大学高等数学 10

合集下载

高等数学第10章 曲线积分与曲面积分

高等数学第10章 曲线积分与曲面积分
79
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为

高等数学 课后习题答案 第十章

高等数学 课后习题答案 第十章

习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。

高等数学第十章线性代数基础

高等数学第十章线性代数基础

第一节 行 列 式
2. 几种特殊的n阶行列式
(1)对角行列式:只有在对角线上有非零 元素的行列式。
(2)下(上)三角行列式:主对角线以上(下)的 元素都为零的行列式。
第一节 行 列 式

三、 行列式的性质
1. n阶行列式的概念
我们已经定义了二阶、三阶行列式,又将 三阶行列式转化为二阶行列式来计算,一般地, 可用递归法来定义n阶行列式。
第一节 行 列 式
2. 三阶行列式
类似地,对于三元一次方程组
为了简单地表达它的解,我们引进三阶行列式的概念。 三阶行列式也是一个数值,它可以通过转化为二阶行 列式的计算而得到。 三阶行列式可以用来解三元一次方程组。
第一节 行 列 式
若分别记三阶行列式
如果方程组(10-1-4)中的系数行列式Δ≠0,那么方程 组有唯一解,其解可以简洁地表示为:
第一节 行 列 式
二、 n阶行列式
1. n阶行列式的概念
我们已经定义了二阶、三阶行列式,又将三阶 行列式转化为二阶行列式来计算,一般地,可用递 归法来定义n阶行列式。
第一节 行 列 式
定义1
将n2个数排列成n行n列,并在左、右两边各加 一竖线的算式,即
称为n阶行列式,它代表一个由确定的运算关系所 得到的数。
第一节 行 列 式
四、 行列式的计算
例1 计算三阶行列式
第一节 行 列 式
(1)对二阶、三阶行列式按定义展开,直接计算。 (2)对特殊的行列式,如上(下)三角行列式,其值为主对角线 元素的乘积。 (3)按照性质6,将行列式按某一行(或列)的展开式展开,把 行列式转化为低一阶的行列式,如此继续下去,直至降到三阶或二 阶行列式,然后直接计算。 (4)利用性质5,将行列式转化成三角行列式或其他易计算的 行列式,然后再计算,这是计算行列式的常用的基本方法。

高等数学分析极限论10

高等数学分析极限论10

H
组成和变形特征
*将剪力墙集中到房屋的内部或 外部形成封闭的筒体,以此来 承受房屋大部分或全部竖向荷 载和水平荷载所组成的结构体 系称为筒体结构体系
电梯间
窗孔 窗裙梁 立柱
H
*分实腹筒体和空腹筒体两类 窗孔
电梯间
窗裙梁
*变形呈弯剪型
立柱
二、高层建筑结构体系
4. 筒体结构
9000
9000
9000
框架-筒体结构
sin nxdx
0
2
n
cos nx
|0
2[1 (1)n ]
n
f (x) 2[1 (1)n ] sin nx
n 1
n
2[1 (1)n ]
f( )
sin n
2
n 1
n
2
f(
)
2[1 (1)n ]
sin n
2
n 1
n
2
1 f ( ) 2[1 (1)n ] (1)n
2
n 1
dx
cos
x
1
sin
x
dx
2
2
22
2
1
sin(
x)
dx
42
1 2
csc(
4
x )dx 2
1 2
csc( 4
x )dx 2
2 ln | csc( x) cot( x) | C
42
42
(华上p269 #3) (华上p276 #6)
提示:利用Dirichlet判别法。
k
sin nx部分和一致有界,
f
(0)
1[ 2
f
" (1 )(1

高等数学(10)无穷级数

高等数学(10)无穷级数

在具体讨论之前,先将我们所要讲的内容做简略的 分类。所要讨论的级数有两大类: 1.数项级数;2函数项级数。 数项级数本身是有意义的,但是函数项级数才是更 重要的。而了解数项级数,是探讨函数项级数的基础。 正项级数; 1 数项级数: 交错级数; 2 3 其它的一般项级数。
1 一般函数项级数的基本理论; 函数项级数: 2 幂级数; 3 三角级数。
(2)函数列的一致收敛 设函数列{ f n }nZ 与函数 f 都是在 D 上定义的函数, 若满足如下条件:

0, N ( n N | f n ( x ) f ( x ) | )
则称函数列 { f n }nZ 在 D 上一致收敛于 f 。
的敛散性,并求n为何值时用部分和Sn代替级数和S时 所得误差小于0.01.
【例9-15】判别级数 ( 1) tan
n n 1


3n
的敛散性.
注:对上述(例9-14)交错“调和级数”进一步讨论, 可以发现,即便是收敛级数(条件收敛),无穷交换 律也是不成立的。这是无穷运算与初等运算的一个重 大差异,需好好理解。

(4)比值(达朗贝尔)与根值(柯西)判别法
这两种判别法,本质上都是参考等比级数的敛散性得 到的判别法。其思想与证明方法类似,下面仅证明比 值判别法,两个定理一起陈述。
(1)比值与根值判别法(定理9-4,5)

n1 un 是正项级数,如果 un1 lim ( un 0), 或者 lim n un . n u n n
第九章 无穷级数
1.常数项级数 2.正项级数敛散性判别法
3.任意项级数敛散性判别法
4.函数项级数及其收敛性(!!)
5.幂级数 6.傅里叶级数

高等数学 (10)

