24.(12分)(江西模拟)先化简代数式(1-3a +2)÷a 2-2a +1a 2-4,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.解:原式=a +2-3a +2÷(a -1)2(a +2)(a -2)=a -1a +2·(a +2)(a -2)(a -1)2=a -2a -1. ∵当a =-2,2时,原代数式无意义, ∴a =0.当a =0时,原式=0-20-1=2.25.(12分)(长春中考)如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴点O 是BD 的中点.又∵点E 是边CD 的中点,∴OE 是△BCD 的中位线.∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF. ∴四边形OCFE 是平行四边形.26.(14分)(青岛中考)某厂制作甲、乙两种环保包装盒.已知同样用6 m 材料制成甲盒的个数比制成乙盒的个数少2个,且制作一个甲盒比制作一个乙盒需要多用20%的材料. (1)求制作每个甲盒、乙盒各用多少米材料;(2)如果制作甲、乙两种包装盒共3 000个,且甲盒的数量不少于乙盒数量的2倍.那么请写出所需材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料. 解:(1)设制作每个乙盒用x m 材料,那么制作每个甲盒用(1+20%)x m 材料.根据题意,得 6(1+20%)x =6x -2.解得x =12.经检验,x =12是原方程的解,且符合题意.∴(1+20%)x =35.答:制作每个甲盒用35 m 材料,制作每个乙盒用12 m 材料.(2)∵甲盒数量是n 个,∴乙盒数量是(3 000-n)个. ∴l =35n +12(3 000-n)=110n +1 500.∵甲盒的数量不少于乙盒数量的2倍, ∴n ≥2(3 000-n). ∴n ≥2 000.∴当n =2 000时,所需材料最少,最少为110×2 000+1 500=1 700(m).27.(16分)(哈尔滨中考)如图1,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.(1)求证:四边形EGFH 是平行四边形;(2)如图2,若EF ∥AB ,GH ∥BC ,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外). 解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO.在△OAE 和△OCF 中,⎩⎪⎨⎪⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA).∴OE =OF. 同理OG =OH.∴四边形EGFH 是平行四边形.(2)与四边形AGHD 面积相等的所有平行四边形有▱GBCH ,▱ABFE ,▱EFCD ,▱EGFH.。

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

北师大版八年级下期末数学考试试卷及答案(解析版5套试题) (3)

北师大版八年级下期末数学考试试卷及答案(解析版5套试题)  (3)

八年级(下)期末数学试卷(解析版)一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.42.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.63.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,76.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”或“中位数”)9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为cm.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.13.直线y=x+2与两坐标轴所围成的三角形面积为.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;2,(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=°时,四边形ACEF是菱形;②当t=s时,四边形ACDF是矩形.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.4【分析】利用平方差公式进行计算即可.【解答】解:(﹣)(+),=()2+()2,=2﹣5,=﹣3,故选:A.【点评】此题主要考查了二次根式的运算,关键是掌握平方差公式(a+b)(a﹣b)=a2﹣b2.2.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.6【分析】根据勾股定理,可得答案.【解答】解:PO==5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD是平行四边形,故本选项错误;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项正确;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形,故本选项错误;D、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误;故选:B.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,7【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:9出现了6次,出现的次数最多,则众数是9;把这组数据从小到达排列,最中间的数是7,则中位数是7.故选D.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】分x是正数和负数两种情况讨论求解.【解答】解:x>0时,﹣x+3可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,x<0时,﹣x+3>0,∴点P在第二象限,不在第三象限.故选C.【点评】本题考查了点的坐标,根据x的情况确定出﹣x+3的正负情况是解题的关键.二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.【分析】二次根式的除法运算,先运用法则,再化简.【解答】解:原式=2=.【点评】二次根式的乘除法运算,把有理数因数与有理数因数运算,二次根式与二次根式运算,结果要化简.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”或“中位数”)【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是直角三角形.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故答案为:直角三角形.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为(4,4).【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B 的坐标和点D的坐标得出OD=2,求出DE=4,AC=4,即可得出点C的坐标.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为:(4,4);故答案为:(4,4).【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为6cm.【分析】根据矩形的性质和折叠的性质,由C′E⊥AD,可得四边形ABEG和四边形C′D′FG是矩形,根据矩形的性质可得EG和FG的长,再根据勾股定理可得EF的长.【解答】解:如图所示:∵将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处,C′E⊥AD,∴四边形ABEG和四边形C′D′FG是矩形,∴EG=FG=AB=6cm,∴在Rt△EGF中,EF==6cm.故答案为:6cm.【点评】考查了翻折变换(折叠问题),矩形的判定和性质,勾股定理,根据关键是得到EG和FG的长.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.【分析】作PE⊥OA于E,PF⊥OB于F,连结OP,如图,先根据正方形的性质得OA=OC=OB=OD=BD=,OA⊥OB,然后根据三角形面积公式得到PEOA+PFOB=OAOB,则变形后可得PE+PF=OA=cm.【解答】解:作PE⊥OA于E,PF⊥OB于F,连结OP,如图,∵四边形ABCD为正方形,∴OA=OC=OB=OD=BD=,OA⊥OB,∵S△OPA+S△OPB=S△OAB,∴PEOA+PFOB=OAOB,∴PE+PF=OA=cm.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.13.直线y=x+2与两坐标轴所围成的三角形面积为2.【分析】易得此直线与坐标轴的两个交点坐标,与坐标轴围成的三角形的面积等于×与x轴交点的横坐标的绝对值×与y轴交点的纵坐标.【解答】解:当x=0时,y=2,当y=0时,x=﹣2,∴所求三角形的面积=×2×|﹣2|=2.故答案为:2.【点评】考查的知识点为:某条直线与x轴,y轴围成三角形的面积为:×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是(2015,2017).【分析】(1)先根据等边三角形的性质求出∠1的度数,过B1向x轴作垂线B1C,垂足为C,求出B1点的坐标.利用待定系数法求出直线y=kx的解析式即可;(2)根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:(1)∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,∴∠1=30°.过B1向x轴作垂线B1C,垂足为C,∵OB1=2,∴CB1=1,OC=,∴B1(,1),∴1=k,解得k=.故答案为:;(2)∵由(1)知,点B1,B2,B3,…都在直线y=x上,∴A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣2+﹣3=﹣.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.【分析】根据三角函数关系即可求解a、c的值.在Rt△ABC中,∠C=90°,∠A=60°,所以b=atanB,c=,代入数据即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∴b=atanB=×=,c===2.即,.【点评】这道题目简单的考查了三角函数知识在解直角三角形中的一般应用,属于基础题,要求熟练掌握特殊角的三角函数值及其计算.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.【分析】(1)设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)把x=﹣1代入一次函数解析式求出y,即可做出判断.【解答】解:(1)设一次函数解析式为y=kx+b,把A(6,﹣3)与B(﹣2,5)代入得:,解得:,则一次函数解析式为y=﹣x+3;(2)把x=﹣1代入一次函数解析式得:y=1+3=4,则点C在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.【分析】连结BD,与AC交于点O,根据四边形ABCD是平行四边形可得AO=CO,BO=DO,再由AE=CF,可得EO=FO,进而得到四边形BEDF为平行四边形.【解答】证明:连结BD,与AC交于点O,如图所示:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴EO=FO,∴四边形BEDF为平行四边形.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对角线互相平分;对角线互相平分的四边形是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【分析】(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..【点评】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.【分析】(1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.【解答】解:(1)设当4≤x≤12时的直线方程为:y=kx+b(k≠0).∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(2)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=.故每分钟进水、出水各是5升、升.【点评】此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;(3)先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.【点评】本题考查了菱形的判定与性质:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.也考查了折叠的性质.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=30°时,四边形ACEF是菱形;②当t=4s时,四边形ACDF是矩形.【分析】(1)根据垂直平分线的性质找出∠BDE=∠BCA=90°,进而得出DE∥AC,再根据三角形中位线的性质可得出DE的长度,根据边与边之间的关系可得出EF=AC,从而可证出四边形ACEF是平行四边形;(2)①根据垂直平分线的性质可得出BE=EC=AB,再根据菱形的性质可得出AC=CE=AB,利用特殊角的正弦值即可得出∠B的度数;②根据矩形的性质可得出DF=AC,再根据运动时间=路程÷速度即可得出结论.【解答】(1)证明:当t=6时,DF=6cm.∵DG是BC的垂直平分线,∠ACB=90°,∴∠BDE=∠BCA=90°,∴DE∥AC,DE为△BAC的中位线,∴DE=AC=2.∵EF=DF﹣DE=4=AC,EF∥AC,∴四边形ACEF是平行四边形.(2)①∵DG是BC的垂直平分线,∴BE=EC=AB,∵四边形ACEF是菱形,∴AC=CE=AB,∴sin∠B==,∴∠B=30°.故答案为:30°.②∵四边形ACDF是矩形,∴DF=AC=4,∵动点F从D点出发以1cm/s的速度移动,∴t=4÷1=4(秒).故答案为:4.【点评】本题考查了平行四边形的判定、菱形的性质、特殊角的三角函数值以及矩形的性质,解题的关键是:(1)找出EF=AC,且EF∥AC;(2)①找出sin∠B==;②根据数量关系算出时间t.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形(菱形或矩形)的性质找出相等的边角关系是关键.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.【分析】(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可.【解答】解:(1)∵P(x,y)代入y=x+6得:y=x+6,∴P(x,x+6),当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8)当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x﹣18(x<﹣8).解:(2)把s=代入得:=x+18或=﹣x﹣18,解得:x=﹣6.5或x=﹣9.5,x=﹣6.5时,y=,x=﹣9.5时,y=﹣1.125,∴P点的坐标是(﹣6.5,)或(﹣9.5,﹣1.125).(3)解:假设存在P点,使△COD≌△FOE,①如图所示:P的坐标是(﹣,);②如图所示:P的坐标是(,)存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).【点评】本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.八年级期末学业水平测试数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

