人教中考数学提高题专题复习圆的综合练习题含答案解析
中考数学总复习《圆的综合题》练习题(附答案)
中考数学总复习《圆的综合题》练习题(附答案)
班级:___________姓名:___________考号:_____________
一、单选题
1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()
A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离
2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()
A.22B.24C.10√5D.12√3
3.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()
A.90°B.100°C.130°D.140°
4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()
A.46°B.56°C.36°D.26°
5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()
A.△BPA为等腰三角形
B.AB与PD相互垂直平分
C.点A,B都在以PO为直径的圆上
D.PC为△BPA的边AB上的中线
6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()
A.6 √3B.6 √2C.9 √3D.9 √2
7.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()
A.30°B.35°C.45°D.55°
初三数学圆的综合的专项培优练习题(含答案)及答案解析
初三数学圆的综合的专项培优练习题(含答案)及答案解析
一、圆的综合
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:
(1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24
【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.
试题解析:(1)证明:连接OD ,
∵OD=OA ,
∴∠ODA=∠A ,
∵四边形OABC 是平行四边形,
∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA ,
∴∠EOC=∠DOC ,
在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ),
∴∠ODC=∠OEC=90°,
即OD ⊥DC ,
∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线,
∴△CDO 为直角三角形,
∵S △CDO =
12
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).
中考数学专项复习《圆的综合题》练习题(附答案)
中考数学专项复习《圆的综合题》练习题(附答案)
一、单选题
1.连接圆上的任意两点的线段叫做圆的().
A.半径B.直径C.弦D.弧2.如图为△ABC和一圆的重叠情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70∘,∠B=60°,则CD̂的度数为何()
A.50∘B.60∘C.100∘D.120∘3.挂钟分针的长10cm,经过20分钟,它的针尖转过的路程是() A.20π3cm B.10πcm C.20πcm D.5πcm 4.已知,AB是∠O的直径,且C是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的∠B(如图所示),那么下列关于∠A与放大镜中的∠B关系描述正确的是()
A.∠A+∠B=900B.∠A=∠B
C.∠A+∠B>900D.∠A+∠B的值无法确定
5.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2√3B.3√3C.4√3D.6√3 6.若一圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()
A.40°B.80°C.120°D.150°7.如图,AB是∠O的直径,∠CDB=40°,则∠ABC=()
A.40°B.50°C.60°D.80°
8.如图,在平面直角坐标系中已知B(2,0),四边形ABCD和AEFG都是正方形,点A、D、E共线,点G、A、B在x轴上,点C,E,F在以O为圆心OC为半径的圆
⌢的长为().
上,则FC
A.√5π
B.√5πC.5π2D.5π2
9.如图所示,矩形纸片ABCD中AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则底面圆的直径的长为()
中考数学总复习《圆的综合题》集锦(含答案)
圆的综合题
一 、解答题
1.如图所示在中,,的平分线交于,为上一点,
,以为圆心,以的长为半径画圆.求证:(1)是的切
线;(2).
2.如图,在平面直角坐标系中,点M 在x 轴的正半轴上,M 交x 轴于A B 、两点,
交y 轴于C D 、两点,E 是M 上 一点,AC CE =,AE 交y 轴于G 点.已知点
A 的坐标为()20,
,8AE =. (1)求点C 的坐标;
(2)连结MG BC ,,求证:MG BC ∥
3.如图,在中,直径垂直于弦,垂足为,连接,将沿翻折得到,直线与直线相交于点.若,求的长.
Rt ABC ∆90B ∠=︒A ∠BC D E AB DE DC =D DB AC D ⊙AB EB AC +=E
B
E B
O AB CD E AC ACD △AC
ACF △FC AB G 2OB BG ==CD
4.如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为
2米的半圆与半径为4米的构成.点分别是两个半圆的圆心,分别与两个半圆相切于点长为8米.求的长.
5.已知多边形是由边长为2的等边三角形和正方形组成,一
圆过三点,求该圆半径的长.
6.如图,在锐角ABC △中,AC 是最短边;以AC 中点O 为圆心,AC 长为直径作O ,
交BC 于E ,过O 作OD BC ∥交O 于D ,连接AE 、AD 、DC . (1)求证:D 是的中点; (2)求证:DAO B BAD ∠=∠+∠; (3)若
1
2
CEF OCD S S =△△,且4AC =,求CF 的长.