高等数学 (10)

dy dy du (sin u) (x3 1) dx du dx cosu 3x2 3x2 cos(x3 1).
(3) 将y ln(2 x )看成 y ln u,u 2x的复 合而成,则
dy dy du (ln u) (2x ) dx du dx
工科类专业适用
GAODENG SHUXUE
主编
金桂堂 杨俊萍
3.2 导数的计算 主要内容
导数的四则运算 复合函数求导
3.2.1 导数的四则运算
法 则 1设函数u=u(x),v=v(x)都在x处可导,则u(x) v(x)、
u(x) v(x)、u(x) (v(x)≠ 0)在x处也可导,且
v(x)
dy dy du dv dx du dv dx
计算复合函数的导数步骤: 1.要分清复合函数的构成,即复合函数是由哪几个基本初等函数复合而成;
2.然后再按复合函数求导法则求导.
例15 求下列函数的导数: (1) y (1 2x)4 ; (2) y sin(x3 1);
(3) y ln(2 x ). 解: (1) 将y (1 2x)4 看成 y u4 , u 1 2x的复合而成,则 dy dy du (u4 ) (1 2x) 4u3 2 dx du dx 8u3 8(1 2x)3. (2) 将y sin(x3 1)看成 y sin u, u x3 1的复合而成,则
f (x)
(2)当f (x) 0时
y=ln( f (x)), y== 1 [ f (x)] f (x) ;
f (x)
f (x)
综上,无论 f (x) 0还是 f (x) 0,在 f (x) 0时,恒有 ( ln| f (x)|)= f (x) . f (x)

10高等数学课件(完整版)详细

10高等数学课件(完整版)详细

2 3 23 5
2 2n 1 2n 1
1 (1 1 ), 2 2n 1
lim
n
sn
lim 1 (1 n 2
1) 2n 1
1, 2
级数收敛, 和为 1 . 2
三、基本性质
性质 1 如果级数 un 收敛,则 kun 亦收敛.
n1
n1
结论: 级数的每一项同乘一个不为零的常数,
敛散性不变.
n0
三、由定义判别级数
1 1 1
1
的收敛性.
13 35 57
(2n 1)(2n 1)
四、判别下列级数的收敛性:
1、1 1 1 1 ;
369
3n
2、(1 1) ( 1 1 ) ( 1 1 ) ( 1 1 ) ;
2 3 22 32 23 33
2n 3n
3、1
n1
lim
n
un
lim
n
sn
lim
n
sn1
s
s
0.
注意
1.如果级数的一般项不趋于零,则级数发散;
例如 1 2 3 (1)n1 n 发散
234
n1
2.必要条件不充分.
例如调和级数 1 1 1 1
23
n

lim
n
un
0,
但级数是否收敛?
讨论
s2n
sn
1 n
1
n
1
2
1 2n
n0
的收敛性.
解 如果q 1时
sn a aq aq2 aqn1
a aqn a aqn , 1q 1q 1q
当q 1时,
lim qn 0
n

