2015年高中数学竞赛试题及答案及答案
2015年全国高中数学联赛(WORD,含答案)
2015全国高中数学联赛安徽省初赛试卷(考试时间:2015年7月4日上午9:00—11:30)注意: 1.本试卷共12小题,满分150分; 2.请用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线; 4.不得使用计算器.一、填空题(每题8分,共64分)1. 函数R ∈++++=-x x x x f x ,e 31)(的最小值是 .2. 设24211111≥+-==--n x x x x n n n ,.数列}{n x 的通项公式是=n x .3. 设平面向量βα,满足3|||,||,|1≤+≤βαβα,则βα∙的取值范围是.4. 设)(x f 是定义域为R 的具有周期π2的奇函数,并且0)4()3(==f f ,则)(x f 在]10,0[中至少有 个零点.5. 设a 为实数,且关于x 的方程1)sin )(cos (=-+x a x a 有实根,则a 的取值范围是.6. 给定定点)1,0(P ,动点Q 满足线段PQ 的垂直平分线与抛物线2x y =相切,则Q 的轨迹方程是 . 7. 设z x yi =+为复数,其中,x y 是实数,i 是虚数单位,其满足z 的虚部和1z iz--的实部均非负,则满足条件的复平面上的点集(,)x y 所构成区域的面积是.8. 设n 是正整数.把男女乒乓球选手各n 3人配成男双、女双、混双各n 对,每位选手均不兼项,则配对方式总数是 .二、解答题(第9题20分,第10━12题22分,共86分)9. 设正实数b a ,满足1=+b a .求证:31122≥+++bb a a .10. 在如图所示的多面体ABCDEF 中,已知CFBE AD ,,都与平面ABC 垂直.设c CF b BE a AD ===,,,1===BC AC AB .求四面体ABCE 与BDEF 公共部分的体积(用c b a ,,表示).11.设平面四边形ABCD的四边长分别为4个连续的正整数。
证明:四边形ABCD的面积的最大值不是整数。
2015年高中数学竞赛复赛试题及答案
2015年高中数学竞赛 复赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.从集合{1,3,6,8}中任取两个数相乘,积是偶数的概率是A .56B .23C .12D .132.若α是第四象限角,且2cos2sin212cos2sinαααα-=-,则2α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角3. 已知点O A B 、、不在同一条直线上,点P 为该平面上一点,且22+OP OA BA =,则A .点P 不在直线AB 上 B .点P 在线段AB 上C .点P 在线段AB 的延长线上D .点P 在线段AB 的反向延长线上4.设+∈R n m ,,若直线04)1()1(=-+++y n x m 与圆4)2()2(22=-+-y x 相切,则m n +的取值范围是A .]31,0(+B .),31[+∞+C . ),222[+∞+D .]222,0(+ 5. 已知正方体C 1的棱长为C 1的各个面的中心为顶点的凸多面体记为C 2,以C 2的各个面的中心为顶点的凸多面体记为C 3,则凸多面体C 3的棱长为A .18B .29C .9D .266. 已知定义在R 上的奇函数)(x f ,满足(3)()f x f x +=-,且在区间]23,0[上是增函数,若方程m x f =)()0(<m 在区间[]6,6-上有四个不同的根1234,,,x x x x ,则1234x x x x +++=A .6-B . 6C .8-D .8 二、填空题(本大题共6小题,每小题6分,共36分.请把答案填在答题卡相应题的横线上.)7.已知1ln ,0()1,0x xf x x x⎧>⎪⎪=⎨⎪<⎪⎩,则不等式()1f x >-的解集为 ▲ .8.随机抽查某中学高二年级100名学生的视力情况,发现学生的视力全部介于4.3至5.2.现将这些数据分成9组,得其频率分布直方图如下.又知前4组的频数成等比数列,后6组的频数成等差数列,则视力在4.6到5.0之间的学生有 ▲ 人.9.在ABC ∆中,角,,A B C 所对应的边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ▲ . 10.给出下列四个命题:(1)如果平面α与平面β相交,那么平面α内所有的直线都与平面β相交; (2)如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β;(3)如果平面α⊥平面β,那么平面α内与它们的交线不垂直的直线与平面β也不垂直; (4)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β.其中真命题...的序号是 ▲ .(写出所有真命题的序号) 11.若动点00(,)M x y 在直线20x y --=上运动,且满足2200(2)(2)x y -++≤8,则2200x y +的取值范围是▲ .12.