2017确定带电粒子在磁场中运动轨迹圆心的方法.doc
带电粒子在磁场中的运动旋转圆问题
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
带电粒子在磁场中的圆运动的轨迹画法及其计算
带电粒子在磁场中的圆运动的轨迹画法及其计算首先,带电粒子在磁场中的运动,本质是洛伦兹力提供向心力(粒子不受重力),粒子做匀速圆周运动(整圆或部分圆),故只有洛伦兹力,没有重力、电场力等,与带电物体在复合场的题目有明显差别,运动形式仅限于匀速圆周运动,没有其他运动形式(如直线、匀加速、平抛)。
其次,本类题目用到的主要公式及结论为:由222⎪⎭⎫⎝⎛==TmRRvmqvBπ得qBmvR=qBmTπ2=再次认识到,本类题目通常为大的计算题,分值大,难度大,必须处理好。
难点之一,就是如何画出运动轨迹,如何找到圆心,如何找到旋转半径与已知长度、角度的数量关系。
难点之二,就是极限条件的取得。
一、圆轨迹的画法:画圆的轨迹时,遵循下面的一些原则:1.过进入点作速度的垂线-----半径垂直于速度(速度沿圆的切线方向)2.作进出点连线的中垂线----对称性3.进入直线边界时夹θ角,出来时也夹θ角----对称性4.沿半径方向进入圆形磁场区域,出来时也沿半径方向----对称性通常,根据上述几点,可以画出带电粒子在磁场中的运动轨迹。
二、旋转半径的计算:在正确画出带电粒子在磁场中的运动轨迹后,下一步的主要任务是,求出旋转半径与已知长度量、角度量的关系。
而这主要是通过适当的辅助线,找到过旋转圆心的直角三角形(其斜边为旋转半径),运用勾股定理或者正余弦函数关系求解。
这里主要是通过适当的辅助线(找圆心时画的进出点间的中垂线不要太明显,以免影响直角三角形的寻找),找到过旋转圆心的直角三角形(其斜边为旋转半径),运用勾股定理或正余弦函数关系求解。
圆形磁场区域情形中,注意围成的四边形是对称的,对角和为180º,好找旋转角度关系。
三、常见的有限磁场区域:通常的有限磁场边界包括:半边磁场、条形磁场、矩形磁场、圆形磁场、扇形磁场(如上面图示)。
还可能有其他异型磁场区域。
粒子在这类磁场区域的运动轨迹,通常不足一个圆,但粒子进出边界的角度、旋转角度都具有特殊性,如垂直,30º、60 º、120 º、150 º、240 º、300 º等特殊角。
专题确定带电粒子在磁场中运动轨迹的方法
确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
下面举几种确定带电粒子运动轨迹的方法。
一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=2mvBe,由图还看出经历时间相差∆t=2T3=4πm3Be,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=rtan30=√3r又带电粒子的轨道半径可表示为:R=mv0qB 故带电粒子运动周期:T=2πmqB=2√3πv0r带电粒子在磁场区域中运动的时间t=60360T=√3πr3v0二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
电荷在磁场中运动的圆心、半径、运动时间的基本求解方法
电荷在磁场中运动的圆心、半径、运动时间的基本求解方法大家知道,当带电粒子进入匀强磁场的速度方向与磁场垂直时,带电粒子做匀速圆周运动。
那么,圆周运动的圆心、半径、以及粒子在磁场中运动的时间都该怎么求呢?下面我们来对这个问题进行总结。
首先来找圆心,常见的有三种不同的情况。
第一种情况,已知粒子运动轨迹上两点的速度方向。
因为速度方向就是轨迹的切线方向,而半径一定与切线垂直,所以做出两速度方向的两条垂线,两垂线的交点就一定是圆心。
第二种情况,已知粒子运动轨迹上一点的速度方向和另一点的位置。
还是要先做出这个速度方向的垂线,这样圆心一定在这条线上。
接着还要找一条线,那就先连接这两点,形成圆的一条弦,接着做出这条弦的中垂线,圆心也一定在这条中垂线上。
两垂线的交点就是圆心。
第三种情况,已知粒子运动轨迹上的三点位置,分别连接两点,得到两条弦,两条弦的中垂线的交点就是圆心。
这就是找圆心时常见的三种情况,解题时要根据具体情况选择方法。
圆心找到以后,半径就很容易确定了。
半径一方面满足公式r=mνqB,另一方面也可以在图中利用几何知识来求。
最后就是粒子运动的时间,关键有两点,先根据公式T=2πm qB求出粒子圆周运动的周期,接着根据几何关系,计算出粒子运动的圆心角θ,然后就可以根据比例关系求时间t 。
再详细说一下圆心角θ的计算。
如图粒子运动的轨迹是一段劣弧,α为弦切角,θ为圆心角,β为偏转角。
圆心角θ就是弦切角α的2倍,也就是θ=2α。
在这个四边形中圆心角θ和β的补角互补,所以θ=β。
如果换一种情况,粒子运动的轨迹是一段优弧,图形跟轨迹是劣弧时几乎完全一样,只是θ和β都换了位置。
这种情况的θ等于2π-2α,但θ和β依然相等。
下面我们来看一个例子,图中是垂直纸面向里的匀强磁场,磁感应强度B=1T,一电子从x轴上与x轴成300角方向以ν=3.2x107m/s速度出发。
已知电子的质量是m=9.0x10-31kg,电荷量大小q=1.6x10-19c。
