创新设计浙江专用2017届高考数学二轮复习小题综合限时练七
《创新设计》2017届高考数学二轮复习(浙江专用)Word版训练+专题一+函数与导数、不等式+第4讲
一、选择题1.曲线y =x e x +1在点(0,1)处的切线方程是( )A.x -y +1=0B.2x -y +1=0C.x -y -1=0D.x -2y +2=0解析 y ′=e x +x e x =(x +1)e x ,y ′|x =0=1,∴所求切线方程为:x -y +1=0.答案 A2.(2016·南昌模拟)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23D.1解析 因为y ′=-2e -2x ,∴曲线在点(0,2)处的切线斜率k=-2,∴切线方程为y =-2x +2,该直线与直线y =0和y=x 围成的三角形如图所示,其中直线y =-2x +2与y =x的交点为A ⎝ ⎛⎭⎪⎫23,23,所以三角形面积S =12×1×23=13. 答案 A3.(2016·洛阳模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A.2B.-2C.12D.-12解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a ×2=-1,所以a=2,故选A.答案 A4.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A.1B.2C.0D.0或2解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x>0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0. 答案 C5.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A.f (a )<f (1)<f (b )B.f (a )<f (b )<f (1)C.f (1)<f (a )<f (b )D.f (b )<f (1)<f (a )解析 由题意,知f ′(x )=e x +1>0恒成立,所以函数f (x )在R 上是单调递增的,而f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1);由题意,知g ′(x )=1x +1>0,所以g (x )在(0,+∞)上是单调递增的,又g (1)=ln 1+1-2=-1<0,g (2)=ln 2+2-2=ln 2>0,所以函数g (x )的零点b ∈(1,2).综上,可得0<a <1<b <2.因为f (x )在R 上是单调递增的,所以f (a )<f (1)<f (b ).答案 A二、填空题6.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1.答案 2x +y +1=07.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3.答案 38.(2016·济南模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎨⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)三、解答题9.(2016·武汉模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0,此时函数单调递增;当1<x <e 时,g ′(x )<0,此时函数单调递减.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e , 所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是 ⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0, 解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. 10.(2016·平顶山二调)已知函数f (x )=ln x -ax +b x ,对任意的x ∈(0,+∞),满足f (x )+f ⎝ ⎛⎭⎪⎫1x =0,其中a ,b 为常数. (1)若f (x )的图象在x =1处的切线经过点(0,-5),求a 的值;(2)已知0<a <1,求证:f ⎝ ⎛⎭⎪⎫a 22>0; (3)当f (x )存在三个不同的零点时,求a 的取值范围.(1)解 在f (x )+f ⎝ ⎛⎭⎪⎫1x =0中,取x =1,得f (1)=0, 又f (1)=ln 1-a +b =-a +b =0,所以b =a .从而f (x )=ln x -ax +a x ,f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2, f ′(1)=1-2a .又f ′(1)=-5-f (1)0-1=5,所以1-2a =5,a =-2. (2)证明 f ⎝ ⎛⎭⎪⎫a 22=ln a 22-a 32+2a =2ln a +2a -a 32-ln 2. 令g (x )=2ln x +2x -x 32-ln 2,则g ′(x )=2x -2x 2-3x 22=-3x 4+4(x -1)2x 2. 所以x ∈(0,1)时,g ′(x )<0,g (x )单调递减,故x ∈(0,1)时,g (x )>g (1)=2-12-ln 2>1-ln e =0,所以0<a <1时,f ⎝ ⎛⎭⎪⎫a 22>0. (3)解 f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2=-ax 2+x -a x 2. ①当a ≤0时,在(0,+∞)上,f ′(x )>0,f (x )单调递增,所以f (x )至多只有一个零点,不合题意;②当a ≥12时,在(0,+∞)上,f ′(x )≤0,f (x )单调递减,所以f (x )至多只有一个零点,不合题意;③当0<a <12时,令f ′(x )=0,得x 1=1-1-4a 22a<1, x 2=1+1-4a 22a>1. 此时,f (x )在(0,x 1)上单调递减,在(x 1,x 2)上单调递增,在(x 2,+∞)上单调递减,所以f (x )至多有三个零点.因为f (x )在(x 1,1)上单调递增,所以f (x 1)<f (1)=0.又因为f ⎝ ⎛⎭⎪⎫a 22>0,所以∃x 0∈⎝ ⎛⎭⎪⎫a 22,x 1,使得f (x 0)=0. 又f ⎝ ⎛⎭⎪⎫1x 0=-f (x 0)=0,f (1)=0, 所以f (x )恰有三个不同的零点:x 0,1,1x 0. 综上所述,当f (x )存在三个不同的零点时,a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 11.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.(1)解 由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ],当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减.因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln (2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b.综上所述,当a≤1 2时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点,不合题意.当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,不合题意.所以12<a<e2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.。
《创新设计》2017届高考数学二轮复习(浙江专用)大题规范天天练+星期三+第四周
星期三 (解析几何) 2017年____月____日解析几何知识(命题意图:考查直线与椭圆的位置关系及三角形面积的最值问题)(本小题满分15分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1、F 2分别为椭圆的左、右焦点,D 、E 分别是椭圆的上顶点与右顶点,且S △DEF 2=1-32.(1)求椭圆C 1的方程;(2)在椭圆C 1落在第一象限的图象上任取一点作C 1的切线l ,求l 与坐标轴围成的三角形的面积的最小值.解 (1)由题意知e =c a =32,故c =32a ,b =12a .因为S △DEF 2=12(a -c )×b =12⎝⎛⎭⎪⎫a -32a ×a 2= 14⎝ ⎛⎭⎪⎫1-32a 2=1-32, 故a 2=4,即a =2,b =12a =1,c =3,所以椭圆C 1的方程为x 24+y 2=1.(2)∵l 与椭圆C 1相切于第一象限内的一点,∴直线l 的斜率必存在且为负.设直线l 的方程为y =kx +m (k <0),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 整理可得 ⎝ ⎛⎭⎪⎫k 2+14x 2+2kmx +m 2-1=0,① 根据题意可得方程①有两相等实根,∴Δ=(2km )2-4⎝ ⎛⎭⎪⎫k 2+14(m 2-1)=0,整理可得m 2=4k 2+1.② ∵直线l 与两坐标轴的交点分别为⎝ ⎛⎭⎪⎫-m k ,0,(0,m )且k <0, ∴l 与坐标轴围成的三角形的面积S =12·m 2-k,③ ②代入③可得S =(-2k )+1-2k≥2(当且仅当k =-12时取等号), ∴l 与坐标轴围成的三角形面积的最小值为2.。
《创新设计》2017届高考数学二轮复习(浙江专用)教师6(小题综合限时练)
限时练(一) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |x 2-2x ≥3},Q ={x |2<x <4},则P ∩Q =( ) A.[3,4) B.(2,3] C.(-1.2) D.(-1,3]答案 A2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( ) A.y =±14x B.y =±13x C.y =±12x D.y =±x答案 C3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.12a +14b C.23a +13bD.12a +23b 解析 ∵AC→=a ,BD →=b ,∴AD →=AO →+OD →=12AC →+12BD →=12a +12b , 因为E 是OD 的中点,∴|DE ||EB |=13, ∴|DF |=13|AB |,∴DF→=13AB →=13(OB →-OA →)=13×⎝ ⎛⎭⎪⎫-12BD →-⎝⎛⎭⎪⎫-12AC →=16AC →-16BD →=16a -16b ,AF→=AD →+DF →=12a +12b +16a -16b =23a +13b . 答案 C4.将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =f (x )·cos x 的图象,则f (x )的表达式可以是( ) A.f (x )=-2sin x B.f (x )=2sin xC.f (x )=22sin 2xD.f (x )=22(sin 2x +cos 2x )解析 将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 的图象,因为-sin 2x =-2sin x cos x ,所以f (x )=-2sin x .答案 A5.设{a n }是等差数列,下列结论中正确的是( ) A.若a 1+a 2>0,则a 2+a 3>0 B.若a 1+a 3<0,则a 1+a 2<0 C.若0<a 1<a 2,则a 2>a 1a 3 D.若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析 A ,B 选项易举反例,C 中若0<a 1<a 2,∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3,又2a 2=a 1+a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3成立. 答案 C6.在直角坐标系中,P 点的坐标为⎝ ⎛⎭⎪⎫35,45,Q 是第三象限内一点,|OQ |=1且∠POQ=3π4,则Q 点的横坐标为( ) A.-7210 B.-325 C.-7212D.-8213解析 设∠xOP =α,则cos α=35,sin α=45,x Q =cos ⎝ ⎛⎭⎪⎫α+3π4=35·⎝ ⎛⎭⎪⎫-22-45×22=-7210,选A. 答案 A7.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2πD.23+2π解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A8.现定义e i θ=cos θ+isin θ,其中i 为虚数单位,e 为自然对数的底,θ∈R ,且实数指数幂的运算性质对e i θ都适用,a =C 05cos 5θ-C 25cos 3θsin 2θ+C 45cos θsin 4θ,b =C 15cos 4θsin θ-C 35cos 2θsin 3θ+C 55sin 5θ,那么复数a +b i 等于( ) A.cos 5θ+isin 5θ B.cos 5θ-isin 5θ C.sin 5θ+icos 5θD.sin 5θ-icos 5θ解析 (e i θ=cos θ+isin θ其实为欧拉公式)a +b i =C 05cos 5θ+C 15cos 4θ(isin θ)-C 25cos 3θsin 2θ- C 35cos 2θ(isin 3θ)+C 45cos θsin 4θ+C 55(isin 5θ) =C 05cos 5θ+C 15cos 4θ(isin θ)+C 25cos 3θ(i 2sin 2θ)+ C 35cos 2θ(i 3sin 3θ)+C 45cos θ(i 4sin 4θ)+C 55(i 5sin 5θ)=(cos θ+isin θ)5=(e i θ)5=e i ×5θ=cos 5θ+isin 5θ. 答案 A二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.解析 抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点F 1(-2,0),因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p2=-2,解得p =2 2. 答案 2 210.计算:log 222=________,2log 2 3+log 4 3=________.解析 log 222=log 22-12=-12,2log23+log43=232log2 3=2log 2332=27=3 3.答案 -12 3 311.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.解析 由a 2,a 3,a 7成等比数列,得a 23=a 2a 7,则2d 2=-3a 1d ,则d =-32a 1.又2a 1+a 2=1,所以a 1=23,d =-1. 答案 23 -112.函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,最小值是________. 解析 由题可得f (x )=22sin ⎝ ⎛⎭⎪⎫2x -π4+32 ,所以最小正周期T =π,最小值为3-22.答案 π3-2213.设函数f (x )=-ln(-x +1),g (x )=⎩⎨⎧x 2(x ≥0),f (x ) (x <0),则g (-2)=________;函数y =g (x )+1的零点是________.解析 由题意知g (-2)=f (-2)=-ln 3,当x ≥0时,x 2+1=0没有零点,当x <0时,由-ln(-x +1)+1=0,得x =1-e. 答案 -ln 3 1-e14.已知实数x 、y 满足⎩⎨⎧y ≤2,3x -y -3≤0,2x +y -2≥0,则目标函数z =3x +y 的最大值为________.解析 作出可行域如图所示:作直线l 0:3x +y =0,再作一组平行于l 0的直线l :3x +y =z ,当直线l 经过点M 时,z =3x +y 取得最大值,由⎩⎨⎧3x -y -3=0,y =2,得⎩⎪⎨⎪⎧x =53,y =2,所以点M 的坐标为⎝ ⎛⎭⎪⎫53,2,所以z max =3×53+2=7.答案 715.已知平面四边形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB =2,BC =4,CD =5,DA =3,则平面四边形ABCD 面积的最大值为________.解析 设AC =x ,在△ABC 中,由余弦定理有: x 2=22+42-2×2×4cos B =20-16cos B , 同理,在△ADC 中,由余弦定理有: x 2=32+52-2×3×5cos D =34-30cos D , 即15cos D -8cos B =7,①又平面四边形ABCD 面积为S =12×2×4sin B +12×3×5sin D =12(8sin B +15sin D ), 即8sin B +15sin D =2S ,② ①②平方相加得64+225+240(sin B sin D -cos B cos D )=49+4S 2, -240cos(B +D )=4S 2-240, 当B +D =π时,S 取最大值230. 答案 230限时练(二)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=()A.(2,3)B.(2,3]C.(-3,-2)D.[-3,-2)解析∵x2-2x-3≤0,∴-1≤x≤3,∴A=[-1,3].又∵log2(x2-x)>1,∴x2-x-2>0,∴x<-1或x>2,∴B=(-∞,-1)∪(2,+∞).∴A∩B=(2,3].故选B.答案 B2.若复数z满足(3-4i)z=5,则z的虚部为()A.45 B.-45C.4D.-4解析依题意得z=53-4i=5(3+4i)(3-4i)(3+4i)=35+45i,因此复数z的虚部为45.故选A.答案 A3.在等比数列{a n}中,若a4、a8是方程x2-3x+2=0的两根,则a6的值是()A.± 2B.- 2C. 2D.±2解析由题意可知a4=1,a8=2,或a4=2,a8=1.当a4=1,a8=2时,设公比为q,则a8=a4q4=2,∴q2=2,∴a6=a4q2=2;同理可求当a4=2,a8=1时,a6= 2.答案 C4.将函数f (x )=4sin 2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( ) A.π6 B.π4 C.π3D.5π12解析 由题意知,g (x )=4sin(2x -2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ),|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C. 答案 C5.如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如下,则其正视图和侧视图正确的是( )解析 注意BE ,BG 在平面CDGF 上的投影为实线,且由已知长度关系确定投影位置,排除A ,C 选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D6.