2007年宁波市中考数学试题及答案
盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏
18), 则
EF=DE+DF =4.4
+0.2
=4.6,
由
AF EF
=01.4,
即
AB-0.3 4.6
=01.4, 可得
AB=11.8(米 ).
作者简介 徐骏 , 男 , 1978年 12月生 , 浙江上虞人 , 中学 一级教师 , 主要从事 课堂有效 教学研究和 解题教 学研究 .有 多篇论文 (案例 )获市一 等奖 , 在省 级以上 专业 期刊 发表论 文 30余篇 .
量树的高度 .在阳光下 , 一名同学测得一根长为 1米的竹
竿的影长为 0.4米 , 同时另一名同学测量树的高度时 , 发
现树的影子不全落在地面上 , 有一部分落在教学楼的第一
图 17 图 18
分析 影子既有在地上部分 , 又有在台阶踢面上的 ,
还有在台阶踏面上的 .过点 D作 DF⊥ AB于点 F(如图
华站在沿 DE方向的坡脚下 , 影子在平地上 , 两人的影长
分别为 4m与 2m,那么 , 塔高 AB =
m.
杆的影长为 2米 ,则电线杆的高度为
米.
图 5 图 6 图 7
分析 可用两种方法解答此题 : 法 1 过点 D作 DF⊥ CD交 AE于点 F, 过点 F作 FG
⊥ AB于点
初看此题 , 貌似平凡 , 甚至平庸 , 然细细品味 , 才
觉它有深藏不露的 “精彩 ”.首先 , 一道看似平凡的
题目 , 却考查了 “直径所对的圆周角是直角 ” 、“同弧
上的圆周角相等 ”、“圆的切线及其性质 ” 等等几乎
课标要求的所有与圆相关的知识点 ;第二 , 在考查圆
的基础上 , 巧妙地与勾股定理 、三角形中位线 、相似
浙江省宁波市中考数学试题分类解析 专题12 押轴题
宁波市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1. (2002年浙江宁波3分)如图,有一住宅小区呈四边形ABCD,周长为2000 m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积是(精确至lm2)【】2. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】【分析】如图,延长AB、DC交于M点,延长CD、FE交于N点,延长EF、HG交于P点,延长GH、BA交于Q点,则MNPQ是正方形,△BCM、△DEN、△FGP、△AHQ均为等腰直角三角形∴这个八边形的面积等于=矩形面积-4个小三角形的面积13341172=⨯-⨯⨯⨯=。
故选A。
3. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】4. (2005年浙江宁波3分)一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是【】A. 12B.13C.14D.16【答案】D。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,设4个珠子分别为红1,红2,蓝1,蓝2,从这个袋中任取2个珠子的所有情况有(红1,红2),(红1,蓝1),(红1,蓝2),(红2,蓝1),(红2,蓝2),(蓝1,蓝2)6种,都是蓝色的情况为1种,∴从这个袋中任取2个珠子,都是蓝色的概率是16。
故选D。
5. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2006年浙江宁波课标卷3分)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是【】A.1 B.2 C.3 D.47. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光 的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别 为2m 和1m ,那么塔高AB 为【 】【答案】A 。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
DA浙江省宁波市中考真题
2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B D A C C A D B C B A二、填空题(每小题3分,共21分)题号13 14 15 16 17 18 19答案 1 0,-2 253/7 7222y x x=--在下面每画出一个(与顺序无关)正确的给l分,答案不唯一,下图供参考:三、解答题(共63分)注:l.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分20.解:原式=a2-2ab-(a2-2ab+b2) ············································································· 2分=a2-2ab-a2+2ab-b2 ································································································· 3分=-b2. ···················································································································· 5分21.解:方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1, ···································································································· 2分化简,得2x=-3······································································································· 4分32x=-, ············································································································· 5分经检验,32x=-是原方程的根. ·········································································· 6分22.解:(1)由已知,得MN=AB,MD=12AD=12BC.∵矩形DMNC与矩形ABCD相似,D M M NA B B C=·········································································································· 2分∴12AD2=AB2,∴由AB=4得,AD=42 ······················································································· 4分(2)矩形DMNC 与矩形ABCD 的相似比为22D M AB=············································· 6分23·解:(1) ∵OE ⊥A C ,垂足为E ,..AE =EC , ················································································································ 1 ∵AO =BO , ∴OE =12BC =5/2····································································································· 3分(2)∠A =12∠BDC =25°, ····················································································· 4分在Rt △AOE 中,sin A =OE /OA ,··············································································· 5分 ∵∠AOC =180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4. ······································································ 6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ······························ 2分 中位数为1572.4(m).····························································································· 4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6, ·································· 5分所以频率是0.6. ··································································································· 7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ····························································· 9分 =1699.12(m), ……………………10分∴“五岳”的平均“身高”为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F ∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°, ∴∠DCB =∠CDE =∠DEA =120°,……………………1分 ∵DE =CD ∴∠DEC =∠DCE =30°,∴.∠CEA =∠ECB =90°,∴四边形EABC 为矩形,……………………2分 ∴DE =x m , ∴AE =6-x ,DF =12x ,EC =3x ……………………3分s =233634x x -+ (0<x <6).……………………5分(自变量不写不扣分)当x =4m 时,S最大=123 m 2. ·············································································· 8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元. ································································ 2分 (2)设他这笔存款的本金是x 元, 则x (1+2.79%×80%)=2555.8, ················································································ 4分 解得x =2500,∴这笔存款的本金是2500元. ·············································································· 6分 (3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×0.72%+10000×360360x ×3.06%>10000×2.79%, ········································ 8分解得x <41713, ······································································································ 9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. ·······10分 27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF =∠BCE , ∠CDF =∠CBE ,∠ CF =CE . ∴△DCF ≌△BCE (AA S),……………………5分 ∴CD =CB , ∴∠CDB =∠CBD .………………………………6分 ∴∠PDB =∠PBD ,……………………………7分 ∴PD =PB , ∵P A ≠PC∴点P 是四边形ABCD 的准等距点. ····································································· 8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个; ································································ 9分 ②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个; ···································································10分 ③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;······················································· 11分 ④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P 画在A C 中点不给分) ··12分(第(4)小题只说出准等距点的个数,不能给满分)。
