24.1.4 圆周角

合集下载

人教版数学九年级上册24.1.4圆周角的概念和圆周角的定理(教案)

人教版数学九年级上册24.1.4圆周角的概念和圆周角的定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题,如如何计算某个特定圆周角的度数。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和圆规来测量和验证圆周角定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角的概念和圆周角的定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算圆上角度的情况?”比如,在制作圆形桌面或设计轮子时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角的奥秘。
三、教学难点与重点
1.教学重点
-圆周角的概念:确保学生理解圆周角的定义,即顶点在圆上,两边分别与圆相交的角。
-圆周角定理:强调圆周角等于其所对圆心角的一半,这是本节课的核心知识点。
-定理的应用:培养学生将圆周角定理应用于解决具体问题,如计算圆周角或圆心角的度数。
举例:通过图形展示,让学生观察并总结出圆周角的定义,进而引导他们理解圆周角定理。在实际例题中,如给出一个圆和其上的圆周角,要求学生计算圆周角或圆心角的度数,强化定理的应用。
首先,关于导入新课的部分,我通过提出与生活相关的问题来激发学生的兴趣,这是一个很好的开始。我发现学生们对这个问题产生了浓厚的兴趣,积极思考圆周角在日常生活中的应用。但在今后的教学中,我还可以尝试更多元化的导入方式,比如利用多媒体展示一些实际案例,让学生更直观地感受到圆周角的应用。
其次,在新课讲授环节,我注意到有些学生对圆周角定理的证明过程理解得不够透彻。在今后的教学中,我需要更加注重引导学生逐步推导和证明圆周角定理,让他们在这个过程中锻炼逻辑思维能力。此外,对于重点难点的讲解,我要更加耐心和细致,尽可能用简单的语言让学生明白。

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)
1.讨论主题:学生将围绕“圆周角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.培养学生的数学抽象能力:让学生从具体的圆周角实例中抽象出一般性规律,理解圆周角与圆心角、弧和弦之间的关系,提升数学抽象思维。
4.培养学生的数学建模能力:通过解决与圆周角相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学应用能力。
三、教学难点与重点
1.教学重点
-圆周角的概念:强调圆周角定义中“顶点在圆上,两边分别与圆相交”的特点,以及与圆心角的关系。
a.圆周角定理:圆周角等于其所对的圆心角的一半。
b.圆周角推论:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
二、核心素养目标
1.培养学生的几何直观能力:通过观察圆周角与圆心角的关系,使学生能够直观理解圆周角的概念及定理,提高空间想象力和几何直观感知。
2.发展学生的逻辑推理能力:在学习圆周角定理及其推论的过程中,引导学生运用严密的逻辑推理,掌握证明方法,增强解决问题的能力。
-掌握圆周角定理的证明:学生需要掌握如何运用严密的逻辑推理证明圆周角定理,并能够灵活运用。
-圆周角推论的应用:学生需学会将圆周角推论应用于解决实际问题,如求弧长、弦长等。
举例1:针对圆周角定义的难点,教师可通过以下步骤帮助学生理解:
a.展示不同类型的角,让学生辨别哪些是圆周角,哪些是圆心角。
b.通过动态演示,让学生观察圆周角与圆心角的变化关系,加深理解。

24.1.4 圆周角

24.1.4 圆周角

8.如图,已知A,B,C,D是⊙O上的四点,延长 DC,AB相交于点E,若BC=BE.求证:△ADE 是等腰三角形.
证明:∵∠A+∠BCD=180°, ∠BCE+∠BCD=180°.
∴∠A=∠BCE. ∵BC=BE, ∴∠E=∠BCE, ∴∠A=∠E, ∴AD=DE, ∴△ADE是等腰三角形.
综合应用
9.如图,已知EF是⊙O的直径,把∠A为60°的直角 三角板ABC的一条直角边BC放在直线EF上,斜边AB 与⊙O交于点P,点B与点O重合;将三角形ABC沿OE 方向平移,使得点B与点E重合为止.设∠POF=x° ,则x的取值范围是 30≤x≤60 .
拓展延伸
10.如图,BC为半圆O的直径,点F是B⌒C上一动 点(点F不与B、C重合),A是B⌒F上的中点,设
∠FBC=α,∠ACB=β.
(1)当α=50°时,求β的度数;
(2)猜想α与β之间的关系,并
给予证明.
C
解:(1)连接OA,交BF于点M. ∵A是B⌒F上的中点,∴OA垂直平分BF.
∴∠BOM=90°-∠B=90°-α=40°.
∴∠C=
1 2
∠AOB=
1 2
×40°=20°,
即β=20°.
(2)β=45°-
等,也可能互补.
半圆(或直径)所对的圆周角有什么特殊性?
所对应的圆心角为 180°, 则对应的圆周角为 90°.
C2 C1
C3
A
O
B
推论2:
半圆(或直径)所对的圆周角是直 角,90°的圆周角所对的弦是直径.
例4 如图,⊙O的直径AB为10 cm,弦AC为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.