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( ) A.9 B.8 C.4D.2解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc ≥5+24c b ×b c =9,当且仅当⎩⎪⎨⎪⎧b +c =1(bc >0),4c b =b c,即b =2c =23时取等号,因此4b +1c 的最小值是9.故选A. 答案 A7.已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( ) A.7π B.8π C.9πD.10π解析 依题意记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,∴球O 的表面积为9π.故选C. 答案 C8.设f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,4)上有三个零点,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫ln 22,e C.⎝ ⎛⎭⎪⎫ln 22,1e D.⎝ ⎛⎭⎪⎫0,ln 22 解析 原问题等价于方程|ln x |=ax 在区间(0,4)上有三个根,令h (x )=ln x ⇒h ′(x )=1x ,由h (x )在(x 0,ln x 0)处切线y -ln x 0=1x 0(x -x 0)过原点得x 0=e ,即曲线h (x )过原点的切线斜率为1e ,而点(4,ln 4)与原点确定的直线的斜率为ln 22,所以实数a的取值范围是⎝ ⎛⎭⎪⎫ln 22,1e .答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是________(用数字作答).解析 设4个公司分别为A 、B 、C 、D ,当甲、乙都在A 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在B 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在C 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在D 公司时,则选择另一公司不同的选法为A 13A 12. ∴总数为4A 13A 12=24种.答案 2410.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析 由⎩⎨⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1×(1-35)1-3=121.答案 1 12111.已知cos ⎝ ⎛⎭⎪⎫θ+π4=-13,θ为锐角,则sin 2θ=________,sin ⎝ ⎛⎭⎪⎫2θ+π3=________.解析 由cos ⎝ ⎛⎭⎪⎫θ+π4=-13可得22(cos θ-sin θ)=-13,则cos θ-sin θ=-23,两边平方可得1-sin 2θ=29,sin 2θ=79.又θ是锐角,cos θ<sin θ,则θ∈⎝ ⎛⎭⎪⎫π4,π2,2θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2θ=-1-sin 22θ=-429,所以sin ⎝ ⎛⎭⎪⎫2θ+π3=12sin 2θ+32cos 2θ=7-4618.答案 797-461812.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的体积为________,其外接球的表面积为________. 解析 由“正三棱锥的对棱互相垂直”可得SB ⊥AC ,又SB ⊥AM ,AM 和AC 是平面SAC 上的两条相交直线,所以SB ⊥平面SAC ,则SB ⊥SA ,SB ⊥SC .所以正三棱锥S -ABC 的三个侧面都是等腰直角三角形.又AB =22,所以SA =SB =SC =2,故正三棱锥S -ABC 是棱长为2的正方体的一个角,其体积为16SA ·SB ·SC =43,其外接球的直径2R =23,外接球的表面积为4πR 2=12π. 答案 43 12π13.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________.解析 由集合P 中元素a ,b ,c 既是调和的,又是等差的,可得⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b ,则a=-2b ,c =4b ,故满足条件的“好集”P 为形如{-2b ,b ,4b }(b ≠0,b ∈Z )的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503(b ≠0,b ∈Z ),当b =503时,“好集”P 中的最大元素4b =2 012,且符合条件的b 可取1 006个,故“好集”P 的个数为1 006. 答案 2 012 1 00614.在△ABC 中,若AB =43,AC =4,B =30°,则△ABC 的面积是________. 解析 由余弦定理AC 2=BA 2+BC 2-2·BA ·BC ·cos B 得42=(43)2+BC 2-2×43×BC ×cos 30°,解得BC =4或BC =8.当BC =4时,△ABC 的面积为12×AB ×BC ×sin B =12×43×4×12=43;当BC =8时,△ABC 的面积为12×AB ×BC ×sin B =12×43×8×12=8 3. 答案 43或8 315.已知F 1、F 2分别为椭圆x 24+y 2=1的左、右焦点,过椭圆的中心O 任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值为________. 解析 易知点P 、Q 分别是椭圆的短轴端点时,四边形PF 1QF 2的面积最大.由于F 1(-3,0),F 2(3,0),不妨设P (0,1),∴PF 1→=(-3,-1),PF 2→=(3, -1),∴PF 1→·PF 2→=-2. 答案 -2限时练(三) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5 B.-3 C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知直线y =3x 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个不同的交点,则双曲线C 的离心率的取值范围是( ) A.(1,3)B.(1,2)C.(3,+∞)D.(2,+∞)解析直线y=3x与C有两个不同的公共点⇒ba>3⇒e>2.故选D.答案 D3.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于()A.-1B.1C.2D.4解析设f(x)上任意一点为(x,y)关于y=-x的对称点为(-y,-x),将(-y,-x)代入y=2x+a,所以y=a-log2(-x),由f(-2)+f(-4)=1,得a-1+a-2=1,2a=4,a=2.答案 C4.已知△ABC的三个内角A、B、C所对的边分别为a、b、c.若a=2,cos A=1 3,则△ABC面积的最大值为()A.2B. 2C.12 D. 3解析由a2=b2+c2-2bc cos A得4=b2+c2-23bc≥2bc-23bc=43bc,所以bc≤3,S=12bc sin A=12bc·223≤12×3×223= 2.故选B.答案 B5.一个空间几何体的三视图如图所示,则该几何体的体积为()A.43π+833B.43π3+8 3 C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为: V =13Sh =2π+43×23=43π+833.答案 A6.设函数f (x )=e x +1,g (x )=ln(x -1).若点P 、Q 分别是f (x )和g (x )图象上的点,则|PQ |的最小值为( ) A.22 B. 2 C.322D.2 2解析 f (x )=e x +1与g (x )=ln(x -1)的图象关于直线y =x 对称,平移直线y =x 使其分别与这两个函数的图象相切.由f ′(x )=e x =1得,x =0.切点坐标为(0,2),其到直线y =x 的距离为2,故|PQ |的最小值为2 2.故选D. 答案 D7.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若F A →=(2-1)AB →,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2D. 5解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =ba x ②,联立①②, 解得交点B ⎝ ⎛⎭⎪⎫acc -a ,bc c -a , 由F A →=(2-1)AB→,得c =(2-1)ac c -a ,c =2a ,e = 2.答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( ) A.[-2,2] B.[-2,2]∪[4,+∞) C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍). 由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.已知x ⎝ ⎛⎭⎪⎫x +a x 5展开式中的常数项为20,其中a >0,则a =________.解析T r +1=C r 5x ·x5-r ·⎝ ⎛⎭⎪⎫a x r =a r C r 5x 6-32r . 由⎩⎪⎨⎪⎧6-32r =0,a r C r 5=20,得⎩⎨⎧r =4,a 4=4,因为a >0,所以a = 2.答案210.已知双曲线x 25-y 24=1的左、右焦点分别为F 1,F 2,P 是双曲线右支上一点,则|PF 1|-|PF 2|=________;离心率e =________. 解析 依题意,|PF 1|-|PF 2|=2a =25,离心率e =ca =1+b 2a 2=355.答案 2535511.已知函数f (x )=⎩⎨⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 依题意,f (2)=f (1)=2,f [f (2)]=f (2)=2;因为f (x )=f (x -1),所以函数f (x )具有周期性,故函数f (x )的值域为(-1,2]. 答案 2 (-1,2]12.将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin ⎝ ⎛⎭⎪⎫2x -π6,则φ=________⎝ ⎛⎭⎪⎫0<φ<π2,再将函数y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________. 解析 依题意,sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=sin ⎝ ⎛⎭⎪⎫2x -π6,故φ=π12.将y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍后得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象.答案π12 y =sin ⎝⎛⎭⎪⎫x -π6 13.已知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,f (1)=2,f (2)=6,则f (n )=________,数列{a n }满足a n +1=f (a n ),a 1=1,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11+a n 的前n 项和为S n ,则S 2015+1a2016=________.解析 由题意可得f (1)1=2,f (2)2=3,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,则公差为1,所以f (n )n =2+(n -1)=n +1,f (n )=n (n +1)=n 2+n ;a n +1=f (a n )=a n (a n +1),则1a n +1=1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n -1a n +1,S 2015=1a 1+1+1a 2+1+…+1a 2015+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2015-1a 2016=1a 1-1a 2016,所以S 2015+1a 2016=1a1=1.答案 n 2+n 114.设a 、b 是单位向量,其夹角为θ.若|t a +b |的最小值为12,其中t ∈R ,则θ=________.解析 因为t ∈R ,所以|t a +b |2=t 2+2t cos θ+1=(t +cos θ)2+1-cos 2θ≥1-cos 2θ=14.得cos θ=±32⇒θ=π6或5π6.答案 π6或5π615.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,xa nn =xa n +1n +1=xa n +2n +2,则x n =________. 解析 设xa nn =xa n +1n +1=xa n +2n +2=k ,则a n =log x n k ⇒1a n =log k x n ,同理1a n +1=log k x n +1,1a n +2=log k x n +2,因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n . 答案 3n限时练(四) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4}, N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C. 答案 C2.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d=390,解得d =1629.故选B. 答案 B3.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D.答案 D4.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33B.8+632C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4, ∴多面体的体积为203.故选D. 答案 D5.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A.答案 A6.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2 B. 3 C.2 3D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ→=OQ →-OP →=-2a +b ,∴|PQ →|2=4a 2-4a ·b +b 2=12, ∴|PQ →|=2 3.故选C. 答案 C7.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192 B.11 C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b 2a =3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9]. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若x 、y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2, ∴-6<a <0.综上所得,实数a 的取值范围是(-6,3). 答案 (-6,3)10.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则{a n }前9项的和S 9=________,cos(a 3+a 7)的值为________.解析 由{a n }为等差数列得a 1+a 5+a 9=3a 5=8π,解得a 5=8π3,所以{a n }前9项的和S 9=9(a 1+a 9)2=9a 5=9×8π3=24π.cos(a 3+a 7)=cos 2a 5=cos 16π3=cos 4π3=-12. 答案 24π -1211.函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________.解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5. 答案 π512.设函数f (x )=⎩⎪⎨⎪⎧|log 3(x +1)|,-1<x ≤0,tan ⎝ ⎛⎭⎪⎫π2x ,0<x <1,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=________,若f (a )<f ⎝ ⎛⎭⎪⎫12,则实数a 的取值范围是________.解析 由题意可得f ⎝ ⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.当-1<a ≤0时,f (a )=|log 3(a +1)|<1,-1<log 3(a +1)<1,解得-23<a <2,所以-23<a ≤0;当0<a <1时,f (a )=tan ⎝ ⎛⎭⎪⎫π2a <1,0<π2a <π4,0<a <12,综上可得实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,12.答案 1 ⎝ ⎛⎭⎪⎫-23,1213.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率k =________,r =________.解析 两圆的方程相减可得点P 的横坐标为1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,同理可得△CBP 为等边三角形,所以∠OPC =60°.又|OP |=|OC |,所以△OCP 为等边三角形,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案 3 214.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________. 解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx+k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k=12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,1215.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n ,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n ,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n -13.答案 (-2)n -13限时练(五) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z =21+i+2i ,则z 的共轭复数是( ) A.-1-i B.1-i C.1+iD.-1+i解析 由已知z =21+i+2i =1+i ,则z 的共轭复数z = 1-i ,选B. 答案 B2.