北师大版八年级下册数学期末考试卷含答案

北师大版八年级下册数学期末考试卷含答案

八 年 级 数 学 下 册 期 末 测 试(北师大版)全卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间共120分钟。

A 卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其它类型的题。

A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。

考试结束,监考人员将试卷和答题卡一并收回。

2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答一、选择题:(每小题3分,共30分)1、-3x <-1的解集是( ) A 、x <31 B 、x <-31 C 、x >31 D 、x >-31 2、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22ba b-,2222b ab a b ++的最简公分母是( ) A 、(a2-2ab+b2)(a2-b2)(a2+2ab+b2) B 、(a+b )2(a -b )2C 、(a+b )2(a-b )2(a2-b2)D 、44b a -5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定 6、如图1,能使BF ∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3? D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )图1 图2A 、4:1 BC.1:D .1:48、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M图39、如图4,DE ∥BC ,则下列不成立的等式是( )A 、EC AEBD AD= B 、AE ACAD AB =C 、DB ECABAC =D 、BCDEBD AD =图410、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定 图5二、填空题:(共6小题,每题4分,共24分)11、计算:(1)(-x )2÷y·y1=____________。

北师大版八年级数学(下册)期末试卷含答案及复习提纲+练习题

北师大版八年级数学(下册)期末试卷含答案及复习提纲+练习题

北师大版八年级第二学期期末数学复习试卷一、选择题:(每小题3分,共30分)1.在相同时刻物高与影长成比例,如果高为1米的测竿的影长为80厘米,那么影长为9.6米的旗杆的高为( )(A)15米 (B)13米 (C)12米 (D)10米2.商品的原售价为m 元,若按该价的8折出售,仍获利n%,则该商品的进价为( )元.(A)0.8m ×n% (B)0.8m (1+n%) (C)%18.0n m + (D)%8.0n m3.人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( ) (A)八(1)班 (B)八(2)班 (C)两个班成绩一样稳定 (D)无法确定.4.下列命题是真命题的是( )(A)相等的角是对顶角 (B)两直线被第三条直线所截,内错角相等 (C)若n m n m ==则,22 (D)有一角对应相等的两个菱形相似. 5.若16)3(22+-+x m x 是完全平方式,则m 的值是( ) (A)-1 (B)7 (C)7或-1 (D)5或1. 6.下列长度的各组线段中,能构成比例的是( ) (A)2,5,6,8 (B)3,6,9,18 (C)1,2,3,4 (D)3,6,7,9. 7.如图,1l 反映的是某公司产品的销售收入与销售量的 关系,2l根据图象判断该公司盈利时销售量为 ( )(A)小于4件 (B)等于4件 (C)大于4件 (D)大于或等于4件 8.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于( ) (A)-1 (B)-2 (C)1 (D)29.有旅客m 人,如果每n 个人住一间客房,还有一个人无房间住,则客房的间数为( )(A)n m 1- (B)n m 1+ (C)n m -1 (D)nm+1 10.若m >-1,则多项式123+--m m m 的值为( )(A)正数 (B)负数 (C)非负数 (D)非正数 二、填空题:(每题3分,共30分)11.看图填空:(1)x=_____;(2)y=_______;(3)z=______;(4)m =_______.12.如图所示:∠A=50°,∠B=30°,∠BDC=110°,则∠C=______°;13.若分式23x x-的值为正数,则x 应满足的条件是_______________________. 14.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=__________.15.两个相似三角形面积比为2,周长比为K ,则k2=__________.16.若用一个2倍放大镜去看△ABC ,则∠A 的大小______;面积大小为______. 17.如图,点C 是线段AB 的黄金分割点,AC=2, 则AB·BC=_________.A18.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过____________元.19.已知两个一次函数x y x y -=-=3,4321,若21y y <,则x 的取值范围是:_______. 20.若4x-3y=0,则yyx +=___________. 三、(4分)根据题意填充理由: 22、已知:如下图所示,∠1=∠2.11(1)图. 11(2)图. 11(3)图. 11(4)图. 12题图A求证:∠3+∠4=180°.证明:∵∠5=∠2.( ). 又∠1=∠2.(已知).∴∠5=∠1( ). ∴AB∥CD.( ). ∴∠3+∠4=180°.( ). 四、解答题:(40分) 23、分解因式:(6分)(1)a a -3; (2)1222-+-y xy x ;24、解下列不等式和不等式组:(12分) (1)1 1.24x x---≤(2)3(1)5123x x x x -<-⎧⎪-⎨<⎪⎩并把解集在数轴上表示出来.25、(8分)先化简,再求值:3116871419422-÷⎪⎭⎫ ⎝⎛+--+⋅--m m m m m m .其中m=5.26、(8分)解分式方程:.41622222-+-+=+-x x x x x27、应用题(6分)我市出租车在3km 以内,起步价为12.5元,行程达到或超过3km 后,每增加1km 加付2.4元(不足1km 亦按1km 计价),昨天汪老师乘坐这种出租车从长城大厦到莲花北,恰巧沿途未遇红灯,下车时支付车费19.7元,问汪老师乘出租车走了多远的路?五、几何题:(8分)28、如图所示,已知:点D 在△ABC 的边AB 上,连结CD ,∠1=∠B,AD=4,AC=5, 求 BD 的长.29、如图,∠MON=90°,点A 、B 分别在射线OM 、ON 上移动,BD 是∠NBA 的平分线,BD 的反向延长线与∠BAO 的平分线相交于点C.试猜想:∠ACB 的大小是否随A 、B 的移动发生变化?如果保持不变,请给出证明;如果随点A 、B 的移动发生变化,请给出变化范围.B参考答案1、C ;提示:908.01x = 2、C ;提示:%18.0n m+3、B ;提示:方差小的较稳定4、D ;提示:菱形的对应边成比例,对应较相等,两个菱形相似5、C ;提示:2(m-3)=8或2(m-3)=-86、B ;提示:18963= 7、C ;提示:观察图象知大于4件8、B ;提示:解方程得x=m+3,m+3=1有增根 9、A ;提示:nm 1- 10、C ;提示:123+--m m m =(m-1)2(m+1)二、11、(1)41°;(2)81°;(3)47°;(4)48; 12、30°;提示:连结AD13、x<3且x≠0; 14、-1;提示:由题意n=1,m=-2 15、2;根据比例的性质16、不变;4倍; 17、4;提示:AC 2=BC.AB 18、26.25; 19、x<47; 20、47; 三、22、对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补。