2007年宁波市中考数学试题及解答
2007年浙江省宁波市中考数学试题全卷分试题卷I、试题卷Ⅱ和答题卡、答题卷.试题卷有3个大题,27个小题.满分为l 20分.考试时间为120分钟.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线y=ax2+bx+c的顶点坐标为24(,)24b ac ba a--.试题卷I一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.-12的绝对值等于( )(A)-2 (B)2 (C) -12(D)122x的取值范围是( )(A)x>1 (B)x≥l (C)x<1 (D)x≤13.下列计算中,正确的是( )(A)a3·a4=a12(B) (a2)3=a5(C)a6÷a2=a3(D) (-ab)3= -a3b34.据宁波市财政局统计,我市2006年财政收入已突破500亿元大关,用科学记数法可表示为( )(A)5×l010元(B)50×109元(C)0.5×1011元(D)5×1011元5.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是( )(A)内切(B)外切(C)相交(D)相离6.把不等式组1020xx+≥⎧⎨->⎩的解集表示在数轴上,正确的是( )7.下列事件是随机事件的是( )(A)购买一张彩票,中奖(B)在一个标准大气压下,加热到100℃,水沸腾(C)奥运会上,百米赛跑的成绩为5秒(D)掷一枚普通骰子,朝上一面的点数是8 8.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C的坐标为( )(A)(-3,2) (B)(-2,-3) (C)(3,-2) (D)(2,-3)9.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是( )(A)甲 (B)乙 (C)丙 (D)丁10.如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-111.与如图所示的三视图对应的几何体是( )12.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m二、填空题(每小题3分,共21分) 13.计算4133m m m -+++= ▲ . 14.方程x 2+2x=0的解为 ▲15.如图,AB 切⊙0于点B ,AB=4 cm ,AO=6 cm ,则⊙O 的半径为 ▲ cm .16.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 ▲ .17.如图,在△ABC 中,AB=AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC 交BC 的延长线于点E ,已知∠E=36°,则∠B= ▲ 度.18.如图,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 ▲ .19.面积为l 个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1、2、3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为l2个平方单位.三、解答题(第20题5分,21~23题各6分,24题10分,25题8分,26题10分,27题12分,共63分)20.化简a(a -2b)-(a -b)2.21.解方程21124x x x -=--.22.如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB=4.(1)求AD 的长.(2)求矩形DMNC 与矩形ABCD 的相似比.23.如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.(1)求OE的长.(2)求劣弧AC的长(结果精确到0.1).24.今年4月底,国家测绘局和建设部首次为我国19座名山定“身高”(单位:m).下图为其中10座名山的“身高”统计图.请你根据图中提供的信息回答下列问题:(1)这l0座名山“身高”的极差和中位数分别是多少?(2)这l0座名山“身高”在1000m到2000m之间的频率是多少?(3)这l0座名山中,泰山、华山、衡山、恒山、嵩山并称“五岳”,求“五岳”的平均“身高”.25.用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m 2.问当x 取什么值时,S 最大?并求出S 的最大值.26.2007年5月19日起,中国人民银行上调存款利率.储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元?(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率2.79%计息,本金与实得利息收益的和为2555.8元,问他这笔存款的本金是多少元?(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存?请说明理由.约定:①存款天数按整数天计算,一年按360 ②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).27.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l ,点P 为四边形ABCD 对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共21分)每画出一个(与顺序无关)正确的给l分,答案不唯一,下图供参考:2 x-1≥0,x≥13 解:A、应为a3•a4=a7,故本选项错误;B、应为(a2)3=a6,故本选项错误;C、应为a6÷a2=a4,故本选项错误;D、(-ab)3=-a3b3,正确.故选D.4 500亿元=5 解:根据题意,得R=5,r=3,d=4,∴R+r=8,R-r=2,∵2<4<8,即R-r<d<R+r,∴两圆相交.故选C.6 x≥-1 ,x<27 解:A、可能发生,也可能不发生,是随机事件,符合题意;B、是确定事件中的必然事件;C、是确定事件中的不可能事件;D、掷一枚普通骰子,朝上一面的点数是8,是不可能事件.故选A .8 解:∵在平行四边形ABCD 中,A 点与C 点关于原点对称 ∴C 点坐标为(2,-3). 故选D .9解:由于乙的方差最小,故根据方差的意义知,方差越小数据越稳定,所以最稳定的是乙. 故选B . 1011解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从正视图可以排除C ,从左视图可以排除A 和D ,符合条件的只有B .故选B 134133m m m -+++ =313mm +=+ 14 x2+2x=x(x+2)=0, x=0, x=-21516一盒子内放有3个红球,6个白球和5个黑球,共14个;任意摸出1个球是白球的概率是6/14=3/717解:∵∠E=36°,AE ∥DC , ∴∠E=∠BCD=36°, ∵CD 平分∠ACB , ∴∠ACB=72°; ∵AB=AC ,∴∠B=∠ACB=72°. 1819平行四边形的对边平行且相等;梯形的一组对边平行,另一组对边不平行.对边都不平行的四边形属于一般的四边形这是结论开放型作图题,该类几何题背景新颖、形式活泼.主要考查学生的发散性思维能力,培养学生多角度、多层次、多侧面地思考问题的习惯,发展学生的求异思维能力.解决这类试题,切忌盲目尝试,需要学生深入思考,努力探索在变化的事物中寻找变化的规律和不变的本质,观察、探究、猜想、动手操作、论证并存.本道题不变的是图形的面积,变的是图形的形状,因此,在画出一个满足条件的平行四边形后,画梯形及一般的四边形时,均可根据等积变形思想来画.三、解答题(共63分)注:l.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分20.解:原式=a2-2ab-(a2-2ab+b2) ……………………2分=a2-2ab-a2+2ab-b2……………………3分=-b2.……………………5分21.解:方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1,……………………2分化简,得2x=-3……………………4分x=-3/2,……………………5分经检验,x=-3/2是原方程的根.……………………6分 22.解:(1)由已知,得MN=AB ,MD=12 AD=12BC . ∵矩形DMNC 与矩形ABCD 相似,BCDM MNAB =……………………2分 ∴12AD 2=AB 2,∴由AB=4得,4分(2)矩形DMNC 与矩形ABCD 的相似比为DM AB 2=……………………6分 23·解:(1) ∵OE ⊥A C ,垂足为E , ..AE=EC ,……………………1 ∵A O=B0,∴OE=12BC=5/2……………………3分 (2)∠A=12∠BDC=25°,……………………4分在Rt △AOE 中,sinA=OE/OA ,……………………5分 ∵∠AOC=180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4.……………………6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ………………2分 中位数为1572.4(m).……………………4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6,…………… 5分 所以频率是0.6. …………7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ……………………9分 =1699.12(m), ……………………10分∴“五岳"的平均“身高"为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F∵∠DCB=∠CDE=∠DEA ,∠EAB=∠CBA=90°,∴∠DCB=∠CDE=∠DEA=120°,……………………1分 ∵DE=CD∴∠DEC=∠DCE=30°, ∴.∠CEA=∠ECB=90°,∴四边形EABC 为矩形,……………………2分∴DE=x m ,∴AE=6-x ,DF=12x ,……………………3分s=2+ (0<x<6).……………………5分(自变量不写不扣分)当x=4m 时,S 最大m 2.……………………8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元.………………………………2分(2)设他这笔存款的本金是x 元,则x(1+2.79%×80%)=2555.8,……………………………………4分解得x=2500,∴这笔存款的本金是2500元.……………………………………6分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得 l0000×360x ×0.72%+10000×360360x -×3.06%>10000×2.79%,………………8分 解得x<41713,……………………9分 当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存.……………………10分27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中,∠DCF=∠BCE ,∠CDF=∠CBE ,∠ CF=CE.∴△DCF≌△BCE(AAS),……………………5分∴CD=CB,∴∠CDB=∠CBD.………………………………6分∴∠PDB=∠PBD,……………………………7分∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.…………………………………………8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;…………………………………………9分②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;…………………………………………10分③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;……………………………………11分④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P画在A C中点不给分) ……………………………………………………………………12分(第(4)小题只说出准等距点的个数,不能给满分)。