已知函数y =f (x )是偶函数,当x >0时,f (x )=x 13,则在区间(-2,0)上,下列函数中与y =f (x )的单调性相同的是( ) A.y =-x 2+1 B.y =|x +1|C.y =e |x |D.y =⎩⎨⎧2x -1,x ≥0,x 3+1,x <0解析 由已知得f (x )是在(-2,0)上的单调递减函数,所以答案为C. 答案 C3.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=( )A.1B.12C.-1D.-12解析 由图知,A =2,且34T =5π6-π12=3π4,则周期T =π,所以ω=2. 因为f ⎝ ⎛⎭⎪⎫π12=2,则2×π12+φ=π2,从而φ=π3.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,故f ⎝ ⎛⎭⎪⎫π4=2sin 5π6=1,选A. 答案 A4.过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=( ) A.0 B. 5 C.5D.503解析 由圆C :x 2+y 2-4y -1=0得C (0,2),半径r = 5.∵过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,∴BA →·CB →=0,∴CA →·CB →=(CB →+BA →)·CB →=CB →2=5,所以选C. 另:本题可以数形结合运用向量投影的方法求得结果. 答案 C5.如图是某几何体的三视图,则该几何体的体积等于( ) A.2 B.1 C.23D.223解析 由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V =12×1×1×2-13×12×1×1×2=23.故选C. 答案 C6.若实数x ,y 满足的约束条件⎩⎨⎧x +y -1≤0,x -y +1≥0,y +1≥0,将一颗骰子投掷两次得到的点数分别为a ,b ,则z =2ax +by 在点(2,-1)处取得最大值的概率为( ) A.56 B.25 C.15D.16解析 约束条件为一个三角形ABC 及其内部,其中A (2,-1),B (-2,-1),C (0,1),要使函数z =2ax +by 在点(2,-1)处取得最大值,需满足-2ab ≤-1⇒b ≤2a ,将一颗骰子投掷两次共有36个有序实数对(a ,b ),其中满足b ≤2a 有6+6+5+5+4+4=30对,所以所求概率为3036=56.选A. 答案 A7.如图所示,已知△EAB 所在的平面与矩形ABCD 所在的平面互相垂直,EA =EB =3,AD =2,∠AEB =60°,则多面体E -ABCD 的外接球的表面积为( ) A.16π3 B.8π C.16πD.64π解析 将四棱锥补形成三棱柱,设球心为O ,底面重心为G ,则△OGD 为直角三角形,OG =1,DG =3,∴R 2=4,∴多面体E -ABCD 的外接球的表面积为4πR 2=16π.故选C. 答案 C8.已知函数f (x )=a -x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e (其中e 为自然对数的底数)与函数g (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤1,1e 2+2 B.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2 C.[1,e 2-2]D.[e 2-2,+∞)解析 由已知得方程-(a -x 2)=2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解,设h (x )=2ln x -x 2,求导得h ′(x )=2x -2x =2(1-x )(1+x )x ,因为1e ≤x ≤e ,所以h (x )在x =1处有唯一的极大值点,且为最大值点,则h (x )max =h (1)=-1,h ⎝ ⎛⎭⎪⎫1e =-2-1e 2,h (e)=2-e 2,且h (e)<h ⎝ ⎛⎭⎪⎫1e ,所以h (x )的最小值为h (e)=2-e 2.故方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解等价于2-e 2≤-a ≤-1,从而解得a 的取值范围为[1,e 2-2],故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.若二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是________(请用数字作答).解析 因为二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,所以展开式有9项,即n =8,展开式通项为T k +1=C k 8x 8-k (-1)k x -k =(-1)k C k 8x 8-2k,令8-2k =2,得k =3;则展开式中含x 2项的系数是(-1)3C 38=-56.答案 -5610.已知双曲线x 2-y 2b 2=1(b >0)的离心率为5,则b =________,又以(2,1)为圆心,r 为半径的圆与该双曲线的两条渐近线组成的图形只有一个公共点,则半径r =________.解析 因为e =ca =c =5,所以b =c 2-a 2=(5)2-12=2;因为以(2,1)为圆心的圆与双曲线的渐近线组成的图形只有一个公共点,所以该圆必与双曲线渐近线2x -y =0相切,所以r =|2×2-1|22+12=355.答案 2 35511.已知等差数列{a n }的公差为-3,且a 3是a 1和a 4的等比中项,则通项a n =________,数列{a n }的前n 项和S n 的最大值为________.解析 由题意得a 23=a 1a 4,即(a 1-6)2=a 1(a 1-9),解得a 1=12,所以a n =12+(n-1)×(-3)=-3n +15;由-3n +15≥0得n ≤5,所以当n =4或5时S n 取得最大值,所以(S n )max =5×12+5×42×(-3)=30. 答案 -3n +15 3012.设奇函数f (x )=⎩⎨⎧a cos x -3sin x +c ,x ≥0,cos x +b sin x -c ,x <0,则a +c 的值为________,不等式f (x )>f (-x )在x ∈[-π,π]上的解集为________.解析 因为f (x )为奇函数,所以f (0)=0,即a cos 0-3sin 0+c =0,所以a +c =0;由f ⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫-π2=0得-3+c -b -c =0,所以b =-3;由f (π)+f (-π)=0得-a +c -1-c =0,所以a =-1,所以c =1,所以当0≤x ≤π时,由f (x )> f (-x )=-f (x )得f (x )>0,即-cos x -3sin x +1>0,所以sin ⎝ ⎛⎭⎪⎫x +π6<12,所以5π6<x+π6≤7π6,即2π3<x ≤π.同理可求得-π≤x <0时,-2π3<x <0,所以原不等式f (x )>f (-x )的解集为⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π. 答案 0 ⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π 13.已知实数x ,y满足⎩⎨⎧x ≥0,y ≤x ,2x +y -9≤0,则y -x 的最大值是________;x -2x 2+y 2-4x +4的取值范围是________.解析 作出不等式组满足的平面区域,如图所示, 由图知当目标函数z =y -x 经过原点时取得最大值0,即y -x 的最大值为0;当x =2时,x -2x 2+y 2-4x +4=0;当x >2时,x -2x 2+y 2-4x +4=x -2(x -2)2+y2 =11+⎝ ⎛⎭⎪⎫y x -22,又yx -2表示平面区域内的点与点A (2,0)连线的斜率,由图知,k ∈[0,+∞),即yx -2∈[0,+∞),所以11+⎝ ⎛⎭⎪⎫y x -22∈(0,1],同理可求得当x <2时,-11+⎝ ⎛⎭⎪⎫y x -22∈[-1,0),所以x -2x 2+y 2-4x +4的取值范围是[-1,1]. 答案 0 [-1,1]14.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y 2=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =______.解析 因为抛物线的准线为x =-p 2,则有1+p2=5,得p =8,所以m =4,又双曲线的左顶点坐标为(-a ,0),则有41+a =1a,解得a =19. 答案 1915.已知函数f (x )=⎩⎨⎧-|x 3-2x 2+x |,x <1,ln x ,x ≥1,若命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,则实数k 的取值范围是________.解析 当x <1时,f (x )=-|x 3-2x 2+x |=-|x (x -1)2|=⎩⎨⎧x (x -1)2,x ≤0,-x (x -1)2,0<x <1,当x ≤0时,f ′(x )=3x 2-4x +1=(x -1)(3x -1)>0,f (x )是增函数;当0<x <1时,f ′(x )=-(x -1)(3x -1),所以f (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,1上是增函数,作出函数y =f (x )在R 上的图象,如图所示.命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,即对任意的t ∈R ,且t ≠0,f (t )<kt 恒成立,作出直线y =kx ,设直线y =kx 与函数y =ln x (x ≥1)的图象相切于点(m ,ln m ),则由(ln x )′=1x ,得k =1m ,即ln m =km ,解得m =e ,k =1e .设直线y =kx 与y =x (x -1)2(x ≤0)的图象相切于点(0,0),所以y ′=(x -1)(3x -1),则k =1,由图象可知,若f (t )<kt 恒成立,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1e ,1.答案 ⎝ ⎛⎦⎥⎤1e ,1限时练(六) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若f (x )=sin(2x +θ),则“f (x )的图象关于x =π3对称”是“θ=-π6”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 若f (x )的图象关于x =π3对称,则2π3+θ=π2+k π,k ∈Z ,即θ=-π6+k π,k ∈Z ,当k =0时,θ=-π6;当k =1时,θ=5π6.若θ=-π6时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,2x -π6=π2+k π,k ∈Z ,∴x =π3+k π2,k ∈Z ,当k =0时,f (x )的图象关于x =π3对称.故选B. 答案 B2.若1a <1b <0,则下列四个不等式恒成立的是( ) A.|a |>|b | B.a <b C.a 3<b 3D.a +b <ab解析 由1a <1b <0可得b <a <0,从而|a |<|b |,即A 、B 项不正确;b 3<a 3,即C 项不正确;a +b <0,ab >0,则a +b <ab ,即D 项正确.故选D. 答案 D3.如图,AB 是⊙O 的直径,点C 、D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.12a +b B.12a -b C.a +12bD.a -12b解析 连接CD 、OD ,∵点C 、D 是半圆弧AB 的两个三等分点,∴AC ︵=BD ︵=CD ︵,∴CD ∥AB ,∠CAD =∠DAB =13×90°=30°,∵OA =OD ,∴∠ADO =∠DAO =30°,由此可得∠CAD =∠DAO =30°,∴AC ∥DO ,∴四边形ACDO 为平行四边形,∴AD→=AO →+AC →=12AB →+AC →=12a +b .故选A.答案 A4.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =5b sin C ,且cos A = 5cos B cos C ,则tan A 的值为( ) A.5B.6C.-4D.-6解析 由正弦定理得sin A =5sin B sin C ①,又cos A =5cos B cos C ②,②-①得,cos A -sin A =5(cos B cos C -sin B sin C )=5cos(B +C )=-5cos A ,∴sin A =6cos A ,∴tan A =6.故选B . 答案 B5.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( ) A.1 006×2 013 B.1 006×2 014 C.1 007×2 013D.1 007×2 014解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,∴a 1=0,令n =2,则a 3=2a 2=2,∴a 2=1,于是a n +1-a n =1,∴数列{a n }是首项为0,公差为1的等差数列,∴S 2 014=2 014×2 0132=1 007×2 013.故选C.答案 C6.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是( ) A.25 B.32 C.60 D.100解析 要“确保6号、15号与24号入选并分配到同一厅”,则另外三人的编号或都小于6或都大于24,于是根据分类加法计数原理,得选取种数是(C 35+C 36)A 22=60. 答案 C7.椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 中点的直线的斜率为32,则ba =( ) A.32B.233C.932D.2327解析 设交点分别为A (x 1,y 1)、B (x 2,y 2),AB 的中点为(x 中,y 中),代入椭圆方程得ax 21+by 21=1,ax 22+by 22=1,由两式相减整理得:b a ·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-1,即b a ·y 1-y 2x 1-x 2·y 中x 中=-1,又y 中x 中=y 中-0x 中-0=32,可得b a ·(-1)·32=-1,即b a =233.故选B. 答案 B8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 1的中点,Q 是A 1B 1上任意一点,E 、F 是CD 上任意两点,且EF 长为定值,现有下列结论:①异面直线PQ 与EF 所成的角为定值;②点P 到平面QEF 的距离为定值;③直线PQ 与平面PEF 所成的角为定值;④三棱锥P -QEF 的体积为定值. 其中正确结论的个数为( ) A.0 B.1 C.2D.3解析 当点Q 与A 1重合时,异面直线PQ 与EF 所成的角为π2;当点Q 与B 1重合时,异面直线PQ 与EF 所成的角不为π2,即①错误.当点Q 在A 1B 1上运动时,三棱锥P -QEF 的底面△QEF 的面积以及三棱锥的高都不变,∴体积不变,即②正确.④也正确.当点Q 在A 1B 1上运动时,直线QP 与平面PEF 所成的角随点Q 的变化而变化,即③错误.故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.α,β是两个平面,m ,n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________(填写所有正确命题的编号).解析 当m ⊥n ,m ⊥α,n ∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④. 答案 ②③④10.以椭圆x 24+y 2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.解析 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意得双曲线的顶点为(±3,0),焦点为(±2,0),所以a =3,c =2,所以b =1,所以双曲线的渐近线方程为y =±b a x =±33x ,离心率为e =c a =233. 答案 y =±33x 23311.函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ)(ω>0,|φ|<π2的图象如图所示,则ω=________,φ=________.解析 由图象知函数f (x )的周期为π,所以ω=2πT =2,所以f (x )=2sin(2x +φ).把点(π,1)代入得2sin(2π+φ)=1,即sin φ=12.因为|φ|<π2,所以φ=π6. 答案 2 π612.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3,表面积为________cm 2.解析 由三视图知该几何体为一个半球被割去14后剩下的部分,其球半径为1,所以该几何体的体积为12×34×43π×13=π2,表面积为12×34×4π×12+34×π×12+2×14×π×12=11π4. 答案 π2 11π413.已知x ,y ∈R 且满足不等式组⎩⎨⎧x ≥1,2x +y -5≤0,kx -y -k -1≤0,当k =1时,不等式组所表示的平面区域的面积为________,若目标函数z =3x +y 的最大值为7,则k 的值为________.解析当k =1时,不等式组为⎩⎨⎧x ≥1,2x +y -5≤0,x -y -2≤0,作出不等式组满足的平面区域如图中△ABC 的面积,易求得A (1,3),B (1,-1),C ⎝ ⎛⎭⎪⎫73,13,所以S △ABC =12×4×43=83;由目标函数z =3x+y 的最大值为7知⎩⎨⎧3x +y =7,2x +y -5=0,解得⎩⎨⎧x =2,y =1,则点(2,1)在kx -y -k -1=0上,即2k -1-k -1=0,解得k =2.答案 83 214.在实数集R 中定义一种运算“*”,对任意a 、b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a 、b ∈R ,a *b =ab +(a *0)+(b *0). 关于函数f (x )=(e x )*1e x 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为 (-∞,0].其中所有正确说法的序号为________.解析 依题意得f (x )=(e x )*1e x =e x ·1e x +[(e x )*0]+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x *0=1+e x +1e x ,其中x ∈R .∴f ′(x )=e x-1e x ,令f ′(x )=0,则x =0,∴函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴当x =0,f (0)min =3,即①正确,③错误.又f (-x )=1+e -x +1e-x =1+e x+1e x =f (x ),∴函数f (x )为偶函数,即②正确. 答案 ①②15.若关于x 的方程|x |x +2=kx 2有四个不同的实根,则实数k 的取值范围是________.解析 由于关于x 的方程|x |x +2=kx 2有四个不同的实根,x =0是此方程的一个根,故关于x 的方程|x |x +2=kx 2有3个不同的非零的实数解.∴方程1k =⎩⎨⎧x (x +2),x >0,-x (x +2),x <0有3个不同的非零的实数解,即函数y =1k 的图象和函数g (x )=⎩⎨⎧x (x +2),x >0,-x (x +2),x <0的图象有3个交点,画出函数g (x )图象,如图所示, 故0<1k <1,解得k >1. 答案 (1,+∞)限时练(七) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为α⊥β,b ⊥m ,α∩β=m ,b ⊂β,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B. 答案 B2.已知a =413,b =log 1413,c =log 314,则( ) A.a >b >c B.b >c >a C.c >b >a D.b >a >c解析 因为a =413>1,0<b =log 1413=log 43<1,c =log 314<0,所以a >b >c ,故选A. 答案 A3.已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( ) A.-23 B.-43 C.-34D.34解析 因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34,故选D.答案 D4.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.36 cm 3B.48 cm 3C.60 cm 3D.72 cm 3解析 由三视图可知,上面是个长为4,宽为2,高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是个梯形,上、下底分别为2,6,高为2.所以长方体的体积为4×2×2=16,四棱柱的体积为4×2+62×2=32,所以该几何体的体积为32+16=48,选B. 答案 B5.已知x ,y 满足约束条件⎩⎨⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函数z =6x +2y 的最小值是10,。
