人教B版高中数学高二选修1-1课时作业 3.1.3 导数的几何意义
数学选修1-1人教版导学案3.1.3导数的几何意义(可编辑修改word版)
0 导数的几何意义预习目标:导数的几何意义是什么?(预习教材 P 78~ P 80,找出疑惑之处) 课前预习学案复习 1:曲线上向上 P (x , y ), P (x + ∆x , y + ∆y ) 的连线称为曲线的割线,斜率 k =∆y =1 1 1 1 1 ∆x复习 2:设函数 y = f (x ) 在 x 0 附近有定义当自变量在 x = x 0 附近改变 ∆x 时,函数值也相应地改变 ∆y = ,如果当 ∆x 时,平均变化率趋近于一个常数l ,则数l 称为函数 f (x ) 在点 x 0 的瞬时变化率.记作:当 ∆x 时, → l上 课 学 案学习目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 学习重难点: 导数的几何意义学习过程:学习探究探究任务:导数的几何意义问题 1:当点 P n (x n , f (x n ))(n = 1, 2, 3, 4) ,沿着曲线 f (x ) 趋近于点 P (x 0 , f (x 0 )) 时, 割线的变化趋是什么?新知:当割线 P P n 无限地趋近于某一极限位置 PT 我们就把极限位置上的直线 PT ,叫做曲线 C 在点 P 处的切线割线的斜率是: k n =当点 P n 无限趋近于点P 时, k n 无限趋近于切线PT 的斜率. 因此,函数 f (x ) 在 x = x 0 处的导数就是切线PT 的斜率k , 即 k = lim f (x 0 + ∆x ) - f (x 0 ) = f '(x )新知: ∆x →0 ∆x 0 函数 y = f (x ) 在 x 0 处的导数的几何意义是曲线 y = f (x ) 在 P (x 0 , f (x )) 处切线的斜率.即 k = f '(x ) = lim f (x + ∆x ) - f (x 0 )0 典型例题∆x →0 ∆x 例 1 如图,它表示跳水运动中高度随时间变化的函数 h (t ) = -4.9t 2 + 6.5t + 10 的图象.根据图象,请描述、比较曲 线 h (t ) 在t 0 , t 1 , t 2 附近的变化情况.例 2 如图,它表示人体血管中药物浓度c = f (t ) (单位: mg / mL )随时间t (单位: m i n )变化的函数图象.根据图象, 估计t =0.2,0.4,0.6,0.8 时,血管中药物浓度的瞬时变化率(精确到 0.1)( , 2) 0有效训练 练 1. 求双曲线 y = 1 在点 1 处的切线的斜率,并写出切线方程. x 2练 2. 求 y = x 2 在点 x = 1 处的导数.反思总结函数 y = f (x ) 在 x 0 处的导数的几何意义是曲线 y = f (x ) 在 P (x 0 , f (x )) 处切线的斜率. 即 k = f '(x ) = lim f (x + ∆x ) - f (x 0 )0 ∆x →0 ∆x 其切线方程为当堂检测 1. 已知曲线 y = 2x 2 上一点,则点 A (2,8) 处的切线斜率为() A . 4 B . 16 C . 8 D . 22. 曲线 y = 2x 2 + 1 在点 P (-1, 3) 处的切线方程为() A . y = -4x - 1 C . y = 4x - 1 B . y = -4x - 7D . y = 4x + 73. f (x ) 在 x = x 可导,则lim f (x 0 + h ) - f (x 0 ) ( )0 h →0 hA .与 x 0 、 h 都有关B .仅与 x 0 有关而与 h 无关C .仅与 h 有关而与 x 0 无关D .与 x 0 、 h 都无关4. 若函数 f (x ) 在 x 0 处的导数存在,则它所对应的曲线在点(x 0 , f (x 0 )) 的切线方程为5. 已知函数 y = f (x ) 在 x = x 0 处的导数为 11,则lim ∆x →0 f (x 0 - ∆x ) - f (x 0 ) = ∆x课后练习与提高1. 如图,试描述函数 f (x ) 在 x = -5, -4, -2, 0,1 附近的变化情况.2. 已知函数 f (x ) 的图象,试画出其导函数 f '(x ) 图象的大致形状.学校: 一中 学科:数学 编写人:由召栋 审稿人:张林3.教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数.教学重难点:函数切线的概念,切线的斜率,导数的几何意义教学过程:情景导入:如图,曲线 C 是函数 y =f (x )的图象,P ( x 0,y 0)是曲线 C 上的任意一点,Q (x 0+Δx ,y 0+Δy )为 P 邻近一点,P Q 为 C 的割线,P M //x 轴,Q M //y 轴,β为 P Q 的倾斜角.0 则 : MP x , M Q y , y tan . x ∆y 请问: 是割线P Q 的什么? ∆x展示目标:见学案检查预习:见学案合作探究:探究任务:导数的几何意义 问题 1:当点 P n (x n , f (x n ))(n = 1, 2, 3, 4) ,沿着曲线 f (x ) 趋近于点 P (x 0 , f (x 0 )) 时,割线的变化趋是什么? 新知:当割线 P P n 无限地趋近于某一极限位置 PT 我们就把极限位置上的直线 PT ,叫做曲线 C 在点 P 处的切线割线的斜率是: k n =当点 P n 无限趋近于点P 时, k n 无限趋近于切线PT 的斜率. 因此,函数 f (x ) 在 x = x 0 处的导数就是切线PT 的斜率k , 即 k = lim f (x 0 + ∆x ) - f (x 0 ) = f '(x )新知: ∆x →0 ∆x 0 函数 y = f (x ) 在 x 0 处的导数的几何意义是曲线 y = f (x ) 在 P (x 0 , f (x )) 处切线的斜率.即 k = f '(x ) = lim f (x + ∆x ) - f (x 0 )0 精讲精练:∆x →0 ∆x 例 1 如图,它表示跳水运动中高度随时间变化的函数 h (t ) = -4.9t 2 + 6.5t + 10 的图象.根据图象,请描述、比较曲( , 2) 0线 h (t ) 在t 0 , t 1 , t 2 附近的变化情况.解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况.(1) 当 t = t 0 时, 曲线 h (t ) 在 t 0 处的切线 l 0 平行于 x 轴.故在 t = t 0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t 1 时, 曲线 h (t ) 在 t 1 处的切线 l 1 的斜率 h ’(t 1) <0 .故在 t = t 1 附近曲线下降,即函数 h (t )在 t = t 1 附近单调递减. (3)当 t = t 2 时, 曲线 h (t ) 在 t 2 处的切线 l 2 的斜率 h ’(t 2) <0 .故在 t = t 2附近曲线下降,即函数 h (t ) 在 t = t 2 附近也单调递减. 从图可以看出,直线 l 1 的倾斜程度小于直线 l 2 的倾斜程度,这说明 h (t ) 曲线在 l 1 附近比在 l 2 附近下降得缓慢。
人教B版选修1-1高中数学3.1.3《导数的几何意义》ppt课件
本 答案 曲线 f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是
专 题
切点,只要求出 k=f′(x0),利用点斜式写出切线即可;
栏 目
而曲线 f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定
开 关
在曲线上,
即使在曲线上也不一定是切点.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
∴y′|x=1=2.
∴曲线在点 P(1,1)处的切线方程为 y-1=2(x-1),即 y=2x-1.
3.1.3
填一填 研一研 练一练
研一研·问题探究、课堂更高效
3.1.3
(2)点 P(3,5)不在曲线 y=x2 上,设切点为(x0,y0)
由(1)知,y′| xx0 =2x0, ∴切线方程为 y-y0=2x0(x-x0),
从图中可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这 说明曲线 h(t)在 t1 附近比在 t2 附近下降得缓慢.
研一研·问题探究、课堂更高效
3.1.3
填一填 研一研 练一练
小结 导数与函数图象升降的关系:
若函数 y=f(x)在 x=x0处的导数存在且 f′(x0)>0(即切线的斜
本 由 P(3,5)在所求直线上得 5-y0=2x0(3-x0)
①
专
题 栏
再由 A(x0,y0)在曲线 y=x2 上得 y0=x02
②
目 开
联立①,②得,x0=1 或 x0=5.