24.1.4圆周角

24.1.4圆周角

O B
C O B E
A
B
O2 O1
C D
E
A
C
O F G
C
A
A
8. 已知⊙O中弦AB的等于半径, 求弦AB所对的圆心角和圆周角的度数。 圆心角为60度
O
圆周角为 30 度 或 150 度。
A
B
A
9.如图,四边形ABCD内接于 ⊙O,∠AOC=100°则 130° 50° ∠B=______∠D=______
已知: CO 是△ABC
1 且CO= 2 AB 的AB边上的中线,
求证: △ABC 为直角三角形. 证明: 以AB为直径作⊙O,
1 ∵AO=BO,CO= AB, 2
C
A · O B
∴AO=BO=CO. ∴点C在⊙O上.
又∵AB为直径, ∴∠ACB= 90°. ∴ △ABC 为直角三角形.
合作交流
如图,如何确定一个圆形纸片的圆心吗?交流一下.
练一练
6.如图,∠A是圆O的圆周角,
∠A=40°,求∠OBC的度数。
练一练
7. 如图 AB是⊙O的直径, C ,D是圆上的两点, 若∠ABD=40°,则∠BCD=_____.
D
A
O 40°
B
C
6.如图:A、P、B、C是圆O上的四点 , ∠APC= ∠CPB=60度,判断三角 形ABC的形状并证明你的结论。
(3)圆心在∠BAC的外部.
作直径AD. ∠DAB= 1 ∠DOB 2
1 ∠DAC= 2∠DOC ∠DAC-∠DAB= 1 (∠DOC-∠DOB) 2 1 ∠BAC= 2 ∠BOC
A O D C B
A O B C B
A
O C

24.1.4圆周角(人教新课标九年级上)

24.1.4圆周角(人教新课标九年级上)

C O
B A
拓展练习
如图,点P是⊙O外一点,点A、B、Q是⊙O上 的点。(1)求证∠P< ∠AQB
(2)如果点P在⊙O内, ∠P与∠AQB有
怎样的关系?为什么?
A
Qp O
B
小结:
本节课你学会了什么?
1、圆周角的定义; 2、圆周角定理及证明; 3、圆周角定理的运用; 4、圆内接多边形的定义; 5、圆内接四边形的性质。
一、圆周角概念
圆周角的定义:顶点在圆上,并且两 边都与圆相交的角叫做圆周角。
图中的∠ACB、∠ADB 和∠AEB是圆周角 C
D A

E
B
课本P88-1判断下列图形中所画的∠P是否为圆周角? 并说明理由。
P
PPຫໍສະໝຸດ PP不是 不是
顶点不 顶点不 在圆上。 在圆上。

不是
顶点在圆 上,两边 和圆相交。
两边不和 圆相交。
24.1.4 圆周角
教学目标
1.理解圆周角的概念,会识别圆周角。 2.掌握圆周角定理,并会用此定理进行简单的论证和计算。 3.能推导和理解 圆 周 角 定理的两个推论,并能利用这两个推论解决 相关的计算和证明等问题。 4.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形 都有外接圆。 5.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算 和证明等问题。 6.经历观察、类比、猜想、合作交流等数学活动,体会运用分类讨 论、转化、完全归纳法等数学思想方确法解决问题,培养学生分析问题和 解决问题的能力。
∠ACB的平分线交⊙O于D,求BC、AD、BD的长.
解:连接OD
∵AB是直径,
C
∴ ∠ACB= ∠ADB=90°.
在Rt△ABC中,

24.1.4圆周角

24.1.4圆周角

C
B
P
A
C B
分析论证
1.首先考虑一种特殊情况: 当圆心(O)在圆周角(∠BAC)的一边(BA)上 时,圆周角∠BAC与圆心角∠BOC的大小关 系.
∵ OA=OC ∴∠A=∠C 又 ∠BOC=∠A+∠C ∴∠BOC=2∠A
B A O C
1 即∠A= ∠BOC 2
分析论证
你能证明第2种情况吗?
提示:作射线AO交⊙O于D。转 化为第1种情况 A O B D C
知识回顾
1.什么叫圆心角? 顶点在圆心的角叫圆心角 2. 圆心角、弧、弦三个量之间关系的 一个结论,这个结论是什么? 在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等, 那么它们所对应的其余两个量都分别相等。 O
.
A
B
探 究
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察 得到的∠ACB有什么特征? C
D
8 7
解: ∠1=∠4 ∠3=∠6
∠2=∠7 ∠5=∠8
A
1 2 3 4 6 5
B
C
探究与思考:
问题1:如图,AB是⊙O的直径,请问: ∠C1、∠C2、∠C3的度数是 90° 。
C1
A
C2
C3 B
问题2: 若∠C1、∠C2、∠C3是 直角,那么∠AOB是 180° 。 推论:半圆(或直径)所对的 圆周角是直角;90°的圆周角 所对的弦是直径。
证明:由第1种情况得
1 ∠BAD= ∠ BOD 2 1 ∠CAD= ∠ COD 2
1 1 ∠BAD+∠CAD= ∠ BOD+ ∠COD 2 2 1 即∠BAC= ∠BOC 2
分析论证
你能证明第3种情况吗?
证明:作射线AO交⊙O于D。