【中考12年】浙江省宁波市2002-中考数学试题分类解析 专题11 圆
宁波市2002-2013年中考数学试题分类解析专题11 圆一、选择题1. (2003年浙江宁波3分)如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是【】2. (2004年浙江宁波3分)如图,PA切⊙O于A,割线PBC经过圆心O,交⊙O于B、C两点,若PA=4,PB=2,则tan∠P的值为【】【答案】B。
【考点】切线的性质,切割线定理,锐角三角函数定义。
【分析】∵PA,PB分别是⊙O的切线和割线,∴PA2=PB•PC。
∵PA=4,PB=2,∴PC=8,BC=6。
∴OB=3。
连接OA,则∠OAP=90°。
∴OA3tan PPA4∠==。
故选B。
3. (2005年浙江宁波3分)如图,圆和圆的位置关系是【】4. (2005年浙江宁波3分)边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为【】A.1∶5B.2∶5C.3∶5D.4∶55. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2007年浙江宁波3分)已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是【】(A)内切 (B)外切 (C)相交 (D)相离7. (2008年浙江宁波3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是【】A.1cm B.3cm C.10cm D.15cm8. (2010年浙江宁波3分)两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是【】A、内切B、相交C、外切D、外离9. (2011年浙江宁波3分)如图,⊙O1 的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD 的中心,O1O2垂直AB于P点,O1O2 =8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1 与正方形ABCD的边只有一个公共点的情况一共出现【】【答案】B。
初中数学中考几何题中的新定义型题集锦
初中数学中考几何题中的新定义型题集锦在近年的中考试题中,在近年的中考试题中,涌现出了许多创意新颖、涌现出了许多创意新颖、涌现出了许多创意新颖、情境熟悉的几何新定义型试题,情境熟悉的几何新定义型试题,情境熟悉的几何新定义型试题,为了便为了便于同学们了解掌握这方面的信息,现从近年的中考试题中精选数例,供同学们参考与借鉴。
一、定义一种新的几何体一、定义一种新的几何体例1(2001年泰州市)我们把相似形的概念推广到空间:我们把相似形的概念推广到空间:如果两个几何体大小不一定相如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体,如图1,甲、乙是两个不同的正方体,正方体都是相似体。
都是相似体。
(1)下列几何体中,一定属于相似体的是()下列几何体中,一定属于相似体的是() A. 两个球体两个球体 B. 两个圆锥体两个圆锥体C. 两个圆柱体两个圆柱体D. 两个长方体两个长方体 (2)请猜想出相似体的主要性质:)请猜想出相似体的主要性质:①相似体的一切对应线段(或弧长)的比等于_______;②相似体表面积的比等于_______;③相似体体积的比等于_______。
(3)假定在完全正常发育的条件下,不同时期的同一个人的人体是相似体,一个小朋友上幼儿园时身高为1.1m ,体重为18kg ,到了初三,身高为1.65m ,问他的体重为多少?(不考虑不同时期人体平均密度的变化)(不考虑不同时期人体平均密度的变化)解:(1)由相似体的定义可知,应选A 。
(2)①相似比;②相似比的平方;③相似比的立方。
)①相似比;②相似比的平方;③相似比的立方。
(3)设初三时体重为x kg ,则由题意,得,则由题意,得()31.1:65.118:x =,解之,得()kg 75.60x »故到了初三时,他的体重约为60.75kg 。
二、定义一种新的规则二、定义一种新的规则例2 (2003年安徽省)如图2,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等。
2007年中考数学试题汇编——压轴题(含答案)及详细解析
第 1 页2007年中考数学试题汇编——压轴题一、 试题部分 1-13页 二、 答案部分14-36页一、 试题部分安徽省2007年23.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;【解】(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 【解】2007年常德市26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FG ABBG=成立(考生不必证明).(1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC == ,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FG ABBG=还成立吗?(1分)郴州市2007年27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线AC 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重合时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.图11D图122德州市二〇〇七年23.(本题满分10分)已知:如图14,在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,2AC AB AD = .(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)2007年龙岩市25.(14分)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.2007年福建省宁德市26.(本题满分14分) 已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点在上,且厘米,点P 是AB 边上一动点.按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示) (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是( , );xN MQ PHGFEDCBA图11Q P NM H G F ED CB A图10图14第 页3 ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是( , );③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标; (3)点P 在运动过程,PT 与MN 形成一系列的交点123Q Q Q ,,,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.2007年福建省三明市26.(本小题满分12分)如图①,②,在平面直角坐标系xOy 中,点A 的坐标为(4,0),以点A 为圆心,4为半径的圆与x 轴交于O ,B 两点,OC 为弦,60AOC ∠= ,P 是x 轴上的一动点,连结CP .(1)求OAC ∠的度数;(2分)(2)如图①,当CP 与A 相切时,求PO 的长;(3分)(3)如图②,当点P 在直径OB 上时,CP 的延长线与A 相交于点Q ,问PO 为何值时,OCQ △是等腰三角形?(7分)2007年河池市26. (本小题满分12分)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,SC B图1 图3CE 图24的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.贵阳市2007年25.(本题满分12分)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90 的扇形.(1)求这个扇形的面积(结果保留π).(3分)(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分) (3)当O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)2007年杭州市24.(本小题满分12分)在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。
2007中考数学真题附答案
a b c 1
∴
c0
2a 2b c 0
解得, a 1 2 , b 2 2 , c 0 所以所求的抛物线的解析式为 y (1 2 ) x (2 2 ) x
2
23. (1) ∴A(-4,-2) ,B(6,3) 分别过 A、B 两点作 AE x 轴, BF y 轴,垂足分别为 E、F ∴AB=OA+OB
②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图 4). 注:每组包含最小值不包含最大值,且车价取整数. 人数 / 人 请你根据以上信息,回答下列问题: 360 (1)根据①中信息可得,被调查消费者的年收 入的众数是 万元. (2)请在图 4 中补全这个频数分布直方图. 200
120 (3)打算购买价格 10 万元以下小车的消费者 人数占被调查消费者人数的百而思中考研究中心
∴△AEO∽△CMO ∴
OE AO OM CO
∴
4 5 2
2 5 CO
∴
CO
5 1 5 2 5 2 4 4
同理可得 OD ∴
5 2
1 1 4 2 20 4 ( )2 ( )2 2 2 5 5 25 5 OC OD 1 4 ∴ 2 5 OM 1 1 1 ∴ 2 2 OC OD OM 2 1 1 1 (4)等式 2 2 2 成立.理由如下: a b h
正面 A. 图 1 图1 4.下列图形中,不是 轴对称图形的是 ..
B.
C.
D.
A.
B.
C.
D.
5.已知三角形的三边长分别是 3,8, x ;若 x 的值为偶数,则 x 的值有 A.6 个 B.5 个 C.4 个 6.一件标价为 250 元的商品,若该商品按八折销售,则该商品的实际售价是 A.180 元 B.200 元 C.240 元 7.一组数据-2,-1,0,1,2 的方差是 A.1 B.2 C.3 8.若 (a 2) b 3 0 ,则 a b
2005-2011年浙江省宁波市数学中考试卷及答案(7套)