北师大八年级(下)期末数学试卷(含答案) (1)

北师大八年级(下)期末数学试卷(含答案) (1)

八年级(下)第二学期数学期末试题一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b 2D .-2a >-2b 2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x) 3下列所培图形中·既是中心对称图形又是轴对称图形的是( )A B C D4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +47.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( )A .60°B .90°C .120°D .150°8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y=0 9.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( ) A .16crn B .14cm C .12cm D .8cm10.若分式方程x -3x -1=m x -1有增根,则m 等于( ) A .-3 B .-2 C .3 D .2CD11.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .612.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )A .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( )A .5B .125C .245D .18514.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >2D B CAxy2-1P OA DB E15.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( )A .(22017,-22017)B .(22016,-22016)C .(22017,22017)D .(22016,22016)二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________. 17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m 的取值范围是_______________. 20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分)(1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在〉ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2、C2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?探索发现:11×2=1-12;12×3=12-13;13×4=13-14…… 根据你发现的规律,回答下列问题:(1) 14×5=___________,1n ×(n +1)=___________; (2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程:1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(一6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.。

2008学年第二学期期末试卷八下数学参考答案

2008学年第二学期期末试卷八下数学参考答案

2008学年第二学期期末试卷《八下数学》参考答案一.选择题(每小题4分,共40分)CADCC DBBBD二.填空题(每小题4分,共40分)11.4; 12.2; 13.0或1或4或…(答案不唯一); 14.4; 15.a 100 16.如果两个角为同一角的余角,那么这两个角相等. 17.7;18.∠A=90°或∠A=∠B 或AC=BD 或…(答案不唯一); 19.4; 20.60.三.解答题(每题10分,共70分)21.(1)原式= 032333=+-; -----------------------------5分(2)原式= 221222122-=+-. -----------------------------5分 22.(1)4021==x ,x ; ---------------5分(2)232121=-=x ,x . ---------------5分 23.∵AD//BD ,AD=BC , ∴四边形ABCD 是平行四边形,---------------5分∴AB=CD ,又∵BD=DB ,∴△ABD ≌△CDB .(SSS ) ---------------5分24.(1)见表; ---------------4分(2)56%; ---------------3分(3)35056%=186(人) ---------------3分答:略 25.由正方形ABCD 得∠BAD=∠D=90°,AB=AD , ∴∠3+∠2=90°, ---------------2分∵AE ⊥BF ,∴∠1+∠2=90°, ---------------2分 ∴∠1=∠3, ---------------2分∴△ABF ≌△DAE , ---------------2分∴AE=BF . ---------------2分26.(1)1250×(1-20%)=1000(m 2); ---------------4分(2)设这个百分数为x ,根据题意,得1000(1+x)2=1440, ---------------4分解得x 1=0.2=20%,(x 2=-2.2不合题意,舍去) ---------------2分答:略27.设时间为t 秒,则DP=24-t ,CQ=3t , ---------------2分(1)当DP=CQ 时,四边形PQCD 是平行四边形,此时24-t=3t ,解得t=6(秒); ---------------3分(2)作DECB ,E 为垂足,则CE=CB-DA=26-24=2, ---------------2分∴当CQ-DP=4时,四边形PQCD 为等腰梯形,此时3t –(24-t)=4,解得t=7(秒); ---------------3分答:321PF E D CB A。

【北师大版】初二数学下期末试卷(含答案)

【北师大版】初二数学下期末试卷(含答案)

一、选择题1.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .92.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S 1,S 2分别表示小明、小华两名运动员这次测试成绩的方差,则有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1≥S 23.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( ) 年龄(岁) 12 13 14 15 人数71032A .12岁B .13岁C .14岁D .15岁4.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是935.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .36.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .7.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .538.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-9.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .410.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x yxy +=C .()235a a -=-D .81111911=11.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行12.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB 边上的高长为( )A .35B .25C .35D .322二、填空题13.若一组数据3、4、5、x 、6的平均数是5,则这组数据的方差为_____14.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.15.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.16.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.17.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.18.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.19.已知51x =-,求229x x ++=______.20.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影的部分是一个小正方形EFGH ,这样就组成了一个“赵爽弦图”.若AB =13,AE =12,则正方形EFGH 的面积为___________.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次甲成绩 80 40 70 50 60 乙成绩705070a70(1)统计表中,a = ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.已知一次函数y kx b =+的图象经过点()2,5-,并且与y 轴相交于点P ,直线132y x =-+与y 轴相交于点Q ,点Q 与点P 关于x 轴对称,求这个一次函数的解析式.24.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .25.先化简,再求值:21133x x xx x x,其中21x =26.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积; ()2求证:22AB AC BE BC -=⋅.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.2.A解析:A 【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好. 【详解】根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中, 小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大, 故S 1<S 2 故选:A . 【点睛】此题考查方差和折线统计图,解题关键在于掌握方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.B解析:B 【解析】 【分析】直接利用加权平均数的定义计算可得. 【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B .【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.4.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.5.B解析:B【分析】根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】点A关于x轴的对称点B的坐标为:(2,﹣m),将点B的坐标代入直线y=﹣x+1得:﹣m=﹣2+1,解得:m=1,故选:B.【点睛】此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.6.D解析:D【分析】先根据一次函数的增减性、与y轴的交点可得一个关于p的一元一次不等式组,再找出无解的不等式组即可得.【详解】A、由图象知,(3)0pp>⎧⎨-->⎩,解得03p<<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;B、由图象知,(3)0pp>⎧⎨--=⎩,解得3p=,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.7.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1,∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1,∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D . 【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.8.C解析:C 【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论. 【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-, 则关于x 的不等式mx b kx +<的解集为1x >-. 故选:C . 【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.9.B解析:B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论. 【详解】 解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO , 又∵BD AC ⊥, ∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD == 故选:B . 【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.10.D解析:D 【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案. 【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=11D 正确;【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.11.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A : 因为矩形的对角线相等,故此选项不符合题意;B :因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C :因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D :因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C .【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.12.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△, ∵22125AB =+= ∴1322AB CD ⋅=, 则3555CD ==,【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.二、填空题13.2【分析】先根据平均数的定义求出x然后运用方程公式求解即可【详解】解:根据题意得(3+4+5+x+6)=5×5解得:x=7则这组数据为34576的平均数为5所以这组数据的为s2=(3﹣5)2+(4﹣解析:2【分析】先根据平均数的定义求出x,然后运用方程公式求解即可.【详解】解:根据题意得(3+4+5+x+6)=5×5,解得:x=7,则这组数据为3,4,5,7,6的平均数为5,所以这组数据的为s2=15[(3﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(6﹣5)2]=2.故答案为:2.【点睛】本题考查了平均数的定义和方差公式,解答本题的关键是理解平均数的定义和掌握求方差的方法.14.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.15.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭, 12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.16.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.17.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF ,从而可求出∠DEH ,∠CEF 的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒, 故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键.18.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC 交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.19.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键解析:13【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(),当1x =时,原式2118++=13.故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 20.49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积【详解】直角三角形直角边的较短边为=5正方形EFGH 的面积=13×13﹣4×=169﹣120=49故解析:49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积.【详解】,正方形EFGH 的面积=13×13﹣4×5122⨯=169﹣120=49. 故答案为:49.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键. 三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a 的值,利用极差的定义求解可得; (2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a =(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60, 方差S 乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160; (3)因为甲乙两位同学的平均数相同,S 甲2>S 乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.y =−4x−3【分析】因为直线y =−12x +3与y 轴相交于点Q ,所以点Q 的坐标是(0,3),点P 在y 轴上,且与点P 关于x 轴对称,所以点P 的坐标是(0,−3),把(0,−3),(−2,5)代入一次函数y =kx +b .求出k ,b 的值,得这个一次函数的表达式.【详解】解:∵直线132y x =-+与y 轴相交于点Q , ∴当x=0时,y=3,∴点Q 的坐标是(0,3),∵点Q 与点P 关于x 轴对称,∴点P 的坐标是(0,−3),把(0,−3),(−2,5)代入一次函数y =kx +b 得3{25b k b --+==, 解得b =−3,k =−4.∴这个一次函数的表达式:y =−4x−3.【点睛】此题考查一次函数问题,求一次函数的表达式有四步:(1)设──设函数表达式;(2)列──列方程(组);(3)解──求方程(组)的解;(4)写──写出函数关系式;掌握知识点是解题关键.24.见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.25.2x x -;2+【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x 2131=33x x x x x x x213=31x x x x x1x x2x x =- 当21x =+时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.26.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论. 【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==2213514412AD ∴=-=在Rt ADB 中,20,12,AB AD ==22201225616BD ∴=-==16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB中,由勾股定理,得222=-,BD AB AD()22222∴-=-+AB AC AB AD DC222=--AB AD DC22=-BD DE()(),=-+BD DE BD DEBE BD DE BC BD DC BD DE=-=+=+,,22∴-=⋅.AB AC BE BC【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.。