人教版初三数学上册24.1.4圆周角的概念和圆周角定理

人教版初三数学上册24.1.4圆周角的概念和圆周角定理

1.形成概念
问题5:将圆心角顶点向上移,直至与⊙O 相交于点C?观察并比较∠ACB 与∠AOB 由和异同?
我们知道,∠AOB 叫做AB 所对的圆心角,类似地,我们把∠ACB 叫做AB 所对的圆周角
教材定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角
2.剖析概念、应用概念
问题6:判断下列图形中所画的∠P 是否为圆周角?并说明理由。

探究定理:
问题7:在同一个圆中,一条弧所对的圆心角只有一个,那么一条弧所对的圆周角有几个呢?
结论:(1)一条弧所对的圆周角有无数个;(2)优弧和劣弧所对的圆周角大小不同 问题8:∠ACB 与∠AOB 有怎样的关系?
问题9:当点C 移动到C 1 C 2 C 3 C 4 C 5 时,圆周角与圆心角的数量关系改变没? 结论:无论移动点C 、还是点C 1 始终有
∠ACB=2
1∠AOB ,即一条弧所对的圆周角等于圆心角的一半 问题10:通过观察、猜想、我们得到上面的结论,那么如何证明结论呢?
问题11.观察点C 在移动过程中,圆心O 与∠ACB 有哪些位置关系?
结论:有三种情况,
圆心在圆周角的一边上时;圆心在圆周角的内部时;圆心在圆周角的外部
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半
证明定理。

人教版数学九年级上册24.1.4《圆周角》教案

人教版数学九年级上册24.1.4《圆周角》教案
在实践活动环节,分组讨论和实验操作让学生们有了亲身体验,从实践中去理解圆周角的性质。看到他们动手操作、积极讨论,我觉得这个环节对他们的帮助很大。但我也注意到,有些小组在讨论时还是抓不住重点,需要我进一步引导。
学生小组讨论的环节,让我看到了学生们的思维碰撞。他们提出了很多有创意的想法,也尝试着去解决实际问题。不过,我也发现有些学生在讨论中过于依赖同伴,自己的思考还不够深入。
人教版数学九年级上册24.1.4《圆周角》教案
一、教学内容
人教版数学九年级上册24.1.4《圆周角》教案,主要包括以下内容:
1.圆周角的定义:通过直观演示和实例,让学生理解圆周角是由圆上的两条半径或弦所夹的角,并掌握圆周角的度数是360度。
2.圆周角定理:引导学生探究并证明圆周角等于其所对的圆心角的一半,以及圆内接四边形的对角互补。
-着重讲解圆周角定理的证明过程,特别是如何通过几何构造和演绎推理得出圆周角等于其所对圆心角的一半。
-结合实际例题,如测量圆形场地中的角度问题,强调圆周角定理在解决具体问题中的应用。
-对于特殊圆周角,通过对比分析,让学生掌握直角圆周角和锐角圆周角的性质,并能灵活应用。
2.教学难点
-理解并掌握圆周角定理的证明过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,如圆周角定理的证明过程,我会通过举例和比较来帮助大家理解。

zs24.1.4 圆周角①

zs24.1.4  圆周角①
D
A
O 40°
B
C
4、思考:判断正误: 1.同弧或等弧所对的圆周角相等( ) 2.相等的圆周角所对的弧相等( ) 3.90°角所对的弦是直径( ) 4.直径所对的角等于90°( ) 5.长等于半径的弦所对的圆周角等于30°( )
5、如图,在 O中, DE=2BC ,∠EOD=128,求∠A.
E
C
A
B
O
D
思考: 半圆(或直径)所对的圆周角有什么特殊性?
③圆周角定理的推论二: 半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径.
C2 C1 A C3
O
B
两条弧相等
两个圆周角 相等
两个圆心角 相等
两条弦相等
例题:如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长. C
A
O
B
D
练习:
1.试找出下图中所有相等的角。
D
∠2=∠7 ∠1=∠4
A
1
8 7
6
C
2 3
B
∠3=∠6
4
5
∠5=∠8
2、如图,∠ AO=110°,点C在⊙O上,且 点C 不与A、B重合,则∠ABC=_____.
C
O A
C
.
B
3、如图 AB是⊙O的直径, C ,D是圆上的两点 ,若∠ABD=40°,则∠BCD=_____.
AAAC来自●C●
C
B

O
O
O
B
B
②圆周角定理: 一条弧所对的圆周角等于它所对的圆心 角的一半。
1 BAC BOC. 2 BOC 2BAC.