2008年浙江省台州市初级中学学业水平考试数学试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.3的相反数是( ) A .3-B .3C .13D .13-2.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )3.据统计,2008年第一季度台州市国民生产总值约为41300000000元.数据41300000000用科学记数法可表示为( )A .110.41310⨯B .114.1310⨯C .104.1310⨯D .841310⨯4.一组数据9.5,9,8.5,8,7.5的极差是( ) A .0.5 B .8.5 C .2.5 D .2 5.不等式组431x x +>⎧⎨⎩≤的解集在数轴上可表示为( )6.如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a7.四川512大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( ) A .4200049000x y x y +=⎧⎨+=⎩B .4200069000x y x y +=⎧⎨+=⎩C .2000469000x y x y +=⎧⎨+=⎩D .2000649000x y x y +=⎧⎨+=⎩B .C .D . 2- A .1- 12- B .1- 2- C . 1- 12- D .1- (第6题)8.下列命题中,正确的是( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A .①②③ B .③④⑤ C .①②⑤ D .②④⑤ 9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A .第3天B .第4天C .第5天D .第6天10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行二、填空题(本题有6小题,每小题5分,共30分)11.化简:1(24)22x y y -+= .12.因式分解:24x -= .13.台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是16岁的概率是 .14.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系 式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .15.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示). 16.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数(第9题)ACBA ''C '(第10题) 图2图1(第13题) a DCB Mc N EF bG H(第15题)(第14题)量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)计算:322tan 4516-+--(2)解方程:1222x x x+=--18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABO △的三个顶点A B O ,,都在格点上.(1)画出ABO △绕点O 逆时针旋转90后得到的三角形; (2)求ABO △在上述旋转过程中所扫过的面积.19.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(31)(2)A B n -,,,两点,直线AB 分别交x 轴、y 轴于D C ,两点. (1)求上述反比例函数和一次函数的解析式;(2)求ADCD的值.(第16题)(第18题)20.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: ① ;② ;③ ;④ ;(2)如果点C 的坐标为(13),,那么不等式11kx b k x b ++≥的解集是. 21.如图是某宾馆大厅到二楼的楼梯设计图,已知6BC =米,9AB =米,中间平台宽度DE为2米,DM EN ,为平台的两根支柱,DM EN ,垂直于AB ,垂足分别为M N ,,30EAB ∠=,45CDF ∠=.求DM 和BC 的水平距离BM .(精确到0.12 1.41≈3 1.73≈)22.八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E ,,,,五个等级.老1 (第20题)A N M BFC ED (第21题) 一次函数与方程的关系一次函数与不等式的关系师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.学生帮父母做家务活动时间频数分布表等级帮助父母做家务时间 (小时)频数A 2.53t <≤ 2B 2 2.5t <≤ 10C 1.52t <≤ aD 1 1.5t <≤ b E0.51t <≤3(1)求a b ,的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.23.CD 经过BCA ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下面两个问题: ①如图1,若90BCA ∠=,90α∠=,则BE CF ;EF E A F -(填“>”,“<”或“=”);②如图2,若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明).24.如图,在矩形ABCD 中,9AB =,AD =P 是边BC 上的动点(点P 不与B A E DC 40%(第22题)学生帮父母做家务活动评价等级分布扇形统计图A B C E FDD AB CEF ADFC EB (图1)(图2) (图3)(第3题)点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,设CP 的长度为x ,PQR △与矩形ABCD 重叠部分的面积为y .(1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形ABCD 的AB 边上? (3)①求y 与x 之间的函数关系式;②当x 取何值时,重叠部分的面积等于矩形面积的727?2008年浙江省台州市初级中学学业水平考试数学参考答案一、选择题(本题有10小题,每小题4分,共40分)题号1 2 3 4 5 6 7 8 9 10 答案A B C D A C D B C B 二、填空题(本题有6小题,每小题5分,共30分) 11.x12.(2)(2)x x +-13.0.4514.4.9米1522a b +16.x y +≥2()4x y xy +≥,或222x y xy +≥2x y+等 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.解:(1)322tan 45162814-+--=+--5= (2)1222x x x+=--, 去分母,得:12(2)x x -=-整理,得:124x x -=-, 解这个方程得:3x =,经检验,3x =是原方程的解,所以原方程的解为3x =. 18.(1)画图正确(如图). (2)AOB △所扫过的面积是:D QC BPRA(第24题)BADC(备用图1)BADC(备用图2)AOB DOB S S S =+△扇形290π444π4360=⨯+=+. 19.解:(1)把3x =-,1y =代入my x=,得:3m =-.∴反比例函数的解析式为3y x =-.把2x =,y n =代入3y x =-得32n =-.把3x =-,1y =;2x =,32y =-分别代入y kx b =+得31322k b k b -+=⎧⎪⎨+=-⎪⎩, 解得1212k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴一次函数的解析式为1122y x =--.(2)过点A 作AE x ⊥轴于点E .A 点的纵坐标为1,1AE ∴=. 由一次函数的解析式为1122y x =--得C 点的坐标为102⎛⎫- ⎪⎝⎭,, 12OC ∴=. 在Rt OCD △和Rt EAD △中,Rt COD AED ∠=∠=∠,CDO ADE ∠=∠, ∴Rt Rt OCD EAD △∽△. 2AD AE CD CO ∴==. 20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:设DF x =米.45CDF ∠=,90CFD ∠=, CF DF x ∴==米,(6)BF BC CF x ∴=-=-米, (6)EN DM BF x ∴===-米,AN MBFCED (第21题)9AB =米,2DE =米,DF x =米,(7)AN AB MN BM x ∴=--=-米,在AEN △中,90ANE ∠=,30EAN ∠=,tan 30EN AN ∴=,即6)x x -=-.解这个方程得: 4.6x =≈.答:支柱DM 距BC 的水平距离约为4.6米. 22.解:(1)504020a =⨯=%,5021020315b =----=. (2)0.753 1.2515 1.7520 2.2510 2.7521.6850x ⨯+⨯+⨯+⨯+⨯==(小时);答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时. (3)符合实际.设中位数为m ,根据题意,m 的取值范围是1.52m <≤,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多. 23.(1)①=;=;②所填的条件是:180BCA α∠+∠=.证明:在BCE △中,180180CBE BCE BEC α∠+∠=-∠=-∠.180BCA α∠=-∠,CBE BCE BCA ∴∠+∠=∠.又ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠. 又BC CA =,BEC CFA ∠=∠,()BCE CAF AAS ∴△≌△. BE CF ∴=,CE AF =.又EF CF CE =-,EF BE AF ∴=-.(2)EF BE AF =+.A B C E F DD AB CE F ADFCEB (图1)(图2) (图3) (第23题)24.解:(1)如图,四边形ABCD 是矩形,AB CD AD BC ∴==,.又9AB =,AD =90C ∠=,9CD ∴=,BC =tan 3BC CDB CD ∴∠==30CDB ∴∠=. PQ BD ∥,30CQP CDB ∴∠=∠=.(2)如图1,由轴对称的性质可知,RPQ CPQ △≌△,RPQ CPQ ∴∠=∠,RP CP =.由(1)知30CQP ∠=,60RPQ CPQ ∴∠=∠=,60RPB ∴∠=,2RP BP ∴=. CP x =,PR x ∴=,33PB x =.在RPB △中,根据题意得:2(33)x x =, 解这个方程得:23x =(3)①当点R 在矩形ABCD 的内部或AB 边上时,023x <≤21133222CPQ S CP CQ x x x =⨯⨯==△, RPQ CPQ △≌△,∴当0x <≤22yx =当R 在矩形ABCD 的外部时(如图2),3x <在Rt PFB △中,60RPB ∠=,2)PF BPx ∴==,又RP CP x ==,3RF RP PF x ∴=-=-在Rt ERF △中,30EFR PFB ∠=∠=,6ER ∴=-.21182ERF S ER FR x x ∴=⨯=-+△ DQC BPR A(第24题)DQC BPA(图1)DQC BPR A(图2)FERPQ ERF y S S =-△△,∴当x <<时,218y x =+-.综上所述,y 与x之间的函数解析式是:22(018x x y x x <=⎨⎪+-<<⎩≤.②矩形面积9=⨯=,当0x <≤22y x =随自变量的增大而增大,所以y的最大值是727的值727=⨯=而>,所以,当0x <<y 的值不可能是矩形面积的727;当x <231818373x x -+-=332x =33233>所以332x = 所以332x =综上所述,当332x =时,PQR △与矩形ABCD 重叠部分的面积等于矩形面积的727.。
(完整word版)年宁波市中考数学试题及解析