《创新设计》2017届高考数学二轮复习(浙江专用) Word版训练选修4-5
1.已知函数f (x )=|x +2|-2|x -1|.(1)解不等式f (x )≥-2.(2)对任意x ∈[a ,+∞),都有f (x )≤x -a 成立,求实数a 的取值范围. 解 (1)f (x )=⎩⎨⎧x -4,x ≤-2,3x ,-2<x <1,-x +4,x ≥1,f (x )≥-2, 当x ≤-2时,x -4≥-2,即x ≥2,所以x ∈∅;当-2<x <1时,3x ≥-2,即x ≥-23,所以-23≤x <1,当x ≥1时,-x +4≥-2,即x ≤6,所以1≤x ≤6,综上,不等式f (x )≥-2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-23≤x ≤6. (2)f (x )=⎩⎨⎧x -4,x ≤-2,3x ,-2<x <1,-x +4,x ≥1,函数f (x )的图象如图所示:令y =x -a ,-a 表示直线的纵截距,当直线过(1,3)点时,-a =2; 所以当-a ≥2,即a ≤-2时成立;当-a <2,即a >-2时,令-x +4=x -a ,得x =2+a 2,所以a ≥2+a 2,即a ≥4时成立,综上可知a 的取值范围为(-∞,-2]∪[4,+∞).2.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c =m ,求证:a +2b +3c ≥9.(1)解 ∵f (x +2)=m -|x |,∴f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)证明 由(1)知1a +12b +13c =1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥3+22b a ·a2b +23c a ·a3c +23c 2b ·2b3c =9.当且仅当a =2b =3c =3时,等号成立.因此a +2b +3c ≥9.3.已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.(1)解不等式:|g (x )|<5.(2)若对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 (1)由||x -1|+2|<5得-5<|x -1|+2<5,所以-7<|x -1|<3,可得不等式的解集为(-2,4).(2)因为任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2, 所以|a +3|≥2,解得a ≥-1或a ≤-5,所以实数a 的取值范围为(-∞,-5]∪[-1,+∞).4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac + c ab ≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca). 即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2 (当且仅当a=b=c时等号成立)证得.∴原不等式成立.(2) abc+bac+cab=a+b+cabc.由于(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c.即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.∴a bc+b ac+c ab≤ab+bc+ca(a=b=c=33时等号成立).∴原不等式成立.5.(2016·许昌、新乡、平顶山模拟)(1)解不等式:|2x-1|-|x|<1;(2)设f(x)=x2-x+1,实数a满足|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1).(1)解当x<0时,原不等式可化为-2x+x<0,解得x>0,又∵x<0,∴x不存在;当0≤x<12时,原不等式可化为-2x-x<0,解得x>0,又∵0≤x<12,∴0<x<12;当x≥12时,原不等式可化为2x-1-x<1.解得x<2,又∵x≥12,∴12≤x<2,综上,原不等式的解集为{x|0<x<2}.(2)证明 |f (x )-f (a )|=|x 2-x -a 2+a |=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a |+1=2(|a |+1),∴|f (x )-f (a )|<2(|a |+1).6.(2016·全国Ⅱ卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1,所以-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.。
《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(二)
(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=()A.(2,3)B.(2,3]C.(-3,-2)D.[-3,-2)解析∵x2-2x-3≤0,∴-1≤x≤3,∴A=[-1,3].又∵log2(x2-x)>1,∴x2-x-2>0,∴x<-1或x>2,∴B=(-∞,-1)∪(2,+∞).∴A∩B=(2,3].故选B.答案 B2.若复数z满足(3-4i)z=5,则z的虚部为()A.45 B.-45C.4D.-4解析依题意得z=53-4i=5(3+4i)(3-4i)(3+4i)=35+45i,因此复数z的虚部为45.故选A.答案 A3.在等比数列{a n}中,若a4、a8是方程x2-3x+2=0的两根,则a6的值是()A.± 2B.- 2C. 2D.±2解析由题意可知a4=1,a8=2,或a4=2,a8=1.当a4=1,a8=2时,设公比为q,则a8=a4q4=2,∴q2=2,∴a6=a4q2=2;同理可求当a4=2,a8=1时,a6= 2.答案 C4.将函数f (x )=4sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( ) A.π6 B.π4 C.π3 D.5π12 解析 由题意知,g (x )=4sin(2x -2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ),|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C. 答案 C5.如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如下,则其正视图和侧视图正确的是( )解析 注意BE ,BG 在平面CDGF 上的投影为实线,且由已知长度关系确定投影位置,排除A ,C 选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D6.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( ) A.9 B.8 C.4D.2解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc ≥5+24c b ×b c =9,当且仅当⎩⎪⎨⎪⎧b +c =1(bc >0),4c b =b c,即b =2c =23时取等号,因此4b +1c 的最小值是9.故选A. 答案 A7.已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( ) A.7π B.8π C.9πD.10π解析 依题意记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,∴球O 的表面积为9π.故选C. 答案 C8.设f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,4)上有三个零点,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫ln 22,e C.⎝ ⎛⎭⎪⎫ln 22,1e D.⎝ ⎛⎭⎪⎫0,ln 22 解析 原问题等价于方程|ln x |=ax 在区间(0,4)上有三个根,令h (x )=ln x ⇒ h ′(x )=1x ,由h (x )在(x 0,ln x 0)处切线y -ln x 0=1x 0(x -x 0)过原点得x 0=e ,即曲线h (x )过原点的切线斜率为1e ,而点(4,ln 4)与原点确定的直线的斜率为ln 22,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫ln 22,1e .答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是________.(用数字作答)解析 设4个公司分别为A 、B 、C 、D ,当甲、乙都在A 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在B 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在C 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在D 公司时,则选择另一公司不同的选法为A 13A 12.∴总数为4A 13A 12=24种. 答案 2410.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析 由⎩⎨⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1×(1-35)1-3=121.答案 1 12111.已知cos ⎝ ⎛⎭⎪⎫θ+π4=-13,θ为锐角,则sin 2θ=________,sin ⎝ ⎛⎭⎪⎫2θ+π3=________.解析 由cos ⎝ ⎛⎭⎪⎫θ+π4=-13可得22(cos θ-sin θ)=-13,则cos θ-sin θ=-23,两边平方可得1-sin 2θ=29,sin 2θ=79.又θ是锐角,cos θ<sin θ,则θ∈⎝ ⎛⎭⎪⎫π4,π2,2θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2θ=-1-sin 22θ=-429,所以sin ⎝ ⎛⎭⎪⎫2θ+π3=12sin 2θ+32cos 2θ=7-4618.答案 797-461812.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的体积为________,其外接球的表面积为________.解析 由“正三棱锥的对棱互相垂直”可得SB ⊥AC ,又SB ⊥AM ,AM 和AC 是平面SAC 上的两条相交直线,所以SB ⊥平面SAC ,则SB ⊥SA ,SB ⊥SC .所以正三棱锥S -ABC 的三个侧面都是等腰直角三角形.又AB =22,所以SA =SB =SC =2,故正三棱锥S -ABC 是棱长为2的正方体的一个角,其体积为16SA ·SB ·SC =43,其外接球的直径2R =23,外接球的表面积为4πR 2=12π. 答案4312π 13.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________.解析 由集合P 中元素a ,b ,c 既是调和的,又是等差的,可得⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b ,则a =-2b ,c =4b ,故满足条件的“好集”P 为形如{-2b ,b ,4b }(b ≠0,b ∈Z )的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503(b ≠0,b ∈Z ),当b =503时,“好集”P 中的最大元素4b =2 012,且符合条件的b 可取1 006个,故“好集”P 的个数为1 006. 答案 2 012 1 00614.在△ABC 中,若AB =43,AC =4,B =30°,则△ABC 的面积是________. 解析 由余弦定理AC 2=BA 2+BC 2-2·BA ·BC ·cos B 得42=(43)2+BC 2-2×43×BC ×cos 30°,解得BC =4或BC =8.当BC =4时,△ABC 的面积为12×AB ×BC ×sin B =12×43×4×12=43;当BC =8时,△ABC 的面积为12×AB ×BC ×sin B =12×43×8×12=8 3. 答案 43或8 315.已知F 1、F 2分别为椭圆x 24+y 2=1的左、右焦点,过椭圆的中心O 任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值为________.解析 易知点P 、Q 分别是椭圆的短轴端点时,四边形PF 1QF 2的面积最大.由于F 1(-3,0),F 2(3,0),不妨设P (0,1),∴PF 1→=(-3,-1),PF 2→=(3,-1),∴PF 1→·PF 2→=-2. 答案 -2。
创新设计(浙江专用)高考数学二轮复习 小题综合限时练(三)
2017届高考数学二轮复习 小题综合限时练(三)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5 B.-3 C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知直线y =3x 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)有两个不同的交点,则双曲线C的离心率的取值范围是( ) A.(1,3) B.(1,2) C.(3,+∞)D.(2,+∞)解析 直线y =3x 与C 有两个不同的公共点⇒b a>3⇒e >2.故选D. 答案 D3.设函数y =f (x )的图象与y =2x +a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( )A.-1B.1C.2D.4解析 设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2.答案 C4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =13,则△ABC面积的最大值为( ) A.2 B. 2 C.12D. 3解析 由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×223= 2.故选B.答案 B5.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.43π+833B.43π3+8 3 C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V =13Sh =2π+43×23=43π+833. 答案 A6.设函数f (x )=e x+1,g (x )=ln(x -1).若点P 、Q 分别是f (x )和g (x )图象上的点,则|PQ |的最小值为( ) A.22 B. 2 C.322D.2 2解析 f (x )=e x+1与g (x )=ln(x -1)的图象关于直线y =x 对称,平移直线y =x 使其分别与这两个函数的图象相切.由f ′(x )=e x=1得,x =0.切点坐标为(0,2),其到直线y =x 的距离为2,故|PQ |的最小值为2 2.故选D. 答案 D7.已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若FA →=(2-1)AB →,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2D. 5解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =b ax ②,联立①②, 解得交点B ⎝⎛⎭⎪⎫ac c -a ,bc c -a ,由FA →=(2-1)AB →,得c =(2-1)ac c -a,c =2a ,e = 2.答案 A8.已知函数f (x )=⎩⎨⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( ) A.[-2,2] B.[-2,2]∪[4,+∞) C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍). 由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.已知x ⎝⎛⎭⎪⎫x +a x 5展开式中的常数项为20,其中a >0,则a =________.解析 T r +1=C r5x ·x 5-r·⎝ ⎛⎭⎪⎫a x r =a r C r5x 6-32r .由⎩⎪⎨⎪⎧6-32r =0,a r C r 5=20,得⎩⎪⎨⎪⎧r =4,a 4=4,因为a >0,所以a = 2.答案 210.已知双曲线x 25-y 24=1的左、右焦点分别为F 1,F 2,P 是双曲线右支上一点,则|PF 1|-|PF 2|=________;离心率e =________.解析 依题意,|PF 1|-|PF 2|=2a =25,离心率e =ca=1+b 2a 2=355. 答案 2 535511.