二次函数测试卷一(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数2013年单元检测训练卷B
一、选择题(每题3分,共24分) .
C .
6.(3分)发射一枚炮弹,经x s 后的高度为y m ,且高度y 与时间x 的函数关系式为y=ax
+bx ,若此炮弹在第6s 之间的函数关系的图象为下列选项中的( )

C
D .
8.(3分)(2006•岳阳)小明从如图的二次函数y=ax +bx+c 图象中,观察得出了下面的五条信息:①a <0
;②c=0;③函数的最小值为﹣3;④当x <0时,y >0;⑤当0<x 1<x 2<2时,y 1>y 2.你认为其中正确的有多少个( )
9.(3分)抛物线y=ax经过点(3,5),则a=_________.
10.(3分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为_________.
11.(3分)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=_________.
12.(3分)已知抛物线y=x2+b2经过点(a,4)和(﹣a,y),则y的值是_________.
13.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2009的值为_________.14.(3分)(2007•南宁)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第_________象限.
15.(3分)(2003•大连)已知抛物线y=x2﹣2x﹣3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为_________.
16.(3分)老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:
甲:函数的图象经过第一、二、四象限;
乙:当x<2时,y随x的增大而减小.
丙:函数的图象与坐标轴只有两个交点.
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数_________.
三、解答题(17题、18题、每题7分,19题、20题每题8分,21题10分,22题12分,共52分)
17.(7分)已知二次函数y=x2+4x,用配方法把该函数化为y=a(x+h)2+k(其中a,h,k都是常数,且a≠0)的形式,并指出抛物线的对称轴和顶点坐标.
18.(7分)(2010•淮北模拟)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
19.(8分)(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
20.(8分)(2009•贵阳)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
21.(10分)(2006•南安市质检)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B ﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
22.(12分)(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.
(1)求m的值;
(2)求∠CDE的度数;
(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.
新人教版九年级上册《第26章二次函数》2013年单元检测训练卷B(一)
参考答案与试题解析


x=6+
=
S=

,得:


m m
s=
s=
s=
x=
x=
点坐标()
坐标为(,
新人教版九年级上册《第26章二次函数》2013年单元检测训练卷B(一)
参考答案与试题解析
一、选择题(每题3分,共24分)
.C.
2
2

4.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()
,根据﹣

5.(3分)一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y关于x的函数关
6.(3分)发射一枚炮弹,经x s后的高度为y m,且高度y与时间x的函数关系式为y=ax2+bx,若此炮弹在第6s
x=6+
x=6+
7.(3分)如图,Rt △AOB 中,AB ⊥OB ,且AB=OB=3,设直线x=t 截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的(
) .
C D .
=
S=8.(3分)(2006•岳阳)小明从如图的二次函数y=ax 2
+bx+c 图象中,观察得出了下面的五条信息:①a <0;②c=0;③函数的最小值为﹣3;④当x <0时,y >0;⑤当0<x 1<x 2<2时,y 1>y 2.你认为其中正确的有多少个( )
二、填空题(每题3分.共24分)
9.(3分)抛物线y=ax2经过点(3,5),则a=.

10.(3分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为(1,3).
11.(3分)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=﹣2.
12.(3分)已知抛物线y=x2+b2经过点(a,4)和(﹣a,y),则y的值是4.
13.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2009的值为2010.
14.(3分)(2007•南宁)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第三象限.
15.(3分)(2003•大连)已知抛物线y=x2﹣2x﹣3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为(4,5)或(﹣2,5).
16.(3分)老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:
甲:函数的图象经过第一、二、四象限;
乙:当x<2时,y随x的增大而减小.
丙:函数的图象与坐标轴只有两个交点.
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数y=(x﹣2)2.
三、解答题(17题、18题、每题7分,19题、20题每题8分,21题10分,22题12分,共52分)
17.(7分)已知二次函数y=x2+4x,用配方法把该函数化为y=a(x+h)2+k(其中a,h,k都是常数,且a≠0)的形式,并指出抛物线的对称轴和顶点坐标.
18.(7分)(2010•淮北模拟)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
19.(8分)(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
,得:


20.(8分)(2009•贵阳)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
m m
21.(10分)(2006•南安市质检)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B ﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
s=
s=
s=
22.(12分)(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.
(1)求m的值;
(2)求∠CDE的度数;
(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.
x=
x=
点坐标()
坐标为(,
21。

相关文档
最新文档