关 从而切点 A 的坐标为(1,1)或(5,25)
当切点为(1,1)时,
切线的斜率为 k1=2x0=2, 此时切线方程为 y-1=2(x-1),
=0,则
人教新课标版数学高二-人教B版选修1-1学案 3.1导数的几何意义
求曲线在某点处的切线方程的基本步骤:
(1)求出P点的坐标;
(2)求出函数在点 处的变化率 ,得到曲线在点 的切线的斜率;
(3)利用点斜式求切ቤተ መጻሕፍቲ ባይዱ方程.
例2.已知曲线 :
(1)若曲线在某点处的切线方程为4x-4y-1=0,求该点坐标。
(2)若曲线上某点处的切线平行于直线y=4x-5,求该点坐标。
【变式探究】:
设曲线 在点(1,a)处的切线与直线x+2y-1=0垂直,求a的值。
【目标检测】
1.函数y=f(x)在 处的导数 的几何意义是
A.在点 处的斜率
B.在点 处的切线与x轴所夹锐角的正切值
C.点 与点(0,0)连线的斜率
D.曲线y=f(x)在点 处的切线的斜率
2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是
备课组:高二数学主备人:审核人
课题
§3.1.2导数的几何意义
时间
学习目标:
1.理解导数的几何意义。
2.明确割线斜率与切线斜率之间的关系,从而认识曲线的切线的定义。
3.根据导数的几何意义,会求曲线上某点处的切线方程。
学习重点:根据导数的几何意义,求曲线上某点处的切线方程。
学习难点:导数的几何意义的综合应用。
学习方法:自主学习合作探究
【知识回顾】
1.平均变化率:
2.函数y=f(x)在点x= 处的导数:
【学习内容及过程】
阅读教材 ,请回答下列问题:
1.切线的定义:
2.函数y=f(x)在点 处的几何意义是:________________________________
【例题精讲】
高中数学新人教B版选修1-1第三章导数及其应用3.1.3导数的几何意义课件
3.1.3 导数的几何意义
学习目标
XUEXIMUBIAO
1.了解导函数的概念,理解导数的几何意义. 2.会求简单函数的导函数. 3.根据导数的几何意义,会求曲线上某点处的切线方程. 4.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.
内容索引
NEIRONGSUOYIN
解析 设点 P(x0,2x20+4x0),
则 f′(x0)= lim Δx→0
fx0+Δx-fx0 Δx
= lim Δx→0
2Δx2+4Δx0x·Δx+4Δx=4x0+4,
令4x0+4=16,得x0=3,∴P(3,30).
12345
课堂小结
KETANGXIAOJIE
1.导数 f′(x0)的几何意义是曲线 y=f(x)在点(x0,f(x0))处切线的斜率,即 k=
线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在 切线上,则应先设出切点(x0,f(x0)),表示出切线方程,然后求出切点.
∴x0=2,∴P(2,8+a). 将x=2,y=8+a代入到8x-y-15=0中,
得a=-7.
反思感悟 利用导数的几何意义将数与形联系起来,根据图象中切线与割线 的倾斜角的大小确定数据的大小.
f2-f1 跟踪训练 4 (1)已知函数 f(x)在 R 上可导,其部分图象如图所示,设
2-1
=a,则下列不等式正确的是
则12a-23a·|a3|=16, 解得a=±1.
核心素养之直观想象
HEXINSUYANGZHIZHIGUANXIANGXIANG
求切线倾斜角的范围
典例 已知点 P 在曲线 y=x3-x+32上,直线 l 为曲线在 P 点处的切线,求直 线 l 的倾斜角的取值范围.
人教B版高中数学【选修1-1】第3章-3.1-3.1.3导数的几何意义-课件
已知 y=f(x)的图象如图 3-1-1 所示,则 f′(xA)与 f′(xB)的 大小关系是( )
图 3-1-1
A.f′(xA)>f′(xB) B.f′(xA)=f′(xB) C.f′(xA)<f′(xB) D.f′(xA)与 f′(xB)大小不能确定
【解析】 由 y=f(x)的图象可知,在 A,B 点处的切线斜率 kA >kB,根据导数的几何意义有:f′(xA)>f′(xB).
1.如果所给点 P(x0,y0)就是切点,一般叙述为“在点 P 处的 切线”,此时只要求函数 f(x)在点 x0 处的导数 f′(x0),即得切线的 斜率 k=f′(x0),再根据点斜式得出切线方程. 2.如果所给点 P 不是切点,应先设出切点 M(x0,y0),再求切 线方程.要特别注意“过点 P 的切线”这一叙述,点 P 不一定是 切点,也不一定在曲线上.
通过观察命题、 科学猜想的过程, 培养学生的观察、 动手动脑、 归纳总结的能力,培养学生合作学习、创新能力.
3.情感、态度与价值观 (1)经过 FLASH 动画演示割线“逼近”成切线过程, 让学生感 受函数图象的切线“形成”过程,获得函数图象的切线的意义. (2)增强学生问题应用意识教育,让学生获得学习数学的兴趣 与信心.
人教版高中数学选修1-1《3.1.3导数的几何意义-函数的切线方程》
2
类型二:已知斜率,求曲线的切线方程
二、典例分析
例 1.平行于直线 2 x y 4 0 且与抛物线 y x 2 相切于 P( x0 , y0 ) 的切线方程是 .
解:设 P( x0,y0 ) 为切点,则切点的斜率为 y|x x0 2 x0 2 .
∴ x0 1 .
1) . 0 由此得到切点 P(1, 故切线方程为 y 1 2( x 1) , 即 2 x y 1
8
当x0 1时,k 3, 切线方程为y 8 3 x 2 y 3x 2 综上所述:切线方程为 y 12 x 16 或 y 3x 2
类型四:过曲线外一点,求切线方程
二、典例分析
1 0) 且与曲线 y 相切的直线方程为 例 4.过点 (2, x
切点未定,从而先设再求,设切点 x0 , y0 ,切线斜率为 k , 切线方程可设为 y k ( x 2) ① y0 f x0 ,② k f
3 2 消去 k , y0 可得:而 x0 8 x0 2 x0 2 x0 4
解:设切点 P x0 , y0 切线斜率为 k ,为则切线方程为 y 8 k x 2 , 3 切点未定,从而先设再求,设切点 x0 , y0 ,切线斜率为 k , y0 x0
( x0 1)2 3 5
3 5 5
5
类型二:已知斜率,求曲线的切线方程
二、典例分析
例 2.已知直线 y 2 x 1 与曲线 y x ax b 在 x 1 处相切,
3
则 b 的值为_________.
解析:将 x 1 代入 y 2 x 1 可得: y 3 ,又 f ' x 3x2 a ,
人教新课标版数学高二选修1-1导学案 3.1.3 导数的几何意义
3.1.3导数的几何意义(结合配套课件、作业使用,效果更佳)【学习目标】1.了解导函数的概念,理解导数的几何意义.2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.4.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.重点:根据导数的几何意义,会求曲线上某点处的切线方程难点:正确理解曲线“过某点”和“在某点”处的切线,并会求其方程【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答.【自主学习】知识点一导数的几何意义如图,P n的坐标为(x n,f(x n))(n=1,2,3,4,…),P的坐标为(x0,y0),直线PT为过点P的切线.思考1割线PP n的斜率k n是多少?思考2当点P n无限趋近于点P时,割线PP n的斜率k n与切线PT的斜率k有什么关系?(1)切线的定义:设PP n是曲线y=f(x)的割线,当P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为曲线y=f(x)的切线.(2)导数f′(x0)的几何意义:导数f′(x0)表示曲线y=f(x)在点处的切线的斜率k,即k=f=li mΔx→0f(x0+Δx)-f(x0)Δx.(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为知识点二导函数对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称为导数), 即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.【合作探究】类型一求切线方程例1已知曲线y=x2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.跟踪训练1求函数y=x3-3x2+x的图象上过原点的切线方程.类型二求切点坐标例2已知抛物线y=2x2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x-y-2=0;(3)切线垂直于直线x+8y-3=0.跟踪训练2已知直线l:y=4x+a与曲线C:y=x3-2x2+3相切,求a的值及切点坐标.类型三导数几何意义的应用例3(1)已知函数f(x)在区间[0,3]上的图象如图所示,记k1=f′(1),k2=f′(2),k3=f(2)-f(1),则k1,k2,k3之间的大小关系为________.(请用“>”连接)(2)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为________.跟踪训练3 (1)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )(2)曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________. 【学生展示】探究点一、二【教师点评】探究点三及【学生展示】出现的问题【当堂检测】1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-12.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D.不能确定3.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.4.已知曲线y=f(x)=2x2+4x在点P处的切线斜率为16,则P点坐标为________.【小结作业】小结:作业:对应限时练。
3.1.3导数的几何意义课件—人教B版高中数学选修1-1
五.当堂检测
1.设f′(x 0)=0,则曲线y=f(x)在点(x 0,f( x 0 ))处的切线( B )
△y
曲线在点P处的切线的斜率
P(x0,y0)
△x
M
o
x
lim lim k= y
f (x0 x) f (x0 )
x x0
x0
x
4.导数的几何意义:
函数y f (x)在 x0 处的导数的几何意
义是曲线
y
f (x)
在P(x0 ,
f (x )) 处切线 0
的斜率.