设函数()1121++⎪⎭⎫⎝⎛=x x x f x,0A 为坐标原点,n A 为函数()x f y =图象上横坐标为n (n ∈N *)的点,向量∑=-=nk k k n A A a 11,向量)0,1(=i ,设n θ为向量n a 与向量i 的夹角,满足15tan 3n k k θ=<∑的最大整数n 是▲ .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.4.3 4.4 4.5 4.6 4.7 4.8 4.95.0 5.1.5.2三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)已知函数2()2sincos 222x x xf x =-+. (1)求函数()f x 的单调减区间;(2)该函数的图象可由)(sin R x x y ∈=的图象经过怎样的变换得到?(3)已知2π,63πα⎛⎫∈ ⎪⎝⎭,且6()5f α=,求()6f πα-的值.菱形ABCD 中,)2,1(A ,)0,6(=AB ,点M 是线段AB 的中点,线段CM 与BD 交于点P . (1)若向量)7,3(=AD ,求点C 的坐标; (2)当点D 运动时,求点P 的轨迹.如图,四边形ABCD 是边长为2的正方形,△ABE 为等腰三角形,AE =BE ,平面ABCD ⊥平面ABE ,点F 在CE 上,且BF ⊥平面ACE. (1)判断平面ADE 与平面BCE 是否垂直,并说明理由; (2)求点D 到平面ACE 的距离. ABCDEF如图,某化工集团在一条河流的上、下游分别建有甲、乙两家化工厂,其中甲厂每天向河道内排放污水2万m3,每天流过甲厂的河水流量是500万m3(含甲厂排放的污水);乙厂每天向河道内排放污水1.4万m3,每天流过乙厂的河水流量是700万m3(含乙厂排放的污水).由于两厂之间有一条支流的作用,使得甲厂排放的污水在流到乙厂时,有20%可自然净化.假设工厂排放的污水能迅速与河水混合,且甲厂上游及支流均无污水排放.根据环保部门的要求,整个河流中污水含量不能超过0.2%,为此,甲、乙两个工厂都必须各自处理一部分污水.(1)设甲、乙两个化工厂每天各自处理的污水分别为x、y万m3,试根据环保部门的要求写出x、y 所满足的所有条件;(2)已知甲厂处理污水的成本是1200元/万m3,乙厂处理污水的成本是1000元/万m3,在满足环保部门要求的条件下,甲、乙两个化工厂每天应分别各自处理污水多少万m3,才能使这两个工厂处理污水的总费用最小?最小总费用是多少元?已知),,(42)(2R c b a c bx ax x f ∈++=.(1)当0≠a 时,若函数)(x f 的图象与直线x y ±=均无公共点,求证:;4142>-b ac (2)43,4==c b 时,对于给定的负数8-≤a ,记使不等式5|)(|≤x f 成立的x 的最大值为)(a M .问a 为何值时,)(a M 最大,并求出这个最大的)(a M ,证明你的结论.2014年高中数学竞赛决赛参考答案11.24一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7.),0()1,(e --∞ 8. 78 9.1210. (3)(4) 11. [2,8] 12. 3三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)解:(1)2()sin 2sin)2x f x x =+- sin x x =π2sin 3x ⎛⎫=+ ⎪⎝⎭. …………………2分 令πππππk x k 223322+≤+≤+,Z k ∈. 得ππππk x k 26726+≤≤+,Z k ∈. ()f x ∴的单调减区间为]267,26[ππππk k ++,Z k ∈. …………………5分 (2)先把函数)(sin R x x y ∈=的图象向左平移3π个单位,就得到函数))(3sin(R x x y ∈+=π的图象;再把其纵坐标伸长为原来的2倍,横坐标不变,就得到π2sin 3y x ⎛⎫=+ ⎪⎝⎭)(R x ∈的图象.…………7分(3)由56)(=αf 得:π62sin(),35α+=即π3sin(),35α+= …………………8分 因为2π,63πα⎛⎫∈⎪⎝⎭,所以π()(,)32παπ+∈.从而π4cos()35α+==- …………………10分 于是()2sin[()]2[sin()cos cos()sin ]6363636f πππππππαααα-=+-=+-+ 5433]21542353[2+=⨯+⨯=. …………………12分14.(本小题满分12分)解:(1)菱形ABCD 中,)7,9()0,6()7,3(=+=+=AB AD AC ,且)2,1(A ,所以)9,10(C .…4分 (2)设),(y x P ,则)2,7()0,6()2,1(--=---=-=y x y x AB AP BP . …………………5分又因为点M 是线段AB 的中点,线段CM 与BD 交于点P ,即点P 是ABC ∆的重心,从而有MP MC 3=,所以11133()3222AC AM MC AB MP AB AP AB AP AB =+=+=+-=-3(1,2)(6,0)(39,36)x y x y =---=-- …………………7分菱形ABCD 的对角线互相垂直,所以AC BP ⊥, 即 0)63,93()2,7(=--⋅--y x y x , 亦即0)63)(2()93()7(=--+-⋅-y y x x ,整理得:4)2()5(22=-+-y x (2≠y ), …………………11分 故P 点的轨迹是以)2,5(为圆心,2为半径的圆,除去与2=y 的交点. …………………12分15.