上海财经大学《高等数学》习题十及解答

上海财经大学《高等数学》习题十及解答

1. 计算下列对弧长的曲线积分 1)⎰+Lds y x )(,其中L 为连接(1,0)及(0,1)两点的直线段;[解] 连接(1,0)及(0,1)两点的直线段方程为1,01x y x =-≤≤,于是⎰+Lds y x )(2101[(1')]y x x dx ++=-⎰201(1)2dx =+-=⎰2)⎰Lxds ,其中L 为由直线y x =及抛物线2y x =所围成的区域的整个边界; [解] 直线y x =与抛物线2y x =的交点为(0,0), (1,1). 设1L 为直线y x =从(1,1)到(0,0)一段, 2L 为抛物线2y x =从(0,0)到(1,1)一段, 于是12L L Lxds xds xds=+⎰⎰⎰112201114dx x dx=+++⎰⎰21=+51)212. 3)⎰+Ly x ds e22 , 其中L 为圆周222 x y a +=, 直线y x =及x 轴在第一象限所围成的扇形的整个边界;[解] L 由线段:0(0)a OA y x ≤≤=, 圆弧:AB cos ,sin (0)2t y a t x a t π=≤≤=和线段:OB y x = (02)x π≤≤组成.221ax y x a OAe dx e +==-⎰⎰;222240()()sin cos x y ABee a a d t tt π+=-+⎰⎰404a a ae dt ae ππ==⎰;2222211x y xOBeedx +=+⎰1a e =-,于是上海财经大学《高等数学》习题十及解答2242412a a a x y a Leds e a e a a e e ππ+⎛⎫=-++-=+- ⎪⎝⎭⎰. 4)⎰++L ds zy x 2221, 其中L 为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧; [解] 因ds ==t dt =,所以⎰++L ds zy x 22212202222cos sin 1t t t t dt e t e t e =++⎰202t e dt -=⎰2(1)2e -=-. 5)⎰Lds y2, 其中L 为摆线的一拱()()sin 1cos (02)x a t t y a t t π=-=-≤≤,;[解] 因为ds ===,所以22202(1)cos Ly ds a t π=-⎰⎰52230c (os 1)t dt π=-⎰325220sin 22t dt π⎛⎫= ⎪⎝⎭⎰ 3205si 216n u a udu t π=⎰3423233a =⋅⋅325615a =.6)⎰+Lds y z 222, 其中L 为2222 x y z a ++=与x y =相交的圆周;[解] 因为在曲线L 上的点满足2222y z a +=,而且2222x y z a ++=与x y =相交的圆周L 的周长为2a π,所以⎰+Lds y z 222Lads =⎰22a π=.2.计算下列对坐标的曲线积分:1)⎰+Lxdy ydx , 其中L 是圆周cos sin x R t y R t ==,上对应t 从0到/2π的一段弧;[解] 20sin (sin )cos co [s ]Lt R t R ydx xd R t t d R y t π⋅-+⋅+=⎰⎰202cos 20td Rt π==⎰.2)⎰+--+Ly x dy y x dx y x 22)()( , 其中L 是圆周()2220x y a a +=> (按逆时针方向绕行); [解] L 的参数方程为cos x t a =, sin y t a =, t 从0变到2π. 于是⎰+--+Ly x dy y x dx y x 22)()(221[(cos sin )(sin )(cos sin )cos ]a t t a t a t t a t dt a π+⋅---⋅=⎰2221()2a dt a ππ=-=-⎰.3)⎰-+Lydz zdy dx x 2,其中L 是曲线cos sin x kt ya t y a t ==,,上对应的t 从0到π的一段弧; [解]222co []s (sin )cos (cos )x dx zd t t a t a y ydz k k a d t a t t πΓ⋅-+-=⋅⋅+-⎰⎰2203()k t a dt π=-⎰33213k a ππ=-. 4)⎰-+++Ldz y x ydy xdx )1( ,其中L 是从点(1,1,1)到点(234),,的一段直线; [解] 直线L 的参数方程为:1x t =+,12y t =+,13z t =+,t 从0变到1. 于是⎰-+++Ldz y x ydy xdx )1(1[(1)1(12)2(1121)3]t t t t dt =+⋅++⋅++++-⋅⎰1(614)t dt =+⎰13=.5)⎰---L dy xy y dx xy x)2()2(22, 其中L 是抛物线2y x =上从点(11)-,到点(11),的一段弧;[解]⎰---L dy xy y dx xy x)2()2(22112242(2)(2)2x x x x x x x dx -⎡⎤=-⋅+-⋅⋅⎣⎦⎰ 421531(242)x x x x dx -=--+⎰104211442()5x x dx =-+=-⎰.6) ⎰Lxyzdz , 其中L :2221x y z ++=与y x =相交的圆,其方向按曲线依次经过1,2,7,8卦限.[解] 曲线L 可表示为:11cos ,cos ,sin 22t t z t x y ===(02t π≤≤), 于是 201122cos cos sin cos Lxyzdz t t t tdt π⋅⋅⎡⎤=⋅⎢⎥⎣⎦⎰⎰ 230(1cos co 2)s t td π=--⎰4201cos 8|t π=-0=. 3. 计算:(1)⎰++-Ldy y x dx x xy ,)()2(22其中L 分别是由抛物线2y x =和2y x =所围成的区域的正向边界曲线,即该区域在该方向的左边.解法一 先按曲线积分的计算公式直接计算. 记21:L y x =, x 从0变到1; 2:L x y =, y 从1变到0. 于是22(2)()Lxy x dx x y dy -++⎰ 122222(2)()(2)()L L xy x dx x y dy xy x dx x y dy =-+++-++⎰⎰1324342201[(2)()2][(2)2()]x x x x x dx y y y y y dy =-++⋅+-⋅++⎰⎰532542101(22)(242)x x x dx y y y dy =+++-++⎰⎰717615=-130=. 解法二 应用格林公式计算. 令22P xy x =-, 2Q x y =+,2P x y ∂=∂, 2Q x y∂=∂, 于是 22(2)()L xy x dx x y dy -++⎰D Q P dxdy x y ⎛⎫∂∂=- ⎪∂∂⎝⎭⎰⎰ (12)Dx dxdy =-⎰⎰210(12)x xx dx dy =-⎰⎰21(12)()x x x dx =--⎰13122230(22)x x x x dx =--+⎰130=. (2)⎰-+-Ldy xy y dx xy x)2()(232,其中L 分别是四个顶点分别为(0,0)、(2,0)、(2,2)和(0,2)的正方形区域的正向边界.解法一 L 由有向线段OA 、AB 、BC 和CO 组成.322228()(2)3OA x xy dx y xy dy x dx -+-==⎰⎰;2232028()(2)(4)83AB x xy dx y xy dy y y dy -+-=-=-⎰⎰; 0222238()(2)(8)163BC x xy dx y xy dy x x dx -+-=-=-⎰⎰;2023228()(2)3CO x xy dx y xy dy y dy -+-==-⎰⎰,于是⎰-+-Ldy xy y dx xy x )2()(23288888163333⎛⎫⎛⎫⎛⎫=+-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8=. 解法二 应用格林公式计算. 令232(,),(,)2P x y x Q x y xy y xy =-=-, 显然,22,3Q Py xy x y∂∂=-=-∂∂, 因此有⎰-+-Ldy xy y dx xy x )2()(232D Q P dxdy x y ⎛⎫∂∂=- ⎪∂∂⎝⎭⎰⎰ 2(23)Dy xy dxdy =-+⎰⎰222(23)dx y xy dy =-+⎰⎰2(84)x dx =-⎰8=.4. 计算曲线积分⎰+-L y x xdy ydx )(222,其中L 为圆周()2212,x y L -+=的方向为逆时针方向. [解] 在L 所围的区域内的点(0,0)处, 函数(,)P x y 、(,)Q x y 均无意义. 现取r 为适当小的正数, 使圆周l (取逆时针向): cos x t r =, sin y t r =(t 从0变到2π)位于L 所围的区域内,则在由L 和l -所围成的复连通区域D 上,可应用格林公式,在D 上,22222()Q x y P x x y y∂-∂==∂+∂, 于是由格林公式得⎰+-L y x xdyydx )(2222202()D l ydx xdy Q P dxdy x y x y -⎛⎫-∂∂+=-= ⎪+∂∂⎝⎭⎰⎰⎰, 从而22222()2()Llydx xdyydx xdy x y x y --=++⎰⎰2202222sin co 2s r t r t dt r π--=⎰2012dt ππ=-=-⎰.5. 证明下列曲线积分在xOy 平面上与路径无关,并计算积分值.1)⎰-++)2,2()1,1(;)()(dy y x dx y x2)⎰-+-)4,3()2,1(2232;)36()6(dy xy y x dx y xy 3)⎰-++-)1,2()0,1(324.)4()32(dy xy x dx yxy[解] 1)1=∂∂=∂∂xQ y P ,积分与路径无关.⎰-++)2,2()1,1()()(dy y x dx y x =⎰212xdx =3.2)2312y xy xQ y P -=∂∂=∂∂,积分与路径无关.⎰-+-)4,3()2,1(2232)36()6(dy xy y x dx y xy =⎰⎰-+-31422)954()824(dy y y dx x =236. 3)342y x xQy P -=∂∂=∂∂,积分与路径无关.⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy =⎰⎰-+1321)84(3dy y dx =5. 6. 计算曲面积分⎰⎰∑+dS y x )(22, 其中∑分别为如下: 1) 抛物面22y x z +=及平面1=z 所围成的区域的整个边界; 2) 锥面()2223yx z +=被平面0z =和平面3z =所截得的部分.[解] 1) ∑由1∑和2∑组成,其中1∑为平面1=z 上被圆周221+=x y 所围的部分;2∑为抛物面22y x z +=(01)≤≤z . 在1∑上,=dS dxdy ; 在2∑上,==dS .