即 = k
f
(x0 )
lim
x0
f
程度, 这说明曲线ht在t1附近比在t2附近下降得缓慢.
变式训练
如图,试描述函数y=f(x)在x=-3,-2,0,1附近的变化情况.
(1)函数f(x)在x=-3处切线斜率k>0,曲线是上升 的.即函数f(x)在x=-3附近是单调递增
(2)函数f(x)在x=-2处切线的斜率k<0,曲线是降 落的即函数f(x)在x=-2附近是单调递减
导数的几何意义
高二数学 选修1-1
一、复习回顾
1、割线的斜率 k y x
y =fx0+x-fx0 表示“平均变化率”
x
x
其几何意义表示曲线上两点连线(就是曲线的割线)的斜率。
瞬时变化率
f
x
0
= lim x0
y x
= lim x0
f
高中数学选修1-1课时作业14:3.1.3 导数的几何意义
3.1.3 导数的几何意义基础过关1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在[[解析]] k =f ′(x 0),所以f ′(x 0)不存在只说明曲线在该点处的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x =x 0.[[答案]] C2.在曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14 [[解析]] ∵y ′=0lim x ∆→(x +Δx )2-x 2Δx =0lim x ∆→(2x +Δx )=2x , ∴令2x =tan π4=1,得x =12.∴y =⎝ ⎛⎭⎪⎫122=14,所求点的坐标为⎝ ⎛⎭⎪⎫12,14. [[答案]] D3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12 D .-1[[解析]] ∵y ′=0lim x ∆→a (1+Δx )2-a ×12Δx =0lim x ∆→(2a +a Δx )=2a , ∴可令2a =2,∴a =1.[[答案]] A4.设y =f (x )为可导函数,且满足条件0lim x →f (1)-f (1-x )2x =-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.[[解析]] 由0lim x →f (1)-f (1-x )2x =-2,∴12f ′(1)=-2,f ′(1)=-4. [[答案]] -45.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.[[解析]] 由在M 点处的切线方程y =12x +2,得f (1)=12×1+2=52,f ′(1)=12.∴f (1)+f ′(1)=52+12=3.[[答案]] 36.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)点P 处的切线的斜率;(2)点P 处的切线方程.解 (1)由y =13x 3,得y ′=0lim x ∆→Δy Δx =0lim x ∆→13(x +Δx )3-13x 3Δx =130lim x ∆→3x 2Δx +3x (Δx )2+(Δx )3Δx =130lim x ∆→[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.所以点P 处的切线的斜率等于4.(2)在点P 处的切线方程为y -83=4(x -2),即12x -3y -16=0.7.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,求a 的值.解 ∵y =x 3,∴y ′=0lim x ∆→(x +Δx )3-x 3Δx =3x 2, ∴y ′|x =a =3a 2,∴曲线y =x 3在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ),即y =3a 2x -2a 3.令x =a ,则y =a 3;令y =0,则x =23a .∴S =12×13|a |×|a 3|=16|a |4,∴16|a |4=16,∴|a 4|=1,∴a =±1.能力提升8.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定[[解析]] 由导数的几何意义,f ′(x A ),f ′(x B )分别是切线在点A ,B 处切线的斜率,由图象可知f ′(x A )<f ′(x B ).[[答案]] B9.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线的倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B .[-1,0] C .[0,1] D.⎣⎢⎡⎦⎥⎤12,1 [[解析]] 设P 点的横坐标为m ,先求出函数y =x 2+2x +3在此处的导数.Δy Δx =(m +Δx )2+2(m +Δx )+3-m 2-2m -3Δx=2m Δx +2Δx +(Δx )2Δx=2m +2+Δx , 当Δx →0时,Δy Δx →2m +2.∴f ′(m )=2m +2.由于倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4, ∴0≤2m +2≤1⇒-1≤m ≤-12.[[答案]] A10.若曲线y =2x 2-4x +m 与直线y =1相切,则m =________________.[[解析]] 设切点坐标为(x 0,1),则f ′(x 0)=lim x ∆→ 2(x 0+Δx )2-4(x 0+Δx )-2x 20+4x 0Δx =4x 0-4=0, ∴x 0=1,即切点坐标为(1,1).∴2-4+m =1,即m =3.[[答案]] 311.曲线f (x )=12x 2的平行于直线x -y +1=0的切线方程为________________.[[解析]] f ′(x )=0lim x ∆→12(x +Δx )2-12x2Δx =x . 因为直线x -y +1=0的斜率为1,所以x =1.所以f (1)=12×12=12,切点为⎝ ⎛⎭⎪⎫1,12. 故切线方程为y -12=1·(x -1),即2x -2y -1=0.[[答案]] 2x -2y -1=012.在抛物线y =x 2上,哪一点处的切线平行于直线4x -y +1=0?哪一点处的切线垂直于这条直线?解 y ′=0lim x ∆→(x +Δx )2-x 2Δx =0lim x ∆→(2x +Δx )=2x . 设抛物线上点P (x 0,y 0)处的切线平行于直线4x -y +1=0,则y ′|x =x 0=2x 0=4,解得x 0=2.所以y 0=x 20=4,即P (2,4).设抛物线上点Q (x 1,y 1)处的切线垂直于直线4x -y +1=0,则y ′|x =x 1=2x 1=-14,解得x 1=-18.所以y 1=x 21=164,即Q ⎝ ⎛⎭⎪⎫-18,164. 故抛物线y =x 2在点(2,4)处的切线平行于直线4x -y +1=0,在点⎝ ⎛⎭⎪⎫-18,164处的切线垂直于直线4x -y +1=0. 13.(选做题)设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx =3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.lim x ∆→ΔyΔx =3x 20+2ax 0-9, 即f ′(x 0)=3x 20+2ax 0-9.∴f ′(x 0)=3(x 0+a 3)2-9-a 23.当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.。
2019-2020学年高中数学(人教B版 选修1-1)教师用书:第3章 导数及其应用 3-1-3
3.1.3导数的几何意义1.理解导数的几何意义会求曲线上某点处的切线方程.(重点)2.理解在某点处与过某点的切线方程的区别.(难点、易混点)[基础·初探]教材整理1 导数的几何意义阅读教材P83例1以上部分,完成下列问题.1.设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=错误!=f′(x0).2.函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P的切线方程为y-f(x0)=f′(x0)(x-x0).判断(正确的打“√”,错误的打“×”)(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )【答案】(1)×(2)×(3)×教材整理2 导函数的概念阅读教材P81导函数部分,完成下列问题.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x变化时,f′(x)是x的一个函数,称为f(x)的导函数,即f′(x)=y′=lim错误!.Δx→0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( )(2)导函数f′(x)的定义域与函数f(x)的定义域相同.( )(3)函数f(x)=x2的导数是f′(x)=2x.( )(4)函数f(x)=0没有导函数.( )【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________解惑:______________________________________________________疑问2:_____________________________________________________解惑:______________________________________________________疑问3:_____________________________________________________解惑:_______________________________________________________[小组合作型]l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图3-1-3【自主解答】函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.