最新贵阳市—度八年级第二学期数学期末测试题及答案优秀名师资料

最新贵阳市—度八年级第二学期数学期末测试题及答案优秀名师资料

(WORD)-贵阳市2007—2008学年度八年级第二学期数学期末测试题及答案贵阳市2007—2008学年度八年级第二学期数学期末测试题及答案贵阳市2007—2008学年度八年级第二学期期末测试题数学班别:_________学号:_________姓名:_________评分:_________一(填空题(每小题3分,共30分)1(分解因式:x3y2,4x __________; _________2(请用2,4,6,3写一个比例式3(当x _______时,分式D图 12,x无意义; x,124(不等式组 2x,1 5的整数解个数是 ;x,1 ,15(如图1所示,要使?ACD??ABC,只需要添加条件;(只需要写出一种适合条件即可)6(方程75 的解是 ; x,2x7(小明家的房间高度为2.8米,他打算用“黄金分割”的知识在墙上挂一幅画以美化居室,从地面算起,这幅画应挂在约米才使人感到舒适(精确到0.001);8(刘强同学为了调查全市初中生人数,他对自己所在城区人口和初中生人数作了调查,城区人口约3万,初中生约1200,全市人口实际约为300万,为此他推断全市初中生人数为12万,但市教育局提供的全市初中生人数约为8万,与估计数据有很大偏差,请你用所学统计知识,解释其中偏差的原因: ;9(如图2,l1?l2,则?;10(如图3,已知函数y 3x,b和y ax,3的图像交于点P(,2,,5),根据图像可得不等式3a,b ax,3的解集是二(选择题:(每小题4分,共24分)11(下列数据中极差最大的一组是 ( )(A),2、,1、,2、3 (B) 110、111、112、110、109(C)0、1、2、3、4 (D) ,100、,2000、,3000、,400012(西安新建成的“大唐芙蓉园”,占地面积约为800 000m,若按比例尺1:2000缩小后,其面积大约相当于 ( ) (A)一个篮球场的面积 (B)一张乒乓球台台面的面积(C)《贵阳晚报》的一个版面的面积 (D)《数学》课本封面的面积13(对人数相同的甲、乙两个班级的学生进行一次数学能力测试,统计出方差的大小关系是:22,由此可知这次测试结果是 ( ) S甲 S乙2(A) 甲班成绩好 (B) 乙班成绩好 (C) 两班成绩一样好 (D) 无法确定 14(已知点(2,a,3a)在第四象限,那么a的取值范围是 ( ) (A) 0 a 2 (B) a 0 (C) a 2 (D) ,a a 0 15(下列计算正确的是 ( ) (Ayy2y111xx,1111, D, 0 B)2 , (C,xzxz8x8y8(x,y)2y2y2yx,yy,x16(小明将某不等式组的解集在数轴上表示如图4,则该不等式组的解集为 ( ) (A) ,1 x 2 (B) x 4 (C) x 2 (D) x 2 三(解答题:17.(8分)课堂上,李老师给大家出了这样一道题:当x 3,5,22,7,时,求代x2,2x,12x,2数式的值,小明一看说:“太复杂了,怎么算呢,头都疼了。

八年级下册数学期末试卷及答案北师大版

八年级下册数学期末试卷及答案北师大版

八年级下册数学期末试卷及答案北师大版本试卷满分150分,考试时间120分钟一、选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式,则的值是A. B. C. D.2.下列分解因式正确的是A. B.C. D.3.下列图形中,是中心对称图形,但不是轴对称图形的是4.方程的解是A. B. C. D. 或5.根据下列表格的对应值:0.59 0.60 0.61 0.62 0.63-0.0619 -0.04 -0.0179 0.0044 0.0269判断方程一个解的取值范围是A. B.C. D.6.将点P-3,2向右平移2个单位后,向下平移3个单位得到点Q,则点Q的坐标为A.-5,5B.-1,-1C.-5,-1D.-1,57.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为A. B.C. D.8.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,若,则是A.4B.6C.8D.99.已知是关于的一元二次方程的根,则常数的值为A.0或1B.1C.-1D.1或-110.如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为A.3B.5C.8D.411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦ 个图形中完整菱形的个数为A.83B.84C.85D.8612.如图,□ABCD中,∠B=70°,点E是BC的中点,点F在AB上,且BF=BE,过点F作FG⊥CD于点G,则∠EGC的度数为A.35°B.45°C.30°D.55°二.填空题本大题6个小题,每小题4分,共24分请将正确答案填入对应的表格内.题号 13 14 15 16 17 18答案13.已知,则 = .14.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC的长为 .15.如图,已知函数与函数的图象交于点P,则不等式的解集是 .16. 已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为 .17. 关于的方程的解是负数,则的取值范围是 .18. 如图,矩形ABCD中,AD=10,AB=8,点P在边CD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交BP于点F,过点M作ME⊥CP于E,则EF= .三.解答题本大题3个小题,19题12分,20,21题各6分,共24分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: 1 220. 解不等式组:21. 如图,矩形ABCD中,点E在CD边的延长线上,且∠EAD=∠CAD.求证:AE=BD.四.解答题本大题3个小题,每小题10分,共30分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:,其中满足 .23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.1第一次所购该蔬菜的进货价是每千克多少元?2蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.1若正方形ABCD边长为3,DF=4,求CG的长;2求证:EF+EG= C E.五.解答题本大题2个小题,每小题12分,共24分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25 . 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本元与月份之间的关系可近似地表示为:,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为吨,每月的利润为元.1分别求出与,与的函数关系式;2在今年内该单位哪个月获得利润达到5800元?3随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了 %.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了 %.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD中,AB=5,AE⊥BC于E,AE=4.一个动点P从点B出发,以每秒个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,边向右作正方形PQMN,点N在射线BC上,当P点到达C点时,运动结束.设点P的运动时间为秒 .1求出线段BD的长,并求出当正方形PQMN的边PQ恰好经过点A时,运动时间的值;2在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与之间的函数关系式和相应的自变量的取值范围;3如图2,当点M与点D重合时,线段PQ与对角线BD交于点O,将△BPO绕点O逆时针旋转,记旋转中的△BPO为△ ,在旋转过程中,设直线与直线BC交于G,与直线BD交于点H,是否存在这样的G、H两点,使△BGH为等腰三角形?若存在,求出此时的值;若不存在,请说明理由.21..证明:∵四边形ABCD是矩形∴∠CDA =∠EDA =90°,AC=BD. ……………… 3分∵∠CAD=∠EAD,AD=AD∴△ADC≌△ADE. ……………… 5分∴AC=AE. 分∴BD=AE . ……………… 6分23.解:1设第一次所购该蔬菜的进货价是每千克元,根据题意得…………………………3分解得 .经检验是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; 5分2由1知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200设该蔬菜每千克售价为元,根据题意得[1001-2%+2001-3%] . 8分∴ . 9分∴该蔬菜每千克售价至少为 7元. 10分24. 1∵四边形ABCD是正方形∴∠BCG=∠DCB=∠DCF=90°,BC=DC.∵BE⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF. ……………………………………2分∴△CBG≌△CDF.∴BG=DF=4. ……………………………………3 分∴在Rt△BCG中,∴CG= . …………………………4分2过点C作CM⊥CE交BE于点M∵∠BCG=∠MCE =∠DCF =90°∴∠BCM=∠DCE,∠MCG=∠ECF∵BC=DC,∠CBG=∠CDF∴△CBM≌△CDE ……………………………………6分∴CM=CE∴△ CME是等腰直角三角形……………………………………7分∴ME= ,即MG+EG=又∵△CBG≌△CDF∴CG=CF∴△CMG≌△FCE ……………………………………9分∴MG=EF∴EF+EG= CE ……………………………………10分26.1过点D作DK⊥BC延长线于K∴Rt△DKC中,CK=3.∴Rt△DBK中,BD= ……………………2分在Rt△ABE中,AB=5,AE=4,. ∴BE=3,∴当点Q与点A重合时,. …………3分2 …………8分3当点M与点D重合时,BP=QM=4,∠BPO=∠MQO,∠BOP=∠MOQ∴△BPO≌△MQO∴PO=2,BO=若HB=HG时,∠HBC=∠HGB=∠∴ ∥BG∴HO=∴设HO= =,∴∴ . ……………………………………9分若GB=GH时,∠GBH=∠GHB∴此时,点G与点C重合,点H与点D重合∴ . ……………………………………10分当BH=BG时,∠BGH=∠BHG∵∠HBG=∠ ,综上所述,当、、、时,△BGH为等腰三角形.感谢您的阅读,祝您生活愉快。