已知函数f (x )=⎩⎪⎨⎪⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 依题意,f (2)=f (1)=2,f [f (2)]=f (2)=2;因为f (x )=f (x -1),所以函数f (x )具有周期性,故函数f (x )的值域为(-1,2]. 答案 2 (-1,2]12.将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin ⎝ ⎛⎭⎪⎫2x -π6,则φ=________⎝ ⎛⎭⎪⎫0<φ<π2,再将函数y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________.解析 依题意,sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=sin ⎝ ⎛⎭⎪⎫2x -π6,故φ=π12.将y =sin ⎝⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍后得到y =sin ⎝⎛⎭⎪⎫x -π6的图象. 答案π12 y =sin ⎝⎛⎭⎪⎫x -π613.已知⎩⎨⎧⎭⎬⎫f (n )n 是等差数列,f (1)=2,f (2)=6,则f (n )=________,数列{a n }满足a n +1=f (a n ),a 1=1,数列⎩⎨⎧⎭⎬⎫11+a n 的前n 项和为S n ,则S 2015+1a 2016=________.解析 由题意可得f (1)1=2,f (2)2=3,又⎩⎨⎧⎭⎬⎫f (n )n 是等差数列,则公差为1,所以f (n )n =2+(n -1)=n +1,f (n )=n (n +1)=n 2+n ;a n +1=f (a n )=a n (a n +1),则1a n +1=1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n -1a n +1,S 2015=1a 1+1+1a 2+1+…+1a 2015+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝⎛⎭⎪⎫1a 2015-1a 2016=1a 1-1a 2016,所以S 2015+1a 2016=1a 1=1.答案 n 2+n 114.设a 、b 是单位向量,其夹角为θ.若|t a +b |的最小值为12,其中t ∈R ,则θ=________.解析 因为t ∈R ,所以|t a +b |2=t 2+2t cos θ+1=(t +cos θ)2+1-cos 2θ≥1-cos2θ=14.得cos θ=±32⇒θ=π6或5π6. 答案π6或5π615.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,xa nn =xa n +1n +1=xa n +2n +2,则x n =________.解析 设xa nn =xa n +1n +1=xa n +2n +2=k ,则a n =log x n k ⇒1a n =log k x n ,同理1a n +1=log k x n +1,1a n +2=log k x n +2,因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n.答案 3n。
《创新设计》2017届高考数学二轮复习(浙江专用)大题规范天天练+星期四+第一周
星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查曲线的切线、最值及数列不等式的证明等.) (本小题满分15分)已知函数f (x )=ax 2+1,g (x )=ln(x +1).(1)当实数a 为何值时,函数g (x )在x =0处的切线与函数f (x )的图象相切;(2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立,求a 的取值范围;(3)已知n ∈N *,试判断g (n )与g ′(0)+g ′(1)+…+g ′(n -1)的大小,并证明之. 解 (1)∵g (x )=ln(x +1),∴g ′(x )=1x +1,g ′(0)=1, 故g (x )在x =0处的切线方程为y =x .由⎩⎨⎧y =x ,y =ax 2+1,得ax 2-x +1=0, ∴Δ=1-4a =0,∴a =14.(2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立,即ax 2+ln(x +1)-x ≤0恒成立.设h (x )=ax 2+ln(x +1)-x (x ≥0),只需h (x )max ≤0即可.h ′(x )=2ax +1x +1-1=x [2ax +(2a -1)]x +1. ①当a =0时,h ′(x )=-x x +1,当x >0时,h ′(x )<0, 函数h (x )在[0,+∞)上单调递减,故h (x )≤h (0)=0成立.②当a >0时,由h ′(x )=0,得x =12a -1或x =0.1° 12a -1<0,即a >12时,在区间(0,+∞)上,h ′(x )>0,则函数h (x )在(0,+∞)上单调递增,h (x )在(0,+∞)上无最大值,此时不满足条件.2° 若12a -1≥0,即0<a ≤12时,函数h (x )在⎝ ⎛⎭⎪⎫0,12a -1上单调递减,在区间⎝ ⎛⎭⎪⎫12a -1,+∞上单调递增,同样h (x )在[0,+∞)上无最大值,不满足条件. ③当a <0时,h ′(x )<0,函数h (x )在[0,+∞)上单调递减,故h (x )≤h (0)=0成立,综上所述,实数a 的取值范围是(-∞,0].(3)结论:g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).证明:当a =0时,ln(x +1)≤x (当且仅当x =0时取等号),令x =1n ,∴ln ⎝ ⎛⎭⎪⎫1n +1<1n , ∴ln(n +1)-ln n <1n .故有ln(n +1)-ln n <1n ,ln n -ln(n -1)<1n -1, ln(n -1)-ln(n -2)<1n -2, ……ln 3-ln 2<12,ln 2-ln 1<1,所以ln(n +1)<1+12+13+…+1n ,即g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).。
创新设计(全国通用)2017届高考数学二轮复习 小题综合限时练(七)文
2017届高考数学二轮复习 小题综合限时练(七)文(限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A.A ∪B =R B.A ∪(∁U B )=R C.(∁U A )∪B =RD.A ∩(∁U B )=A解析 因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4}, 所以A ∩(∁U B )=A ,故选D. 答案 D2.已知复数z =2-ix -i 为纯虚数,其中i 为虚数单位,则实数x 的值为( )A.-12B.12C.-3D.13解析 z =2-i x -i =(2-i )(x +i )x 2+1=2x +1+(2-x )i x 2+1,因为复数z =2-ix -i为纯虚数,所以⎩⎪⎨⎪⎧2x +1=0,2-x ≠0,即x =-12,故选A.答案 A3.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B. 答案 B4.已知a =413,b =log 1413,c =log 314,则( )A.a >b >cB.b >c >aC.c >b >aD.b >a >c解析 因为a =413>1,0<b =log 1413=log 43<1,c =log 314<0,所以a >b >c ,故选A.答案 A5.已知a ,b ,c 是锐角△ABC 中A 、B 、C 的对边,若a =4,c =6,△ABC 的面积为63,则b 为 ( ) A.13B.8C.27D.2 2解析 因为S =12ac sin B =12×4×6×sin B =63,所以sin B =32,且△ABC 为锐角三角形,所以B =π3,所以b 2=16+36-2×4×6×cos π3=28,故b =27,故选C.答案 C6.已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( )A.-23B.-43C.-34D.34解析 因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34,故选D. 答案 D7.运行如图所示的算法框图,则输出的结果S 为( )A.-1B.0C.12D.-32解析 由程序框图知,n =1,S =12;n =2,S =0;n =3,S =-1; n =4,S =-32;n =5,S =-1;n =6,S =0; n =7,S =12;n =8,S =0;n =9,S =-1.故以6为周期循环,而2 016=335×6+6,所以S =0,故选B. 答案 B8.已知等比数列{a n }中,a 3a 9=25,则a 2+a 10=( )A.有最小值10B.有最大值10C.有最小值10或最大值-10D.有最大值-10解析 由等比数列的性质可得a 3a 9=a 2a 10=25,则a 2,a 10为同号,故|a 2+a 10|≥2|a 2||a 10|=10,所以a 2+a 10≥10或a 2+a 10≤-10. 答案 C9.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.36 cm 3B.48 cm3C.60 cm 3D.72 cm 3解析 由三视图可知,上面是个长为4,宽为2,高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是个梯形,上、下底分别为2,6,高为2.所以长方体的体积为4×2×2=16,四棱柱的体积为4×2+62×2=32,所以该几何体的体积为32+16=48,选B. 答案 B10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函数z =6x +2y 的最小值是10,则z的最大值是( ) A.20 B.22 C.24D.26解析 由⎩⎪⎨⎪⎧6x +2y =10,x =2,解得⎩⎪⎨⎪⎧x =2,y =-1.代入直线-2x +y +c =0得c =5,即直线方程为-2x +y +5=0,平移直线3x +y =0,由⎩⎪⎨⎪⎧-2x +y +5=0,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即D (3,1),当直线经过点D 时,直线的纵截距最大,此时z 取最大值,代入直线z =6x +2y 得z =6×3+2=20,故选A. 答案 A11.等差数列{a n }中的a 4,a 2 016是函数f (x )=x 3-6x 2+4x -1的极值点,则log 14a 1 010=( )A.12B.2C.-2D.-12解析 因为f ′(x )=3x 2-12x +4,而a 4和a 2 016为函数f (x )=x 3-6x 2+4x -1的极值点,所以a 4和a 2 016为f ′(x )=3x 2-12x +4=0的根,所以a 4+a 2 016=4,又a 4、a 1 010和a 2 016为等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以log 14a 1 010=-12,故选D.答案 D12.已知点A 是抛物线y 2=4x 的对称轴与准线的交点,点B 是其焦点,点P 在该抛物线上,且满足|PA |=m |PB |,当m 取得最大值时,点P 恰在以A ,B 为焦点的双曲线上,则双曲线的离心率为( ) A.2-1 B.22-2 C.2+1D.22+2解析 设P (x ,y ),可知A (-1,0),B (1,0), 所以m =|PA ||PB |=(x +1)2+y2(x -1)2+y2=(x +1)2+4x(x -1)2+4x=1+4xx 2+2x +1,当x =0时,m=1;当x >0时,m =1+4xx 2+2x +1=1+4x +1x+2≤ 2.当且仅当x =1x ,即x =1时取等号,所以P (1,±2),所以|PA |=22,|PB |=2,又点P 在以A ,B 为焦点的双曲线上,所以由双曲线的定义知2a =|PA |-|PB |=22-2,即a =2-1,c =1,所以e =12-1=2+1,故选C.答案 C二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.△ABC 中,点M 是边BC 的中点,|AB →|=4,|AC →|=3,则AM →·BC →=________. 解析 AM →·BC →=12(AB →+AC →)(AC →-AB →)=12(|AC →|2-|AB |2)=12(9-16)=-72.答案 -7214.已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是________.解析 圆C 的方程为x 2+(y +1)2=4,其圆心为(0,-1),半径r =2,设直线l 1的方程3x +4y +c =0,则|3×0+4×(-1)+c |32+42=2,解得c =14或c =-6. 答案 3x +4y +14=0或3x +4y -6=015.已知函数f (x )=2x 2-4ax +2b 2,若a ∈{4,6,8},b ∈{3,5,7},则该函数有两个零点的概率为________.解析 要使函数f (x )=2x 2-4ax +2b 2有两个零点,即方程x 2-2ax +b 2=0要有两个实根,则Δ=4a 2-4b 2≥0,又a ∈{4,6,8},b ∈{3,5,7},即a ≥b ,而a 、b 的取法共有3×3=9种,其中满足a >b 的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7)6种,所以所求的概率为69=23.答案 2316.若函数f (x )满足f (x -1)=1f (x )-1,当x ∈[-1,0]时,f (x )=x ,若在区间[-1,1)上,g (x )=f (x )-mx +m 有两个零点,则实数m 的取值范围是________. 解析 因为当x ∈[-1,0]时,f (x )=x ,所以当x ∈(0,1)时,x -1∈(-1,0),由f (x -1)=1f (x )-1可得,x -1=1f (x )-1,所以f (x )=1x -1+1,作出函数f (x )在[-1,1)上的图象如图所示,因为g (x )=f (x )-mx +m 有两个零点,所以y =f (x )的图象与直线y =mx -m 有两个交点,由图可得m ∈⎝ ⎛⎦⎥⎤0,12. 答案 ⎝ ⎛⎦⎥⎤0,12。
《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(五)
(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z =21+i+2i ,则z 的共轭复数是( ) A.-1-i B.1-i C.1+iD.-1+i解析 由已知z =21+i +2i =1+i ,则z 的共轭复数z =1-i ,选B. 答案 B2.已知函数y =f (x )是偶函数,当x >0时,f (x )=x 13,则在区间(-2,0)上,下列函数中与y =f (x )的单调性相同的是( ) A.y =-x 2+1 B.y =|x +1|C.y =e |x |D.y =⎩⎨⎧2x -1,x ≥0,x 3+1,x <0解析 由已知得f (x )是在(-2,0)上的单调递减函数,所以答案为C. 答案 C3.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=( )A.1B.12C.-1D.-12解析 由题图知,A =2,且34T =5π6-π12=3π4,则周期T =π,所以ω=2. 因为f ⎝ ⎛⎭⎪⎫π12=2,则2×π12+φ=π2,从而φ=π3.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,故f ⎝ ⎛⎭⎪⎫π4=2sin 5π6=1,选A. 答案 A4.过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=( )A.0B. 5C.5D.503解析 由圆C :x 2+y 2-4y -1=0得C (0,2),半径r = 5.∵过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,∴BA →·CB →=0,∴CA →·CB →=(CB →+BA →)·CB →=CB →2=5,所以选C. 另:本题可以数形结合运用向量投影的方法求得结果. 答案 C5.如图是某几何体的三视图,则该几何体的体积等于( )A.2 .1 C.23.223解析 由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V =12×1×1×2-13×12×1×1×2=23.故选C. 答案 C6.若实数x ,y 满足的约束条件⎩⎨⎧x +y -1≤0,x -y +1≥0,y +1≥0,将一颗骰子投掷两次得到的点数分别为a ,b ,则z =2ax +by 在点(2,-1)处取得最大值的概率为( )A.56B.25C.15D.16解析 约束条件为一个三角形ABC 及其内部,其中A (2,-1),B (-2,-1),C (0,1),要使函数z =2ax +by 在点(2,-1)处取得最大值,需满足-2ab ≤ -1⇒b ≤2a ,将一颗骰子投掷两次共有36个有序实数对(a ,b ),其中满足b ≤2a 有6+6+5+5+4+4=30对,所以所求概率为3036=56.选A. 答案 A7.如图所示,已知△EAB 所在的平面与矩形ABCD 所在的平面互相垂直,EA =EB =3,AD =2,∠AEB =60°,则多面体E -ABCD 的外接球的表面积为( ) A.16π3 B.8π C.16πD.64π解析 将四棱锥补形成三棱柱,设球心为O ,底面重心为G ,则△OGD 为直角三角形,OG =1,DG =3,∴R 2=4,∴多面体E -ABCD 的外接球的表面积为4πR 2=16π.故选C. 答案 C8.已知函数f (x )=a -x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e (其中e 为自然对数的底数)与函数g (x )=2ln x的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤1,1e 2+2 B.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2 C.[1,e 2-2]D.[e 2-2,+∞) 解析 由已知得方程-(a -x 2)=2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解,设h (x )=2ln x -x 2,求导得h ′(x )=2x -2x =2(1-x )(1+x )x ,因为1e ≤x ≤e ,所以h (x )在x =1处有唯一的极大值点,且为最大值点,则h (x )max =h (1)=-1,h ⎝ ⎛⎭⎪⎫1e =-2-1e 2,h (e)=2-e 2,且h (e)<h ⎝ ⎛⎭⎪⎫1e ,所以h (x )的最小值为h (e)=2-e 2.故方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解等价于2-e 2≤-a ≤-1,从而解得a 的取值范围为[1,e 2-2],故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.