【答案】 D函数在每一点处的切线斜率的变化情况反映函数在相应点处的变化情况,由切线的倾斜程度,可以判断出函数升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其切线来了解函数的性质.[再练一题]1.函数y=f(x)的图象如图3-1-4所示,根据图象比较曲线y=f(x)在x=x1,x=x2附近的变化情况. 【导学号:25650102】图3-1-4【解】当x=x1时,曲线y=f(x)在点(x1,f(x1))处的切线l1的斜率f′(x1)>0,因此在x=x1附近曲线呈上升趋势,即函数y=f(x)在x=x1附近单调递增.同理,函数y=f(x)在x=x2附近单调递增,但是,直线l1的倾斜程度小于直线l2的倾斜程度,这表明曲线y=f(x)在x=x1附近比在x =x2附近上升得缓慢.过曲线y=(1)平行于直线y=4x-5;(2)垂直于直线2x-6x+5=0;(3)倾斜角为135°.【精彩点拨】本题考查曲线的切线的有关问题.解题的关键是设出切点的坐标,求出切线的斜率.【自主解答】f′(x)=lim错误!Δx→0=lim Δx→0 错误!=2x , 设P (x 0,y 0)是满足条件的点. (1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点. (2)∵切线与直线2x -6y +5=0垂直, ∴2x 0·13=-1,得x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎪⎫-32,94是满足条件的点.(3)∵切线的倾斜角为135°, ∴其斜率为-1.即2x 0=-1,得x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎪⎫-12,14是满足条件的点.解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[再练一题]2.已知曲线y =2x 2+a 在点P 处的切线方程为8x -y -15=0,求切点P 的坐标和实数a 的值. 【导学号:25650104】【解】 设切点P (x 0,y 0),切线斜率为k . 由y ′=lim Δx→0 ΔyΔx=lim Δx→0错误!=lim Δx→0 (4x +2Δx )=4x ,得k =y ′|x =x 0=4x 0, 根据题意4x 0=8,x 0=2,分别代入y =2x 2+a 和y =8x -15得y 0=8+a =1,得⎩⎪⎨⎪⎧a =-7,y0=1.故所求切点为P (2,1),a =-7.[探究共研型]探究1 【提示】 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.探究2 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?【提示】 根据导数的几何意义,求出函数y =f (x )在点(x 0,f (x 0))处的导数,即曲线在该点处的切线的斜率,再由直线方程的点斜式求出切线方程.探究3 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?【提示】 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.(1)y =-1x 在点⎝ ⎛⎭⎪⎪⎫12,-2处的切线方程是( )A .y =x -2B .y =x -12C .y =4x -4D .y =4x -2【自主解答】 先求y =-1x 的导数:Δy =-1x +Δx +1x=错误!,错误!=错误!,错误! 错误!=lim Δx→0错误!=错误!,即y ′=错误!,所以y =-错误!在点错误!处的切线斜率为k =y ′|x =错误!=4.所以切线方程是y +2=4⎝ ⎛⎭⎪⎪⎫x -12,即y =4x -4.【答案】 C(2)已知曲线C :y =x 3-x +2,求曲线过点P (1,2)的切线方程. 【自主解答】 设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0 =lim Δx→0错误! =lim Δx→0 ((Δx )2+3x 0Δx +3x 20-1)=3x 20-1. 所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即y =2x ,当切点为⎝ ⎛⎭⎪⎪⎫-12,198时,切线方程为y -198=-14⎝ ⎛⎭⎪⎪⎫x +12,即x +4y -9=0,所以切线方程为y =2x 或x +4y -9=0.利用导数的几何意义求切线方程的方法1.若已知点(x 0,y 0)在已知曲线上,则先求出函数y =f (x )在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f ′(x 0)(x -x 0).2.若题中所给的点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.[再练一题]3.(1)已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________. 【导学号:25650103】【解析】limΔx→0错误!=错误!(a·Δx+2a)=2a=2,∴a=1,又3=a×12+b,∴b=2,即ba=2.【答案】 2(2)求曲线y=f(x)=2x在点(-2,-1)处的切线方程.【解】因为y=2 x ,所以y′=limΔx→0错误!=lim Δx→02x+Δx-2xΔx=limΔx→0错误!=-错误!,因此曲线f(x)在点(-2,-1)处的切线的斜率k=-错误!=-错误!.由点斜式可得切线方程为y+1=-12(x+2),即x+2y+4=0.[构建·体系]1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( ) A.f′(x0)>0 B.f′(x0)<0C.f′(x0)=0 D.f′(x0)不存在【解析】由x+2y-3=0知,斜率k=-1 2,∴f′(x0)=-12<0.【答案】 B2.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1【解析】由题意,知k=y′|x=0=limΔx→0错误!=1,∴a=1.又(0,b)在切线上,∴b=1,故选A.【答案】 A3.已知曲线y=f(x)=2x2+4x在点P处的切线斜率为16,则P点坐标为________.【解析】设点P(x0,2x20+4x0),则f′(x0)=limΔx→0错误!=limΔx→0错误!=4x0+4,令4x0+4=16,得x0=3,∴P(3,30).【答案】(3,30)4.曲线y=x2-2x+2在点(2,2)处的切线方程为______.【导学号:25650105】【解析】Δy=(2+Δx)2-2(2+Δx)+2-(22-2×2+2)=2Δx+(Δx)2,∴ΔyΔx=2+Δx.∴y′|x=2=limΔx→0(2+Δx)=2.∴曲线在点(2,2)处的切线斜率为2.∴切线方程为y-2=2(x-2),即2x-y-2=0.【答案】2x-y-2=05.函数f(x)的图象如图3-1-5所示,试根据函数图象判断0,f′(1),f′(3),错误!的大小关系.图3-1-5【解】设x=1,x=3时对应曲线上的点分别为A,B,点A处的切线为AT,点B处的切线为BQ,如图所示.则错误!=k AB,f′(3)=k BQ,f′(1)=k AT,由图可知切线BQ的倾斜角小于直线AB的倾斜角,直线AB的倾斜角小于切线AT的倾斜角,即k BQ<k AB<k AT,∴0<f′(3)<错误!<f′(1).。
人教版高中数学选修1-1课件:3.1.3 导数的几何意义
备课素材
1.导数的几何意义 (1)导数 f′(x0)的几何意义是曲线 y=f(x)在点(x0,f(x0))处的切线的斜率,即 k =lim f(x0+ΔxΔ)x-f(x0)=f′(x0),物理意义是运动物体在某一时刻的瞬时 速度. (2)导数与切线的关系:f′(x0)>0 时,切线的倾斜角为锐角;f′(x0)<0 时,切线 的倾斜角为钝角;f′(x0)=0 时,切线与 x 轴平行.f(x)在 x0 处的导数不存在, 则切线垂直于 x 轴或不存在.
∆������
(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法.
三维目标
2.过程与方法 通过让学生在动手实践中探索、观察、反思、总结,发现问题,解决问题,从而达 到培养学生的学习能力、思维能力、应用能力和创新能力的目的. 3.情感、态度与价值观 通过在探究过程中渗透逼近和“以直代曲”思想,使学生了解近似与精确间的辩证 关系;通过有限来认识无限,体验数学中转化思想的意义和价值.
备课素材
(3)求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以 该点为由点的由线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在曲线上,则设出切 点(x0,f(x0)),表示出切线方程,然后求出切点. 2.“函数f(x)在点x0处的导数”“导函数”“导数”三者之间的区别与联系 (1)“函数在一点处的导数”,就是在该点的函数的改变量与自变量的改变量的比的 极限,它是一个数值,不是变数.
备课素材
(2)“导函数”:如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内
可导,这时对于区间(a,b)内每一个确定的值 x0,都对应着一个导数 f′(x0),这样就在开
人教B版高中数学选修1-1创新设计课件3.1.3导数的几何意义
2.曲线的割线与切线 (1)割线与切线: 如图,设 Q 为曲线 C:y=f(x)上不 同于 P 的一点,这时,直线 PQ 称 为曲线的割线.随着点 Q 沿曲线 C 趋近于点 P,割线 PQ 绕点 P 转动越来越趋近于直线 l,当点 Q 无限趋近点 P 时,直线 PQ 的极限位置为经过点 P 处的直线 l, 这条直线 l 也称为曲线 C 在点 P 处的切线.