24.1.4 圆周角

24.1.4 圆周角
24.1 圆的有关性质
第二十四章 圆
24.1.4 圆周角
目录页
讲授新课
当堂练习
课堂小结
新课导入
1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点)
新课导入
教学目标
又∵OA=OB ,∴△AOB是等边三角形
∴OA=OB=AB=2,即半径为2.
2
∴∠ACB=2∠BAC
证明:
8. 如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC. 求证:∠ACB=2∠BAC.
∠AOB=2∠BOC,
9.船在航行过程中,船长通过测定角数来确定是否遇到暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,优弧AB上任一点C都是有触礁危险的临界点,∠ACB就是“危险角”,当船位于安全区域时,∠α与“危险角”有怎样的大小关系?
圆心O在∠BAC的内部
圆心O在∠BAC的外部
圆周角定理:一条弧所对的圆周角等于该弧它所对的圆心角的一半;
圆周角定理
要点归纳
互动探究
问题1 如图,OB,OC都是⊙O的半径,点A ,D 是上任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC相等吗?请说明理由.
∴∠BAC=∠BDC
答:相等.
解:连接BC,则∠ACB=90°,
∠DCB=∠ACB-∠ACD=90°-60°=30°.
又∵∠BAD=∠DCB=30°,
∴∠APC=∠BAD+∠ADC=30°+70°=100°.
如果一个多边形所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.

24.1.4圆周角定理

24.1.4圆周角定理

作课类别课题24.1.4圆周角定理课型新授教学媒体多媒体教学目标知识技能1.了解圆周角的概念,理解圆周角的定理及其推论.2.熟练掌握圆周角的定理及其推论的灵活运用.3.体会分类思想.过程方法设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推论解决问题.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点运用数学分类思想证明圆周角的定理.教学过程设计教学程序及教学内容师生行为设计意图一、导语上节课我们学习了圆心角、弧、弦之间的关系定理,如果角的顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探究新知(一)、圆周角定义问题:如图所示的⊙O,我们在射门游戏中,设EF是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF这样的角,它们的共同特点是什么?教师联系上节课所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫学生以射门游戏为情境,通过寻找共同特点,总结一类角的特点,引出圆周角的定义学生比较圆周角与圆心角,进一步理解圆周角定义从具体生活情境出发,通过学生观察,发现圆周角的特点深化理解定义得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角. 分析定义:○1圆周角需要满足两个条件;○2圆周角与圆心角的区别(二)、圆周角定理及其推论1.结合圆周角的概念通过度量思考问题:○1一条弧所对的圆周角有多少个?②同弧所对的圆周角的度数有何关系?③同弧所对的圆周角与圆心角有何数量关系吗?2.分情况进行几何证明①当圆心O在圆周角∠ABC的一边BC上时,如图⑴所示,那么∠ABC=12∠AOC吗?②当圆心O在圆周角∠ABC的内部时,如图⑵,那么∠ABC=12∠AOC吗?③当圆心O在圆周角∠ABC的外部时,如图⑶,∠ABC=12∠AOC吗?可得到:一条弧所对的圆周角等于这条弧所对的圆心角的一半.根据得到的上述结论,证明同弧所对的圆周角相等.得到:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.问题:将上述“同弧”改为“等弧”结论会发生变化吗?总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.教师提出问题,引导学生思考,大胆猜想.得到:1一条弧上所对的圆周角有无数个.2通过度量,同弧所对的圆周角是没有变化的,同弧所对的圆周角是圆心角的一半.教师组织学生先自主探究,再小组合作交流,总结出按照圆周角在圆中的位置特点分情况进行探究的方案.学生尝试叙述,达到共识学生尝试证明学生根据同弧与等弧的概念思考教师提出的问题,师生归纳出定理让学生明白该定理的前提条件的不可缺性,师生分析,进一步理解定理.教师试让学生将上节课定理与归纳的定理进行综合,思考,便于综合运用圆的性质定理..教师提出问题,学生领会半圆作为特殊的弧,直径作为特殊的弦,进行思考,得到推论学生按照教师布置阅读课激发学生求知欲,为探究圆周角定理做铺垫.培养学生全面分析问题的能力,尝试运用分类讨论思想方法,培养学生发散思维能力.为继续探究其推论奠定基础.感受类比思想,类比中全面透彻地理解和掌握定理,让学生感受相关知识的内在联系,形成知识系统.使学生运用定理解决特殊性问题,从而得到推论培养学生的阅读能力,自学能力.学生初步运用圆周角定理进行证明,同时发现圆内接四边形性质培养学生解决问题的意识和能力运用所学知识进行应用,巩固知识,形成做题技巧让学生通过练习于是,在同圆或等圆中,两个圆心角,两个圆周角、两条弧、两条弦中有一组量相等,则其它各组量都分别相等.半圆作为特殊的弧,直径作为特殊的弦,运用上述定理有什么新的结论?推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(三)圆内接多边形与多边形的内接圆1.圆内接多边形与多边形的内接圆的定义如何区别两个定义?(前者是特殊的多边形后者是特殊的圆)2.圆内接四边形性质这条性质的题设和结论分别是什么?怎样证明?(四)定理应用1.课本例22. 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?请证明.三、课堂训练完成课本86页练习四、小结归纳1.圆周角的概念及定理和推论2. 圆内接多边形与多边形的内接圆概念和圆内接四边形性质3. 应用本节定理解决相关问题.五、作业设计本85—86页,理解圆内接多边形与多边形的内接圆学生运用圆周角定理尝试证明学生审题,理清题中的数量关系,由本节课知识思考解决方法.教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.让学生尝试归纳,总结,发言,体会,反思,教师点评汇总进一步理解,培养学生的应用意识和能力归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯巩固深化提高作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.板书设计课题圆周角定理推论圆内接四边形性质例题归纳教学反思。