北师大版八年级下册数学期末考试卷含答案

北师大版八年级下册数学期末考试卷含答案

一、填空题1、-3x <-1的解集是( ) A 、x <31 B 、x <-31 C 、x >31 D 、x >-31 2、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22ba b -,2222b ab a b ++的最简公分母是( ) A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²) B 、(a+b )²(a -b )²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a-5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,,则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定6、如图1,能使BF ∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3 D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )图1图2A 、4:1B .2:1C .1:2 D .1:48、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M图39、如图,DE ∥BC ,则下列不成立的等式是( )A 、EC AEBD AD= B 、AE ACAD AB = C 、DBECAB AC=D 、BCDEBD AD =10、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题11、计算:(1)(-x )²÷y ·y1=____________。

北师大版八年级(下)期末数学试卷及参考答案 (4)

北师大版八年级(下)期末数学试卷及参考答案 (4)

八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(3分)若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a< b C.4﹣a>4﹣b D.a﹣4>b﹣43.(3分)一个多边形的内角和等于1800°,则这个多边形的边数是()A.8 B.10 C.12 D.144.(3分)已知等腰三角形两边长为3和7,则周长为()A.13 B.17 C.13或17 D.115.(3分)下列多项式中不能用公式法分解因式的是()A.﹣x2﹣y2+2xy B.a2+a+C.﹣m2+49n2D.﹣a2﹣b26.(3分)下列等式中不恒成立的是()A.=B.=C.=D.=7.(3分)如图,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°8.(3分)如图,∠A=50°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.50°C.60°D.70°二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)多项式a2+4a分解因式的结果是.10.(3分)命题“如a2>b2,则a>b”的逆命题是命题(填“真”或“假”).11.(3分)若分式的值为0,则x的值为.12.(3分)在△ABC中,AB=12,AC=5,AD平分∠BAC,则△ABD与△ACD的面积之比是.13.(3分)已知函数y=ax+b与y=cx+d的图象如图所示,则关于x的不等式ax+b≥cx+d的解集是.14.(3分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=.15.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.16.(3分)在平面直角坐标系中,已知点A(0,4),B(8,0),点C在x轴上,且在点B 的左侧,若△ABC是等腰三角形,则点C的坐标是.三、解答题(本大题共2小题,每小题5分,共10分)17.(5分)分解因式:(9x2+y2)2﹣36x2y2.18.(5分)先化简,再求值:(1+),其中x=0.四、解答题(本大题共2小题,每小题5分,共10分)19.(5分)求解下面的不等式组,并将解集画在数轴上..20.(5分)解分式方程:+=1.五、解答题(本大题共2小题,每小题7分,共14分)21.(7分)如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.22.(7分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?六、解答题(本大题共2小题,第23小题8分,第24小题10分,共18分)23.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.(10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.2016年江西省九江市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2016春•九江期末)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、是中心对称图形,本选项正确;C、不是中心对称图形,本选项错误;D、不是中心对称图形,本选项错误.故选B.【点评】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2015•广东模拟)若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a< b C.4﹣a>4﹣b D.a﹣4>b﹣4【分析】根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变)逐个判断即可.【解答】解:A、∵a>b,∴﹣4a<﹣4b,故本选项错误;B、∵a>b,∴a b,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴4﹣a<4﹣b,故本选项错误;D、∵a>b,∴a﹣4>b﹣4,故本选项正确;故选D.【点评】本题考查了对不等式的性质的应用,主要考查学生的辨析能力,是一道比较典型的题目,难度适中.3.(3分)(2016春•九江期末)一个多边形的内角和等于1800°,则这个多边形的边数是()A.8 B.10 C.12 D.14【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故选C.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.4.(3分)(2016春•九江期末)已知等腰三角形两边长为3和7,则周长为()A.13 B.17 C.13或17 D.11【分析】因为等腰三角形的两边为3和7,但已知中没有点明底边和腰,所以有两种情况,需要分类讨论,还要注意利用三角形三边关系考查各情况能否构成三角形.【解答】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,∴答案只有17.故选B.【点评】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.5.(3分)(2016春•九江期末)下列多项式中不能用公式法分解因式的是()A.﹣x2﹣y2+2xy B.a2+a+C.﹣m2+49n2D.﹣a2﹣b2【分析】原式利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=﹣(x﹣y)2,不合题意;B、原式=(a+)2,不合题意;C、原式=(7n+m)(7n﹣m),不合题意;D、原式不能分解,符合题意,故选D【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.6.(3分)(2016春•九江期末)下列等式中不恒成立的是()A.=B.=C.=D.=【分析】根据等式的性质对A、B进行判断;根据分式乘法的书写对C进行判断;利用反例对D进行判断.【解答】解:A、=,所以A选项的等式恒成立;B、=,所以B选项的等式恒成立;C、×=•,所以C选项的等式恒成立;D、当a=1,b=1时,左边=﹣=0,右边=×=,所以D选项的等式不恒成立.故选D.【点评】本题考查了分式的混合运算:先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.熟练掌握分式的基本性质.7.(3分)(2016春•九江期末)如图,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E 为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°【分析】首先根据平行四边形的性质得到:∠BAC=∠DCA=90°,然后根据点O为AC的中点,点E为AD的中点利用中位线定理得到OE∥CD,从而得到∠EAC=∠ACD=90°,然后根据OF⊥BC得到∠FOC=∠B=53°,从而得到∠EOF=∠EOC+∠FOC=90°+53°=143°.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AC⊥AB,∴∠BAC=∠DCA=90°,∵点O为AC的中点,点E为AD的中点,∴OE∥CD,∴∠EAC=∠ACD=90°,∵∠D=∠B=53°,OF⊥BC,∴∠FOC=∠B=53°,∴∠EOF=∠EOC+∠FOC=90°+53°=143°,故选D.【点评】本题考查了平行四边形的性质,解题的关键是能够根据题意并利用中位线定理确定答案.8.(3分)(2016春•九江期末)如图,∠A=50°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.50°C.60°D.70°【分析】连接OA、OB,根据三角形内角和定理求出∠ABC+∠ACB=130°,根据线段的垂直平分线的性质得到OA=OB,OA=OC,根据等腰三角形的性质计算即可.【解答】解:连接OA、OB,∵∠A=50°,∴∠ABC+∠ACB=130°,∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=50°,∴∠OBC+∠OCB=130°﹣50°=80°,∵OB=OC,∴∠BCO=∠CBO=40°,故选:A.【点评】本题考查的是线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2016春•九江期末)多项式a2+4a分解因式的结果是a(a+4).【分析】直接提取公因式a,进而分解因式即可.【解答】解:a2+4a=a(a+4).故答案为:a(a+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3分)(2016春•九江期末)命题“如a2>b2,则a>b”的逆命题是假命题(填“真”或“假”).【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:假.【点评】此题考查了命题与定力的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.11.(3分)(2015•怀集县一模)若分式的值为0,则x的值为﹣2.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:若分式的值为0,则x2﹣4=0且x﹣2≠0.开方得x1=2,x2=﹣2.当x=2时,分母为0,不合题意,舍去.故x的值为﹣2.故答案为﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(3分)(2016春•九江期末)在△ABC中,AB=12,AC=5,AD平分∠BAC,则△ABD 与△ACD的面积之比是12:5.【分析】作出图形,过点D作DE⊥AB于E,作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式求出△ABD与△ACD的面积之比等于AB:AC.【解答】解:如图,过点D作DE⊥AB于E,作DF⊥AC于F,∵AD平分∠BAC,∴DE=DF,∴S△ABD:S△ACD=AB•DE:AC•DF=AB:AC=12:5.故答案为:12:5.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,作出图形更形象直观.13.(3分)(2016春•九江期末)已知函数y=ax+b与y=cx+d的图象如图所示,则关于x的不等式ax+b≥cx+d的解集是x≥2.【分析】观察图形,根据函数图象的上下位置关系即可得出不等式的解集.【解答】解:观察函数图象,发现:当x>2时,直线y=ax+b在直线y=cx+d的上方,且当x=2时,两直线相交,∴不等式ax+b≥cx+d的解集是x≥2.故答案为:x≥2.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系得出不等式的解集.本题属于基础题,难度不大,解集该题型题目时,观察图形利用数形结合解不等式是关键.14.(3分)(2016春•九江期末)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC 的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=2.【分析】连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.【解答】解:连接DC,∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,∴DE=,∵∠BCD=30°,∴CD==4,∴DE=2,故答案为:2.【点评】本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.15.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【分析】首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.【点评】此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.16.(3分)(2016春•九江期末)在平面直角坐标系中,已知点A(0,4),B(8,0),点C 在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标是(﹣8,0),(3,0),(8﹣4,0).【分析】分为三种情况:①AB=AC,②AC=BC,③AB=BC,即可得出答案.【解答】解:∵A(0,4),B(8,0),∴OA=4,OB=8,AB=4,①以A为圆心,以AB为半径作弧,交x轴于C1、,此时C点坐标为(﹣8,0);②当AC=BC,此时C点坐标为(3,0);③以B为圆心,以AB为半径作弧,交x轴于C3,此时点C坐标为(8﹣4,0);故答案为:(﹣8,0),(3,0),(8﹣4,0).【点评】本题考查了等腰三角形的判定,关键是用了分类讨论思想解答.三、解答题(本大题共2小题,每小题5分,共10分)17.(5分)(2016春•九江期末)分解因式:(9x2+y2)2﹣36x2y2.【分析】首先利用平方差公式分解,然后再利用完全平方公式分解即可求得答案.【解答】解:(9x2+y2)2﹣36x2y2=(9x2+y2+6xy)(9x2+y2﹣6xy)=(3x+y)2(3x﹣y)2.【点评】此题考查了完全平方公式与平方差公式分解因式.此题比较简单,注意分解要彻底.18.(5分)(2016春•九江期末)先化简,再求值:(1+),其中x=0.【分析】先将括号内的部分统分,再将除法转化为乘法,同时因式分解,然后约分,再代入求值.【解答】解:原式=•=,当x=0时,原式=﹣2.【点评】本题考查了分式的化简求值,熟悉因式分解同时要注意分母不为0.四、解答题(本大题共2小题,每小题5分,共10分)19.(5分)(2016春•九江期末)求解下面的不等式组,并将解集画在数轴上..【分析】分别解两个不等式得到x>﹣3和x≤2,然后利用大小小大中间找确定不等式组的解集,再利用数轴表示解集.【解答】解:解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<x≤2.用数轴表示为:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(5分)(2015•甘孜州)解分式方程:+=1.【分析】本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数项的不要漏乘常数项.五、解答题(本大题共2小题,每小题7分,共14分)21.(7分)(2016春•九江期末)如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是(﹣2,1);(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是(﹣5,0);(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是(﹣3,﹣1).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)直接利用关于点对称的性质得出对称中心即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(﹣2,1);故答案为:(﹣2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(﹣5,0);故答案为:(﹣5,0);(3)点C、C2关于某点中心对称,对称中心的坐标是:(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】此题主要考查了旋转变换和平移变换,根据题意得出对应点位置是解题关键.22.(7分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.六、解答题(本大题共2小题,第23小题8分,第24小题10分,共18分)23.(8分)(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.24.(10分)(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.【点评】此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.。

【北师大版】八年级数学下期末试卷(及答案)

【北师大版】八年级数学下期末试卷(及答案)
蟋蟀每分钟鸣叫的次数
温度/°F
144
76
152
78
160
80
168
82
176
84
如果这种数量关系不变,那么当室外温度为90°F时,蟋蟀每分钟鸣叫的次数是()
A.178B.184C.192D.200
8.对函数 的描述错误是()
A.y随x的增大而减小B.图象经过第一、三、四象限
C.图象与x轴的交点坐标为 D.图象与坐标轴交点的连线段长度等于
一、选择题
1.反映一组数据变化范围的是()
A.极差B.方差C.众数D.平均数
2.一组数据 的平均数是 ,极差是 ,方差是 ,则 的平均数、极差、和方差分别是()
A. B.
C. D.
3.方差计算公式 中,数字5和7分别表示()
A.数据个数、平均数B.方差、偏差
C.众数、中位数D.数据个数、中位数
4.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()
(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.
23.已知一次函数 与 轴交于点 ,与 轴交于点 .
(1)求一次函数的表达式及点 的坐标;
(2)画出函数 的图象;
(3)过点 作直线 与 轴交于点 ,且 ,求 的面积.
24.如图, 为 的中线, 为 的中线.
(1) , ,求 的度数;
故选:D.
【点睛】
本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.
10.B
解析:B
【分析】
根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.