⎰⎰∑+dS y x)(22=2222222211(()+≤+≤+++⎰⎰⎰⎰y x y x x y x y dxdy=⎰⎰⎰⎰++12201222041rdr r d rdr r r d ππθθ=⎪⎪⎭⎫⎝⎛+151535425π;2)由题设,∑的方程为=z ,因此=dS= 2=dxdy . 又由()2223yx z +=和3=z 消去z 得223+=xy , 故∑在xOy 面上的投影区域xy D 为223≤+x y , 于是⎰⎰∑+dS y x )(2222=()2+⋅⎰⎰xyD x ydxdy 230=2πθ⎰d dr (极坐标变换)9π=.7. 计算下列对面积的曲面积分:1) ⎰⎰∑++dS y x z )342(, 其中∑为平面1432=++zy x 在第一卦限中的部分; 2)⎰⎰∑+--dS z x x xy )22(2, 其中Σ为平面132=++z y x 在第一卦限中的部分; [解] 1) 在∑上,2344z x y =--. ∑在xOy 面上的投影区域xy D 为x 轴、y 轴和直线123x y+=围成的三角形闭区域. 因此⎰⎰∑++dS y x z )342(4442233xy D x y x y ⎡⎛⎫=--++ ⎪⎢⎝⎭⎣⎰⎰433xyxyD Ddxdy dxdy =⋅=⋅⎰⎰⎰⎰1232⎛⎫=⋅⋅= ⎪⎝⎭. 2) 在∑上,123z x y =--. ∑在xOy 面上的投影区域为由x 轴、y 轴和直线231x y +=所围成的三角形闭区域. 因此⎰⎰∑+--dS z x xxy )22(2222[22(123)]1(2)(3)xyD xy x x x y dxdy =--+--+-+-⎰⎰214(22133)Dzxy x x y dxdy =⋅-+--⎰⎰11(12)2302014(13223)x dx x x xy y dxdy -=⋅--+-⎰⎰()()12222011114(132)(12)1212396x x x x x x dx ⎡⎤=⋅---+---⎢⎥⎣⎦⎰14108=.8. 计算下列对坐标的曲面积分:1)ydxdz xdydz zdxdy ++⎰⎰∑, 其中Σ为柱面122=+y x被平面z=0和z=3所截得在第一卦限中的部分的前侧;[解] 由于柱面122=+y x 在xOy 面上的投影为零,因此0zdxdy ∑=⎰⎰. 又{(,)|01,03}xy y z y z D ≤≤≤≤=, {(,)|01,03}zx x z x z D ≤≤≤≤=, 如图. 因∑取前侧,所以ydxdz xdydz zdxdy ++⎰⎰∑xdydz ydzdx ∑∑=+⎰⎰⎰⎰2211yzzxD D y dydz x dzdx =-+-⎰⎰⎰⎰313120211dz y dy dz x dx =-+-⎰⎰⎰⎰21arcsin 123122y y y ⎡⎤=⋅-+⎢⎥⎣⎦ 32π=. 2) ⎰⎰∑++yzdxdz yxdydz xzdxdy ,其中Σ为1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧.[解] 在坐标面0x =、0y =和0z =上,积分值均为零,因此只需计算在':1x y z ∑++=(取上侧)上的积分值, 如图所示.'(1)xyD xzdxdy x x y dxdy ∑=--⎰⎰⎰⎰110(1)xxdx x y dy -=--⎰⎰124=. 由被积函数和积分曲面关于积分变量的对称性,可得 '''124xydydz yzdzdx xzdxdy ∑∑∑===⎰⎰⎰⎰⎰⎰, 因此113248xzdydz yxdxdz yzdxdy ∑++=⋅=⎰⎰.9. 计算下列对坐标的曲面积分:1)⎰⎰∑++dxdy z dxdz y dydz x 222, 其中Σ为平面0,0,0===z y x ,a z a y a x ===,,所围成的空间 区域的整个边界曲面的外侧; 2)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(222, 其中Σ为上半球体222a y x ≤+,0z ≤,2222z a x y ≤--的表面外侧.3)⎰⎰∑++zdxdy ydxdz xdydz , 其中Σ为介于0=z 与3=z 之间的圆柱体922≤+y x 的整个表面的外侧. [解] 1) 令()2,,P x y z x =, ()2,,Q x y z y =, ()2,,R x y z z =, 应用高斯公式可得⎰⎰∑++dxdy z dxdz y dydz x 222P Q R dxdydz x y z Ω⎛⎫∂∂∂=++ ⎪∂∂∂⎝⎭⎰⎰⎰ 2()x y z dxdydz Ω=++⎰⎰⎰6zdxdydz Ω=⎰⎰⎰(应用对称性)6aa adx dy zdz =⎰⎰⎰24632a a a a =⋅⋅⋅=. 2)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(222()222z x y dxdydz Ω=++⎰⎰⎰22202sin ad d r dr r ππθϕϕ=⋅⎰⎰⎰(球面坐标)5521552a a ππ⋅⋅==. 3)⎰⎰∑++zdxdy ydxdz xdydz (111)dxdydz Ω=++⎰⎰⎰3dxdydz Ω=⎰⎰⎰233381ππ=⋅⋅=⋅.10.求散度及旋度1) ()()()k xy z j xz y i yz x A +++++=222; 2) ()()k xz j xy i e A xy 2cos cos ++=; 3) k xz j xy i y A ++=2.[解] 1)令2P x yz =+, 2Q y xz =+, 2R z xy =+,因此 div 222P Q R A x y z x y z∂∂∂=++=++∂∂∂. rot 222ij kij k A x y z x y z P QR x yzy xzz xy∂∂∂∂∂∂==∂∂∂∂∂∂+++0=. 2)div A =2sin()2sin()xyye x xy xz xz --,rot A =k xe xy y j xz z i xy)sin ()))sin((0()00(22--+--+-=k xe xy y j xz z xy)sin ()sin(22+-.3)div A =x x ++0=x 2,rot A =k y y j z i )2()0()00(-+-+-=k y j z--.11. 利用Gauss 公式计算下列曲面积分: (1)222x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为平面0x =,0y =,0z =,x a =,y a =,z a =所围的立体的表面的外侧. (2)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(2322,其中∑为上半球体222x y a +≤,0z ≤≤.(3)⎰⎰∑++xydxdy zxdzdx yzdydz ,其中∑是单位球面2221x y z ++=的外侧. (4)⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑是锥面222x y z +=与平面z h =所围成的空间区域(0)z h ≤≤的表 面, 方向取外侧.[解] (1) (2)同第9大题中的1)2)两小题,故解答略去. 3)⎰⎰∑++xydxdy zxdzdx yzdydz =⎰⎰⎰Ω++dv )000(=0.4) ⎰⎰∑++dxdy z dzdx y dydz x 222=⎰⎰⎰Ω++dv z y x )222(=π24h . 12. 利用Gauss 公式计算椭球面2222221x y z a b c++=所围区域的体积. [解] 由Gauss 公式可得V =⎰⎰⎰Ω++dv )111(31=⎰⎰∑++zdxdy ydzdx xdydz 31, 又 ⎰⎰∑zdxdy =⎰⎰∑'--dxdy b y a x c 222212=dr r r abc d ⎰⎰⋅-1022012πθ=πabc 34. 由对称性可知⎰⎰∑xdydz =⎰⎰∑ydzdx =⎰⎰∑zdxdy =πabc 34. 于是V =⎰⎰∑++zdxdy ydzdx xdydz 31=πabc 34. 13. 设某种流体的速度为v xi y j zk =++, 求单位时间内流体流过曲面22:y x z ∑=+2(0)y h ≤≤的流量, 其中∑取左侧.[解] 所求的流量为 xdydz ydzdx zdxdy ∑Φ=++⎰⎰ =⎰⎰⎰Ω++dv )111(22203y h x z dydxdz +≤=⎰⎰⎰ =203h ydy π⎰=432h π.14. 应用Stokes 公式计算下列积分: (1) ⎰-+-++Ldz x y dy z x dx z y )()()2( 其中∑为平面1x y z ++=与各坐标面的交线, 取逆时针方向为正向. (2) ⎰-+-+-Ldz x y dy z x dx y z )()()(. 其中L 为以(,0,0)A a ,(0,,0)B a ,(0,0,)C a 为顶点的三角形沿ABCA 的方向.(3) ⎰Γ++zdz dy dx y x 32, 其中L 为圆: 2220x y a z ⎧+=⎨=⎩,且从z 轴正向看去取逆时针方向. (4) ⎰Γ-+xydz zxdy yzdx 3 其中L 是曲线224310x y y y z ⎧+=⎨-+=⎩,且从z 轴正向看去取逆时针方向.[解] (1) ⎰-+-++L dz x y dy z x dx z y )()()2(=⎰⎰∑-++++dxdy dxdz dydz )21()11()11(=⎰⎰⎰⎰⎰⎰∑∑∑-+zy x dxdy dxdz dydz 22=2315. 证明沿曲线AB 的曲线积分223(3)(4)2AB x y z dx x y dy xzdz -++-++⎰与积分路径无关, 只与起点A 和终点B 有关. 并求原函数. [证明] 令223P x y z =-+, 34Q x y =-+, 2R xz =. 因为 1-=∂∂=∂∂x Q y P ,0=∂∂=∂∂y R z Q ,z zP x R 2=∂∂=∂∂, 所以曲线积分223(3)(4)2AB x y z dx x y dy xzdz -++-++⎰与积分路径无关.原函数为:),,(z y x u =c y xz xy x +++-42316.计算222()()()L x yz dx y xz dy z xy dz -+-+-⎰. 其中L 为由点(,0,0)A a 至点(,0,)B a h 的螺线cos x a ϕ=,sin y a ϕ=,2h z ϕπ=(02ϕπ≤≤). [解] 令2P x yz =-, 2Q y xz =-, 2R z xy =-. 因为z x Q y P -=∂∂=∂∂,x y R z Q -=∂∂=∂∂,y zP x R -=∂∂=∂∂,所以曲线积分222()()()L x yz dx y xz dy z xy dz -+-+-⎰与积分路径无关. 一次,积分路径取点(,0,0)A a 至点(,0,)B a h 的直线段,于是可得222()()()L x yz dx y xz dy z xy dz -+-+-⎰=⎰-hdz z 02)0(=331h .。