带电粒子在磁场中的运动
例1:关于回旋加速器中电场和磁场的作用的 叙述,正确的是( CD ) A、电场和磁场都对带电粒子起加速作用 B、电场和磁场是交替地对带电粒子做功的 C、只有电场能对带电粒子起加速作用 D、磁场的作用是使带电粒子在D形盒中做匀速圆 周运动
25
例2:质谱仪是一种测定带电粒子质量和分析
同位素的重要工具,它的构造原理如图,离子源S
为B。在两极间加上电压,使两圆筒之间的区域内有沿向外的电场。一
质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,
初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S, 则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)
【例6】如图所示,一个质量为m、电量为q的正离子, 从A点正对着圆心O以速度v射入半径为R的绝缘圆筒 中。圆筒内存在垂直纸面向里的匀强磁场,磁感应强 度的大小为B。要使带电粒子与圆筒内壁碰撞多次后 仍从A点射出,问发生碰撞的最少次数? 并计算此过程中正离子在磁场中运动的时间t ? 设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒 子的重力。
d
度角,则初速度有什么要求?
B
变化3:若初速度向上与边界成α =60度角,则初速度有什么要求?
9
10
例:两板间(长为L,相距为L)存在匀强磁场,带
负电粒子q、m以速度V0从方形磁场的中间射入,要
求粒子最终飞出磁场区域,则B应满足什么要求?
m
v0
B
L
q
L
11
情境:
q
已知:q、m、 v0、 m d、L、B
2aq
v
B
射出点坐标为(0, 3a ) O/
o
v ax
7
3、穿过矩形磁场区的运动
确定带电粒子在磁场中运动轨迹的三种巧妙方法
确定带电粒子在磁场中运动轨迹的三种巧妙方法(一)对称法1.如图8220所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为v 3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt解析:选B(二)旋转圆法2. (多选)如图8221所示,扇形区域AOC 内有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S 。
某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有部分粒子从边界OC 射出磁场。
已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T 2(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间不可能为( )A.T 12B.T 8C.T 4D.T 3 解析:选AB 粒子在磁场中做匀速圆周运动,粒子在磁场中出射点和入射点的连线即为轨迹的弦。
初速度大小相同,轨迹半径R =m v qB 相同。
设OS =d ,以S 为圆心,将轨迹圆逆时针旋转。
当出射点D 与S 点的连线垂直于OA 时,DS 弦最长,轨迹所对的圆心角最大,周期一定,则粒子在磁场中运动的时间最长。
由此得到:轨迹半径为:R =32d ,当出射点E 与S 点的连线垂直于OC 时,弦ES 最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短。
则:SE =32d ,由几何知识,得θ=60°,最短时间:t min =T 6。
所以,粒子在磁场中运动时间范围为16T ≤t ≤T 2,故不可能的是A 、B 。
(三)放缩圆法3.如图8222所示,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从矩形区域ad 边中点O 射出与Od 边夹角为30°,大小为v 0的带电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力忽略不计,求:(1)试求粒子能从ab 边上射出磁场的v 0的大小范围;(2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。
带电粒子在磁场中运动确定圆心的方法
带电粒子在磁场中运动确定圆心的方法1.赫歇尔效应:赫歇尔效应是指当带电粒子垂直进入磁场时,在运动轨迹上会形成一个圆弧,通过测量带电粒子轨迹和圆弧的属性,可以确定圆心位置。
首先,将带电粒子垂直射入均匀磁场中。
磁场可以是由恒定电流通过直线导线所产生的恒定磁场。
当带电粒子进入磁场后,磁场会施加一个力,即洛伦兹力。
洛伦兹力公式为F=q*(v×B),其中F为洛伦兹力,q是带电粒子电荷量,v是带电粒子的速度,B是磁场强度。
由于带电粒子在磁场中的速度方向会发生改变,其轨迹会是一个圆弧。
测量赫歇尔效应需要确定带电粒子的轨迹和圆弧的属性,主要包括半径R、速度v和磁场强度B。
具体步骤如下:步骤1:首先,将带电粒子从一定的高度以垂直方向射入磁场区域。