宁波市2009年初中毕业生学业考试数 学 试 题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷Ⅰ、答题卷Ⅱ.试题卷共6页,有三个大题,26个小题,满分120分,考试时间为120分钟.2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B 铅笔涂黑、涂满.将试题卷Ⅱ答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.试题卷Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列四个数中,比0小的数是( )A .23BC .πD .1-2.等腰直角三角形的一个底角的度数是( ) A .30° B .45° C .60° D .90°3.一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( )A .12B .13C .14D .164.据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万用科学记数法可表示为( ) A .90.46410⨯B .84.6410⨯C .74.6410⨯D .646.410⨯5x 的取值范围是( ) A .2x ≠ B .2x > C .x ≤2 D .2x ≥6.如图是由4个立方块组成的立体图形,它的俯视图是( )A. B . C. D . 7.下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式B .了解宁波市居民对废电池的处理情况C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查(第6题)8.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点()x y ,在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三角限D .第四象限9.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( ) A .110° B .108° C .105° D .100°10.反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .411.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 12.如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m -试题卷Ⅱ二、填空题(每小题3分,共18分) 13.实数8的立方根是 .14.不等式组6020x x -<⎧⎨->⎩的解是 .15.甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是20.4S =甲(环2),2 3.2S =乙(环2),21.6S =丙(环2),则成绩比较稳定的是 .(填“甲”“乙"“丙”中的一个)16.如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0。
2007年浙江省慈溪中学初中保送生招生考试数学试卷及参考答案(1)
《动态数学思维》教案答案:类似性问题:1. C2. A3. 1<x<24. 解:(1)由图象可知乙机在甲机出发后1时才从玉树机场出发,甲机的速度为=160千米/时,乙机的速度为=200千米/时.(2)设甲机的函数关系式为s=k1t+b1.因为图象过点A(0,8)和点B(5,0),甲=t+8;所以解得故甲机的函数关系式为s甲设乙机的函数关系式为s=k2t+b2.因为图象过点C(1,0)和点D(5,8),乙=2t-2.所以解得故乙机的函数关系式为s乙(3)由解得所以两机相遇时,乙机飞行了-1=时,乙机离西宁机场为8-=(百千米)= (千米).5.解:(1)一次函数y=-x+2中,令x=0,得y=2;令y=0,得x=3.则A的坐标是(3,0),B的坐标是(0,2),∴OA=3,OB=2.作CD⊥x轴于点D,如图.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠BAO=∠ACD,又∵AB=AC,∠BOA=∠CDA=90°,∴△ABO≌△CAD,∴AD=BO=2,CD=OA=3,∴OD=OA+AD=5.∴C的坐标是(5,3).设直线BC的解析式是y=kx+b,根据题意得解得则直线BC的解析式是y=x+2.练习册答案:1. A2. D3. B4. -115. -2<x<-16. 或7. 解:(1)由题意易得点A、B坐标分别为A(0,4)、B(3,0),∴OA=4,OB=3,∴在△ABC与△BAO中,AC=BO=3,BC=AO=4,AB=BA,∴△ABC≌△BAO(SSS);(2)由(1)知△ABC≌△BAO,△BAO的面积为3×4÷2=6,∴△ABC的面积为6;(3)如答图,在第一象限,存在C1、C2两点,它们分别与点C、O关于直线AB呈轴对称.8.解:(1)120;2(2)由点(3,90)求得y2=30x.当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.当y1=y2时,60x-30=30x,解得x=1,此时y1=y2=30,所以点P的坐标为(1,30).该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两船离B港的距离为30 km. (3)①当x≤0.5时,由点(0,30),(0.5,0)求得y1=-60x+30.依题意,得(-60x+30)+30x≤10,解得x≥,不合题意;②当x>0.5时,依题意,得-10≤30x-(60x-30)≤10,解得≤x≤.综上所述,当≤x≤时,甲、乙两船可以相互望见.。
【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题10 四边形
宁波市2002-2013年中考数学试题分类解析专题10 四边形一、选择题1. (2002年浙江宁波3分)已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是【】(A)(B)(C)3 (D)62. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】3. (2005年浙江宁波3分)若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是【】A.梯形B.矩形C.菱形D.正方形4. (2006年浙江宁波大纲卷3分)如图所示,在平行四边形ABCD中,O为对角线AC、BD的交点,与△AOD 全等的是【】A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形AB CD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形6.(2013年浙江宁波3分)如图,梯形ABCD中,AD∥BC,AB=52,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为【】二、填空题1. (2003年浙江宁波3分)如图,BD是 ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情形).2. (2009年浙江宁波3分)如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,作DE∥AB交BC于点E,若AD=3,BC=10,则CD的长是▲ .【答案】7。
【考点】平行四边形的判定和性质,三角形内角和定理,等腰三角形的判定和性质。
【分析】∵DE∥AB,∴∠DEC=∠B。
∵∠B=70°,∴∠DEC=∠B=70°。
∵∠C=40°,∴∠CDE =180°-70°-40°=70°。
中考数学三角形复习试题以及答案
三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =(b+c-a)+(a+c-b)=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个B.4个C.3个D.2个考点:等腰三角形答案:A(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是( )考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线4.(1)与三角形三个顶点距离相等的点是这个三角形的( )A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;(2)O为内心时,∠BOC=90°+ ∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C。
2007年浙江省杭州市中考数学试卷
2007年浙江省杭州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2007•舟山)下列运算的结果中,是正数的是()A.(﹣2007)﹣1B.(﹣1)2007C.(﹣1)×(﹣2007)D.(﹣2007)÷20072.(3分)(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)3.(3分)(2007•舟山)如图,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换4.(3分)(2007•舟山)有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4B.4C.3D.3.55.(3分)(2007•舟山)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)6.(3分)(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°7.(3分)(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C 点,又测得仰角为45°,则该高楼的高度大约为()A.82米B.163米C.52米D.30米8.(3分)(2007•舟山)如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)(2007•舟山)如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是()A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长10.(3分)(2009•青海)将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2007•舟山)两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是.12.(4分)(2007•舟山)抽取某校学生的一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图所示,已知该校有学生1500名,则可以估计出该校身高位于160cm 至165cm之间大约有人.13.(4分)(2007•舟山)一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为.14.(4分)(2007•舟山)抛物线y=2(x﹣2)2﹣6的顶点为C,已知y=﹣kx+3的图象经过点C,则这个一次函数图象与两坐标轴所围成的三角形面积为.15.(4分)(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.16.(4分)(2007•舟山)如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,P n,…,记纸板P n的面积为S n,试计算求出S2=;S3=;并猜测得到S n﹣S n﹣1=.(n≥2)三、解答题(共8小题,满分66分)17.(6分)(2007•舟山)给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.18.(6分)(2007•舟山)我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.19.(6分)(2007•舟山)如图,是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)20.(8分)(2007•舟山)第15中学的九年级学生在社会实践中,调查了500位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.(1)请你将这个统计图改成用折线统计图表示的形式;(2)请根据此项调查,对城市交通给政府提出一条建议.21.(8分)(2007•舟山)如图为一机器零件的左视图,弧DE是以a为半径的个圆周,∠DCB=45度.请你只用直尺和圆规,按2:1的比例,将此零件图放大画在答题卷中.要求写出作图方法,并保留作图痕迹.22.(10分)(2007•舟山)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论:①BD是∠ABC的角平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明.23.