3.1.3 导数的几何意义
【课标要求】 1.理解导函数的概念;理解导数的几何意义. 2.会求导函数. 3.根据导数的几何意义,会求曲线上某点处的切线方程. 【核心扫描】 1.求曲线上某点处的切线方程.(重点) 2.导数的几何意义的综合应用.(重难点)
自学导引 导数的几何意义 (1)割线斜率与切线斜率 设函数 y=f(x)的图象如图所示, AB 是过点 A(x0,f(x0))与点 B(x0+Δ x,f(x0+Δ x))的一条割线, Δ y f(x0+Δ x)-f(x0) 此割线的斜率是 = . Δx Δx
解 易证得点 P(1,2)在曲线上,由 y=x3+2x-1 得 Δ y=(x+Δ x)3+2(x+Δ x)-1-x3-2x+1 =(3x2+2)Δ x+3x· (Δ x)2+(Δ x)3, Δy =3x2+2+3x· Δ x+(Δ x)2, Δx 当Δ x→0 时,3x2+2+3x· Δ x+(Δ x)2→3x2+2, 即 f′(x)=3x2+2,所以 f′(1)=5,故点 P 处的切线斜率为 k=5, ∴点 P 处的切线方程为 y-2=5(x-1), 即 5x-y-3=0.
题型二
求过曲线外一点的切线方程
1 【例 2】 求过点 A(2,0)且与曲线 y= x相切的直线方程. [思路探索] 点(2,0)不在曲线上,所以此点不是切点,可以先 设出切点坐标, 建立关于切点坐标的两个方程, 求出切点坐标.
人教版-高中数学选修1-1-第三章 3.1.3 导数的几何意义
3
P
∴ y′ | x=2 = 22 = 4.
x
-2 -1
处的切线的斜率等于4. 即点P处的切线的斜率等于 处的切线的斜率等于
O -1 -2
1
2
(2)在点 处的切线方程是 在点P处的切线方程是 在点 处的切线方程是y-8/3=4(x-2),即12x-3y-16=0. 即
什么是导函数?
由函数f(x)在x=x0处求导数的过程可以看到 当 在 处求导数的过程可以看到,当 由函数 是一个确定的数.那么 那么,当 变化时 便是x 变化时,便是 时,f'(x0) 是一个确定的数 那么 当x变化时 便是 的一个函数,我们叫它为 我们叫它为f(x)的导函数 即: 的导函数.即 的一个函数 我们叫它为 的导函数
下面来看导数的几何意义:
如图,曲线 是函数 如图 曲线C是函数 曲线 是函数y=f(x) 是曲线C上的 的图象,P(x0,y0)是曲线 上的 的图象 是曲线 任意一点,Q(x0+Δx,y0+Δy) 任意一点 Δ Δ 邻近一点,PQ为C的割线 的割线, 为P邻近一点 邻近一点 为 的割线 PM//x轴,QM//y轴,β为PQ的 轴 轴 为 的 倾斜角. 倾斜角 则: MP = x, MQ = y, y = tanβ . x
y 请问: 是割线PQ的什么? x
y y=f(x) Q
Δy P O
β
Δx
M x
斜 率!
请看当点Q沿着曲线逐渐向点 接近时 割线PQ绕着 请看当点 沿着曲线逐渐向点P接近时 割线 绕着 沿着曲线逐渐向点 接近时,割线 逐渐转动的情况. 点P逐渐转动的情况 逐渐转动的情况 y
y=f(x) Q
割 线 T 切线
思考一下,导数可以用下式表示吗? f (x) f (x0 ) f ′(x0 ) = lim x→x0 x x0
高中数学选修1-1课时作业3:3.1.3 导数的几何意义
3.1.3 导数的几何意义一、选择题1.下列各点中,在曲线y =x 2上,且在此点处的切线倾斜角为π4的是( ) A .(0,0) B .(2,4)C.⎝⎛⎭⎫14,116 D.⎝⎛⎭⎫12,142.过点(-1,0)作抛物线y =x 2+x +1的切线,则其切线方程为( )A .2x +y +2=0B .3x +y +3=0C .x -y +1=0或3x +y +3=0D .x +y +1=03.已知函数y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定4.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )二、填空题5.曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.6.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.三、解答题7.若曲线y =x 2-1的一条切线平行于直线y =4x -3.求这条切线的方程.8.求证:函数y =x +1x图象上的各点处的切线斜率小于1.9.已知曲线y =x 2+1,则是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.[[答案]]1.[[解析]] k =limΔx →0Δy Δx =lim Δx →0(x +Δx )2-x 2Δx=lim Δx →0(2x +Δx )=2x ,∵倾斜角为π4,∴斜率为1. ∴2x =1,x =12,故选D. [[答案]] D2.[[解析]] 设切点坐标为(x 0,y 0),f ′(x 0)=lim Δx →0(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0((2x 0+1)+Δx )=2x 0+1,所以x 20+x 0+1x 0+1=2x 0+1, 解得x 0=0或x 0=-2,所以k =1或k =-3,所以切线方程为y =x +1或y =-3(x +1),即x -y +1=0或3x +y +3=0.[[答案]] C3. [[解析]] 由图象知函数在A 点处的切线倾斜角大于在B 点处的切线倾斜角,故f ′(x A )>f ′(x B ).[[答案]] A4.[[解析]] 依题意,y =f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项的图象,只有A 满足,故选A.[[答案]] A5.[[解析]] 根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx ,Δy Δx=2x +Δx -3,所以f ′(x )=limΔx →0Δy Δx =lim Δx →0(2x +Δx -3)=2x -3. 由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94 [[答案]] ⎝⎛⎭⎫32,-94 6.[[解析]] 由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.[[答案]] 37.若曲线y =x 2-1的一条切线平行于直线y =4x -3.求这条切线的方程.[[解析]] f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2-1-(x 2-1)Δx=lim Δx →02x Δx +(Δx )2Δx=lim Δx →0(2x +Δx )=2x .设切点坐标为(x 0,y 0),则由题意知,f ′(x 0)=4,即2x 0=4,∴x 0=2.代入曲线方程得y 0=3.故该切线过点(2,3)且斜率为4.所以这条切线的方程为y -3=4(x -2),即4x -y -5=0.8.求证:函数y =x +1x图象上的各点处的切线斜率小于1. 证明: ∵y =limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0⎝⎛⎭⎫x +Δx +1x +Δx -⎝⎛⎭⎫x +1x Δx=x 2-1x 2=1-1x2<1, ∴y =x +1x图象上的各点处的切线斜率小于1. 9.已知曲线y =x 2+1,则是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.[[解析]] 由Δy Δx =(x +Δx )2+1-(x 2+1)Δx=2x +Δx . 得y ′=limΔx →0Δy Δx =lim Δx →0(2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又因为切线过(1,a ),y 0=x 20+1,所以a -(x 20+1)=2x 0(1-x 0),即x 20-2x 0+a -1=0.因为切线有两条,所以Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是{a |a <2}.。
2018版高中数学人教B版选修1-1学案:3-1-3 导数的几何意义 精品
3.1.3 导数的几何意义[学习目标] 1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.[知识链接]如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是导数的实际意义,那么从函数的图象上来考察函数在某点处的导数,它具有怎样的几何意义呢?答:设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是Δy Δx =f (x 0+Δx )-f (x 0)Δx. 当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的切线.于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k =f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx . [预习导引]导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).要点一 已知过曲线上一点求切线方程例1 若曲线y =x 3+3ax 在某点处的切线方程为y =3x +1,求a 的值.解 ∵y =x 3+3ax .∴y ′=lim Δx →0(x +Δx )3+3a (x +Δx )-x 3-3ax Δx=lim Δx →03x 2Δx +3x (Δx )2+(Δx )3+3a Δx Δx =lim Δx →0[3x 2+3x Δx +(Δx )2+3a ]=3x 2+3a . 设曲线与直线相切的切点为P (x 0,y 0),结合已知条件,得⎩⎪⎨⎪⎧3x 20+3a =3,x 30+3ax 0=y 0=3x 0+1, 解得⎩⎨⎧ a =1-322,x 0=-342∴a =1-322. 