(本题满分13分)解:(1)平面ADE 与平面BCE 垂直. …………………1分证明如下:因为BF ⊥平面ACE ,所以BF ⊥AE. …………………3分 因为平面ABCD ⊥平面ABE ,且ABCD 是正方形,BC ⊥AB ,CD平面ABCD ∩平面ABE =AB ,所以BC ⊥平面ABE ,从而BC ⊥AE. …………………6分 于是AE ⊥平面BCE ,故平面ADE ⊥平面BCE. ………………7分 (2)连结BD 交AC 与点M ,则点M 是BD 的中点,所以点D 与点B 到平面ACE 的距离相等. …………………8分 因为BF ⊥平面ACE ,所以BF 为点B 到平面ACE 的距离. …9分 因为AE ⊥平面BCE ,所以AE ⊥BE.又AE =BE ,所以△AEB 是等腰直角三角形. …………………10分 因为AB =2,所以BE=2sin 45︒= …………………11分在Rt △CBE 中,CE = 3B C B E BF CE ⨯=== 故点D 到平面ACE 的距离是332. …………………13分16.(本题满分13分)解:(1)据题意,x 、y 所满足的所有条件是()20.25001000.8(2) 1.40.2700100020 1.4x x y x y -⎧≤⎪⎪-+-⎪≤⎨⎪≤≤⎪⎪≤≤⎩, …………………4分即⎪⎩⎪⎨⎧≤≤≤≤≥+4.1021854y x y x . …………………5分 (2)设甲、乙两厂处理污水的总费用为z 元,则目标函数z =1200x +1000y =200(6x +5y ).…………7分 作可行域,如图. ……………10分 平移直线l :6x +5y=0,当直线经过点A (1,0.8)时,z 取最大值,此时ABCDEFMGz =1200×1+1000×0.8=2000(元). ……………12分故甲、乙两厂每天应分别处理1万m3、0.8万m3污水,才能使两厂处理污水的总费用最小,且最小总费用是2000元. …………………13分17.(本题满分14分)解:(1)由),,(42)(2R c b a c bx ax x f ∈++=与直线x y ±=均无公共点(0≠a ),可知x c bx ax ±=++422无解, ………………1分 由04)12(2=+++c x b ax 无解,得:016)12(2<-+=∆ac b , 整理得:b b ac +>-4142(1) ………………3分 由04)12(2=+-+c x b ax 无解,得:016)12(2<--=∆ac b ,整理得:b b ac ->-4142(2) ………………5分 由(1),(2)得: 4142>-b ac . ………………6分(2) 由43,4==c b ,所以38)(2++=x ax x f ………………7分因为a a f 163)4(-=-, 由8-≤a 得,5163)4(≤-=-aa f ………………9分 所以()5f x ≤恒成立,故不等式5|)(|≤x f 成立的x 的最大值也就是不等式()5f x ≥-成立的x 的最大值,…………10分 因此)(a M 为方程5382-=++x ax 的较大根,即aaa M 2424)(---=(8-≤a ) ………………11分当8-≤a 时,()M a ==a 的增函数, ………………13分 所以,当8a =-时,)(a M 取得最大值,其最大值为251)(+=a M . ………………14分 18.(本题满分14分)解:(1)由条件可得3n n x =,45n y n =+,根据题意知,23n n c =. …………………1分由k c 为数列{}n y 中的第m 项,则有2345km =+, …………………2分因910m *+∈N ,所以1k c +是数列{}n y 中的第910m +项. …………………5分(2)设在区间[1,2]上存在实数b 使得数列{}n x 和{}n y 有公共项,即存在正整数s ,t 使(1)sa a tb =++,∴1+-=a b a t s , 因自然数2a ≥,s ,t 为正整数,∴sa b -能被1a +整除. …………………6分 ①当1s =时,1s a b t a -=<+1a a *∉+N . ②当2s n = (n *∈N )时,若1b =,2222111[1()()()]111()s n nn a b a a a a a a a a ----==-=-+-+-++-++-- 2422(1)[1]n a a a a -*=-+++∈N ,即s a b -能被1a +整除, …………………8分 此时数列{}n x 和{}n y 有公共项组成的数列{}n z ,通项公式为2n n z a =(n *∈N );若2b =, 显然,222111111s n n a b a a a a a a *---==-∉++++N ,即s a b -不能被1a +整除. ………………9分 ③当21s n =+(n *∈N )时, 2()11n sb a a a b a t a a --==++, …………………10分 若2a >,则2n b a a *-∉N ,又a 与1a +互质,故此时2()1n b a a a t a *-=∉+N . ………………11分 若2a =,要2n b a a *-∈N ,则要2b =,此时221n n b a a a-=-, …………………12分 由②知,21n a -能被1a +整除, 故2()1n b a a a t a *-=∈+N ,即s a b -能被1a +整除. 