【北师大版】初二数学下期末试卷含答案

【北师大版】初二数学下期末试卷含答案

一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55B .众数是60C .平均数是54D .方差是292.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变3.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是( )A .这组数据的众数是14B .这组数据的中位数是31C .这组数据的标准差是4D .这组是数据的极差是94.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S 2乙,则下列说法正确的是( ) A .S 2甲<S 2乙 B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小5.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限7.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个B .5个C .6个D .7个8.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于59.下列各式中,错误的是( ) A .2(3)3-=B .233-=-C .2(3)3=D .2(3)3-=-10.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个11.如图,直线L 上有三个正方形,,a b c ,若,a c 的边长分别为1和3,则b 的面积为( )A .8B .9C .10D .1112.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .22二、填空题13.商店某天销售了11件衬衫,其领口尺寸统计如下表: 领口尺寸(单位:cm ) 38 39 40 41 42 件数14312则这11件衬衫领口尺寸的中位数是________cm .14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.15.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.16.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.17.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.18.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.19.3x -在实数范围内有意义,则 x 的取值范围是_______ .20.在Rt ABC 中,90C ∠=︒,9cm BC =,12cm AC =,15cm AB =;在DEF 中,90E ∠=︒,4cm DE =,5cm DF =,A D ∠=∠.现有两个动点P 和Q .同时从点A 出发,P 沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为3cm/s ;Q 沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ 与DEF 全等,则点Q 的运动速度为__________.三、解答题21.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 97 78 80 初二(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?22.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元; (2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.23.已知:正比例函数y =kx 的图象经过点A ,点A 在第四象限,过A 作AH ⊥x 垂足为H ,点A 的横坐标为3,S △AOH =3. (1)求点A 坐标及此正比例函数解析式;(2)在x 轴上能否找到一点P 使S △AOP =5,若存在,求点P 坐标;若不存在,说明理由. 24.如图,已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF BC ⊥交BC 延长线于点F ,求证:四边形ABFD 是等腰梯形.25.计算:202023125|12|8(3)-+--+---26.如图,ABC 中,90︒∠=C ,边AB 的垂直平分线交AB 、AC 分别于点D ,点E ,连结BE .(1)若40A ︒∠=,求CBE ∠的度数; (2)若10AB =,6BC =,求BCE 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.B解析:B 【分析】根据平均数、方差的定义计算即可. 【详解】∵小亮的成绩和其它39人的平均数相同,都是90分, ∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分, ∴40人的方差为[41×39+(90-90)2]÷40<41, ∴方差变小,∴平均分不变,方差变小 故选B. 【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.3.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据4.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】根据正比例函数的增减性,确定k的正负,再依据一次函数图象与系数的关系判断即可.解:∵函数(0)y kx k =≠中y 随x 的增大而减小, ∴k<0, ∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限, 故选:A . 【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.6.D解析:D 【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可. 【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意. 故选:D . 【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.7.B解析:B 【分析】首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果; 【详解】一次函数的图象与直线112y x =-平行,设此直线为12y x b =+,过点(-1,-5),∴把此点代入,得152b -=-+,解得92b, ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-).由直线的解析式可知,只要x 是奇数时,y 即为整数, 而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个. 故选:B . 【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;8.B解析:B 【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案. 【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交= 故选:B . 【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.9.D解析:D 【分析】根据算术平方根的意义,可得答案. 【详解】解:A 、2(3=,故A 计算正确,不符合题意;B 、3=-,故B 计算正确,不符合题意;C 、23=,故C 计算正确,不符合题意;D 3=,故D 计算错误,符合题意; 故选:D . 【点睛】(a≥0).10.A解析:A 【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED ⊥CA ,根据三角形中位线定理可得EF =12AB ;由直角三角形斜边上中线等于斜边一半可得EG =12CD ,即可得EF =EG ;连接EG ,可证四边形DEFG 是平行四边形,即可得EH=12EG . 【详解】解:如图,连接FG ,∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD ,AD =BC ,AD ∥BC ,AB =CD ,AB ∥CD , ∵BD =2AD , ∴OD =AD , ∵点E 为OA 中点, ∴ED ⊥CA ,故①正确;∵E ,F ,G 分别是OA ,OB ,CD 的中点, ∴EF ∥AB ,EF=12AB , ∵∠CED =90°,CG =DG=12CD , ∴EG=12CD , ∴EF =EG ,故②正确; ∵EF ∥CD ,EF =DG , ∴四边形DEFG 是平行四边形, ∴EH =HG , 即EH=12EG ,故③正确; 故选:A .【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.11.C解析:C【分析】运用正方形边长相等,再根据同角的余角相等可得BAC DCE ∠=∠,然后证明ACB DCE ∆≅∆,再结合全等三角形的性质和勾股定理来求解即可.【详解】解:如图:由于a 、b 、c 都是正方形,所以AC CD =,90ACD ∠=︒;90ACB DCE ACB BAC ,即BAC ECD ∠=∠,在ABC ∆和CED ∆中,90ABC CED ACB CDEAC DC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()ACB CDE AAS ,AB CE ∴=,BC DE =; 在Rt ABC ∆中,由勾股定理得:22222221310AC AB BC AB DE , 即10b S , 则b 的面积为10,故选:C .【点睛】本题主要考查对全等三角形和勾股定理的综合运用,证明ACB DCE ∆≅∆是解题的关键.12.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 二、填空题13.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4 解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm ,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解.【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++; ∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁,故答案是:15岁,15岁.【点睛】 本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.15.【分析】由题意可知当x=-2时一次函数与正比例函的函数值相同从而可得到方程的解【详解】解:一次函数图象与正比例函数图象交于点所以则则所以方程的解是故答案为:【点睛】本题考查一次函数与一次方程组的关系 解析:2x =-【分析】由题意可知当x=-2时,一次函数5y x m =+与正比例函y kx =的函数值相同,从而可得到方程的解.