中国矿业大学(北京)《高等数学》课件-第10章重积分

中国矿业大学(北京)《高等数学》课件-第10章重积分
可得
“分割, 近似, 求和, 取极限”
解决方法:
质量 M .
密度函数为
定义. 设
且相等,
称为体积元素,
若对 作任意分割:
任意取点
则称此极限为函数
在 上的三重积分.
在直角坐标系下常写作
三重积分的性质与二重积分相似.
性质:
例如
下列“乘
中值定理.
在有界闭域 上连续,
则存在
使得
V 为 的
体积,
其中
解: 积分域 D 的边界为圆周
它在与 x 轴的交点 (1,0) 处与直线
从而
而域 D 位于直线的上方, 故在 D 上
估计下列积分之值
解: D 的面积为
由于
积分性质5
即: 1.96 I 2
D
例2.
判断积分
的正负号.
解: 分积分域为

原式 =
猜想结果为负 但不好估计 .
总有:
引例1中曲顶柱体体积:
引例2中平面薄板的质量:
如果 在D上可积,
元素d也常记作
二重积分记作
这时
分区域 D ,
因此面积
可用平行坐标轴的直线来划
二重积分存在定理:
若函数
定理2.
(证明略)
定理1.
在D上可积.
限个点或有限条光滑曲线外都连续 ,
积.
在有界闭区域 D上连续,
计算该薄片的质量 M .
度为
设D 的面积为 ,