若二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是________.(请用数字作答)解析 因为二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,所以展开式有9项,即n =8,展开式通项为T k +1=C k 8x 8-k (-1)k x -k =(-1)k C k 8x8-2k,令8-2k =2,得k =3;则展开式中含x 2项的系数是(-1)3C 38=-56. 答案 -5610.已知双曲线x 2-y 2b 2=1(b >0)的离心率为5,则b =________,又以(2,1)为圆心,r 为半径的圆与该双曲线的两条渐近线组成的图形只有一个公共点,则半径r =________.解析 因为e =ca =c =5,所以b =c 2-a 2=(5)2-12=2;因为以(2,1)为圆心的圆与双曲线的渐近线组成的图形只有一个公共点,所以该圆必与双曲线渐近线2x -y =0相切,所以r =|2×2-1|22+12=355. 答案 235511.已知等差数列{a n }的公差为-3,且a 3是a 1和a 4的等比中项,则通项a n =________,数列{a n }的前n 项和S n 的最大值为________.解析 由题意得a 23=a 1a 4,即(a 1-6)2=a 1(a 1-9),解得a 1=12,所以a n =12+(n -1)×(-3)=-3n +15;由-3n +15≥0得n ≤5,所以当n =4或5时S n 取得最大值,所以(S n )max =5×12+5×42×(-3)=30.答案 -3n +15 3012.设奇函数f (x )=⎩⎨⎧a cos x -3sin x +c ,x ≥0,cos x +b sin x -c ,x <0,则a +c 的值为________,不等式f (x )>f (-x )在x ∈[-π,π]上的解集为________.解析 因为f (x )为奇函数,所以f (0)=0,即a cos 0-3sin 0+c =0,所以a +c =0;由f ⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫-π2=0得-3+c -b -c =0,所以b =-3;由f (π)+f (-π)=0得-a +c -1-c =0,所以a =-1,所以c =1,所以当0≤x ≤π时,由f (x )>f (-x )=-f (x )得f (x )>0,即-cos x -3sin x +1>0,所以sin ⎝ ⎛⎭⎪⎫x +π6<12,所以5π6<x +π6≤7π6,即2π3<x ≤π.同理可求得-π≤x <0时,-2π3<x <0,所以原不等式f (x )>f (-x )的解集为⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π. 答案 0 ⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π 13.已知实数x ,y满足⎩⎨⎧x ≥0,y ≤x ,2x +y -9≤0,则y -x 的最大值是________;x -2x 2+y 2-4x +4的取值范围是________.解析 作出不等式组满足的平面区域,如图所示, 由图知当目标函数z =y -x 经过原点时取得最大值0,即y -x 的最大值为0;当x =2时,x -2x 2+y 2-4x +4=0;当x >2时,x -2x 2+y 2-4x +4=x -2(x -2)2+y2 =11+⎝ ⎛⎭⎪⎫y x -22,又yx -2表示平面区域内的点与点A (2,0)连线的斜率,由图知,k ∈[0,+∞),即yx -2∈[0,+∞),所以11+⎝ ⎛⎭⎪⎫y x -22∈(0,1],同理可求得当x <2时,-11+⎝ ⎛⎭⎪⎫y x -22∈[-1,0), 所以x -2x 2+y 2-4x +4的取值范围是[-1,1].答案 0 [-1,1]14.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a -y 2=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =______.解析 因为抛物线的准线为x =-p 2,则有1+p2=5,得p =8,所以m =4,又双曲线的左顶点坐标为(-a ,0),则有41+a =1a,解得a =19. 答案 1915.已知函数f (x )=⎩⎨⎧-|x 3-2x 2+x |,x <1,ln x ,x ≥1,若命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,则实数k 的取值范围是________.解析 当x <1时,f (x )=-|x 3-2x 2+x |=-|x (x -1)2|=⎩⎨⎧x (x -1)2,x ≤0,-x (x -1)2,0<x <1,当x ≤0时,f ′(x )=3x 2-4x +1=(x -1)(3x -1)>0,f (x )是增函数;当0<x <1时,f ′(x )=-(x -1)(3x -1),所以f (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,1上是增函数,作出函数y =f (x )在R 上的图象,如图所示.命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,即对任意的t ∈R ,且t ≠0,f (t )<kt 恒成立,作出直线y =kx ,设直线y =kx 与函数y =ln x (x ≥1)的图象相切于点(m ,ln m ),则由(ln x )′=1x ,得k =1m ,即ln m =km ,解得m =e ,k =1e .设直线y =kx 与y =x (x -1)2(x ≤0)的图象相切于点(0,0),所以y ′=(x -1)(3x -1),则k =1,由图象可知,若f (t )<kt 恒成立,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1e ,1.答案 ⎝ ⎛⎦⎥⎤1e ,1。
创新设计浙江专用2017届高考数学二轮复习大题规范练星期一第二周三角与数列
星期一 (三角与数列)2017年____月____日1. 三角(命题意图:考查正、余弦定理、面积公式及三角恒等变换)(本小题满分14分)已知△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,且满足a cos A =c 2-cos C . (1)若b =4,求a ;(2)若c =3,△ABC 的面积为3,求证:3sin C +4cos C =5.(1)解 由a cos A =c 2-cos C 得sin A cos A =sin C 2-cos C. ∴2sin A =sin A cos C +sin C cos A =sin B ,即2a =b ,∵b =4,∴a =2.(2)证明 ∵△ABC 的面积为3,∴12ab sin C =a 2sin C =3,①∵c =3,∴a 2+4a 2-4a 2cos C =9,②由①②消去a 2得3sin C =5-4cos C ,即3sin C +4cos C =5.2.数列(命题意图:考查等差、等比数列的基本运算及求和)(本小题满分15分)已知数列{a n }是首项a 1=1的等差数列,其前n 项和为S n ,数列{b n }是首项b 1=2的等比数列,且b 2S 2=16,b 1b 3=b 4.(1)求a n 和b n ;(2)令c 1=1,c 2k =a 2k -1,c 2k +1=a 2k +kb k (k =1,2,3…),求数列{c n }的前2n +1项和T 2n +1. 解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则a n =1+(n -1)d ,b n =2q n -1.由b 1b 3=b 4,得q =b4b3=b 1=2.由b 2S 2=2q (2+d )=16,解得d =2,∴a n =2n -1,b n =2n .(2)∵T 2n +1=c 1+a 1+(a 2+b 1)+a 3+(a 4+2·b 2)+…+a 2n -1+(a 2n +nb n )=1+S 2n +(b 1+2b 2+…+nb n ).令A =b 1+2b 2+…+nb n ,则A =2+2·22+…+n ·2n ,∴2A =22+2·23+…+n ·2n +1,两式相减,得-A =2+22+…+2n -n ·2n +1, ∴A =n ·2n +1-2n +1+2. 又S 2n =2n (1+a2n )2=4n 2, ∴T 2n +1=1+4n 2+n ·2n +1-2n +1+2 =3+4n 2+(n -1)·2n +1.。
创新设计(浙江专用)2017届高考数学二轮复习 小题综合限时练(六)
2017届高考数学二轮复习 小题综合限时练(六)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若f (x )=sin(2x +θ),则“f (x )的图象关于x =π3对称”是“θ=-π6”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 若f (x )的图象关于x =π3对称,则2π3+θ=π2+k π,k ∈Z ,即θ=-π6+k π,k ∈Z ,当k =0时,θ=-π6;当k =1时,θ=5π6.若θ=-π6时,f (x )=sin ⎝⎛⎭⎪⎫2x -π6,2x -π6=π2+k π,k ∈Z ,∴x =π3+k π2,k ∈Z ,当k =0时,f (x )的图象关于x =π3对称.故选B. 答案 B2.若1a <1b<0,则下列四个不等式恒成立的是( )A.|a |>|b |B.a <bC.a 3<b 3D.a +b <ab解析 由1a <1b<0可得b <a <0,从而|a |<|b |,即A 、B 项不正确;b 3<a 3,即C 项不正确;a +b <0,ab >0,则a +b <ab ,即D 项正确.故选D. 答案 D3.如图,AB 是⊙O 的直径,点C 、D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →=( ) A.12a +b .12a -b C.a +12b.a -12b解析 连接CD 、OD ,∵点C 、D 是半圆弧AB 的两个三等分点,∴AC ︵=BD ︵=CD ︵,∴CD ∥AB ,∠CAD =∠DAB =13×90°=30°,∵OA =OD ,∴∠ADO =∠DAO =30°,由此可得∠CAD =∠DAO =30°,∴AC ∥DO ,∴四边形ACDO 为平行四边形,∴AD →=AO →+AC →=12AB →+AC →=12a +b .故选A.答案 A4.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =5b sin C ,且cos A =5cos B cosC ,则tan A 的值为( )A.5B.6C.-4D.-6解析 由正弦定理得sin A =5sin B sin C ①,又cos A =5cos B cos C ②,②-①得,cos A -sin A =5(cos B cos C -sin B sin C )=5cos(B +C )=-5cos A , ∴sin A =6cos A ,∴tan A =6.故选B . 答案 B5.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( ) A.1 006×2 013 B.1 006×2 014 C.1 007×2 013D.1 007×2 014解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,∴a 1=0,令n =2,则a 3=2a 2=2,∴a 2=1,于是a n +1-a n =1,∴数列{a n }是首项为0,公差为1的等差数列,∴S 2 014=2 014×2 0132=1 007×2 013.故选C. 答案 C6.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是( ) A.25 B.32 C.60D.100解析 要“确保6号、15号与24号入选并分配到同一厅”,则另外三人的编号或都小于6或都大于24,于是根据分类加法计数原理,得选取种数是(C 35+C 36)A 22=60. 答案 C7.椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 中点的直线的斜率为32,则ba=( ) A.32 B.233C.932D.2327解析 设交点分别为A (x 1,y 1)、B (x 2,y 2),AB 的中点为(x 中,y 中),代入椭圆方程得ax 21+by 21=1,ax 22+by 22=1,由两式相减整理得:b a ·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-1,即b a ·y 1-y 2x 1-x 2·y 中x 中=-1,又y 中x 中=y 中-0x 中-0=32,可得b a ·(-1)·32=-1,即b a =233.故选B. 答案 B8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 1的中点,Q 是A 1B 1上任意一点,E 、F 是CD 上任意两点,且EF 长为定值,现有下列结论:①异面直线PQ 与EF 所成的角为定值;②点P 到平面QEF 的距离为定值;③直线PQ 与平面PEF 所成的角为定值;④三棱锥P -QEF 的体积为定值. 其中正确结论的个数为( ) A.0 B.1 C.2D.3解析 当点Q 与A 1重合时,异面直线PQ 与EF 所成的角为π2;当点Q 与B 1重合时,异面直线PQ 与EF 所成的角不为π2,即①错误.当点Q 在A 1B 1上运动时,三棱锥P -QEF 的底面△QEF的面积以及三棱锥的高都不变,∴体积不变,即②正确.④也正确.当点Q 在A 1B 1上运动时,直线QP 与平面PEF 所成的角随点Q 的变化而变化,即③错误.故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.α,β是两个平面,m ,n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________(填写所有正确命题的编号).解析 当m ⊥n ,m ⊥α,n ∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④. 答案 ②③④10.以椭圆x 24+y 2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.解析 设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得双曲线的顶点为(±3,0),焦点为(±2,0),所以a =3,c =2,所以b =1,所以双曲线的渐近线方程为y =±bax =±33x ,离心率为e =c a =233. 答案 y =±33x 23311.函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ)(ω>0,|φ|<π2的图象如图所示,则ω=________,φ=________.解析 由图象知函数f (x )的周期为π,所以ω=2πT=2,所以f (x )=2sin(2x +φ).把点(π,1)代入得2sin(2π+φ)=1,即sin φ=12.因为|φ|<π2,所以φ=π6.答案 2π612.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3,表面积为________cm 2.解析 由三视图知该几何体为一个半球被割去14后剩下的部分,其球半径为1,所以该几何体的体积为12×34×43π×13=π2,表面积为12×34×4π×12+34×π×12+2×14×π×12=11π4.答案π2 11π413.已知x ,y ∈R 且满足不等式组⎩⎪⎨⎪⎧x ≥1,2x +y -5≤0,kx -y -k -1≤0,当k =1时,不等式组所表示的平面区域的面积为________,若目标函数z =3x +y 的最大值为7,则k 的值为________.解析 当k =1时,不等式组为⎩⎪⎨⎪⎧x ≥1,2x +y -5≤0,x -y -2≤0,作出不等式组满足的平面区域如图中△ABC的面积,易求得A (1,3),B (1,-1),C ⎝ ⎛⎭⎪⎫73,13,所以S △ABC =12×4×43=83;由目标函数z=3x +y 的最大值为7知⎩⎪⎨⎪⎧3x +y =7,2x +y -5=0,解得⎩⎪⎨⎪⎧x =2,y =1,则点(2,1)在kx -y -k -1=0上,即2k -1-k -1=0,解得k =2.答案 83214.在实数集R 中定义一种运算“*”,对任意a 、b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a 、b ∈R ,a *b =ab +(a *0)+(b *0). 关于函数f (x )=(e x)*1ex 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为(-∞,0].其中所有正确说法的序号为________. 解析 依题意得f (x )=(e x)*1e x =e x ·1e x +[(e x )*0]+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x *0=1+e x+1e x ,其中x ∈R .∴f ′(x )=e x -1ex ,令f ′(x )=0,则x =0,∴函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴当x =0,f (0)min =3,即①正确,③错误.又f (-x )=1+e -x +1e -x =1+e x+1ex =f (x ),∴函数f (x )为偶函数,即②正确. 答案 ①②15.若关于x 的方程|x |x +2=kx 2有四个不同的实根,则实数k 的取值范围是________. 解析 由于关于x 的方程|x |x +2=kx 2有四个不同的实根,x =0是此方程的一个根,故关于x 的方程|x |x +2=kx 2有3个不同的非零的实数解.∴方程1k =⎩⎪⎨⎪⎧x (x +2),x >0,-x (x +2),x <0有3个不同的非零的实数解,即函数y =1k 的图象和函数g (x )=⎩⎪⎨⎪⎧x (x +2),x >0,-x (x +2),x <0的图象有3个交点,画出函数g (x )图象,如图所示, 故0<1k<1,解得k >1.答案 (1,+∞)。
创新设计(浙江专用)2017届高考数学二轮复习 考前增分指导二 规范——解答题的7个解题模板及得分说明 模板
(Ⅱ)顾客抽奖 3 次可视为 3 次独立重复试验,由(1)知,顾客抽 奖 1 次获一等奖的概率为15,所以 X~B3,15.(8 分) 于是 P(X=0)=C03150453=16245, P(X=1)=C13151452=14285,P(X=2)=C23152451=11225, P(X=3)=C33153450=1125.(10 分)
P(B2)=P(A1A2+A1A2)=P(A1A2)+P(A1A2)=P(A1)P(A2)+ P(A1)P(A2)=P(A1)(1-P(A2))+(1-P(A1))P(A2) =25×1-12+1-25×12=12.(5 分)
故所求概率为 P(C)=P(B1+B2) =P(B1)+P(B2)=15+12=170.(6 分)
解题模板 第一步 定元:根据已知条件确定离散型随机变量的取值. 第二步 定性:明确每个随机变量取值所对应的事件. 第三步 定型:确定事件的概率模型和计算公式. 第四步 计算:计算随机变量取每一个值的概率. 第五步 列表:列出分布列. 第六步 求解:根据均值、方差公式求解其值.