【详解】解:一次函数5y x m =+图象与正比例函数y kx =图象交于点(2,4)-,所以5y x m y kx =+⎧⎨=⎩,则5x m kx +=,则5x kx m =-, 所以,方程5x kx m =-的解是2x =-,故答案为:2x =-.【点睛】本题考查一次函数与一次方程组的关系,一次函数的交点坐标就是它们的解析式组成的方程组的解.16.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y =-计算即可.【详解】解:∵A 坐标为3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是-a ,3),∵恰好落在正比例函数y =-的图象上,∴)3a -=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.. 17.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=, ∴12BC =,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.18.【分析】过点P 作PG ⊥CB 交CB 的延长线于点G 过点Q 作QF ⊥CB 运用AAS 定理证明△QBF ≌△BPG 根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形利用勾股定理求得线段BC 的长然后结合全解析:10【分析】过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB ,运用AAS 定理证明△QBF ≌△BPG ,根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形,利用勾股定理求得线段BC 的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB∵BP BQ ⊥,PG ⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,BC=228AB AC-=∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键19.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x-解得:3x故答案为:3x.【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键.20.cm/s或cm/s或cm/s或cm/s【分析】当点P在边AC运动点Q在边AB运动有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动点Q在边CA运动有△APQ≌△DEF或△APQ≌△DFE分解析:154cm/s或125cm/s或9332cm/s或9631cm/s【分析】当点P在边AC运动,点Q在边AB运动,有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动,点Q在边CA运动,有△APQ≌△DEF或△APQ≌△DFE,分别利用路程=速度×时间计算.【详解】解:在△DEF中,DE=4,DF=5,∠E=90°,∴,当点P在边AC运动,点Q在边AB运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为4÷3=43(s),∴点Q的运动速度为5÷43=154cm/s;△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为5÷3=53(s),∴点Q的运动速度为4÷53=125cm/s;当点P在边BA运动,点Q在边CA运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为(12+9+15-4)÷3=323(s),∴点Q的运动速度为(12+9+15-5)÷323=9332cm/s;△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为(12+9+15-5)÷3=313(s),∴点Q的运动速度为(12+9+15-4)÷313=9631cm/s;故答案为:154cm/s或125cm/s或9332cm/s或9631cm/s.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.三、解答题21.(1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序;(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:8097903++=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是初二(1)班;(2)∵初二(1)班的平均分为:802843875235⨯+⨯+⨯++=84.7分;初二(2)班的平均分为:972783805235⨯+⨯+⨯++=82.8分;初二(3)班的平均分为:902783855235⨯+⨯+⨯++=83.9;∴排名最好的是初二一班,最差的是初二(2)班;(3)加强动作整齐方面的训练,才是提高成绩的基础.【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.22.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.23.(1)A(3,-2),y=-23x;(2)存在,P点坐标为(5,0)或(-5,0)【分析】(1)结合题意,得3OH=;再结合△AOH的面积为3,通过计算得AH的值以及点A的坐标,将点A坐标代入y=kx,经计算即可得到答案;(2)设P(t,0),结合S△AOP=5,列方程并求解,即可得到答案.【详解】(1)如图,∵过A作AH⊥x垂足为H,点A的横坐标为3∴3OH=∵△AOH的面积为3∴132OH AH ⨯⨯= ∴AH =2∵点A 在第四象限∴A (3,-2), 把A (3,-2)代入y =kx ,得3k =-2 解得:23k =- ∴正比例函数解析式为y =-23x ; (2)设P (t ,0),即OP t =∵△AOP 的面积为5 ∴112522OP AH t ⨯⨯=⨯⨯= ∴t =5或t =-5 ∴能找到一点P 使S △AOP =5,P 点坐标为(5,0)或(-5,0).【点睛】本题考查了绝对值、正比例函数、一元一次方程、坐标的知识;解题的关键是熟练掌握正比例函数、一元一次方程的性质,从而完成求解.24.见解析.【分析】首先证明四边形ABDE 是平行四边形,即可得AB=DE ,等量代换可得CD=DE ,根据直角三角形斜边中线的性质定理可得DF =CD =DE ,进而可得AB=DF ,再说明线段AB 和DF 不平行即可求证结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB CD =.∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB DE =.∴CD DE =.∵EF BC ⊥,∴DF =CD =DE .∴AB DF =.∵CD 、FD 交于点D ,∴线段AB 与线段FD 不平行.∴四边形ABFD 是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.25..【分析】由二次根式的性质、乘方、算术平方根、绝对值、以及立方根进行化简,然后进行计算,即可得到答案.【详解】解:20201|1-=151)(2)3-+-+--=4123--=.【点睛】本题考查了二次根式的性质、乘方、算术平方根、绝对值、以及立方根,解题的关键是熟练掌握运算法则进行化简.26.(1)10°;(2)14【分析】(1)由AB 的垂直平分线DE 交AC 于点E ,可得AE=BE ,继而求得∠ABE 的度数,然后由Rt △ABC 中,∠C=90°,求得∠ABC 的度数,继而求得答案;(2)根据勾股定理得到AC=8,根据线段的垂直平分线的性质得到AE=BE ,即可得到结论.【详解】解:(1)∵DE 是AB 的垂直平分线,∴AE=BE ,∴∠A=∠ABE=40°,∵Rt △ABC 中,∠C=90°,∠A=40°,∴∠ABC=50°,∴∠CBE=∠ABC-∠ABE=10°;(2)∵∠C=90°,AB=10,BC=6,∴AC=8,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BE+CE=AC=8,∴△BCE 的周长=BE+CE+BC=AC+BC=14.【点睛】本题主要考查了线段垂直平分线的性质及其应用问题;勾股定理,应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 1
A D
C
B
润知数学初二下期末练习题
班别:_________姓名:_________
一.填空题(每小题3分,共30分)
1.分解因式:___________________42
3
=-x y x ; 2.请用2,4,6,3写一个比例式___ _____ ; 3.当_______=x 时,分式
1
22
-+x x
无意义; 4.不等式组⎩⎨
⎧-≥+<+1
15
12x x 的整数解个数是 ;
5.如图1所示,要使⊿ACD ∽⊿ABC ,只需要添加条件 ;(只需要写出一种适合条件即可) 6.方程
x
x 5
27=-的解是 ; 7.小明家的房间高度为2.8米,他打算用“黄金分割”的知识在墙上挂一幅画以美化居室,从地面算起,这幅画应挂在约 米才使人感到舒适(精确到0.001);
8.刘强同学为了调查全市初中生人数,他对自己所在城区人口和初中生人数作了调查,城区人口约3万,初中生约1200,全市人口实际约为300万,为此他推断全市初中生人数为12万,但市教育局提供的全市初中生人数约为8万,与估计数据有很大偏差,请你用所学统计知识,解释其中偏差的原
因: ; 9.如图2,1l ∥2l ,则∠1 = ;
10.如图3,已知函数b x y +=3和3-=ax y 的图像
交于点P (2-,5-),根据图像可得不等式
33->+ax b a 的解集是 ;
二.选择题:(每小题4分,共24分)
11.下列数据中极差最大的一组是 ( ) (A )2-、1-、2-、3 (B )110、111、112、110、109
(C )0、1、2、3、4 (D ) 100-、2000-、3000-、4000-
12.西安新建成的“大唐芙蓉园”,占地面积约为800 0002
m ,若按比例尺1:2000缩小后,其面积大约相当于 ( ) (A )一个篮球场的面积 (B )一张乒乓球台台面的面积
(C )《贵阳晚报》的一个版面的面积 (D )《数学》课本封面的面积
13.对人数相同的甲、乙两个班级的学生进行一次数学能力测试,统计出方差的大小关系是:
22乙甲S S >,由此可知这次测试结果是 ( )
(A )甲班成绩好 (B )乙班成绩好 (C )两班成绩一样好 (D )无法确定 14.已知点(a -2,a 3)在第四象限,那么a 的取值范围是 ( ) (A )20<<a (B )0<a (C )2>a (D )0<<-a a 15.下列计算正确的是 ( ) (A )
)(818181y x y x +=+ (B )2 xz y
z y x y 2=+ (C )
y y x y x 21212=+- (D )011=-+-x
y y x 16.小明将某不等式组的解集在数轴上表示如图4,则该不等式组的解集为 ( ) (A )21<<-x (B )4>x (C )2<x (D )2>x 三.解答题:
17.(8分)课堂上,李老师给大家出了这样一道题:当3=x ,225-,37+
时,求代
数式12
21
122
2+-÷-+-x x x x x 的值,小明一看说:“太复杂了,怎么算呢?头都疼了。