非常数 ,
仍可用
其面密
“分割, 近似, 求和, 取极限”
解决.
1)“分割”
用任意曲线网分D 为 n 个小区域

高数测试题十(微分方程)答案

高数测试题十(微分方程)答案

高数测试题十(微分方程)答案高等数学测试题(十)微分方程部分(答案)一、选择题(每小题4分,共20分)1、若 12,y y 是方程 ()()(()y P x y Q x Q x '+=≡0) 的两个特解,要使12y y αβ+ 也是解,则α 与β 应满足的关系是( D )A 12αβ+=B 1αβ+=C 0αβ=D 12αβ== 2、下列方程中为全微分方程的是( C )A 22(22)(1)0xy y dx x y dy ---+-=B 2222()()0x xy dx y x y dy ---=C 22(1)20e d e d θθρρθ--+-=D 22()(2)0x y dx xy x dy +++=3、设λ 为实常数,方程220y y y λλ'''++= 的通解是( D )A 12x C e C λ-+B 12cos sinC x C x λλ+ C 12(cos sin )x e C x C x λλλ-+D 12()x C C x e λ-+4、方程 22cos x y y y e x '''-+= 的特解 *y 形式为( B )A B cos sin x x axe x bxe x +C 22cos sin x x ax e x bx e x +D 2cos x ax e x5、已知 0()x x y e y t dt =+,则函数 ()y x 的表达式为( D ) A x y xe C =+ B x y xe = C x x y xe Ce =+ D (1)xy x e =+二、填空题(每cos x axe x 小题4分,共20分)1、方程 212y dy dx x e=+ 的通解是 2()y x e y C =+ 2、方程 (1)x y y '-= 的通解是 (ln )y x x C =+3、以 2212,x x y e y xe == 为特解的二阶常系数线性齐次微分方程为440y y y '''-+=4、已知方程 0y y ''-= 的积分曲线在点 (0,0)O 处与直线 y x = 相切,则该积分曲线的方程为 1()2x x y e e shx -=-= 5、方程 0xdy ydx -= 的一个只含有 x 的积分因子为21x μ=三、(共60分)1、(8分)求方程 (1)(223)0y x dx y x dy -+--+= 的通解解:令 1y x u -+=,则 dy du dx =+,代入原方程得(1)(21)u dx u du -+=+ 即 1(2)1du dx u -=-+,两边积分得 12ln(1)u u x C -+=-+,代回原方程,得通解2ln(2)y x y x C ---+=2、(6分)求方程 22(1)(233)x dy xy x dx +=++的通解解:方程改写为 2231x y y x '-=+,则通解为 22ln(1)ln(1)2[3](1)(3arctan )x x y e e dx C x C x +-+=+=++?3、(8分)求微分方程 21(1)()02y yxe dx x e y dy +++= 的通解解:设 21(,)1,(,)2y y P x y xe Q x y x e y =+=+ 有 y P Q xe y x==?? ,则原方程为全微分方程,于是 2222001111(,)(1)()2222x y y y u x y x dx x e y dy x x x e y =+++=+++?? 故原方程的通解为 2222y x x x e y C +++=4、(10分)求解 2312,(0)1,(0)2yy y y y y ''''+===解:此方程不含x ,令 y P '=,则 dP y P dy''=,原方程化为 232212,2dP dP yP P y P P y dy dy y+=+= 此方程为贝努力方程,令 2P z =,上述方程化为21dz z y dy y += 则 ln 2ln 1[]y y z e y e dy C -=+?,即 24311111()44C y y C y y y'=+=+,由初始条件 1(0)1,(0)2y y '== 得 10C =,于是,方程化为 2314y y '=,或 3212dy y dx =± 由初始条件应取 3212dy y dx =,即 3212y dy dx -=,积分得 2114x C y=-+,再由初始条件(0)1y =得21C =,所以原方程的特解为1114x y =- 或 21(1)4y x =-5、(6分)求方程 (4)30y y ''+= 的通解解:特征方程为 4230r r +=,特征根为123,40,3r r r i ===± 方程的通解为 1234cos 3sin 3y C C x C x C x =+++6、(10分)求方程 223y y x '''+=- 的通解解:对应的齐次方程为 0y y '''+=,其特征方程为 20r r += 特征根为 120,1r r ==-,齐次方程的通解为 12x Y C C e -=+ 因0λ= 是特征方程的单根,所以非齐次方程的特解形式为*2012()y x b x b x b =++代入原方程,比较系数得 0122,2,13b b b ==-=,于是得到一个特解 *22(21)3y x x x =-+,所求方程的通解为 *2122(21)3x y Y y C C e x x x -=+=++-+ 7、(12分)求满足条件 (0)1,(0)1f f '=-= 且具有二阶连续导数的函数()f x ,使方程 3()[sin 2()]02f x ydx x f x dy '+-=是全微分方程。

10作业答案新高等数学下第十章习题及答案

10作业答案新高等数学下第十章习题及答案

第十章 曲线积分与曲面积分1、计算以下对弧长的曲线积分: (1)⎰+Ln ds y x )(22,其中L 为圆周)20( sin ,cos π≤≤==t t a y t a x .解 ⎰+L nds y x)(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n ⎰++==ππ2012122n n a dt a(2)⎰+Lds y x )(,其中L 为连接(1,0)及(0,1)两点的直线段.解 L 的方程为y 1x (0x 1)⎰⎰'-+-+=+12])1[(1)1()(dx x x x ds y x L 22)1(10=-+=⎰dx x x(3)⎰L xds ,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 L 1 y x 2(0x 1) L 2 y x (0x 1)xdx L⎰xdx xdx L L ⎰⎰+=21⎰⎰'++'+=12122)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=. 二、计算以下对弧长的曲线积分: (1)⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ), L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤, 因此ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 220222402202211)cos ()sin (01π2)42(-+=a e a π.(2)⎰Γyzds x2,其中Γ为折线ABCD ,那个地址A 、B 、C 、D 依次为点A (0,0,0)、B (0,0,2)、C (1,0,2)、D (1,3,2).解 Γ=AB +BC + CD , 其中 AB : x =0, y =0, z =2t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤1),CD : x =1, y =3t , z =2(0≤t ≤1),故 yzds x yzds x yzds x yzds x CDBCAB2222⎰⎰⎰⎰++=Γ 903060012221010=++++=⎰⎰⎰dt t dt dt .(3)⎰Lds y 2,其中L 为摆线一拱)2t (0 )cos 1(),sin (π≤≤-=-=t a y t t a x .解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a 315256a =. 3、计算以下对坐标的曲线积分: (1)dx y x L⎰-)(22,其中L 是抛物线2x y =上从点(0,0)到(2,4)的一段弧.解 L : y =x 2, x 从0变到2, 因此 ⎰⎰-=-=-L dx x x dx y x 2042221556)()(. (2)⎰Lxydx ,其中L 为圆周)0( )(222>=+-a a y a x 及x 轴所围成的区域在第一象限内的整个边界(按逆时针方向绕行).解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L L xydx xydx xydx ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰. (3) ⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧。