当且仅当2b a ==时,b a S -能被1a +整除. …………………13分此时数列{}n x 和{}n y 有公共项组成的数列{}n z ,通项公式为212n n z +=(n *∈N ).综上所述,存在{1,2}b ∈,使得数列{}n x 和{}n y 有公共项组成的数列{}n z ,且当1b =时,数列2n n z a=(n *∈N );当2b a ==时,数列212n n z +=(n *∈N ). ……………14分18.(本题满分14分)已知数列{}n x 和{}n y 的通项公式分别为n n x a =和()1,n y a n b n N +=++∈.(1)当3,5a b ==时,记2n n c x =,若k c 是{}n y 中的第m 项(,)k m N +∈,试问:1k c +是数列{}n y 中的第几项?请说明理由.(2)对给定自然数2a ≥,试问是否存在{}1,2b ∈,使得数列{}n x 和{}n y 有公共项?若存在,求出b 的值及相应的公共项组成的数列{}n z ,若不存在,请说明理由.。
2015年全国高中数学联赛江苏赛区初赛试卷(含答案)
2015年全国 数学联赛赛区 初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c 2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆接四边形, 所以∠PAD =∠PED ,∠PAF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠PAD =∠PAF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .ABCDP(第12题图)EA BC DP (第12题图)EF又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA , 所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t 2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联合竞赛试卷
2015 年全国高中数学联合竞赛一试一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 .3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =,则⋅的最小值为 .5.在正方体中随机取三条棱,它们两两异面的概率为 .6.在平面直角坐标系xOy 中,点集K={}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 .7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 .8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
9.(本题满分16分)若实数c b a ,,满足c b a c b a 424,242=+=+,求c 的最小值.10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得: {}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i a a j i ,求4321a a a a +++的值.11.(本题满分20分)在平面坐标系xOy 中,21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.加试(A 卷)1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i n i ia n a a ε.2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈Y ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈Y ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少k n 个集合.3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn .。
2015年全国高中数学联赛试题及答案详解(A卷)
(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .
①
2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:
.
答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为
.