”你能帮小明解决这个问题吗?请写出具体过程。

18.(8分)文具厂每天生产笔盒的总成本y (元)与笔盒每天生产量x (个)之间的关系式是:40003+=x y ,笔盒的出厂价格为每个5元,问该厂每天笔盒的生产量至少生产多少个才不亏本?
19.(8分)如图是规格为8 × 8的正方形网格,请在网格中按下列要求操作:
(1)在第二象限内的格点上画一点C ,使点C 与线段AB 组成一个以AB 为底的等腰三角
形,且腰长是无理数,并求出腰长;
(2)画出△ABC 绕点C 旋转180°后得到的△A B C '';连结AB '和A B ',试说明四边形
ABA B ''是矩形.
20.(10分)甲、乙两火车站相距1280米,提速后,列车行驶速度是原来的3.2倍,从甲站
到乙站的的时间缩短了11小时,求列车提速后的速度。

70 ~ 8060 ~ 7050 ~ 6040 ~ 500.0530 ~ 400.39
2036
200
总计
频率频数数据段 1.00
0.10
10F
E
图 7
D
C
B
A
21.(10分)将某雷达测速区监测到一组汽车的时速数据整理,得到其频数如下表:(未完成) 注:30 ~ 40为时速大于等于30千米而小于40千米, 其他类同。

(1)请你把表中的数据填写完整; (2)补缺频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则
违章车辆共有多少辆?
22.(8分)已知,如图7,CD 平分∠ACB ,AC ∥DE ,CD ∥EF ,求证:EF 平分∠DEB ;。

相关文档
最新文档