规律方法 一般地,设曲线C 是函数y =f (x )的图象,P (x 0,y 0)是曲线C 上的定点,由导数的几何意义知k =li m Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx ,继而由点与斜率可得点斜式方程,化简得切线方程.跟踪演练1 求曲线y =1x在点⎝⎛⎭⎫2,12处的切线方程. 解 因为lim Δx →0f (2+Δx )-f (2)Δx=lim Δx →012+Δx -12Δx =lim Δx →0-12(2+Δx )=-14.所以这条曲线在点⎝⎛⎭⎫2,12处的切线斜率为-14,由直线的点斜式方程可得切线方程为y -12=-14(x -2),即x +4y -4=0. 要点二 求过曲线外一点的切线方程例2 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0?(2)曲线过点P (3,9)的切线方程.解 y ′=lim Δx →0Δy Δx =lim Δx →0[2(x +Δx )2-7]-(2x 2-7)Δx =lim Δx →0(4x +2Δx )=4x . (1)设切点为(x 0,y 0),则4x 0=4,x 0=1,y 0=-5,∴切点坐标为(1,-5).(2)由于点P (3,9)不在曲线上.设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0,故所求的切线方程为y -y 0=4x 0(x -x 0).将P (3,9)及y 0=2x 20-7代入上式,得9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x -y -15=0或16x -y -39=0.规律方法 若题中所给点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.跟踪演练2 求过点A (2,0)且与曲线y =1x相切的直线方程. 解 易知点(2,0)不在曲线上,故设切点为P (x 0,y 0),由y ′|x =x 0=lim Δx →01x 0+Δx -1x 0Δx =-1x 20得所求直线方程为y -y 0=-1x 20(x -x 0). 由点(2,0)在直线上,得x 20y 0=2-x 0,再由P (x 0,y 0)在曲线上,得x 0y 0=1,联立可解得x 0=1,y 0=1,所求直线方程为x +y -2=0.要点三 求切点坐标例3 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.解 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx=2x ,设P (x 0,y 0)是满足条件的点. (1)因为切线与直线y =4x -5平行,所以2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)因为切线与直线2x -6y +5=0垂直,所以2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)因为切线的倾斜角为135°,所以其斜率为-1.即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. 规律方法 解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.跟踪演练3 已知抛物线y =2x 2+1,求:(1)抛物线上哪一点的切线平行于直线4x -y -2=0?(2)抛物线上哪一点的切线垂直于直线x +8y -3=0?解 设点的坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2.∴Δy Δx=4x 0+2Δx . lim Δx →0Δy Δx =lim Δx →0(4x 0+2Δx )=4x 0, 即f ′(x 0)=4x 0.(1)∵抛物线的切线平行于直线4x -y -2=0,∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1,该切点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直,∴切线的斜率为8,即f ′(x 0)=4x 0=8,得x 0=2,该切点为(2,9).1.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为( )A .4B .16C .8D .2答案 C解析 f ′(2)=lim Δx →0f (2+Δx )-f (2)Δx =lim Δx →02(2+Δx )2-8Δx =lim Δx →0(8+2Δx )=8,即斜率k =8. 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1答案 A解析 由题意,知k =y ′|x =0=lim Δx →0(0+Δx )2+a (0+Δx )+b -b Δx =1,∴a =1.又(0,b )在切线上,∴b =1,故选A.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为( ) A .30°B .45°C .135°D .165°答案 B解析 ∵y =12x 2-2, ∴y ′=lim Δx →012(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx=lim Δx →012(Δx )2+x ·Δx Δx=lim Δx →0⎝⎛⎭⎫x +12Δx =x . ∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 4.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16.则P 点坐标为________. 答案 (3,30)解析 设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →02(Δx )2+4x 0·Δx +4Δx Δx =4x 0+4, 令4x 0+4=16得x 0=3,∴P (3,30).1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx =f ′(x 0). 2.“函数f (x )在点x 0处的导数”是一个具体数值,不是变量,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导函数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.。
人教课标版(B版)高中数学选修1-1教学教案:导数的几何意义
3.1.3导数的几何意义一.教学目标:【知识与技能目标】通过实验探究,理解导数的几何意义,体会导数在刻画函数性质中的作用【过程与方法目标】培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运动,是学生达到思维方式的迁移,培养学生科学的思维习惯。
【情感态度价值观目标】渗透“逼近”和“以直代曲”思想,能激发学生的学习兴趣,培养学生不断发现、探索新知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力。
二.重、难点分析重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.PP趋向切线动态变化效果,体现“量”与“质”的转化额与相互替代.关键:由割线n三、教学过程设计1.提出问题---引入课题温故知新,诱发思考:提问:初中平面几何中圆的切线的定义是什么?学生(预设):直线和圆有惟一公共点时,直线叫做圆的切线,惟一公共点叫做切点.教师:这种定义是否适用于一般曲线的切线呢?——学生(预设):学生回答适应,教师举出反例子;——学生(预设):不能用公共点的个数来定义,教师:你能否用你已经学过的函数曲线的切线举出反例?学生(预设):正弦函数的曲线与直线可能相切时有两个公共点.教师(强调):圆是一种特殊的曲线,这种定义并不适用于一般曲线的切线.如图曲线c,直线l3虽然与曲线c有惟一公共点,但它与曲线c不相切;而另一条直线l2,虽然与曲线c有两个公共点B和C,但与曲线c相切于点B.因此,直(1)图 (2)图 (3)图 (4)图线与曲线的公共点的个数不能用来定义一般曲线的切线.我必须用新的方法来定义曲线的切线.设计意图:帮助学生反思圆的切线的定义的局限性,寻找更加科学的方法来定义曲线的定义.2.自主思考,参与探究---形成概念实验观察,思维辨析:如图,当点(,())n n n P x f x (1n =,2,3,4)没着曲线()f x 趋近点()()00,P x f x 时,割线n PP 的变化趋势是什么?教师:当1P 向P 逐步逼近的时候你发现了什么?(板书):曲线的切线的定义:1.曲线的切线的定义当n P P →时,割线n PP →(确定位置)PT ,PT 叫做曲线在点P 处的切线. 教师:有没有同学用你学的知识告诉我:割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系呢?割线n PP 的斜率是:(板书) ()00)(n n PP n f x f x k x x -=-.当点n P 无限趋近于点P 时,n PP k 无限趋近于切线PT 的斜率k .再次通过教师逐步的引导得出函数()f x 在0x x =处导数就是切线PT 的斜率k .即(教师重复定义,并写出板书).2.函数f (x )在x =x 0处的导数是切线PT 的斜率k .即000()()lim x f x x f x k x→+-=()0f x '=。
高中数学第三章导数及其应用3.1导数3.1.3导数的几何意义学案新人教B版选修1-1