答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被
2015年全国高中数学联赛试题答案
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
2015数学高中联赛试题及答案
2015数学高中联赛试题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(2) \)的值。
A. -1B. -15C. 7D. 15答案:B2. 若\( a \),\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,求\( a^2 + b^2 \)的值。
A. 1B. 4C. 9D. 16答案:C3. 已知圆的方程为\( x^2 + y^2 = 9 \),点P(1,2)在圆上,求过点P的切线方程。
A. \( y = x + 1 \)B. \( y = -x + 3 \)C. \( x + y - 3 = 0 \)D. \( x - y + 1 = 0 \)答案:C4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \sin2\alpha \)的值。
A. 1B. \( \sqrt{2} \)C. -1D. -\( \sqrt{2} \)答案:A5. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值。
A. 37B. 38C. 39D. 40答案:A6. 已知三角形ABC的三边长分别为3,4,5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A二、填空题(每题5分,共20分)7. 若\( \log_{2}8 + \log_{4}16 = x \),求\( x \)的值。
答案:38. 已知\( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{100} \)的和为S,求S的值。
答案:小于5但大于4.59. 若\( \frac{1}{x} + \frac{1}{y} = \frac{1}{6} \)且\( x + y = 12 \),求\( x \)和\( y \)的值。
2015年全国高中数学联合竞赛试题及解答.(A卷)
2k 2 1 m2 .②
由直线
AF1, l, BF1
的斜率
y1 , k, y2 x1 1 x2 1
依次成等差数列知,
y1 x1 1
y2 2k x2 1
,又
y1 kx1 m, y2 kx2 m ,所以 (kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) ,化简并
棱两两异面的取法数为 4×2=8,故所求概率为 8 2 . 220 55
2015A6、在平面直角坐标系 xOy 中,点集 K (x, y) | ( x 3 y 6)( 3x y 6) 0 所对应的平
面区域(如图所示)的面积为
◆答案: 24 ★解析:设 K1 {(x, y) || x | | 3y | 6 0} . 先考虑 K1 在第一象限中的部分,此时有 x 3y 6 ,故这些点
对应于图中的△OCD 及其内部.由对称性知, K1 对应的区
域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 {(x, y) || 3x | | y | 6 0} ,则 K2 对应
的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知,K 所对应的平面区域是被 K1 、K2
1 sin
cos4
cos 2 sin 2 sin
sin 2
(1 sin )(1 cos2 )
2 sin
cos2
2.
2015A 3、已知复数数列 zn 满足 z1 1,zn1 zn 1 ni (n 1,2,) ,其中 i 为虚数单位,zn 表
2015年高中数学竞赛试题精选及答案
已知1111ABCD A B C D -是一个棱长为1的正方体,1O 是底面1111A B C D 的中心,M 是棱1BB 上的点,且:2:3S S =11△DBM△O B M ,则四面体1O ADM 的体积为748(江苏2007夏令营)在正方体1111D C B A ABCD -中,P 是侧面C C BB 11内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是抛物线 已知x 为锐角,则22cos sin33=+x x 是4π=x 的(充要条件)同信一寝室的四名女生,她们当中有一人在修指甲,一人在看书,一人在梳头发,另一人在听音乐。
①A 既不在修指甲,也不在看书;②B 既不在听音乐,也不在修指甲;③如果A 不在听音乐,那么C 不在修指甲;④D 既不在看书,也不在修指甲;⑤C 既不在看书,也不在听音乐。
若上面的命题都是真命题,问她们各在干什么?答:ABCD 分别在听音乐;看书;修指甲;梳头发 已知)1(3tan m +=α,且βαββα,,0tan )tan (tan 3=++⋅m 为锐角,则βα+的值为3π=︒-︒︒-︒︒+)5tan 5(cot 10sin 20sin 220cos 12330cos =︒=函数d cx bx ax x x f ++++=234)(,若3)3(,2)2(,1)1(===f f f ,那么)4()0(f f +的值为(28 )在ABC ∆中,角A 、B 、C 所对的边分别为c b a ,,,且31cos =A 。
(1)求A C B 2cos 2sin 2++的值;(2)若3=a ,求bc 的最大值。
(-1/9; 9/4)若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( 90 )圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2.斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.515满足20073+++=x x y 的正整数数对(x ,y )恰有两对设集合M={-2,0,1},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是(45)将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。
2015年浙江省重点高中数学竞赛试题答卷含参考参考答案
2015年浙江省高中数学竞赛试卷参考答案一、选择题(本大题共有8小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题6分,共48分)1.“a =2, 2b =”是“曲线C :22221(,,0)x y a b R ab a b+=∈≠经过点()2,1”的( A ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A.解答:当a =2, 2b =曲线C :22221x y a b+=经过()2,1;当曲线C :22221x y a b+=经过点()2,1时,即有22211a b+=,显然2,2a b =-=-也满足上式。