(10分)(2007•舟山)暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间,求这辆汽车原来每天计划的行程范围.(单位:公里)24.(12分)(2007•舟山)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.(1)分别求出梯形中BA,AD的长度;(2)写出图3中M,N两点的坐标;(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.2007年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2007•舟山)下列运算的结果中,是正数的是()A.(﹣2007)﹣1B.(﹣1)2007C.(﹣1)×(﹣2007)D.(﹣2007)÷2007【考点】负整数指数幂.【专题】计算题.【分析】根据同号两数相乘得正数,异号两数相乘得负数的法则,可知C一定是正数.【解答】解:A、结果为﹣<0;B、结果为﹣1<0;C、结果为2007>0;D、结果为﹣1.故选C.【点评】做本题的关键是明白:(1)同号两数相乘得正数,异号两数相乘得负数;(2)负数的奇次幂是负数;(3)幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.2.(3分)(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【考点】点的坐标.【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.3.(3分)(2007•舟山)如图,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换【考点】相似图形.【专题】几何图形问题.【分析】本题考查对称变换、平移变换、旋转变换、相似变换,根据概念结合图形,采用排除法选出正确答案.【解答】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.【点评】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.4.(3分)(2007•舟山)有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4B.4C.3D.3.5【考点】中位数.【专题】应用题.【分析】先把数据按大小排列,然后根据中位数的定义求解.【解答】解:题目中数据共有8个,故中位数是按从小到大排列后第4,第5两个数的平均数.故这组数据的中位数是×(3+4)=3.5.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2007•舟山)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【考点】因式分解-运用公式法.【分析】把(x﹣1)看成一个整体,利用平方差公式分解即可.【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.【点评】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式没有公因式时,考虑用公式法,将其分解因式.此题直接应用平方差公式.6.(3分)(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°【考点】圆周角定理;等边三角形的性质.【专题】压轴题;动点型.【分析】由等边三角形的性质知,∠A=60°,即弧BC的度数为60°,可求∠BPC=60°.【解答】解:∵△ABC正三角形,∴∠A=60°,∴∠BPC=60°.故选B.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和等边三角形的性质求解.7.(3分)(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C 点,又测得仰角为45°,则该高楼的高度大约为()A.82米B.163米C.52米D.30米【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】利用所给角的三角函数用AB表示出DB,BC;根据DB﹣BC=CD=60得方程求解.【解答】解:设楼高AB为x.在Rt△ADB中有:DB==x,在Rt△ACB中有:BC==x.而CD=BD﹣BC=(﹣1)x=60,解得x≈82.故选A.【点评】本题考查运用三角函数的定义解直角三角形.8.(3分)(2007•舟山)如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据a、b的取值,判断出一次函数所过的象限,再根据k的取值,判断出正比例函数所过的象限,二者所过的公共象限即为点P所在象限.【解答】解:∵函数y=ax+b(a<0,b<0)的图象经过第二、三、四象限,y=kx(k>0)的图象过原点、第一、三象限,∴点P应该位于第三象限.故选C.【点评】本题利用了一次函数和正比例函数的图象性质求解.(1)正比例函数y=kx(k≠0)的图象是过原点的一条直线:k<0,正比例函数的图象过原点、第二、四象限,k>0,正比例函数的图象过原点、第一、三象限;(2)一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(3分)(2007•舟山)如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是()A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长【考点】勾股定理;多边形.【专题】压轴题.【分析】根据勾股定理、周长公式、面积公式计算每个图形的周长和面积,然后进行比较.【解答】解:设每相邻两个点间的距离是1.则Ⅰ的周长=2+2,面积=1×1=1;Ⅱ的周长=1+2+,Ⅱ的面积=+=1.故选D.【点评】考查了图形的周长和面积计算,及大小比较.10.(3分)(2009•青海)将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.【考点】概率公式;勾股定理的逆定理.【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是.【解答】解:P(a,b,c正好是直角三角形三边长)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比;3,5.4为三角形三边的三角形是直角三角形.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2007•舟山)两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是2<d<8.【考点】圆与圆的位置关系.【分析】根据两圆相交,则圆心距大于两圆半径之差,而小于两圆半径之和.【解答】解:∵两圆相交,两圆的半径分别为3和5,∴5﹣3<d<5+3,即:2<d<8.【点评】做此题需熟悉两圆的位置关系与数量关系之间的联系.12.(4分)(2007•舟山)抽取某校学生的一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图所示,已知该校有学生1500名,则可以估计出该校身高位于160cm 至165cm之间大约有300人.【考点】频数(率)分布直方图.【专题】图表型.【分析】根据频率直方图的意义,由用样本估计总体的方法可得样本中160﹣165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数.【解答】解:由题意可知:150名样本中160﹣165的人数为30人,则其频率为30÷150=0.2,则1500名学生中身高位于160cm至165cm之间大约有1500×0.2=300人;故答案为:300.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好考查了用样本来估计总体的数学思想.13.(4分)(2007•舟山)一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为70°,55°,55°或70°,70°,40°.【考点】等腰三角形的性质;三角形的外角性质.【分析】题中没有指明该外角是顶角的外角还是底角的外角,故应该分情况进行分析.【解答】解:当顶角的外角是110°时,则这个三角形的三个角应该为70°,55°,55°;当底角的外角是110°时,则这个三角形的三个角应该为70°,70°,40°.这个三角形的三个角应该为70°,55°,55°或70°,70°,40°.故填70°,55°,55°或70°,70°,40°.【点评】此题考查了等腰三角形的性质及三角形的内角和定理及外角的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.(4分)(2007•舟山)抛物线y=2(x﹣2)2﹣6的顶点为C,已知y=﹣kx+3的图象经过点C,则这个一次函数图象与两坐标轴所围成的三角形面积为1.【考点】二次函数的性质;待定系数法求一次函数解析式.【分析】由抛物线y=2(x﹣2)2﹣6可得:C(2,﹣6),把C(2,﹣6)代入y=﹣kx+3中求得一次函数解析式:y=﹣x+3.再求出一次函数与x轴,y轴的交点坐标,利用三角形面积公式求得一次函数图象与两坐标轴所围成的三角形面积.【解答】解:由抛物线y=2(x﹣2)2﹣6,得顶点C(2,﹣6),把C(2,﹣6)代入y=﹣kx+3中,得:﹣6=﹣2k+3,解得k=,∴y=﹣x+3,当x=0时,y=3,当y=0时,x=,∴一次函数图象与两坐标轴所围成的三角形面积为:××3=1.【点评】主要考查了二次函数的顶点式求顶点坐标,由一次函数的解析式求直线与x轴y轴的交点坐标.15.(4分)(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【考点】二元一次方程组的解.【专题】压轴题;阅读型.【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.【点评】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决有一定的难度.16.(4分)(2007•舟山)如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,P n,…,记纸板P n的面积为S n,试计算求出S2=;S3=;并猜测得到S n﹣S n﹣1=﹣()n﹣1.(n≥2)【考点】规律型:图形的变化类.【专题】压轴题.【分析】要求学生首先分析题意,找到规律,并进行推导得出答案.【解答】解:S2=S1﹣π()2==,S3=S2﹣π()2=,变形得,S2﹣S1=﹣π()2,=﹣()n﹣1.S3﹣S2=﹣π()2.故可得:S n﹣S n﹣1【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.三、解答题(共8小题,满分66分)17.(6分)(2007•舟山)给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.【考点】分式的定义.【专题】规律型.【分析】根据题中所给的式子找出规律,根据此规律找出所求式子.【解答】解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.【点评】本题是找规律性的题目,需要同学们认真读题发现规律,利用规律.18.(6分)(2007•舟山)我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.【考点】矩形的判定;菱形的判定;正方形的判定;梯形.【专题】阅读型.【分析】根据图中图形各四边形的不同的定义和性质进行解答即可.【解答】解:③﹣﹣相邻两边垂直;④﹣﹣相邻两边相等;⑤﹣﹣相邻两边相等;⑥﹣﹣相邻两边垂直;⑦﹣﹣两腰相等;⑧﹣﹣一条腰垂直于底边.【点评】本题考查菱形、矩形、正方形和梯形等的判定区别.19.(6分)(2007•舟山)如图,是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)【考点】三角形的面积;几何体的展开图.【分析】由平面图形的折叠及常见立体图形的展开图解题.【解答】解:(1)根据图示可知形状为直六棱柱.(2)S侧=6ab,S正六边形=,S全=6ab+.【点评】解题时勿忘记六棱柱的特征.20.(8分)(2007•舟山)第15中学的九年级学生在社会实践中,调查了500位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.