3.1.3 导数的几何意义1.了解导数概念的实际背景. 2.知道瞬时变化率就是导数.3.通过函数图象直观地理解导数的几何意义.1.瞬时变化率设函数y =f (x )在x 0附近有定义,当自变量在x =x 0附近改变Δx 时,函数值相应地改变Δy =f (x 0+Δx )-f (x 0),如果当Δx ________时,平均变化率fx 0+Δx -fx 0Δx趋近于一个______,则常数l 称为函数f (x )在______的瞬时变化率.用趋近于符号“→”记作当Δx →0时,f x 0+Δx -f x 0Δx→l.这时,还可以说,当Δx →0时,函数平均变化率的极限等于函数在x 0的__________.记作“lim Δx →0f x 0+Δx -f x 0Δx=l”.(1)运动的瞬时速度就是路程函数y =s (t )的瞬时变化率. (2)运动的瞬时加速度就是速度函数y =v (t )的瞬时变化率.【做一做1-1】函数f (x )=x 2在x =1处的瞬时变化率为__________.【做一做1-2】一质点作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则质点的初速度为__________.2.某点处的导数函数在x 0的瞬时变化率,通常就定义为f (x )在x =x 0处的导数,并记作f ′(x 0)或y ′|x =x 0.于是可写作________________=f ′(x 0).【做一做2】函数f (x )=x 2在x =1处的导数为__________. 3.导函数如果f (x )在开区间(a ,b )内每一点x 处导数都存在,则称f (x )在区间(a ,b )内可导.这样,对开区间(a ,b )内__________,都对应一个确定的导数f ′(x ),于是在区间(a ,b )内f ′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的________.记为f ′(x )(或y x ′、y ′).导函数通常简称为导数.如不特别指明求某一点的导数,求导数指的就是求导函数.函数f (x )在x 0处可导,是指当Δx 趋近于0时,ΔyΔx 趋近于某个常数(极限存在),如果ΔyΔx不趋近于某个常数(极限不存在),就说函数在点x 0处不可导,也说无导数. 【做一做3】函数f (x )=x 2的导函数(导数)为__________. 4.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的__________.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率为f ′(x 0),相应的切线方程为y -y 0=f ′(x 0)(x -x 0).如果函数在x 0处的导数不存在,则说明斜率不存在,此时切线方程为x =x 0.【做一做4】函数y =x 2在点(2,4)处的切线的斜率为__________.1.如何求函数y =f (x )在点x 0处的导数? 剖析:(1)求函数的改变量Δy ; (2)求平均变化率ΔyΔx ;(3)取极限得导数f ′(x 0)=lim Δx →0ΔyΔx. 2.“函数在一点处的导数”“导函数”“导数”三者之间有何区别与联系? 剖析:(1)函数在一点处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导数是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内每一个确定的值x 0,都对应着一个确定的导数f ′(x 0).根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值,即f ′(x 0)=f ′(x )|x =x 0.3.“Δx →0”的意义.剖析:Δx 与0的距离要多近有多近,即|Δx -0|可以小于给定的任意小的正数,但始终有Δx ≠0.题型一 导数的定义【例1】已知函数y =f (x )在点x 0处可导,试求下列各极限的值. (1)lim Δx →0f x 0-Δx -f x 0Δx;(2)lim h →0f x 0+h -f x 0-h2h.分析:利用函数y =f (x )在点x 0处可导的条件,可将给定的极限式变形成导数定义的结构形式来解决问题.导数定义中增量Δx 的形式是多种多样的,但不论Δx 选择哪种形式,Δy 也应与之相对应.反思:解决此类问题应将给定的极限形式恒等变形转化为导数定义的结构形式即可解决.题型二 求导数 【例2】已知函数y =x ,求y ′,y ′|x =1.分析:按求导数的步骤求解即可,但要注意变形的技巧. 反思:函数的导数与在点x 0处的导数不是同一概念,在点x 0处的导数是函数的导数在x =x 0处的函数值.分子有理化是解决本题的一种重要的变形技巧,要认真体会.题型三 利用导数求曲线的切线方程【例3】求曲线y =1x 在点⎝ ⎛⎭⎪⎫13,3处的切线的斜率,并写出切线方程.分析:利用导数的几何意义求斜率,然后用点斜式写出直线方程.反思:(1)求函数在某点处的切线方程的一般步骤:①求出函数y =f (x )在点x 0处的导数f ′(x 0);②根据点斜式得切线方程y -y 0=f ′(x 0)(x -x 0).注意(x 0,y 0)为曲线上的点并且是切点.(2)函数f (x )在点x 0处有导数,则在该点处函数f (x )的曲线必有切线,且导数值是该切线的斜率;反之不成立.例如f (x )=x 在点x =0处有切线,但它不可导.题型四 易错题型【例4】试求过点P (3,5)且与曲线y =x 2相切的直线的方程.错解:∵函数y =x 2的导数为y ′=2x , ∴y ′|x =3=2×3=6.∴切线方程为y -5=6(x -3),即y =6x -13.错因分析:没有注意到点P 不在曲线上,点P 不是切点,本题把点P 当成了切点,从而导致错误.反思:求曲线上在点P 处的切线与过点P 的切线有区别,在点P 处的切线,点P 必为切点;求过点P 的切线,点P 未必是切点,点P 也不一定在已知曲线上.应注意概念区别,其求解方法上也有所不同,要认真体会.若点P 在曲线上,要分点P 是切点和不是切点两种情况解决.1设函数f (x )可导,则lim Δx →0f1+Δx -f 12Δx等于( )A .f ′(1)B .2f ′(1)C .12f ′(1) D.f ′(2)2设函数f (x )可导,lim m →0f x 0+m -f x 0-mm等于( )A .2f ′(x 0)B .f ′(x 0)C .12f ′(x 0) D .f ′(m)3函数f (x )=1x在x =1处的导数是__________.4函数y =x 2在点P (x 0,y 0)处的切线的斜率为2,则x 0等于__________.5试求过点P (0,-1)且与曲线y =x 2+3相切的直线方程. 答案:基础知识·梳理1.趋近于0 常数l 点x 0 瞬时变化率l 【做一做1-1】2 Δy Δx=f1+Δx -f 1Δx =1+Δx 2-12Δx=Δx +2,当Δx →0时,Δx +2→2,故所求瞬时变化率为2.【做一做1-2】3 质点的初速度即为s =3t -t 2在t =0处的瞬时变化率.Δs =s (0+Δt )-s (0)=3(Δt )-(Δt )2,则ΔsΔt=3-Δt , 当Δt →0时,3-Δt →3,故质点的初速度为3.2.lim Δx →0f x 0+Δx -f x 0Δx【做一做2】2 由做一做1-1及导数定义知所求导数为2. 3.每个值x 导函数【做一做3】2x 求函数f (x )=x 2的导数就是求其在其定义域内任一点x 处的导数. Δy Δx =f x +Δx -f x Δx =x +Δx 2-x 2Δx =2x +Δx , 当Δx →0时,2x +Δx →2x ,故函数f (x )=x 2的导数为2x ,即f ′(x )=2x . 上述过程用极限符号表示为:f ′(x )=lim Δx →0f x +Δx -f xΔx=lim Δx →0x +Δx 2-x 2Δx=lim Δx →0(2x +Δx )=2x . 4.切线的斜率【做一做4】4 函数y =x 2在点(2,4)处的切线的斜率就是函数y =x 2在x =2处的导数. 因此其斜率k =lim Δx →02+Δx 2-22Δx=lim Δx →0(Δx +4)=4. 典型例题·领悟【例1】解:(1)原式=lim Δx →0f x 0-Δx -f x 0--Δx=-lim Δx →0f x 0-Δx -f x 0-Δx(Δx →0时,-Δx →0)=-f ′(x 0). (2)原式=lim h →0f x 0+h -f x 0+f x 0-f x 0-h2h=12⎣⎢⎡⎦⎥⎤lim h →0f x 0+h -f x 0h +lim h →0 f x 0-f x 0-h h=12[f ′(x 0)+f ′(x 0)]=f ′(x 0). 【例2】解:∵Δy =Δx +x -x , ∴Δy Δx =Δx +x -x Δx=ΔxΔx +x +x Δx=1Δx +x +x.∴y ′=lim Δx →0Δy Δx =lim Δx →01Δx +x +x =12x. ∴y ′|x =1=12.【例3】解:∵y ′=lim Δx →0Δy Δx =lim Δx →01x +Δx -1x Δx =lim Δx →0-1x 2+x Δx =-1x 2, ∴曲线在点⎝ ⎛⎭⎪⎫13,3处的切线的斜率为k =y ′|x =13=-9.∴切线方程为y -3=-9⎝ ⎛⎭⎪⎫x -13, 即9x +y -6=0.【例4】正解:函数y =x 2的导数为y ′=2x .设所求切线的切点为A (x 0,y 0),则y 0=x 20,切线斜率为y ′|x =x 0=2x 0. ∵切线过点P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3,∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5,从而切点A 的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为2x 0=2; 当切点为(5,25)时,切线的斜率为2x 0=10.∴所求切线有两条,方程分别为y -1=2(x -1)或y -5=10(x -25), 即y =2x -1或y =10x -245. 