所以“a =2, 2b =”是“曲线C :22221x y a b+=经过点()2,1”的充分不必要条件。
2.已知一个角大于120o 的三角形的三边长分别为,1,2m m m ++,则实数m 的取值范围为( B ).A . 1m >B . 312m <<C .332m << D .3m > 答案:B.解答:由题意可知:222(1)2(2)(1)(1)m m m m m m m m ++>+⎧⎨+>++++⎩解得312m <<。
3. 如图,在正方体ABCD -A 1B 1C 1D 1中,M 为BB 1的中点,则二面角M -CD 1-A 的余弦值为( C ).A .36 B . 12 C . 33 D .63答案:C.解答:以D 为坐标原点,1,,DA DC DD 所在的直线分别为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,)2D A C D M ,且平面1ACD 的法向量为1n =(1,1,1),平面1MCD 法向量为2(1,2,2)n =-。
因此123cos ,3n n <>=,即二面角M -CD 1-A 的余弦值为33。
2015年全国高中数学联赛试题及答案解析
2015 年全国高中数学联赛模拟试题 04 第一试参考解答 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 集合 A = {x, y} 与 B = {1, log 3 ( x + 2)} 恰有一个公共元为正数 1 + x ,则 A B = 解:由于 1 + x ¹ x ,故 1 + x = y .由 log 3 ( x + 2) ¹ 1 知 x ¹ 1 ,又因为 1 + x > 0 ,所以 3
A1B 42 52 2 4 5
CA2 A1B 2 BC 2 9 31 3 ,进一步有 cos A cos CA1B 1 , 32 2 2CA1 A1B 16
2
5 7 1 15 7 9 3 9 ,所以 S chc . 因此 c AA1 A1B 2 4 6 , hc 4 1 4 16 2 2 4 16 7. 已知过两抛物线 C1 : x 1 ( y 1) 2 , C2 : ( y 1) 2 4 x a 1 的交点的各自的切线互相垂直,则实数 a 的 值为 . a a a a 解: 联立曲线 C1 , C2 的方程, 求得交点坐标为 ( , 1 1 ) , 由对称性, 不妨只考虑交点 A ( , 1 1 ) 5 5 5 5
102假设还满足则又因为乘以减去乘将其乘以减去乘以acbc是无理数所以因为由于代入这与是无理数矛盾因此不是任何整数系数二次方程axbx2015年全国高中数学联赛模拟试题04加试参考答案一本小题满分40分如图在锐角abac分别是边abac的中点ade的外接圆与的外接圆交于点异于点bce的外接圆与bcdapaqpkpk是一切大于3的素数
2015年全国高中数学联合竞赛试题与解答(B卷)
2015年全国高中数学联赛(B 卷)(一试)一、填空题(每个小题8分,满分64分 1:已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x xa x f x,其中a 为常数,如果)4()2(f f <,则a 的取值围是2:已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为 3:某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值是4:设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA 5:已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是6:设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为7:设P 为椭圆13422=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为 8:正2015边形201521A A A ⋅⋅⋅接于单位圆O ,任取它的两个不同顶点j i A A ,,1≥+的概率为 二、解答题9:(本题满分16分)数列{}n a 满足,31=a 对任意正整数n m ,,均有mn a a a n m n m 2++=+ (1)求{}n a 的通项公式; (2)如果存在实数c 使得c a ki i<∑=11对所有正整数k 都成立,求c 的取值围10:(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值11:(本题满分20分)已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,存在经过点F的一条直线l 交椭圆于B A ,两点,使得OB OA ⊥,求该椭圆的离心率的取值围(加试)1:(本题满分40分)证明:对任意三个不全相等的非负实数c b a ,,都有:21)()()()()()(222222≥-+-+--+-+-a c c b b a ab c ac b bc a ,并确定等号成立的充要条件 2:(本题满分40分)如图,在等腰ABC ∆中,AC AB =,设I 为其心,设D 为ABC ∆的一个点,满足D C B I ,,,四点共圆,过点C 作BD 的平行线,与AD 的延长线交于E 求证:CE BD CD ⋅=23:(本题满分50分)证明:存在无穷多个正整数组)2015,,)(,,(>c b a c b a 满足:1,1,1++-ab c ac b bc a4:(本题满分50分)给定正整数)2(,n m n m ≤≤,设m a a a ,,,21⋅⋅⋅是n ,,2,1⋅⋅⋅中任取m 个互不相同的数构成的一个排列,如果存在{}m k ,,2,1⋅⋅⋅∈使得k a k +为奇数,或者存在整数 )1(,m l k l k ≤<≤,使得l k a a >,则称m a a a ,,,21⋅⋅⋅是一个“好排列”,试确定所有好排列的个数。
2015年全国高中数学联合竞赛试题与解答