步骤2:通过观察带电粒子在磁场中的运动,确定形成的圆弧。
步骤3:测量圆弧的半径R,可以通过测量圆弧的弯曲程度或直接使用测量仪器进行测量。
步骤4:测量带电粒子的速度v。
可以使用速度测量仪器,如速度计或摄像机,测量带电粒子在穿过磁场前后的速度。
步骤5:测量磁场强度B。
可以使用磁力计或其他磁场测量仪器进行测量。
步骤6:根据赫歇尔效应公式R=(m*v)/(q*B)计算圆心位置。
2.洛伦兹力:洛伦兹力是指带电粒子在磁场中受力而产生的向心力,通过测量带电粒子在磁场中运动的轨迹和运动属性,可以确定圆心位置。
首先,将带电粒子垂直射入均匀磁场中。
同样,磁场可以是由恒定电流通过直线导线所产生的恒定磁场。
然后,测量带电粒子在磁场中运动的轨迹和运动属性。
具体步骤如下:步骤1:确定磁场的方向和大小,通过使用磁力计等磁场测量仪器进行测量。
步骤2:观察带电粒子在磁场中的运动轨迹,并记录轨迹的形状、角度和速度等信息。
步骤3:根据洛伦兹力的公式F=q*(v×B),计算洛伦兹力的大小。
步骤4:根据洛伦兹力对带电粒子的向心作用,确定圆心位置。
带电粒子在磁场中受到向心力的作用,因此其轨迹处于一个圆形或弧形的运动路径上。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法 带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下: 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r =,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v 0从M 点沿半径方向射入磁场区,并由N 点射出,O 点为圆心。
当∠MON =120°时,求:带电粒子在磁场区的偏转半径R 及在磁场区中的运动时间。
解析:分别过M 、N 点作半径OM 、ON 的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN 所对的轨道圆心角为60°,O 、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r /tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
带电粒子在磁场中的运动轨迹
确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
下面举几种确定带电粒子运动轨迹的方法。
一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
确定带电粒子在匀强磁场中轨迹圆的圆心的几种重要方法
确定带电粒子在匀强磁场中轨迹圆的圆心的几种重要方法摘要:带电粒子在匀强磁场中的运动问题是个难点。
解决这类问题的关键就是画出带电粒子的运动轨迹,确定圆心。
本文介绍了确定圆心的几种方法,供大家参考。
关键词:带电粒子;匀强磁场;轨迹园;圆心;确定方法作者简介:贾晓兰,任教于山东省德州市乐陵第一中学。
解决带电粒子在有界匀强磁场中做匀速圆周运动的问题,确定圆心至关重要。
这类问题大致可以分为已知入射点、出射点和只知道入射点两种情况。
下面分别就这两种情况具体说明圆心的确定。
一、已知入射点和出射点1.垂线相交法:除已知入射点和出射点外还知道带电粒子在这两点的速度方向,可分别过两点做速度方向的垂线,交点即为圆心。
如图1所示,在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B,方向垂直于纸面向里的匀强磁场,一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
请判断该粒子带何种电荷,并求出其比荷q/m。
解析:如图2所示,由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。
粒子由A点射入,由C点飞出,圆心必为这两点的速度方向的垂线交点,则粒子轨迹半径 R=r,又,则粒子的比荷为。
2.中垂线法:除已知入射点和出射点外只知道带电粒子的入射速度方向,可连接两点,做两点连线的中垂线,与入射速度方向垂线的交点即为圆心。
例2:如图3所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。
若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。
解析:如图4所示,由已知条件和左手定则确定出射点为A,做OA垂线与O点速度垂线,交点即为圆心。
由几何关系可得①,由洛仑兹力公式和牛顿定律可得,,②(式中R为圆轨道的半径),联立①、②两式,解得。
如何确定带电粒子在匀强磁场中做匀速圆周运动的圆心
解 析 : 正 、 电子 的 质 量 、 因 负 电量 、 度 和 匀强 磁 场 速
的磁感应强度均为一定值 , 故正 、 负电子做 圆周运动的
半 径 =
口 D
也 为 一 定 值 , 、 电子 所 受 洛 仑 兹 力 方 正 负
由上 式 解 得 l =
, 儿
.