【训练4】 下图是某市3月1日至14日的空气质量指数趋势图.空气 质量指数小于100表示空气质量优良,空气质量指数大于200表 示空气重度污染.某人随机选择3月1日至3月13日中的某一天到 达该市,并停留2天.
模板4 离散型随机变量及其分布考题
[真题](2015·湖南卷)(满分12分)某商场举行有奖促销活动,顾客购 买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、 6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸 出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只 有1个红球,则获二等奖;若没有红球,则不获奖. (Ⅰ)求顾客抽奖1次能获奖的概率;
《创新设计》2017届高考数学(浙江专用)二轮教师文档讲义:专题2.2三角恒等变换与解三角形
第2讲 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.真 题 感 悟1.(2016·全国Ⅲ卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1D.1625解析 tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.答案 A2.(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B = sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 21133.(2015·全国Ⅰ卷)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析 如图所示,延长BA ,CD 交于点E ,则可知在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°, ∴设AD =12x ,则AE =22x ,DE =6+24x ,令CD =m ,∵BC =2,∴⎝ ⎛⎭⎪⎫6+24x +m ·sin 15°=1⇒6+24x +m =6+2, ∴0<x <4,而AB =6+24x +m -22x =6-24x +m =6+2-22x , ∴AB 的取值范围是(6-2,6+2). 答案 (6-2,6+2)4.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C , 2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3. (2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R (R 为△ABC 外接圆的半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A .热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A.1B.2C.3D.4(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.(3)(2016·合肥质检)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin 2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0,∴α+π6为锐角,∴sin ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝ ⎛⎭⎪⎫2α-π6=2425.(3)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)C (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练1】 (1)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( )A.16 B.13 C.12D.23(2)(2016·成都模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=( )A.-63 B.-66 C.66 D.63(3)(2016·中山模拟)已知cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β=________.解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16.法二 cos ⎝ ⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α) =12(1-sin 2α)=16.(2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23. 由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66.所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66.(3)因为cos(2α-β)=-1114, 且π4<2α-β<π, 所以sin(2α-β)=5314. 因为sin(α-2β)=437, 且-π4<α-2β<π2. 所以cos(α-2β)=17,所以cos(α+β)=cos[(2α-β)-(α-2β)] =cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β) =-1114×17+5314×437=12. 又π4<α+β<3π4,所以α+β=π3.答案 (1)A (2)B (3)π3 热点二 正、余弦定理的应用 [微题型1] 三角形基本量的求解【例2-1】 (2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c . (1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin Cc 中,有 cos A k sin A +cos B k sin B =sin Ck sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有 cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B . 故tan B =sin Bcos B =4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. [微题型2] 求解三角形中的最值问题【例2-2】 (2016·绍兴模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =csin C =2sin π3=43, 所以b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B= 433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33.易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3. 法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立. 所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 解三角形与三角函数的综合问题【例2-3】 (2016·四川成都诊断二)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA→·BC →的值. 解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6.∵f (x )的最小正周期为π, ∴T =2π2|ω|=π. ∵ω>0,∴ω=1.(2)设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . ∵f (B )=-2,∴2sin ⎝ ⎛⎭⎪⎫2B +π6=-2,即sin ⎝⎛⎭⎪⎫2B +π6=-1,解得B =2π3(B ∈(0,π)).∵BC =3,∴a =3,∵sin B =3sin A , ∴b =3a ,∴b =3. 由正弦定理,有3sin A =3sin 2π3, 解得sin A =12. ∵0<A <π3,∴A =π6. ∴C =π6,∴c =a = 3.∴BA→·BC →=ca cos B =3×3×cos 2π3=-32. 探究提高 解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B + sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24, 故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2; 当C -B =π2时,A =π4. 综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用; (3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法. 2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S =12ab sin C 来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、选择题1.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C.-34D.-43解析 ∵sin α+2cos α=102, ∴sin 2 α+4sin α·cos α+4cos 2α=52. 用降幂公式化简得4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C. 答案 C2.(2016·宁波二模)已知锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A.10 B.9 C.8D.5解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,又角A 为锐角, 解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5. 答案 D3.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( ) A.31010 B.1010 C.-1010D.-31010 解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 C4.(2014·新课标全国Ⅰ卷)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A.3α-β=π2 B.2α-β=π2 C.3α+β=π2 D.2α+β=π2解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝ ⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2. 答案 B5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A.3 B.932 C.332D.3 3解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得 ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C. 答案 C 二、填空题6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154, S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得, a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BC sin ∠BAC =AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在Rt △BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6. 答案 100 68.(2016·杭州模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C . 由正弦定理可得a +2b =2c ,即c =a +2b2,cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24, 当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24.答案6-24三、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac . 由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以 C =3π4-A ,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值为1.10.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去), 因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =b a sin A ·ca sin A = bc a 2sin 2A =2021×34=57.11.(2015·山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z , 可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34. 所以△ABC 面积的最大值为2+34.\。
创新设计(浙江专用)2017届高考数学二轮复习 教师用书7 大题规范天天练
星期一 (三角与数列)2017年____月____日1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用) (本小题满分14分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin C 2=104.(1)求cos C 的值;(2)若△ABC 的面积为3154,且sin 2A +sin 2B =1316sin 2C ,求a ,b 及c 的值.解 (1)因为sin C 2=104,所以cos C =1-2sin 2C 2=-14.(2)因为sin 2A +sin 2B =1316sin 2C ,由正弦定理得a 2+b 2=1316c 2,①由余弦定理得a 2+b 2=c 2+2ab cos C ,将cos C =-14代入,得ab =38c 2,②由S △ABC =3154及sin C =1-cos 2C =154,得ab =6,③由①②③得⎩⎪⎨⎪⎧a =2,b =3,c =4,或⎩⎪⎨⎪⎧a =3,b =2,c =4.经检验,满足题意.所以a =2,b =3,c =4或a =3,b =2,c =4.2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等)(本小题满分15分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <32.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n S n -1,1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)×2=2n -1,∴S n =12n -1, ∴当n ≥2时,1nS n =1n (2n -1)<1n (2n -2)=12·1n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n从而S 1+12S 2+13S 3+…+1nS n<1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =32-12n <32. 星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查相互独立事件概率的求解及数学期望的求法)(本小题满分15分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解 记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1·B ·C +A 2·B +A 2·B ·C ,P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C ) =P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.2.立体几何(命题意图:考查线线垂直及面面角的求解)(本小题满分15分)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(1)求证:BD⊥EG;(2)求平面DEG与平面DEF所成锐二面角的余弦值.(1)证明∵EF⊥平面AEB,AE⊂平面AEB,BE⊂平面AEB,∴EF⊥AE,EF⊥BE,又AE⊥BE,∴BE,EF,AE两两垂直,以点E为坐标原点,EB,EF,EA分别为x,y,z轴.建立如图所示的空间直角坐标系,由已知得,A(0,0,2),B(2,0,0),C(2,4,0),F(0,3,0),D(0,2,2),G(2,2,0),∴EG→=(2,2,0),BD→=(-2,2,2),∴BD →·EG →=-2×2+2×2+0×2=0,∴BD →⊥EG →,即BD ⊥EG . (2)解 由已知得EB →=(2,0,0)是平面DEF 的法向量, 设平面DEG 的法向量为n =(x ,y ,z ) , ∵ED →=(0,2,2),EG →=(2,2,0),∴⎩⎪⎨⎪⎧EG →·n =0,ED →·n =0,即⎩⎪⎨⎪⎧y +z =0,x +y =0,令x =1,得n =(1,-1,1),设平面DEG 与平面DEF 所成锐二面角的大小为θ,则|cos 〈n ,EB →〉|=n ·EB →|n |·|EB →|=223=33,则cos θ=33.∴平面DEG 与平面DEF 所成锐二面角的余弦值为33.星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查椭圆方程的求解及直线与椭圆相交情况下的范围问题)(本小题满分15分)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,以BF 2为直径的圆D 经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|,F 1A →·BA →=6.(1)求椭圆C 的方程及圆D 的方程;(2)斜率为k 的直线l 过右焦点F 2,且与椭圆C 交于M 、N 两点,若在x 轴上存在点P (m ,0),使得以PM 、PN 为邻边的平行四边形为菱形,求实数m 的取值范围. 解 (1)因为以BF 2为直径的圆经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|, 所以∠BAF 2=π2,∠BAF 1=∠ABF 1,所以∠F 1AF 2+∠BAF 1=∠AF 2B +∠ABF 1, 所以∠F 1AF 2=∠AF 2F 1, 所以△F 1AF 2是等边三角形. 所以|AF 1→|=|F 1F 2→|=|BF 1→|=2c ,又|AF 1→|2=|OF 1→|2+|OA →|2,即4c 2=c 2+b 2=a 2, 则B (-3c ,0),F 1(-c ,0),F 2(c ,0),A (0,b ), 所以F 1A →·BA →=(c ,b )·(3c ,b )=3c 2+b 2=6, 所以a 2=4,b 2=3,c 2=1, 所以椭圆C 的方程为x 24+y 23=1.由F 1(-1,0),|AF 1→|=2,得 圆D 的方程为(x +1)2+y 2=4.