高等数学同济第六版第10章公式总结

高等数学同济第六版第10章公式总结

高等数学同济第六版(下册)(第10章)第10章重积分10.1 二重积分的概念与性质一、二重积分的概念二、二重积分的性质1 性质 1 设、为常数,则2 性质 2 如果闭区域被有限条曲线分为有限个部分闭区域,则在上的二重积分等于在各部分闭区域上的二重积分的和。

(可加性)3 性质 3 如果在上,,为的面积,则4 性质 4 如果在上,,则有特殊地,由于又有5 性质 5 设、为分别是在闭区域上的最大值和最小值,是的面积,则有6 性质 6(二重积分的中值定理) 设函数在闭区域上连续,是的面积,则在上至少存在一点,使得10.2 二重积分的计算法一、利用直角坐标计算二重积分7 型(先后)型(先后)例 4 求两个底圆半径都等于的直交圆柱面所围成的立体的体积。

解设这两个圆柱面的方程分别为及由对称性,将其分为8部分在第一卦限中,所求立体的顶为柱面又积分区域则即所求立体的体积为二、利用极坐标计算二重积分8例 5 计算其中是由中心在原点、半径为的圆周所围成的闭区域。

解在极坐标系中,闭区域则例 6 求球体被圆柱面所截得的(含在圆柱面内的部分) 立体的体积。

解由对称性,有在极坐标系中,闭区域则*三、二重积分的换元法10.3 三重积分一、三重积分的概念二、三重积分的计算1 利用直角坐标计算三重积分9 (先一后二)其中,例 1 计算三重积分其中为三个坐标面及平面所围成的闭区域。

解闭区域则(先二后一)其中,是竖坐标为的平面截闭区域所得到的一个平面闭区域。

例 2 计算三重积分其中是由椭球面所围成的空间闭区域。

解闭区域则2 利用柱面坐标计算三重积分10 点的直角坐标与柱面坐标的关系为例 3 利用柱面坐标计算三重积分其中是由曲面与平面所围成的闭区域。

解闭区域则*3 利用球面坐标计算三重积分11 点的直角坐标与球面坐标的关系为例 4 求半径为的球面与半顶角为的内接锥面所围成的立体的体积。

解设球面通过原点,球心在轴上,又内接锥面的顶点在原点,其轴与轴重合,则球面方程为,锥面方程为。

高等数学第10章课后习题答案(科学出版社)

高等数学第10章课后习题答案(科学出版社)

第十章曲线积分与曲面积分习题详解习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2cos I ππθ-=⎰4cos (1d ππθθ-==+⎰.(2)(1)Lx y ds ++⎰ ,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Lx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰ (1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是ds dx ===,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是ds ==. 故10(1)[(1)ABx y ds x x ++=+-+=⎰⎰,同理可知:BO 0x =(01y ≤≤),0d s =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. xyoABC综上所述33(1)322Lx y ds -+=+=+⎰ (3)⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ==.于是201cos222d πθθ=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示, 2222 LABBCCDx yzds x yzds x yzds x yzds =++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt ==,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))x yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222LBB CC Dx y z d s x y z d sx y z d sd s =++⎰⎰⎰⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。

高等数学第10章 拉普拉斯变换

高等数学第10章 拉普拉斯变换

e st f (t)dt 0
对于 s在某一范围内的值收敛,则此积分就确定了一
个参数
s
的函数,记为 F(s)
,即 F (s) est f (t)dt 0
,函数 F(s)
称为 f (t) 的拉普拉斯变换,简称拉氏变换。
拉氏变换通常用符号 L 表示,即
F (s) L[ f (t)] est f (t)dt 0
且常常将
y


f
(t), 0,
t 0 t0
简记为 y f (t);
2. 积分F(s)
0
e st
f
(t)dt
中的 s
一般情况下为复数,
但我们只讨论 s 是实数的情况。
3. 函数 f (t) 的拉氏变换 F(s) ,当且仅当积分
F (s) est f (t)dt 时才存在,但一般说来,科技、 0
解:由 L[ (t)] 1 及 L[ f (t )] esF(s) 可得:
L[ (t a)] eas L[ (t)] eas
同理可得:
L[I (t a)] eas s
同理可算得余弦函数的拉氏变换
L[cos t ]

s2
s
2
二 两个重要函数
1. 单位阶梯函数I (t)
单位阶梯函数
I (t)

0 1
t0 t0
由例1知,它的拉氏变换 L[I
的图像如下页左图所示, (t)] 1 ,将 I (t) 的图像向右
s
平移 a
个单位,即得
0 I (t a) 1
若 F(s) 是 f (t) 的拉氏变换,则称 F(s) 是 f (t) 的像 函数,拉氏变换是可逆的积分变换,称 f (t) 是 F(s) 的像

高等数学 第十章

高等数学 第十章

确定的有限常数,从而,无穷多个数相加在一定条件下是有
意义的.
二、 常数项级数的概念
定义1 对于无穷数列u1,u2,…,un,… 把它的各项依 次累加的表示式
u1+u2+u3+…+un+…
(1)
称为无穷级数,简称为级数,记为
un
.
其中u1称为级数的
n 1
第1项(或首项),u2称为级数的第2项, …,un称为级数第n项,
lim
n1
un
0
,则可判定级数
u
n
n 1
一定发散.
例4 判定级数
3n
n1 5n 4
的敛散性.