2015年全国高中数学联赛(B 卷)(一试)一、填空题(每个小题8分,满分64分1:已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x xa x f x,其中a 为常数,如果)4()2(f f <,则a 的取值范围是2:已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为 3:某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值是4:设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA5:已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是6:设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A I 是单元集,则k 的值为7:设P 为椭圆13422=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为8:正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,,则1≥+j i OA OA 的概率为二、解答题9:(本题满分16分)数列{}n a 满足,31=a 对任意正整数n m ,,均有mn a a a n m n m 2++=+(1)求{}n a 的通项公式;(2)如果存在实数c 使得c a ki i<∑=11对所有正整数k 都成立,求c 的取值范围 10:(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值 11:(本题满分20分)已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,存在经过点F 的一条直线l 交椭圆于B A ,两点,使得OB OA ⊥,求该椭圆的离心率的取值范围 (加试)1:(本题满分40分)证明:对任意三个不全相等的非负实数c b a ,,都有:21)()()()()()(222222≥-+-+--+-+-a c c b b a ab c ac b bc a ,并确定等号成立的充要条件 2:(本题满分40分)如图,在等腰ABC ∆中,AC AB =,设I 为其内心,设D 为ABC ∆内的一个点,满足D C B I ,,,四点共圆,过点C 作BD 的平行线,与AD 的延长线交于E求证:CE BD CD ⋅=23:(本题满分50分)证明:存在无穷多个正整数组)2015,,)(,,(>c b a c b a 满足: 4:(本题满分50分)给定正整数)2(,n m n m ≤≤,设m a a a ,,,21⋅⋅⋅是n ,,2,1⋅⋅⋅中任取m 个互不相同的数构成的一个排列,如果存在{}m k ,,2,1⋅⋅⋅∈使得k a k +为奇数,或者存在整数 )1(,m l k l k ≤<≤,使得l k a a >,则称m a a a ,,,21⋅⋅⋅是一个“好排列”,试确定所有好排列的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .42.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是. ①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④3.设0.50.320.5,log 0.4,cos 3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或25.函数()s i n()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()c o s 2g x x =的图像,则只要将()f x 的图像 A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图22(第2题图)2=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)题号 1 2 3 4 5 6 答案二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防11H N 病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A 组B 组C 组疫苗有效 673 xy疫苗无效7790z已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数1()11f x x=-+. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.43311.22011 12. 31(,),(1,0),(3,4)22--三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos2cos 1+-+=ππx x 2sin 212cos 231++= …………………2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32s in ()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-E F G B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分 ACBB 1A 1C 1FGE )(x fx1O(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r =342. ……1分 由于点A 的横坐标为4,所以点A 的坐标为(4,5),即13AM =. ……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540k x y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分由222542621k kk -+-=+,得2322621k k -=+,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……11分 当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………13分所以满足条件的点A 为线段PQ 上的点,即满足条件的点A 的横坐标取值范围是[]3,6.……14分18.(本题满分14分) 解:(1)由1()11f x x=-+可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11111111()(1)111(11)11x x f x x x x x x x x x x x+-=-===++++++++,……………3分 显然)(1x f x在区间(0,1]上为减函数, ∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)122121212121211111()()111111(11)x x x x f x f x x x x x x x x x +-+--=-==+++++++++.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即212111(11)2x x x x +++++>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分yO∙MAxl也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。