(1)请你将这个统计图改成用折线统计图表示的形式;(2)请根据此项调查,对城市交通给政府提出一条建议.【考点】扇形统计图;折线统计图.【专题】开放型;图表型.【分析】(1)利用百分比,求出相应各类交通工具的使用人数,再画图;(2)从公交车的角度描述即可.【解答】解:(1)如下图:步行:500×6%=30人,自行车:500×20%=100人,电动车:500×12%=60人,公交车:500×56%=280人,私家车:500×6%=30人,(2)诸如公交优先,或宣传步行有利健康等.【点评】本题需仔细分析题意,观察图形,利用简单的计算即可解决问题.21.(8分)(2007•舟山)如图为一机器零件的左视图,弧DE是以a为半径的个圆周,∠DCB=45度.请你只用直尺和圆规,按2:1的比例,将此零件图放大画在答题卷中.要求写出作图方法,并保留作图痕迹.【考点】作图—相似变换;作图—基本作图.【专题】作图题.【分析】要做此题的位似图形,关键是先确定三条直角边,然后再确定圆弧,最后画一45度的角.【解答】解:作法:1、直线MN,取BʹCʹ=2BC=6a;2、Bʹ作MN的垂线,取BʹAʹ=2BA=4a;3、Aʹ作BʹAʹ的垂线,取AʹO=2AE=2a;4、O为圆心,2a为半径作圆弧交AʹO于点Eʹ;5、∠BʹCʹQ=45°交圆弧于Dʹ,则图形AʹBʹCʹDʹEʹ为所求.图形:【点评】本题画的虽然是一个图形的位似图形,但实际上考查了学生的一些基本作图方法.22.(10分)(2007•舟山)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论:①BD是∠ABC的角平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明.【考点】线段垂直平分线的性质;直角三角形全等的判定;角平分线的性质;等腰三角形的判定;相似三角形的判定.【专题】几何综合题.【分析】(1)利用等腰三角形和线段垂直平分线的性质分析.(2)先①根据等腰三角形的性质证明∠ABC=∠ACB,再根据中垂线的性质证明.【解答】解:(1)连接BD,①∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,∵AB垂直平分线交AC于D,交AB于M,∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.有AD=BD,∴∠A=∠ABD=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°,∴BD平分∠ABC,故正确;②∴∠BDC=180°﹣∠C﹣∠DBC=180°﹣72°﹣36°=72°,∴BD=BC,∴△BCD是等腰三角形.故正确;③∠ABC=∠ACB=∠BDC=∠C,∴△ABC∽△BCD,故正确;④∵∠AMD=90°≠∠C=72°,∴△AMD与△BCD不是全等三角形.故不正确.∴①、②、③命题都正确.正确的结论是①、②、③;(2)证明:BD平分∠ABC,∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,∵AB垂直平分线交AC于D,交AB于M,∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.有AD=BD,∴∠A=∠ABD=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°,∴BD平分∠ABC.【点评】本题利用了等腰三角形的性质和判定:等边对等角,等角对等边.线段的中垂线的性质,三角形内角和定理.23.(10分)(2007•舟山)暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间,求这辆汽车原来每天计划的行程范围.(单位:公里)【考点】一元一次不等式组的应用.【专题】压轴题.【分析】(1)关键描述语:如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里,可列出不等式.(2)关键描述语:如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间,可列出不等式.【解答】解:设原计划每天的行程为x公里,由题意,应有:,解得:256<x<260.所以这辆汽车原来每天计划的行程范围是256公里至260公里.【点评】本题的关键是读懂题意,找出未知量与已知量之间的关系,正确解不等式组是解题关键.24.(12分)(2007•舟山)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.(1)分别求出梯形中BA,AD的长度;(2)写出图3中M,N两点的坐标;(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.【考点】二次函数综合题.【专题】压轴题.【分析】(1)P在AD边上运动时,三角形BQP以BQ为底边,以CD的长为高,因此可根据三角形BQP的面积为30cm2求出BC=10cm,而P、Q速度相同,P到A的时间与Q到C 的时间相同,因此BA=BC.那么BA=BC=10cm.求AD的长可通过构建直角三角形来求解.过A作AH⊥BC与H,那么在直角三角形ABH 中,AH=CD=6cm,BA=10cm;因此可根据勾股定理求出BH=8cm,那么AD=BC﹣BH=2cm.(2)根据(1)得出的BA、AD的长,可求出P从B运动到A,从A运动到D分别用了多少时间,即可求出M、N的横坐标,已知M、N的纵坐标为30,由此可得出M、N的坐标.(3)三角形BQP中,BQ=t,BP=t,以BQ为底边的高,可用BP•sinB来表示,然后可根据三角形的面积计算公式得出关于y,t的函数关系式.【解答】解:(1)设动点出发t秒后,点P到达点A且点Q正好到达点C时,BC=BA=t,=×t×6=30,则S△BPQ所以t=10(秒).则BA=10(cm),过点A作AH⊥BC于H,则四边形AHCD是矩形,∴AD=CH,CD=AH=6cm,在Rt△ABH中,BH=8cm,∴CH=2cm,∴AD=2cm;(2)可得坐标为M(10,30),N(12,30);(3)当点P在BA边上时,y=×t×tsinB=t2×=t2(0≤t<10);当点P在DC边上时,y=×10×(18﹣t)=﹣5t+90(12<t≤18);图象见下.【点评】本题结合梯形、三角形的相关知识考查了二次函数的综合应用.借助函数图象表达题目中的信息,读懂图象是关键.。
2007年浙江省中考数学试题及答案
2007年浙江省初中毕业生学业考试数学试卷考生须知:1.全卷共4页,有3大题,满分为150分。
考试时间为120分钟。
2.全卷答案必须做在答题纸相应的位置上,做在试题卷上无效。
3.请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核对答题纸上粘帖的条形码的“姓名、准考证号”是否一致。
参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac a b -- 试卷Ⅰ说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B 铅笔在“答题卷”上将你认为正确的选项对应的小方框涂黑,涂满。
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.计算-1+2的结果是A . 1B .-1C .-2D .22.2007年5月3日,中央电视台报道了一则激动人心的新闻,我国在渤海地区发现储量规模达10.2亿吨的南堡大油田,10.2亿吨用科学计数法表示为(单位:吨)A .71.0210⨯ B .81.0210⨯ C .91.0210⨯ D .101.0210⨯ 3.如图,已知圆心角∠BOC=100°、则圆周角∠BAC 的大小是 A .50° B .100° C .130° D .200°4.下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是 A.圆柱 B.正方体 C.三棱柱 D.圆锥5.“义乌·中国小商品城指数” 简称“义乌指数”。
下图是2007年3月19日至2007年4月23日的“义乌指数”走势图,下面关于该指数图的说法正确的是A.4月2日的指数位图中的最高指数B.4月23日的指数位图中的最低指数C.3月19至4月23日指数节节攀升D.4月9日的指数比3月26日的指数高6.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是A.150B.12C.25D.1207.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E。
07年中考数学复习同步检测13及答案
2007年中考数学复习同步检测(4)(直线与圆的位置关系1)一.填空题:1.如果PT 是⊙O 的切线,T 为切点,PAB 是⊙O 的割线,PA=5cm ,AB = 4cm ,则PT=_______cm ;2.如图,AC 是⊙O 的弦,AB 是⊙O 的切线,如果∠BAC=30°,AC=6cm ,那么⊙O 的直径AD=____________cm .3.如图,已知圆的两条弦AB ,CD 交于P 点,且PA = PB = 4,PD = 2,则PC=________;4.如图,ABC 是圆内接三角形,BC 是圆的直径,∠B=35°,MN是过A 点的切线,那么∠C=________;∠CAM=________;∠BAM=________;5.如图,△ABC 内接于⊙O ,AB=AC ,∠BOC=100°,MN是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________;6.若PA 、PB 分别切⊙O 于A 、B ,∠APB=60°,OP=12,则PA=________,PB=________;7.如图1,PA 、PB 分别切⊙O 于A 、B ,则AB 与PO 的位置关系是 ;且OP AB ,∠APB = ︒65,则弧AB 的度数是 ; 8. 如图2,四边形ABCD 内接于⊙O ,AB 为直径,MN 切⊙O 于点C ,∠ABC = 560,则∠BCM = ;9. 如图3,PAB 、PCD 为⊙O 的两条割线,若PA = 2,AB = 6,PC = 3,则PD = ;10.若⊙O 中的弦AB 、CD 相交于圆内一点,且AP = BP ,CP = 3,DP = 12,则AB 的长为 ;11.如图4,⊙O 中弧BC 与弧AC 相等,AD 切⊙O 于A ,AD ⊥BC 于D ,则∠B = ;二.选择题:13.如图1,PA 、PB 切⊙O 于A 、B ,AC 为⊙O 的直径,则图中与∠APQ 相等的角共有( )A 1 个B 2 个C 3 个D 4 个14.如图2,AB 为⊙O 的直径,BC 且切⊙O 于B ,BD = DE ,∠CBD =︒25,则∠ADE 是( )C N MD O A B O P A B O C B P DA O DB AC 图1图2图3图4O B A C P O A B C E O CP B 图1图2图3A ︒65B ︒40C ︒35D ︒2515.如图3,PB 为⊙O 的切线,PC 为过圆心O 的割线且交⊙O 于A ,若PB = 2,PA = 1,则AO 的长是( )A 0.5B 1C 1.5D 216.若⊙O 内的弦AB 、CD 相交于点P ,则下面的等式中成立的是 ( )A . PB CD =CD PC B.AP PB =PD PC C.PA AB =PD PC D. AB CP = CD PB17.在⊙O 中,直径CD ⊥弦AB 于E ,AB = 6,DE :CE = 1:3,则DE 的长是 ( )A 3 cmB 3 cmC 32 cmD 6 cm18.图5,P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A = 4,OA =3,19.则cos ∠APO 的值为( )A . 34B . 35C . 45D . 4319.已知PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =40°,则∠BAC 的大小是( )A 、 70°B 、 40°C 、 50°D 、 20°20.制作一个底面直径为30cm 、高为40cm 的圆柱形无盖铁桶,所需铁皮至少为 ( )A 、 1425π2cmB 、 1650π2cmC 、 2100π2cmD 、 2625π2cm21.PA 切⊙O 于A ,PA = 3,∠APO = 300,则PO 的长为 ( ) A 32 B 2 C 1 D 34三.解答题:22.已知:如图,AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,⊙O 的弦AD 平行于OC .求证:DC 是⊙O 的切线.23.如图,Rt △ABC 内接于⊙O ,∠A=300,延长斜边AB 到D ,使BD 等于⊙O 半径,求证:DC 是⊙O 切线。