考
【
}
;存 如何确定带 电粒 匀 韫 磁 场 中做匀速 圆周 运动的 圆心
■佛 山市顺德 区容 山 中学
带电粒子在匀强磁场中的匀速圆周运 动一直是高
考的热点 , 并且很 多时候都是作为压轴题 出现的 , 同学
}
陈 文广
向和速度垂 直 ,在洛仑 兹力所在 方向上取 圆心 0 和 。 O, 使得这两 点到 坐标 原点 的距 离均为 R, 出正 、 作 负 电子的运动轨迹如图 2 所示 , 分别与 Y 、 轴 轴交于 P、 Q两点 , 根据几何知识可得 AO 一 10 , O := 0 , 0P 2 。 = 0Q 6 。 故正负电子在磁场 中运动的时间之 比为 21B选 项正 :,
向与半 圆在 Q点切线方 向的夹角为 , 图 3 如 所示 , 求
D
图 1
A.12 : B.2: 1 C.1 : D.1 1 :
3
解析 :1由于粒子 在 P点垂直 射入磁 场 , ( ) 洛仑兹
力 沿 P 方 向 , 子 又 经 过 点 , A A 粒 故 P是 直 径 . 入 射 设 粒 子 的 速 度 为 , 牛 顿第 二 定 律 得 : 由
上
由几何关系得 : Q /O O =
00 = R— R + d
sO i, n 联立解得旦 = _
(完整版)带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心
处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心
确定带电粒子在磁场中运动的轨迹和圆心的方法取决于问题的具体情况和已知条件。
以下是几种常见的方法:
1. 洛伦兹力定律:利用洛伦兹力定律可以确定带电粒子在磁场中的受力方向和大小。
如果带电粒子的运动是在一个匀强磁场中,则可以根据洛伦兹力的方向和大小来确定粒子的加速度,从而找到粒子的运动轨迹和圆心。
2.运动方程:如果已知带电粒子的初始速度和磁场中的洛伦兹力,可以使用牛顿运动定律和洛伦兹力定律建立运动方程,然后解方程得到带电粒子的轨迹和圆心。
3. 受力分析:通过分析带电粒子在磁场中的受力情况,可以确定粒子的加速度方向和大小。
如果粒子的加速度始终垂直于速度方向,那么粒子的运动轨迹将是一个圆形,圆心就是粒子的加速度方向上的投影。
4. 动量定理:利用动量定理,可以将洛伦兹力的方向和大小与带电粒子的运动轨迹联系起来。
通过分析粒子在磁场中的动量变化,可以确定圆心的位置。
这些方法可以根据具体问题的不同进行选择和应用。
在实际问题中,可能需要结合多种方法来确定带电粒子在磁场中的运动轨迹和圆心。
1/ 1。
带电粒子在磁场中运动的“圆心”及几何关系的确定
带电粒子在磁场中运动的“圆心”及几何关系的确定一、运动性质带电粒子以不同方向进入磁场,运动性质将会不一样,有三种情况.1.平行磁场进入(v∥B)平行进入,不受洛伦兹力作用,粒子做匀速直线运动.2.垂直磁场进入(v⊥B)洛伦兹力与速度始终垂直,充当向心力,在洛伦兹力作用下做匀速圆周运动.由qvB=mv²/r(洛伦兹力提供向心力)得到r=mv/qB=P/mv(P为动量)由qvB=m(2π/T)²r得到T=2πm/qB或者T=2πr/v不完整的部分圆周运动时间为t=θm/qm或者t=θr/v(θ为圆心角或者速度偏转角,运动时间只取决于圆心角或者偏转角,与速度无关)角度关系:圆心角=速度偏转角=2×弦切角3.既不垂直也不平行进入磁场把速度分解为沿磁场方向和垂直磁场方向.平行磁场方向速度分量为v∥=v·sinθ,垂直磁场方向速度分量为v⊥=v·cosθ.平行磁场方向将做匀速直线运动,垂直磁场方向将做匀速圆周运动,旋转半径为r=mv⊥/qB=mv·sinθ/qB.合运动为等距螺旋式运动,轨迹类似弹簧状.二、基本公式由qvB=mv²/r得到:半径公式:r=mv/qB周期公式:T=2πr/v=2πm/qB时间公式:t=θm/qB速度偏转角φ(偏向角)=圆心角α=2×弦切角θ(位移偏角)三、临界条件轨迹圆与边界相切或者刚好过边界端点.四、多解性五、处理步骤1.定圆心:3线法确定圆心,速度垂线、弦中垂线、角平分线.2.找半径:利用几何知识找到半径.3.画轨迹:实质就是轨迹圆与磁场边界相切、相交问题.4.建关系:利用勾股定理,三角函数等知识求出几何半径,几何半径等于物理半径,即r=mv/qB.5.算时间:t=θm/qB六、处理方法1.放缩圆法2.旋转圆法3.平移圆法。