A B C 、A E F BC 、
人教中考数学圆的综合综合题含详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.
(1)求证:AC∥OD;
(2)如果DE⊥BC,求AC的长度.
【答案】(1)证明见解析;(2)2π.
【解析】
试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.
试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,
∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;
(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三
角形,∴∠AOC=60°,∴弧AC的长度=606
180
π⨯
=2π.
点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.
2.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上DCE B
∠=∠.
(1)求证:CE是半圆的切线;
(2)若CD=10,
2
tan
3
B=,求半圆的半径.
【答案】(1)见解析;(2)13【解析】
分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;
九年级中考数学圆的综合解答题压轴题提高专题练习含详细答案
九年级中考数学圆的综合解答题压轴题提高专题练习含详细答案
一、圆的综合
1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y.
(1)如图2,当AB ⊥OM 时,求证:AM=AC ;
(2)求y 关于x 的函数关系式,并写出定义域;
(3)当△OAC 为等腰三角形时,求x 的值.
【答案】 (1)证明见解析;(2) 2=
+y x 02<≤x 1422
=x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122
x (),再判断出2OA OC DM OE OD OD
==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.
∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .
∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .
(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴
DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴
2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)
2023年中考九年级数学高频考点提升练习--圆的综合题
1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.
(1)求证:AC=BD;
(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:
①图中阴影部分面积.
②弧CD的长.
2.已知⊙O中,弦AB=AC,⊙BAC=120°
(1)如图①,若AB=3,求⊙O的半径.
(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.
3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.
(1)探索BE与EF的数量关系,并说明理由.
(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.
①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;
②t为何值时,△CFH是等腰三角形;
③当CG=GH时,求△CGH的面积.
4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)求证:⊙C=2⊙DBE.
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)
5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.
中考数学提高题专题复习圆的综合练习题附答案
中考数学提高题专题复习圆的综合练习题附答案
一、圆的综合
1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=1
2(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.
中考数学压轴题专题复习—圆的综合的综合附详细答案
作直径AP,连接CP,通过解△APC即可得出结论.
6.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH= ,CH .
(1)求证:AH是⊙O的切线;
(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;
(3)在(2)的条件下,求EF的长.
【答案】(1)证明见解析(2)证明见解析(3)
即r: :5,解得 ,
, ,
在 中, ,
,
在 中, ,
为直径,
,
,
,
,
.
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径 判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了圆周角定理和解直角三角形.
3.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
人教中考数学压轴题专题复习——圆的综合的综合及详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
【答案】(1)4;(2)见解析;(3)4.
【解析】
【分析】
(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;
(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;
(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】
(1)如图(一),过M作MT⊥BC于T连BM,
∵BC是⊙O的一条弦,MT是垂直于BC的直径,
∴BT=TC=1
2
3
∴124
;
(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,
∴∠HBC+∠BCH=90°
在△COF中,
∵∠OFC+∠OCF=90°,
∴∠HBC=∠OFC=∠AFH,
在△AEH和△AFH中,
∵
AFH AEH
AHF AHE AH AH
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△AEH≌△AFH(AAS),
∴EH=FH;
(3)由(1)易知,∠BMT=∠BAC=60°,
作直径BG,连CG,则∠BGC=∠BAC=60°,
∵⊙O的半径为4,
∴CG=4,
连AG,
∵∠BCG=90°,
∴CG⊥x轴,
∴CG∥AF,
∵∠BAG=90°,
中考数学复习圆的综合专项易错题含答案解析
中考数学复习圆的综合专项易错题含答案解析
一、圆的综合
1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»
BF FA
=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;
(3)在(2)的条件下,如图3,若AE=2
3
DG,PO=5,求EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.