2007宁波中考科学试卷(含答案)
2007年浙江省宁波市中考科学试题考生须知:1.全卷分试题卷I、试题卷Ⅱ和答题卡、答题卷。
试题卷共8页,有3个大题,46个小题。
满分为150分,考试时间为120分钟。
2.答题前,应用铅笔把答题卡上准考证号和学科名称对应的括号或方框涂黑、涂满。
答题时,把试题卷I的答案在答题卡上对应的选项位置用铅笔涂黑、涂满。
将试卷Ⅱ的答案用蓝色或黑色墨水钢笔(或圆珠笔)做在答题卷上。
所有答案(包括选择题)做在试题卷上无效。
3.请用蓝色或黑色墨水钢笔(或圆珠笔)将姓名、准考证号填写在答题卡上,将县(市)区、学校、姓名、准考证号、座位号分别填写在答题卷的规定位置上。
本试题可能用到的相对原子质量:H:1 C:12 0:16 Na:23 Cl:35.5 Ca:40 试题卷 I一、选择题(本大题共30小题,第1~10小题,每小题3分,第11~30小题,每小题2分,共70分。
请选出每小题中一个符合题意的选项,不选、多选、错选均不给分。
) 1.发生在厨房中的下列变化,属于化学变化的是A.水的沸腾 B.菜刀生锈 C.水洗青菜 D.食醋挥发2.车辆的惯性是造成许多交通事故的原因。
下列交通规则与惯性无关的是A.系安全带 B.保持车距 C.限速行驶 D.靠右行驶3.中秋节是我国的传统节日,中秋之夜的月相为4.以下是一双木筷的自述,其中与科学道理不相符的是A.“将我放在水里,我不易下沉。
”B.“就餐夹菜时,我成了省力杠杆。
”C.“将我斜插在水中,你能看到我的身子弯折了。
”D.“将干燥的我接入电路,电流不易从我身上流过。
”5.国家商务部规定,从今年7月1日起不得销售散装冷冻水饺、汤圆等速冻食品。
新标准规定,速冻面米食品必须真空包装。
从预防传染病的基本环节来看,该措施属于A.控制传染源 B.切断传播途径 C.保护易感人群 D.控制病原体6.月球上蕴藏着极为丰富的核聚变燃料氦-3。
该原子核内有1个中子和2个质子,其原子的核外电子数为A.1 B.2 C.3 D.57.如图甲是来自远处的光线经某人眼球折光系统的光路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年浙江省宁波市中考数学试题全卷分试题卷I 、试题卷Ⅱ和答题卡、答题卷.试题卷有3个大题,27个小题.满分为l 20分.考试时间为120分钟.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线y=ax 2+bx+c 的顶点坐标为24(,)24b ac b a a--. 试 题 卷 I一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.-12的绝对值等于( ) (A)-2 (B)2 (C) -12 (D) 122x 的取值范围是( )(A)x>1 (B)x≥l (C)x<1 (D)x≤13.下列计算中,正确的是( ) (A)a 3·a 4=a 12 (B) (a 2)3=a 5 (C)a 6÷a 2=a 3 (D) (-ab)3=-a 3b 34.据宁波市财政局统计,我市2006年财政收入已突破500亿元大关,用科学记数法可表示为( ) (A)5×l010元 (B)50×109元 (C)0.5×1011元 (D)5×1011元5.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是( ) (A)内切 (B)外切 (C)相交 (D)相离6.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )7.下列事件是随机事件的是( )(A)购买一张彩票,中奖 (B)在一个标准大气压下,加热到100℃,水沸腾(C)奥运会上,百米赛跑的成绩为5秒 (D)掷一枚普通骰子,朝上一面的点数是8 8.如图,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标 系的原点,点A的坐标为(-2,3),则点C 的坐标为( )(A)(-3,2) (B)(-2,-3) (C)(3,-2) (D)(2,-3)9.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是( )(A)甲 (B)乙 (C)丙 (D)丁10.如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-111.与如图所示的三视图对应的几何体是( )12.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m二、填空题(每小题3分,共21分) 13.计算4133m m m -+++= ▲ . 14.方程x 2+2x=0的解为 ▲ 15.如图,AB 切⊙0于点B ,AB=4 cm ,AO=6 cm ,则⊙O 的半径为 ▲cm .16.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 ▲ . 17.如图,在△ABC 中,AB=AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC交BC 的延长线于点E ,已知∠E=36°,则∠B= ▲ 度.18.如图,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 ▲ .19.面积为l 个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1、2、3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为l2个平方单位.三、解答题(第20题5分,21~23题各6分,24题10分,25题8分,26题10分,27题12分,共63分)20.化简a(a -2b)-(a -b)2.21.解方程21124x x x -=--.22.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长.(2)求矩形DMNC与矩形ABCD的相似比.23.如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.(1)求OE的长.(2)求劣弧AC的长(结果精确到0.1).24.今年4月底,国家测绘局和建设部首次为我国19座名山定“身高”(单位:m).下图为其中10座名山的“身高”统计图.请你根据图中提供的信息回答下列问题:(1)这l0座名山“身高”的极差和中位数分别是多少?(2)这l0座名山“身高”在1000m到2000m之间的频率是多少?(3)这l0座名山中,泰山、华山、衡山、恒山、嵩山并称“五岳”,求“五岳”的平均“身高”.25.用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大?并求出S的最大值.26.2007年5月19日起,中国人民银行上调存款利率.储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元?(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率2.79%计息,本金与实得利息收益的和为2555.8元,问他这笔存款的本金是多少元?(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存?请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).27.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共21分)每画出一个(与顺序无关)正确的给l 分,答案不唯一,下图供参考:三、解答题(共63分)注:l .阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分 20.解:原式=a 2-2ab-(a 2-2ab+b 2) ……………………2分 =a 2-2ab-a 2+2ab-b 2 ……………………3分 =-b 2.……………………5分21.解:方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1,……………………2分 化简,得2x=-3……………………4分 x=-3/2,……………………5分经检验,x=-3/2是原方程的根.……………………6分 22.解:(1)由已知,得MN=AB ,MD=12 AD=12BC . ∵矩形DMNC 与矩形ABCD 相似,BCDM MNAB ……………………2分∴12AD 2=AB 2,∴由AB=4得,4分(2)矩形DMNC 与矩形ABCD 的相似比为DM AB =6分 23·解:(1) ∵OE ⊥A C ,垂足为E , ..AE=EC ,……………………1 ∵A O=B0,∴OE=12BC=5/2……………………3分 (2)∠A=12∠BDC=25°,……………………4分在Rt △AOE 中,sinA=OE/OA ,……………………5分 ∵∠AOC=180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4.……………………6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ………………2分 中位数为1572.4(m).……………………4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6,…………… 5分 所以频率是0.6. …………7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ……………………9分 =1699.12(m), ……………………10分∴“五岳"的平均“身高"为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F ∵∠DCB=∠CDE=∠DEA ,∠EAB=∠CBA=90°, ∴∠DCB=∠CDE=∠DEA=120°,……………………1分 ∵DE=CD ∴∠DEC=∠DCE=30°, ∴.∠CEA=∠ECB=90°,∴四边形EABC 为矩形,……………………2分 ∴DE=x m ,∴AE=6-x ,DF=12x ,……………………3分s=24x -+ (0<x<6).……………………5分(自变量不写不扣分)当x=4m 时,S 最大m 2.……………………8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元.………………………………2分 (2)设他这笔存款的本金是x 元, 则x(1+2.79%×80%)=2555.8,……………………………………4分 解得x=2500,∴这笔存款的本金是2500元.……………………………………6分 (3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×0.72%+10000×360360x -×3.06%>10000×2.79%,………………8分 解得x<41713,……………………9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存.……………………10分27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF=∠BCE , ∠CDF=∠CBE , ∠ CF=CE. ∴△DCF ≌△BCE(AAS),……………………5分 ∴CD=CB , ∴∠CDB=∠CBD.………………………………6分 ∴∠PDB=∠PBD ,……………………………7分∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.…………………………………………8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;…………………………………………9分②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;…………………………………………10分③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;……………………………………11分④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P画在A C中点不给分) ……………………………………………………………………12分(第(4)小题只说出准等距点的个数,不能给满分)- 11 -。