带电粒子在磁场中运动轨迹的确定
M
O
v1 v2
N θ θ
M
O1
2 θ 2 θ
O2
Q1
P
Q2
N
△t=t1 -t2=2Tθ/π=
4m .arccos(LBq ) 2mv Bq
思 考 题
3、如图所示,在xoy平面内有垂直坐标平面且范围足够大 的匀强磁场,磁感应强度为B,一带正电荷量q的粒子,质 量为m,从O点以某一初速度射入磁场,其轨迹与x、y轴的 交点A、B到O点的距离分别为a、b,试求:粒子的初速度。
一、带电粒子在匀强磁场中的运动规律
1、带电粒子在磁场中( v⊥B)只受洛仑兹力, 粒子 做 匀速圆周 运动 。 2、轨道半径:R=mv/qB 3、周期:T=2πm/qB
二、确定带电粒子在磁场中运动轨迹的方法
1、物理方法:
1、物理方法 例1:如图所示,一束电子(电量为e)以速度v垂 直射入磁感应强度为B、宽度为d的匀强磁场中, 穿透磁场时速度方向与电子原来入射方向的夹角 是30o,则电子的质量是多少?穿透磁场的时间又 是多少? 解: 作出电子运动轨迹如右图所示。 电子的运动半径:r=mv/eB 由几何知识: 电子的运动半径:r=d/sin30o=2d 由上两式可得电子质量:m=2Bed/v 电子穿透磁场的时间为: t=T/12=2πm/12eB=πd/3v
思 考 题 2、如图所示,虚线MN是一垂直 M 纸面的平面与纸面的交线,在平 面右侧的半空间存在一磁感应强 O 度为B、方向垂直纸面向外的匀 强磁场。O是MN上的一点,从O点 可以向磁场区域发射电荷量为+q、 P 质量为m、速率为v的粒子,粒子 射入磁场时的速度可在纸面内各 N 个方向,已知先后射入的两 个粒子恰好在磁场中给定的P点相遇,P到O的距离 为L,不计重力和粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。
确定带电粒子在磁场中做圆运动的圆心的方法
确定带电粒子在磁场中做圆运动的圆心的方法带电粒子在磁场中圆运动的问题综合性较强,是高中物理的一个难点,也是高考的热点。
解这类问题既要用到物理中的洛仑兹力、圆周运动的规律,又要用到数学中的平面几何的知识.其中关键是确定圆运动的圆心,只有找到圆心的位置,才能正确运用物理规律和数学知识。
下面给出几种找圆心常用的方法。
方法一:利用两个速度垂线的交点找圆心由于向心力的方向与线速度方向互相垂直,洛伦兹力(向心力)沿半径指向圆心,知道两个速度的方向,画出粒子轨迹上两个对应的洛伦兹力,其延长线的交点即为圆心。
例1 、如图1所示,一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求匀强磁场的磁感应强度B和射出点的坐标。
方法二:利用速度的垂线与弦的中垂线的交点找圆心带电粒子在匀强磁场中做匀速运动时,如果已知轨迹上的两点的位置和其中一点的速度方向,可用联结这两点的弦的中垂线与一条半径的交点确定圆心的位置。
例2、电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:(1)正确画出电子由静止开始直至离开磁场时的轨迹图;(2)匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)方法三、利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
例3、一质量为m、带电量为+q 的粒子以速度v 从O点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从B 处穿过x轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了B点正下方的C点.如图示4所示,不计重力,试求:(1)圆形匀强磁场区域的最小面积;(2)C点到B点的距离h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定带电粒子在磁场中运动轨迹圆心的方法
带电粒子垂直进入磁场,在洛仑兹力的作用下,做匀速圆周运动,找到圆心,画出轨迹,是解这类题的关键。
下在举例说明圆心的确定方法。
一、由两速度的垂线定圆心
例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度 ,此时磁场的磁感强度B应为多少?