【解析】
【分析】
(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;
(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;
(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出
EH∥DG,求出OM=1
2
AE,设OM=a,则HM=a,AE=2a,AE=
2
3
DG,DG=3a,
求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=
1
2
MO
BM
=,tanP=
1
2
CO
PO
=,设
OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】
(1)证明:连接OC,
∵PC为⊙O的切线,
∴OC⊥PC,
∵AD⊥PC,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OC=OA,
∴∠PAC=∠OCA,
∴∠DAC=∠PAC;
(2)证明:连接BE交GF于H,连接OH,
∵FG∥AD,
人教 中考数学(圆的综合提高练习题)压轴题训练附答案
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
【答案】(1)证明见解析(2)23
【解析】
【分析】
(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.
【详解】
(1)如图所示,连接OD.
∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD
=,∴OD⊥BC.
又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.
又∵OD为⊙O半径,∴直线DM是⊙O的切线.
(2)连接BE.∵E为内心,∴∠ABE=∠CBE.
∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即
∠BED=∠DBE,∴BD=DE.
又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB
DB DA
=,即DB2=DF•DA.
∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.
【点睛】
本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
中考专题复习圆的综合题(含答案)
中考专题复习圆的综合题
1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线;
(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =3
2,tan ∠AEC =3
5,求圆的直径.
2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线;
(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.
3.(已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点
A、B重合),连接PA、P
B、P
C、PD.
(1)如图①,当PA的长度等于▲时,∠PAB=60°;
当PA的长度等于▲时,△PAD是等腰三角形;
(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,
建立如图所示的直角坐标系(点A即为原点O),把△PAD、
△PAB、△PBC的面积分别记为S
1、S
2
、S
3
.坐标为(a,b),
试求2 S
1 S
3
-S
2
2的最大值,并求出此时a,b的值.
4、
5.如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB
⌒上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.
(1)求证:PM=PN;
(2)若BD=4,PA=3
2
AO,过点B作BC∥MP交⊙O于C点,求BC的长.
6.(如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE,求证:DE是⊙O的切线.
中考数学《圆的综合》专题训练(含有答案)
中考数学《圆的综合》专题训练(含有答案)
1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .
(1)请写出三个不同类型的正确结论
(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.
2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .
(1)求证点D 为线段BC 的中点.
(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.
3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.
(1)求证D E ∠=∠
(2)若42AB BC AC =-=, 求CE 的长.
4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹
(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.
(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.
(1)求证CD 是O 的切线
(2)若O 的半径为6 求点A 到CD 所在直线的距离.
6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .
(1)求证ACD ABC ∠=∠
(2)若3
tan 4
CAD ∠= 8AD = 求O 直径AB 的长.
中考数学圆的综合综合练习题及答案解析
一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:
(1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24
【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.
试题解析:(1)证明:连接OD ,
∵OD=OA ,
∴∠ODA=∠A ,
∵四边形OABC 是平行四边形,
∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA ,
∴∠EOC=∠DOC ,
在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ),
∴∠ODC=∠OEC=90°,
即OD ⊥DC ,
∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线,
∴△CDO 为直角三角形,
∵S △CDO =
12
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,AB,BC分别是⊙O的直径和弦,点D为BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.
中考数学专题复习圆的综合的综合题附答案
【解析】
试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出 ,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得 ,由此即可解决问题;
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过 上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG = ,AH=3 ,求EM的值.
②分两种情况:利用面积和差即可得出结论;
(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.
【详解】
(1)设∠A=α,则∠DCB=180°﹣α.
∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;
【答案】(1)AF与⊙O相切理由见解析;(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=1
2(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,
则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
考点:旋转的性质.
2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tan A=1
2
,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
【答案】(1)答案见解析;(2)AB=3BE;(3)3.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x,进而得出OE=1+2x,最后用勾股定理
即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,
∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,
∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD
AE DE AD
==.∵Rt△ABD
中,tan A=BD
AD
=
1
2
,∴
DE BE
AE DE
==
1
2
,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(3
2
x)2+(2x)2=(1+2x)2,∴x=﹣
2
9
(舍)或x=2,
∴圆O的半径为3.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若AB=4,∠C=30°,求劣弧BE的长.
【答案】(1)证明见解析(2)4 3
【解析】
分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;
(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.
详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.
∵AB=AC,∴BD=CD,
又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,
∵DF⊥AC,∴OD⊥DF
即∠ODF=90°.∴DF为⊙O的切线;