24.1.4《圆周角 第1课时》数学人教版九年级上册教学课件

24.1.4《圆周角 第1课时》数学人教版九年级上册教学课件

A
B
C
(3)
∠BAC圆=周1 ∠角B定OC理
一条弧所对的圆周角等2 于它所对的圆心角的一半.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
“在同圆或等圆中,同弧所对的圆心角相等”那么同弧
所对的圆周角呢?
A
D
O
E
小组合作 1.猜想可能的结果;
2.验证你的猜想.
B
C
创设情境 探究新知 应用新知 巩固新知 课堂小结得出AB是直径
A
O 180°
吗?
B
推论2:半圆(或直径)所对的圆周角是直
角, 90°的圆周角所对的弦是直径.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
圆周角定理及其推论
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,
所对的圆周角呢? AC͡͡ BD͡͡∠AOC∠BOD
等弧
D O
C
∠ADC= 1∠AOC 2
∠ADC∠BAD
∠BAD= 1∠BOD
B
A
2
推论1:同弧或等弧所对的圆周角相等.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
做一做
如图,AB是直径,C是圆上任意一点(不与A、B重合), 求∠ACB 90 °.
A
·O 40° B AB是直径 ∠ADB90°∠BAD50°
∠ABD40°
C
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
2.在⊙O中,∠CBD=30°,∠BDC=20°,求∠A. A ∠CAD=∠CBD=30°

24.1.4_圆周角课件PPT

24.1.4_圆周角课件PPT
C
6
A O P
10
D
B
24.1.4 圆周角
复习
1.圆心角的定义? 答:顶点在圆心的角叫圆心角 2.上节课我们学习了一个反映圆 心角、弧、弦三个量之间关系的 B C 一个结论,这个结论是什么? 在同圆(或等圆)中,如果圆心角、弧、弦有一组量 相等,那么它们所对应的其余两个量都分别相等。 O
.
问题
什么是圆周角?
定义
顶点在圆上,并且两边 都与圆相交的角,叫做 圆周角.
你能用文字来描述这个定理吗?
圆周角∠ABC与圆心角∠AOC的大小关系是: ∠ABC = ∠AOC.
1 2
同弧所对的圆周角等于它所对的圆心角的一半.
A C

A C

A C B

O
O
O
B
B
如图所示,∠ADB、∠ACB、∠AOB 分别是什么角?它们有什么关系? 同弧所对的圆周角都相等
B
C
1.如图,在⊙O中,∠BOC=50°,求 ∠A的大小. 解: ∠A 25°.
C

O
B
A D O
=
1 ∠COD, 2

C
∠AOC.
1 ∴ ∠ABC = 2
B
A
3.当圆心角和圆周角(∠ABC)的外部时,
C

圆周角∠ABC与圆心角∠AOC的大小
关系会怎样?