图1
解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2
设电子进入磁场时的速度为v,对电子在电场中的运动过程有
eU mv
=22/
对电子在磁场中的运动(设轨道半径为R)有
=2/
evB mv R
由图可知,偏转角θ与r、R的关系为
θ2=r R
tan(/)/
联立以上三式解得
θ
122
=(/)/tan(/)
B r mU e
二、由两条弦的垂直平分线定圆心
例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。
一带正电荷量为q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、C到O点的距离分别为a、b。
试求:(1)初速度方向与x轴夹角;(2)初速度的大小。
图3
解析:(1)粒子垂直射入磁场,在xOy平面内做匀速圆周运动,如图4所示,OA、OC
是圆周上的两条弦。
做两条弦的垂直平分线,交点O1即为圆轨迹的圆心,以O1为圆心,OO
1=R为半径画圆。
正电荷在O点所受的洛仑兹力F的方向(与初速度垂直)和粒子的初速度v的方向(与OO
垂直斜向上),也在图上标出。
1
图4
设初速度方向与x 轴的夹角为θ,由几何关系可知,∠O 1OC =θ。
在直角三角形OO 1D 中,有
tan (/)/(/)/θ==a b a b 22 θ=arctan(/)a b
(2)由直角三角形OO 1D ,粒子的轨道半径
R a b =+(/)(/)2222
粒子在磁场中运动有 q v B mv R =2/
由上述两式可得 v qB a b m =+222/()
三、由两洛仑兹力的延长线定圆心
例3. 如图5所示,有垂直纸面向外的匀强磁场,磁感应强度为B 。
在匀强磁场中做匀速圆周运动的一个电子,动量为P ,电量为e ,在A 、C 点,所受洛仑兹力的方向如图示,已知AC =d 。
求电子从A 到C 时发生的偏转角。
图5
解析:如图6所示,A 、C 为圆周上的两点,做洛仑兹力的延长线,交点O 为圆周轨迹的圆心。
以O 为圆心做电子从A 到C 的运动轨迹。
过A 、C 画出速度的方向,则θ角为偏转角。
图6
设粒子的质量为m ,速度为v ,则轨迹半径
R mv eB P eB ==/()/()
由几何关系有 s i n (/)(/)/θ
22=d R 联立以上二式解得 θ=22a r c s i n [/()]deB
P
四、综合定圆心
确定圆心,还可综合运用上述方法。
一条切线,一条弦的垂直平分线,一条洛仑兹力的延长线,选其中任两条都可找出圆心。
例4. 如图7所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xOy 平面并指向纸面外,磁感应强度为B 。
一带正电的粒子以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正方向的夹角为θ。
若粒子射出磁场的位置与O 点的距离为L ,求该粒子的电量和质量之比q/m 。
图7
解析:如图7所示,粒子进入磁场后,受洛仑兹力的作用,做匀速圆周运动,从A 点射
出磁场。
OA 是圆轨迹上一条弦,初速度v 0与圆周轨迹相切。
做弦的垂直平分线和初速度v 的垂线,交点O 1即为圆轨迹的圆心。
以O 1为圆心,以O 1到入射点O 的距离R (轨道半径)画出粒子圆周运动的轨迹。
由洛仑兹力公式和牛顿定律有
qv B mv R 002=/
O 1是弦OA 的垂直平分线上的点,由几何关系有 L R /sin 2=θ
联立以上二式解得 q m v LB /sin /()=20θ。