随堂练习·巩固1.C 原式=12lim Δx →0f 1+Δx -f 1Δx =12f ′(1).2.A 原式=lim m →0f x 0+m -f x 0+f x 0-f x 0-mm=lim m →0f x 0+m -f x 0m +lim m →0f x 0-f x 0-mm=f ′(x 0)+f ′(x 0)=2f ′(x 0).3.-1 Δy =11+Δx -11=-Δx 1+Δx ,Δy Δx =-11+Δx,f ′(1)=lim Δx →0⎝ ⎛⎭⎪⎫-11+Δx =-lim Δx →011+Δx =-1. 4.1 由导数的几何意义可知函数y =x 2在点P (x 0,y 0)处的切线的斜率就是该点处的导数.由做一做3知:y ′=2x ,由题意得,00|22x x y x '===,解得x 0=1.5.分析:点P 不在曲线上,可设切点为A (x 0,y 0).切线的斜率k =f ′(x 0),又k =y 0--1x 0-0=y 0+1x 0,利用二者相等列出方程即可解决.解:函数y =x 2+3的导数为y ′=2x .设切点为A (x 0,y 0),则y 0=x 20+3, 切线斜率为y ′|x =x 0=2x 0.∵切线过点P (0,-1)和A (x 0,y 0)两点,∴其斜率为y 0+1x 0=x 20+4x 0.∴2x 0=x 20+4x 0,解得x 0=2或x 0=-2.从而切点A 的坐标为(2,7)或(-2,7).当切点为(2,7)时,切线的斜率为2x 0=4;当切点为(-2,7)时,切线的斜率为2x 0=-4.∴所求切线方程为y -7=4(x -2)或y -7=-4(x +2),即y =4x -1或y =-4x -1.。
高中数学新人教版B版精品教案《人教版B高中数学选修1-1 3.1.3 导数的几何意义》2
导数的概念与几何意义(复习课)教学设计2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,在整个教学中以实现学生学习目标为核心,启发引导学生观察思考、分析,并沿着积极的思维方向,逐步达到即定的学习目标,发展并培养学生的逻辑思维能力,使学生在教师营造的"可探索"的环境里,积极参与,主动地获取知识。
教学过程教学环节教学内容师生互动及教师设计意图高考大纲说明1了解导数概念的实际背景;2理解导数的几何意义;教师用课件展示问题,学生观看.让学生深知本节课在高考的地位、作用,帮助学生学习本节课有目的性知识回顾一.知识回顾——导数结构图温故而知新,让学生重新回顾本章所学内容,了解本节课所学内容在课标和高考中的地位及体现二、出示2021年考题及考纲说明新课讲授知识解析:1.导数的概念2导数的几何意义任务一教师针对课标及学生的实际认知水平,为本节课精选例题,帮助学生巩固知识针对例题给出变式练习题,新课讲授变式:直线=与曲线=n相切,求值。
任务二(一)求切线方程(二)求切点(三)求参数帮助学生巩固例题所学内容,形成能力教师应注意在学生书写时纠正学生的书写错误,让学生将会做的题变成得针对问题让学生多上黑板处理,既方便教师及时了解学生的问题,暴露学生在这部分内容的知识缺陷,同时也给学生一个展示自己的机会课堂小结学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.反思归纳 1.注意区分曲线在某点处的切线和曲线过某点的切线。
曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f′(x0)(x-x0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解。
2.已知斜率k,求切点A(x0,f(x0)),即解方程f′(x0)=k。
3.根据导数的几何意义求参数的值时,一般是利用切点P(x0,y0)既在曲线上又在切线上构造方程组求解。
高中数学新人教版B版精品教案《人教版B高中数学选修1-1 3.1.3 导数的几何意义》7
导数的几何意义高二数学刘学刚人教B版教材(选修1-1)一、教材分析本节课选自人教B版选修1-1第三章导数的几何意义。
教材通过数形结合的方法,演示了割线斜率到切线斜率的变化过程,用形象直观的逼近方法定义了切线,引出了导数的几何意义,适合学生的认知规律,在学生学习中有着明确的学习方法指引,通过本节课的学习,学生们进一步认识了“逼近思想”在数学中的应用。
例题设计难度适中,既有简单求解切线斜率、切点的题目,又有求切线方程题型。
例题设计了“在一点处”型和“过一点”型的切线方程,可以培养学生思维全面严谨、分类讨论的能力。
二、教学目标知识与技能:理解导数的几何意义、熟练掌握求切点及函数“在一点处”型、“过一点”型的切线斜率的求法。
过程与方法:让学生体会割线斜率到切线斜率的过程,熟练掌握数形结合、分类讨论等数学思想方法。
情感态度与价值观:能够从生活中抽象出数学问题,在学习中养成积极探究,合作分享的学习态度。
通过认真训练,达到举一反三、融会贯通的目的。
三、重点、难点导数几何意义的理解与应用,“过一点”型的切线斜率的求解过程。
突出重点方法:“抓三线、突重点”,即一知识技能线:实例引入→抽象为数学问题→动态演示→形成概念;(二)过程与方法线:具体到抽象、数形结合、分类讨论的应用;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度教学难点:导数的几何意义,从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
从知识本身特点来看,导数的几何意义是在平均变化率、瞬时速度与导数的基础上结合切线斜率再生成的一个知识点。
特别是在求“在一点处”型、“过一点”型的切线斜率,这是学生的难点,刚开始接触,好多学生可能不理解。
突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1-1 第三章 3.1 课时作业23
一、选择题
1.若函数f (x )=-3x -1,则f ′(x )=( )
A . 0
B . -3x
C . 3
D . -3 解析:f ′(x )=lim Δx →0
f (x +Δx )-f (x )Δx =lim Δx →0 -3(x +Δx )-1+3x +1Δx
=lim Δx →0
(-3)=-3. 答案:D
2.已知函数y =f (x )的图象如右图所示,则f ′(x A )与f ′(x B )的大小关
系是( )
A .f ′(x A )>f ′(x
B )
B .f ′(x A )<f ′(x B )
C .f ′(x A )=f ′(x B )
D .不能确定
解析:由图象易知,点A 、B 处的切线斜率k A 、k B 满足k A <k B <0,由导数的几何意义,得f ′(x A )<f ′(x B ).
答案:B
3.已知曲线y =-12x 2-2上一点P (1,-52
),则过点P 的切线的倾斜角为( ) A .30°
B .45°
C .135°
D .165°
解析:∵点P (1,-52)在曲线y =f (x )=-12
x 2-2上,则过点P 的切线斜率为f ′(1)=k =-1.
∴点P 的切线的倾斜角为135°.
答案:C
4.李华在参加一次同学聚会时,用如下图左所示的圆口杯喝饮料,他想:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )
解析:由于圆口杯是“下细上粗”,则开始阶段高度增加较快,以后高度增加得越来越慢,仅有B 符合.
答案:B
二、填空题
5.曲线f (x )=x 2在x =0处的切线方程为__________.
解析:f ′(0)=lim Δx →0 (0+Δx )2-0Δx
=lim Δx →0Δx =0,又切线过点(0,0),故切线方程为y =0. 答案:y =0
6.如图,函数y =f (x )的图象在点P 处的切线方程是y =-2x +9,P 点的横坐标是4,则f (4)+f ′(4)=______________________________________________________.
解析:由题意,f ′(4)=-2.
f (4)=-2×4+9=1.
因此,f (4)+f ′(4)=-2+1=-1.
答案:-1
7.曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 围成的三角形的面积为16
,则a =__________.
解析:因为f ′(a )=lim Δx →0 (a +Δx )3-a 3
Δx
=3a 2,所以曲线在点(a ,a 3)处的切线方程为y -
a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为(23a,0),由题设知三角形面积为12|a -23
a |·|a 3|=16
,解得a =±1. 答案:±1
三、解答题
8.利用定义求函数f (x )=x 3+x -2的导数f ′(x ),并利用f ′(x )求f ′(-1),f ′(1). 解:由导数的定义,得
f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx
= lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx
= lim Δx →0[(Δx )2+3x 2+3x ·Δx +1]=3x 2+1,
∴f ′(x )=3x 2+1,则f ′(-1)=4,f ′(1)=4.
9.已知曲线y =1t -x
上点P (2,-1). 求:(1)曲线在点P 处的切线的斜率;
(2)曲线在点P 处的切线方程.
解:将P (2,-1)代入y =1t -x
,得t =1, ∴y =11-x
. ∴y ′=lim Δx →0 f (x +Δx )-f (x )Δx
=lim Δx →0 11-(x +Δx )-11-x Δx
=lim Δx →0
Δx [1-(x +Δx )](1-x )Δx =lim Δx →0 1(1-x -Δx )(1-x )=1(1-x )2
. (1)曲线在点P 处的切线斜率为
y ′|x =2=1(1-2)2
=1; (2)曲线在点P 处的切线方程为
y -(-1)=x -2,即x -y -3=0.。