O
B
A
过点B作直径BD.由1可得:
1 ∠AOD,∠CBD 2 1 = 2∠COD,
C

∠ABD =

B

O
∠ABC =
1 ∠AOC. 2
C A B

24.1.4圆周角

24.1.4圆周角

“三段六环节”教学法课时备课课题 24.1.4 圆周角课型新授教学目标知识目标:1、掌握圆周角的概念.2、体会圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系.3、能用圆周角与圆心角的关系进行简单的说理,培养学生合情的推理意识,逐步掌握说理的基本方法,从而提高数学素养.能力目标:1、通过学生的探索过程,培养学生的动手操作、自主探索与合作交流的能力.2、培养学生的表达能力,让学生的个性得到充分的展示.情感目标:通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣.教学重点探索圆周角与圆心角的关系.教学难点了解圆周角的分类,用化归思路合情推理验证“圆周角与圆心角的关系”. 教法学法新杏坛式教学法自主、合作、探究教学用具三角尺圆规 PPT课件板书设计24.2圆周角圆心角、圆周角关系定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.教学反思本节课主要讲述了圆周角定义及定理,其定义是在圆心角定义基础上结合示意图构造出来的,对定义的理解从教学实际来看学生们掌握的都较好,对圆周角定理在证明过程中所应用的分类讨论、转换化归思想略显难度,第一种情况证明后,证明第二、第三种情况时辅助线的添加问题学生思考、运用起来较为困难,在今后的教学中应多注意激发学生自己先划分圆心与圆周角的位置关系,而后用分组讨论的办法来让学生自行解决第二、第三种情况的证明,注意适时引导学生运用由特殊到一般的转化方法(即连接圆周角顶点与圆心并延长),可以收到较好地教学效果。

但也存在一些不足之处,讲的时间过长,学习练习时间过少,备学生也存在不足,有相当一部分学生在区分不出圆周角是那条弧所对的圆周角,在找出同弧所对的圆周角时出现困难。

教师活动学生活动自主学习情境创设、导入新课:问题:足球训练场上教练在球门前划了一个圆圈进行无人防守的射门训练如图(1),甲、乙两名运动员分别在C、D两处,他们争论不休,都说在自己所在位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?呈现问题、合作探究:问题1、图中的∠C、∠D与我们前面所学的圆心角有什么区别?(角的顶点在圆上).问题2、你能仿照圆心角的定义给圆周角下个定义吗?问题3、画弧BC所对的圆心角,然后再画弧BC追问:所对的圆周角,你能画多少个同一条弧所对的圆心角?多少个圆周角?学生思考,同位讨论,并回答问题图(1)学生思考后给出:圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角.特征:①角的顶点在圆上.②角的两边都与圆相交.展示交流四人一小组,根据下面的四个问题互相交流。

24.1.4圆周角

24.1.4圆周角

∴ ∠BAC=∠ACB,
∴AB=BC.
在Rt△ABC中,AB2+BC2=AC2,
B
AD BC 2 AC 2 10 5 2(cm).
2
2
归纳 解答圆周角有关问题时,若题中出现“直径”这个条 件,则考虑构造直角三角形来求解.
合作交流探究新知
四 圆内接四边形
圆内接四边形的定义 若一个多边形各顶点都在同一个圆上,那么,这个多边 形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.
合作交流探究新知
2.如图,点A、B、C、D在同一个圆上,AC、BD为四 边形ABCD的对角线.
(3)若若ACAC是是半直圆径,, ∠ADC= 90°,
∠ABC= 90° .
推论3:半圆(或直径)所对的圆周角是直角. 反之,直角所对的弦是直径.
范例研讨运用新知
三 圆周角定理及其推论的运用
典例精析
例:如图,⊙O直径AC为10cm,弦AD为6cm. (1)求DC的长;
合作交流探究新知
试一试: 1.如图,点A、B、C、D在☉O上,点A与点D在点B、C所在 直线的同侧,∠BAC=35º. (1)∠BOC= 70 º, 理由是 一条弧所对的圆周角等于该弧所对的圆心角的一半 ; (2)∠BDC= 35 º,理由是 同弧所对的圆周角相等 .
合作交流探究新知
2.如图,点A、B、C、D在同一个圆上,AC、BD为四
反馈练习巩固新知
1.判断 (1)同一个圆中等弧所对的圆周角相等 ( √ ) (2)相等的弦所对的圆周角也相等 (× ) (3)900的角所对的弦是直径 ( ×) (4)同弦所对的圆周角相等 ( ×)
反馈练习巩固新知
2.如图,AB是⊙O的直径, C 、D是圆上的两点,∠ABD=40°, 则∠BCD=__50_°_.

人教版九年级上册 24.1.4 圆周角 课件30张

人教版九年级上册 24.1.4 圆周角 课件30张

五、思维拓展
与圆有关的角除了圆心角、圆周角还有其 它的角,比较∠A、∠D、∠E的大小关系,你 有什么发现?能说明你的结论吗?
D’
A
E’ E
D
B
C
练习. 如图,在⊙O中,BC=2DE,∠BOC=84°,求
∠A的度数.
C E
A
O
D
B
活动六:反思提升
目标检测
1.如左图,OA、OB、OC都是⊙O的半径,
24.1.4圆周角
一、温故探新 定义 顶点在圆心的角叫做圆心角.
O
B
C
二、建立概念
圆周角
类 比 思
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.