级数的一般项
un
3n 5n
4
.
因为
lim
n
u
n
lim
n
3n 5n 4
3 5
0
所以由级数收敛的必要条件知,该级数发散.
10.2 常数项级数的审敛法
一、 正项级数的审敛法
每一项都是非负的级数称为正项级数,即级数
un un 0, n 1,2,
为正项级数.
n1
1. 比较审敛法
设 un和 vn 都是正项级数,且un≤vn(n=1,2,…),
n1
n1

(1) 若级数 vn
n 1
(2) 若级数
un
n 1
收敛, 则级数 un
n 1
发散, 则级数
vn
n 1
收敛; 发散.
比较审敛法还有另一种形式(比较审敛法的极限形式).
定义2
对于级数
un
的部分和数列{Sn}, 若n→∞时有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应注意的问题:
并非任何函数都有最大值和 最小值. 例 如 , 函 数 f(x)=x在 开 区 间 (a, b)内既无最大值又无最小值.
首页 上页 返回 下页 下页 结束 铃
定理1(最大值和最小值定理)
在闭区间上连续的函数在该区间上一定能取得它的最大 值和最小值.
说明:
定理说明, 如果函数f(x)在闭区间[a, b]上连续, 那么 至少有一点ξ1∈[a, b], 使f(ξ1)是f(x)在[a, b]上的最大值, 又至少有一点ξ2∈[a, b], 使f(ξ2)是f(x)在[a, b]上的最小值.
最大值与最小值举例:
函数y=sgn x 在区间(−∞, +∞) 内有最大值1和最小值−1. 但在开 区间(0, +∞)内, 它的最大值和最小 值都是1.
首页 上页 返回 下页 下页 结束 铃
一、有界性与最大值最小值定理
最大值与最小值
对于在区间I上有定义的函数f(x), 如果有x0∈I, 使得对于 任一x∈I都有 f(x)≤f(x0) (f(x)≥f(x0)), 则称f(x0)是函数f(x)在区间I上的最大值(最小值).
§1.10 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
首页
上页
返回
下页
结束

一、有界性与最大值最小值定理
最大值与最小值
对于在区间I上有定义的函数f(x), 如果有x0∈I, 使得对于 任一x∈I都有 f(x)≤f(x0) (f(x)≥f(x0)), 则称f(x0)是函数f(x)在区间I上的最大值(最小值).
二、零点定理与介值定理
定理3(零点定理)
设函数f(x)在闭区间[a, b]上连续, 且f(a)与f(b)异号, 那么 在开区间(a, b)内至少一点ξ, 使f(ξ)=0. 例1 证明方程x3−4x2+1=0在区间(0, 1)内至少有一个根. 证明 设 f(x)=x3−4x2+1, 则f(x)在闭区间[0, 1]上连续, 并且 f(0)=1>0, f(1)=−2<0. = , =− . 根据零点定理, 在(0, 1)内至少有一点ξ , 使得 f(ξ)=0, 即 ξ 3−4ξ 2+1=0 . 这说明方程x3−4x2+1=0在区间(0, 1)内至少有一个根是ξ .
−x+1 0≤x<1 y= f (x)= 1 x=1 . −x+3 1<x≤2
首页 上页 返回 下页 下页 结束 铃
定理1(最大值和最小值定理)
在闭区间上连续的函数在该区间上一定能取得它的最大 值和最小值.
定理2(有界性定理)
在闭区间上连续的函数一定在该区间上有界. 证明 设函数f(x)在闭区间[a, b]上连续. 根据定理1, 存在f(x)在区间[a, b]上的最大值M和最小值 m, 使任一x∈[a, b]满足 m≤f(x)≤M. 上式表明, f(x)在[a, b]上有上界M和下界m , 因此函数f(x)在 [a, b]上有界.
首页 首页
上页
返回
下页
结束

二、零点定理与介值定理
定理3(零点定理)
设函数f(x)在闭区间[a, b]上连续, 且f(a)与f(b)异号, 那么 在开区间(a, b)内至少一点ξ, 使f(ξ)=0.
注:
如果x0使f(x0)=0, 则x0称为函数f(x)的零点.
首页 上页 返回 下页 下页 结束 铃
首页
上页
返回
下页 下页
结束

定理1(最大值和最小值定理)
在闭区间上连续的函数在该区间上一定能取得它的最大 值和最小值.
应注意的问题:
如果函数仅在开区间内连续, 或函数在闭区间上有间断 点, 那么函数在该区间上就不一定有最大值或最小值. 又如, 如下函数在闭区间[0, 2] 内既无最大值又无最小值.
首页
上页
返回
下页 下页
结束

二、零点定理与介值定理
定理3(零点定理)
设函数f(x)在闭区间[a, b]上连续, 且f(a)与f(b)异号, 那么 在开区间(a, b)内至少一点ξ, 使f(ξ)=0.
定理4(介值定理)
设函数 f(x)在闭区间[a, b]上连续, 且f(a)≠f(b), 那么, 对于 f(a)与f(b)之间的任意一个数C, 在开区间(a, b)内至少有一点ξ, 使得f(ξ)=C. >>>
首页 上页 返回 下页 下页 结束 铃
定理1(最大值和最上一定能取得它的最大 值和最小值.
应注意的问题:
如果函数仅在开区间内连续, 或函数在闭区间上有间断 点, 那么函数在该区间上就不一定有最大值或最小值. 例如, 函数f(x)=x在开区间(a, b) 内既无最大值又无最小值.
首页
上页
返回
下页 下页
结束

二、零点定理与介值定理
定理3(零点定理)
设函数f(x)在闭区间[a, b]上连续, 且f(a)与f(b)异号, 那么 在开区间(a, b)内至少一点ξ, 使f(ξ)=0.
定理4(介值定理)
设函数 f(x)在闭区间[a, b]上连续, 且f(a)≠f(b), 那么, 对于 f(a)与f(b)之间的任意一个数C, 在开区间(a, b)内至少有一点ξ, 使得f(ξ)=C.
•推论
在闭区间上连续的函数必取得介于最大值M与最小值m 之间的任何值. >>>
首页 上页 返回 下页 结束 结束 铃
最大值与最小值举例:
函数 f(x)=1+sinx在区间 [0, 2π]上有最大值 2 和最小 值0.
首页
上页
返回
下页 下页
结束

一、有界性与最大值最小值定理
最大值与最小值
对于在区间I上有定义的函数f(x), 如果有x0∈I, 使得对于 任一x∈I都有 f(x)≤f(x0) (f(x)≥f(x0)), 则称f(x0)是函数f(x)在区间I上的最大值(最小值).
相关文档
最新文档