圆心角
B C
· · B 定义O 顶点A 在圆心 O
A
的角叫做圆心角.
C
(1)√
(2) ×
A O
B
C
A C
·O
B
(3)×
圆周角
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.
四边形ABCD的对角线.填空:
(1)∠1=∠ 4 ; (2)∠2=∠ 7 ; (3)∠3=∠ 6 ; (4)∠5=∠ 8 .
1.如图,点A、B、C都在⊙O上. (1)若∠AOC=120°,则求∠ABC的度数. (2)写出∠AOC与∠ABC的数量关系.
O
C
A
B
2.如图,点A、B、C都在⊙O上. ∠AOB = 2∠BOC. 请说明∠ACB = 2∠BAC.
O
C
A
B
一、温故探新 定义 顶点在圆心的角叫做圆心角. 性质 弧的度数等于它所对圆心角的度数.
O
B

九年级数学: 24.1.4圆周角

九年级数学: 24.1.4圆周角

24.1.4 圆周角知识点 1 圆周角的概念1.下列四个图中,∠α是圆周角的是( )图24-1-452.如图24-1-46,图中有多少个圆周角?BC ︵所对的圆周角有几个?CD ︵所对的圆周角有几个?图24-1-46知识点 2 圆周角定理3.2017·徐州如图24-1-47,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB 等于( )图24-1-47A.28°B.54°C.18°D.36°4.如图24-1-48所示,把一个量角器放置在△ABC的上面,根据量角器的读数可得∠BAC的度数是()图24-1-48A.60°B.30°C.20°D.15°5.如图24-1-49,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()图24-1-49A. 2 B.2 C.2 2 D.46.2017·义乌如图24-1-50,一块含45°角的三角尺,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠EOD=________°.图24-1-50知识点3圆周角定理的推论7.如图24-1-51,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )图24-1-51A .50°B .55°C .65°D .75°8.如图24-1-52,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =40°,则∠ABC =________°.图24-1-529.2017·湖州如图24-1-53,已知在△ABC 中,AB =AC .以AB 为直径作半圆O ,交BC 于点D .若∠BAC =40°,则AD ︵的度数是________度.图24-1-5310.如图24-1-54所示,已知四边形ABCD 的四个顶点均在⊙O 上,AB =BC ,BD 交AC 于点E .求证:DB 平分∠ADC .图24-1-54知识点4圆内接多边形11.2017·淮安如图24-1-55,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D的度数是________°.图24-1-5512.如图24-1-56所示,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.图24-1-5613.2017·云南如图24-1-57,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于点D.若∠BFC=20°,则∠DBC=()图24-1-57A.30°B.29°C.28°D.20°14.2017·西宁如图24-1-58,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=________°.图24-1-5815.如图24-1-59,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD=________°.图24-1-5916.已知:如图24-1-60,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.(1)求∠EBC 的度数; (2)求证:BD =CD .图24-1-6017.如图24-1-61,AB 是⊙O 的直径,C 为AE ︵的中点,CD ⊥AB 于点D ,交AE 于点F ,连接AC .求证:AF =CF .图24-1-6118.2017·六盘水如图24-1-62,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN =30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当P A +PB 最小时点P 的位置(不写作法,但要保留作图痕迹); (2)求P A +PB 的最小值.图24-1-62教师详解详析1.C 根据圆周角的定义,顶点在圆上,可排除选项D .根据两边都与圆相交可排除选项A ,B .故选C .2.解:图中有8个圆周角,BC ︵所对的圆周角有1个,是∠BDC ;CD ︵所对的圆周角有2个,分别是∠CBD ,∠CAD.3.D 根据同弧所对的圆周角等于圆心角的一半,得∠ACB =12∠AOB =12×72°=36°.4.D5.C 如图,连接OA ,OB.因为∠APB 和∠AOB 分别是AB ︵所对的圆周角和圆心角,所以∠AOB =2∠APB =2×45°=90°.在Rt △AOB 中,OA =OB =2,由勾股定理,得AB =2 2.故选C .6.90 ∠EOD =2∠A =2×45°=90°.7.C ∵AB ︵=AC ︵,∴AB =AC.∵∠BAC =50°,∴∠ABC =12(180°-50°)=65°,∴∠AEC =∠ABC =65°.故选C .8.50 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠CAB =90°-40°=50°.9.140 连接AD ,OD.∵AB 为圆的直径,∴∠ADB =90°.又∵AB =AC ,∠BAC =40°,根据“等腰三角形三线合一”得到AD 平分∠BAC ,∴∠OAD =20°.又∵OA =OD ,∴∠BOD =2∠OAD =40°,∴∠AOD =140°.即AD ︵的度数是140度.10.证明:∵AB =BC ,∴AB ︵=BC ︵,∴∠ADB =∠BDC , 即DB 平分∠ADC.11.120 因为四边形ABCD 是⊙O 的内接四边形,所以∠A +∠C =∠B +∠D =180°.因为∠A ,∠B ,∠C 的度数之比为4∶3∶5,所以∠A ,∠B ,∠C ,∠D 的度数之比为4∶3∶5∶6,所以∠D =63+6×180°=120°.12.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠D =180°-∠B =130°. 又∵∠ACD =25°,∴∠DAC =180°-∠D -∠ACD =180°-130°-25°=25°, ∴∠DAC =∠ACD ,∴AD =CD.(2)∵∠BAC =∠BAD -∠DAC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°, ∴AB 是⊙O 的直径. 13.A ∵∠BFC =20°, ∴∠BAC =2∠BFC =40°. ∵AB =AC ,∴∠ABC =∠ACB =180°-40°2=70°.又∵EF 是线段AB 的垂直平分线, ∴AD =BD ,∴∠A =∠ABD =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 故选A .14.60 ∵∠BOD =120°,∴∠BAD =60°.又∵∠BAD +∠BCD =180°,∠DCE +∠BCD =180°,∴∠DCE =∠BAD =60°.15.61 设AB 的中点为O ,连接OD.∵三角尺ABC 的斜边AB 与量角器的直径恰好重合,∴点C 在以AB 为直径的圆上.∵点D 对应的刻度是58°,∴∠DCB =12×58°=29°,∴∠ACD =90°-29°=61°.16.解:(1)∵AB 是⊙O 的直径, ∴∠AEB =90°.又∵∠BAC =45°,∴∠ABE =45°. ∵AB =AC ,∴∠ABC =∠C =67.5°,∴∠EBC =∠ABC -∠ABE =67.5°-45°=22.5°. (2)证明:连接AD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴AD ⊥BC. 又∵AB =AC , ∴BD =CD.17.证明:如图,连接BC.∵AB 是⊙O 的直径, ∴∠ACB =90°, 即∠ACF +∠BCD =90°.∵CD ⊥AB ,∴∠B +∠BCD =90°, ∴∠ACF =∠B. ∵C 为AE ︵的中点, ∴AC ︵=CE ︵,第11页 共11页 ∴∠B =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF.18. (1)画出点A 关于MN 的对称点A′,连接A′B ,与MN 的交点即为点P.(2)利用∠AMN =30°得∠AON =∠A′ON =60°,又由B 为AN ︵的中点,可得∠BON =30°,∴∠A ′OB =90°,再由勾股定理求得PA +PB 的最小值为2 2.解:(1)如图,点P 即为所求.(2)如图,连接OA ,OA ′,OB.由(1)可得,PA +PB 的最小值即为线段A′B 的长.∵点A′和点A 关于MN 对称且∠AMN=30°,∴∠AON =∠A′ON =2∠AMN =60°.又∵B 为AN ︵的中点,∴∠BON =12∠AON =30°,∴∠A ′OB =90°.∵MN =4,∴OB =OA ′=2.在Rt △A ′OB 中,由勾股定理得A ′B =22+22=2 2.∴PA +PB 的最小值是2 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.4 圆周角
1.(铜仁中考)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是( )
A.26°
B.116°
C.128°
D.154°
2.(滨州中考)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为( )
A.156°
B.78°
C.39°
D.12°
3.(台州中考)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的
是( )
4.(南通中考)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=____度.
5.如图,△ABC内接于⊙O,点P是弧AC上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围是____.
第5题图第6题图
6.如图,⊙C经过原点,并与两坐标轴分别交于A,D两点,已知∠OBA=30°,点A
的坐标为(2,0),则点D的坐标为____
7.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D为边BC的中点.
(1)求证:△ABC为等边三角形;
(2)求DE的长.
参考答案
1.C
2.C
3.B
4.60
5.0°<∠POC<110°
6.(0,23)
7.(1)证明:连接AD.
∵AB 是⊙O 的直径,
∴∠ADB=90°.
∵点D 是BC 的中点,
∴AD 是BC 的垂直平分线.
∴AB=AC.
又∵AB=BC ,
∴AB=AC=BC.
∴△ABC 为等边三角形.
(2)连接BE.
∵AB 是直径,
∴∠AEB=90°.∴BE ⊥AC.
∵△ABC 是等边三角形,
∴AE=EC ,即E 为AC 的中点. 又∵D 是BC 的中点,
∴DE 是△ABC 的中位线.
∴DE=21AB=21×2=1.。

相关文档
最新文档