(2)由(1)知F 2(1,0),则l :y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,设M (x 1,y 1)、N (x 2,y 2),则Δ=(-8k 2)2-4(3+4k 2)(4k 2-12)=16×9(k 2+1)>0,x 1+x 2=8k23+4k2,y 1+y 2=k (x 1+x 2-2), 所以PM →+PN →=(x 1-m ,y 1)+(x 2-m ,y 2)=(x 1+x 2-2m ,y 1+y 2). 由于菱形的对角线互相垂直,则(PM →+PN →)·MN →=0,因为MN →的一个方向向量是(1,k ),故x 1+x 2-2m +k (y 1+y 2)=0,所以x 1+x 2-2m +k 2(x 1+x 2-2)=0,所以k 2⎝ ⎛⎭⎪⎫8k 23+4k 2-2+8k 23+4k 2-2m =0, 由已知条件知k ≠0, 所以m =k 23+4k 2=13k 2+4,所以0<m <14,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,14. 星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查曲线的切线、最值及数列不等式的证明等) (本小题满分15分)已知函数f (x )=ax 2+1,g (x )=ln(x +1).(1)当实数a 为何值时,函数g (x )在x =0处的切线与函数f (x )的图象相切; (2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立,求a 的取值范围; (3)已知n ∈N *,试判断g (n )与g ′(0)+g ′(1)+…+g ′(n -1)的大小,并证明之. 解 (1)∵g (x )=ln(x +1),∴g ′(x )=1x +1,g ′(0)=1, 故g (x )在x =0处的切线方程为y =x .由⎩⎪⎨⎪⎧y =x ,y =ax 2+1,得ax 2-x +1=0, ∴Δ=1-4a =0, ∴a =14.(2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立, 即ax 2+ln(x +1)-x ≤0恒成立. 设h (x )=ax 2+ln(x +1)-x (x ≥0), 只需h (x )max ≤0即可.h ′(x )=2ax +1x +1-1=x [2ax +(2a -1)]x +1.①当a =0时,h ′(x )=-xx +1,当x >0时,h ′(x )<0, 函数h (x )在[0,+∞)上单调递减, 故h (x )≤h (0)=0成立.②当a >0时,由h ′(x )=0,得x =12a-1或x =0.1°12a -1<0,即a >12时,在区间(0,+∞)上,h ′(x )>0,则函数h (x )在(0, +∞)上单调递增,h (x )在(0,+∞)上无最大值,此时不满足条件.2° 若12a -1≥0,即0<a ≤12时,函数h (x )在⎝ ⎛⎭⎪⎫0,12a -1上单调递减,在区间⎝ ⎛⎭⎪⎫12a -1,+∞上单调递增,同样h (x )在[0,+∞)上无最大值,不满足条件.③当a <0时,h ′(x )<0,函数h (x )在[0,+∞)上单调递减,故h (x )≤h (0)=0成立, 综上所述,实数a 的取值范围是(-∞,0].(3)结论:g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).证明:当a =0时,ln(x +1)≤x (当且仅当x =0时取等号),令x =1n,∴ln ⎝⎛⎭⎪⎫1n+1<1n,∴ln(n +1)-ln n <1n.故有ln(n +1)-ln n <1n,ln n -ln(n -1)<1n -1, ln(n -1)-ln(n -2)<1n -2, ……ln 3-ln 2<12,ln 2-ln 1<1,所以ln(n +1)<1+12+13+…+1n,即g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1.(本小题满分14分)已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *),且λa n >2n +n +2λ对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5. 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6,所以{a n }是等差数列,首项为a 1=1,公差为6,即a n =6n -5. (2)因为b n =2n,所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n+2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n2n +1,n +12n +2-n2n +1=1-n2n +2≤0, 所以,当n =1,2时, 2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞.2.(本小题满分15分)如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 与△PAD 都是等边三角形. (1)证明:PB ⊥CD ;(2)求二面角A -PD -B 的余弦值.(1)证明 取BC 的中点E ,连接DE ,则四边形ADEB 为正方形,过P 作PO ⊥平面ABCD ,垂足为O ,连接OA ,OB ,OE ,OD ,由△PAB 和△PAD 都是等边三角形可知PA =PB =PD ,所以OA =OB =OD , 即点O 为正方形ADEB 对角线的交点, 故OE ⊥BD ,又PO ⊥OE ,且PO ∩OB =O , 从而OE ⊥平面PBD ,又PB ⊂平面PBD ,所以OE ⊥PB , 因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD ,因此PB ⊥CD .(2)解 由(1)可知,OE ,OB ,OP 两两垂直,以O 为原点,OE 方向为x 轴正方向,OB 方向为y 轴正方向,OP 方向为z 轴正方向,建立如图所示的直角坐标系O -xyz .设|AB |=2,则A (-2,0,0),D (0,-2,0),P (0,0,2) AD →=(2,-2,0),AP →=(2,0,2),设平面PAD 的法向量n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·AD →=2x -2y =0,n ·AP →=2x +2z =0,取x =1,得y =1,z =-1,即n =(1,1,-1), 因为OE ⊥平面PBD ,设平面PBD 的法向量为m , 取m =(1,0,0), 则cos 〈m ,n 〉=13·1=33, 由图象可知二面角A -PD -B 的大小为锐角. 所以,二面角A -PD -B 的余弦值为33. 3.(本小题满分15分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球的颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ).解 (1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P =C 24+C 23+C 22C 29=6+3+136=518. (2)随机变量X 所有可能的取值为2,3,4.{X =4}表示的随机事件是“取到的4个球是4个红球”,故P (X =4)=C 44C 49=1126;{X =3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P (X =3)=C 34C 15+C 33C 16C 49=20+6126=1363; 于是P (X =2)=1-P (X =3)-P (X =4)=1-1363-1126=1114.所以随机变量X 的概率分布如下表:因此随机变量X E (X )=2×1114+3×1363+4×1126=209. 4.(本小题满分15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎪⎫1,32,一个焦点为(3,0).(1)求椭圆C 的方程;(2)若直线y =k (x -1)(k ≠0)与x 轴交于点P ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点Q .求|AB ||PQ |的取值范围.解 (1)由题意得⎩⎪⎨⎪⎧a 2-b 2=3,1a 2+34b2=1,解得a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1,得(1+4k 2)x 2-8k 2x +4k 2-4=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k2,y 1+y 2=k (x 1+x 2-2)=-2k1+4k2.所以线段AB 的中点坐标为⎝ ⎛⎭⎪⎫4k 21+4k 2,-k 1+4k 2,所以线段AB 的垂直平分线方程为 y --k 1+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 21+4k 2. 于是,线段AB 的垂直平分线与x 轴的交点Q ⎝ ⎛⎭⎪⎫3k 21+4k 2,0,又点P (1,0), 所以|PQ |=⎪⎪⎪⎪⎪⎪1-3k 21+4k 2=1+k 21+4k 2. 又|AB |=(1+k 2)[(8k 21+4k 2)2-4·4k 2-41+4k2]=4(1+k 2)(1+3k 2)1+4k 2. 于是,|AB ||PQ |=4(1+k 2)(1+3k 2)1+4k 21+k21+4k 2=41+3k21+k2=43-21+k2. 因为k ≠0,所以1<3-21+k2<3.所以|AB ||PQ |的取值范围为(4,43).5.(本小题满分15分)已知函数f (x )=(2ax 2+bx +1)e -x(e 为自然对数的底数). (1)若a =12,求函数f (x )的单调区间;(2)若f (1)=1,且方程f (x )=1在(0,1)内有解,求实数a 的取值范围. 解 (1)当a =12,f (x )=(x 2+bx +1)e -x,f ′(x )=-[x 2+(b -2)x +1-b ]e -x ,令f ′(x )=0,得x 1=1,x 2=1-b .当b =0,f ′(x )≤0;当b >0时,当1-b <x <1时,f ′(x )>0,当x <1-b 或x >1时,f ′(x )<0; 当b <0时,当1<x <1-b 时,f ′(x )>0,当x >1-b 或x <1时,f ′(x )<0.综上所述,b =0时,f (x )的单调递减区间为(-∞,+∞);b >0时,f (x )的单调递增区间为(1-b ,1),递减区间为(-∞,1-b ),(1,+∞);b <0时,f (x )的单调递增区间为(1,1-b ),递减区间为(-∞,1),(1-b ,+∞).(2)由f (1)=1得2a +b +1=e ,b =e -1-2a .由f (x )=1得e x=2ax 2+bx +1,设g (x )=e x -2ax 2-bx -1,则g (x )在(0,1)内有零点. 设x 0为g (x )在(0,1)内的一个零点,则由g (0)=0、g (1)=0知g (x )在区间(0,x 0)和(x 0,1)上不可能单调递增,也不可能单调递减,设h (x )=g ′(x ),则h (x )在区间(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点.g ′(x )=e x-4ax -b ,h ′(x )=e x-4a . 当a ≤14时,h ′(x )>0,h (x )在区间(0,1)上递增,h (x )不可能有两个及以上零点;当a ≥e4时,h ′(x )<0,h (x )在区间(0,1)上递减,h (x )不可能有两个及以上零点;当14<a <e4时,令h ′(x )=0得x =ln(4a )∈(0,1), 所以h (x )在区间(0,ln(4a ))上递减,在(ln(4a ),1)上递增,h (x )在区间(0,1)上存在最小值h (ln(4a )).若h (x )有两个零点,则有h (ln(4a ))<0,h (0)>0,h (1)>0. h (ln(4a ))=4a -4a ln(4a )-b =6a -4a ln(4a )+1-e ⎝ ⎛⎭⎪⎫14<a <e 4.设φ(x )=32x -x ln x +1-e(1<x <e),则φ′(x )=12-ln x ,令φ′(x )=0,得x =e ,当1<x <e 时φ′(x )>0,φ(x )递增,当e <x <e 时φ′(x )<0,φ(x )递减, φ(x )max =φ(e)=e +1-e <0,所以h (ln(4a ))<0恒成立. 由h (0)=1-b =2a -e +2>0,h (1)=e -4a -b >0,得e -22<a <12.当e -22<a <12时,设h (x )的两个零点为x 1,x 2,则g (x )在(0,x 1)递增,在(x 1,x 2)递减,在(x 2,1)递增,所以g (x 1)>g (0)=0,g (x 2)<g (1)=0,则g (x )在(x 1,x 2)内有零点.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫e -22,12.星期一 (三角与数列) 2017年____月____日1. 三角(命题意图:考查正、余弦定理、面积公式及三角恒等变换)(本小题满分14分)已知△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,且满足acos A =c2-cos C.(1)若b =4,求a ;(2)若c =3,△ABC 的面积为3,求证:3sin C +4cos C =5.(1)解 由a cos A =c 2-cos C 得sin A cos A =sin C2-cos C.∴2sin A =sin A cos C +sin C cos A =sin B ,即2a =b , ∵b =4,∴a =2.(2)证明 ∵△ABC 的面积为3, ∴12ab sin C =a 2sin C =3,① ∵c =3,∴a 2+4a 2-4a 2cos C =9,② 由①②消去a 2得3sin C =5-4cos C , 即3sin C +4cos C =5.2.数列(命题意图:考查等差、等比数列的基本运算及求和)(本小题满分15分)已知数列{a n }是首项a 1=1的等差数列,其前n 项和为S n ,数列{b n }是首项b 1=2的等比数列,且b 2S 2=16,b 1b 3=b 4. (1)求a n 和b n ;(2)令c 1=1,c 2k =a 2k -1,c 2k +1=a 2k +kb k (k =1,2,3…),求数列{c n }的前2n +1项和T 2n +1. 解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =2qn -1.由b 1b 3=b 4,得q =b 4b 3=b 1=2. 由b 2S 2=2q (2+d )=16, 解得d =2,∴a n =2n -1,b n =2n.(2)∵T 2n +1=c 1+a 1+(a 2+b 1)+a 3+(a 4+2·b 2)+…+a 2n -1+(a 2n +nb n ) =1+S 2n +(b 1+2b 2+…+nb n ).令A =b 1+2b 2+…+nb n , 则A =2+2·22+…+n ·2n, ∴2A =22+2·23+…+n ·2n +1,两式相减,得-A =2+22+ (2)-n ·2n +1,∴A =n ·2n +1-2n +1+2.又S 2n =2n (1+a 2n )2=4n 2,∴T 2n +1=1+4n 2+n ·2n +1-2n +1+2=3+4n 2+(n -1)·2n +1.星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查古典概型的概率的求法以及数学期望的求解)(本小题满分15分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×10=350.2.立体几何(命题意图:考查线面的平行关系、线面角的求法及空间向量在立体几何中的应用)(本小题满分15分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =60°,PD ⊥平面ABCD ,PD =AD =1,点E ,F 分别为AB 和PD 中点. (1)求证:直线AF ∥平面PEC ;(2)求直线PC 与平面PAB 所成角的正弦值. (1)证明 作FM ∥CD 交PC 于M ,连接EM . ∵点F 为PD 中点,∴FM =12CD .FM ∥CD .又E 是AB 中点,且AB =CD ,AB ∥CD . ∴AE =12AB =FM ,AE ∥FM ,∴AEMF 为平行四边形, ∴AF ∥EM , ∵AF ⊄平面PEC ,EM ⊂平面PEC ,∴直线AF ∥平面PEC .(2)解 连接DE , ∵∠DAB =60°,∴DE ⊥DC ,如下图所示,建立坐标系, 则P (0,0,1),C (0,1,0),E ⎝ ⎛⎭⎪⎫32,0,0,A ⎝ ⎛⎭⎪⎫32,-12,0,B ⎝⎛⎭⎪⎫32,12,0, ∴AP →=⎝ ⎛⎭⎪⎫-32,12,1,AB →=(0,1,0).设平面PAB 的一个法向量为n =(x ,y ,z ).∵n ·AB →=0,n ·AP →=0,∴⎩⎪⎨⎪⎧-32x +12y +z =0,y =0,取x =1,则z =32,∴平面PAB 的一个法向量为n =⎝ ⎛⎭⎪⎫1,0,32. ∵PC →=(0,1,-1), ∴设向量n 与PC →所成角为θ,cos θ=n ·PC→|n ||PC →|=-3274×2=-4214.∴直线PC 与平面PAB 所成角的正弦值为4214. 星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查直线与椭圆相交情况下的弦长及三角形面积问题)(本小题满分15分)已知椭圆M :x 24b 2+y 2b2=1(b >0)上一点与椭圆的两个焦点构成的三角形周长为4+2 3. (1)求椭圆M 的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)因为椭圆M 上一点和它的两个焦点构成的三角形周长为4+23, 所以2a +2c =4+23, 又a =2b ,所以c =3b , 所以b =1,则a =2,c = 3. 所以椭圆M 的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0, 故可设直线l 的方程为y =kx +m (m ≠0),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2-4=0,消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0, 且x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k2, 故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2. 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,又m ≠0,所以k 2=14,即k =±12,由于直线OP ,OQ 的斜率存在,且Δ>0,得0<m 2<2且m 2≠1.则S △OPQ =12|y 1-y 2|·|2m |=12|x 1-x 2|·|m |=12·(x 1+x 2)2-4x 1x 2|m |=m 2(2-m 2),所以S △OPQ 的取值范围为(0,1).星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查函数的单调性及不等式恒成立问题,考查等价转化思想) (本小题满分15分)已知函数f (x )=(3-a )x -2+a -2ln x (a ∈R ). (1)若函数y =f (x )在区间(1,3)上单调,求a 的取值范围;(2)若函数g (x )=f (x )-x 在⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=3-a -2x =(3-a )x -2x.当a ≥3时,有f ′(x )<0,即函数f (x )在区间(1,3)上单调递减;当a <3时,令f ′(x )=0,得x =23-a ,若函数y =f (x )在区间(1,3)上单调,则23-a ≤1或23-a ≥3,解得a ≤1或73≤a <3; 综上,a 的取值范围是(-∞,1]∪⎣⎢⎡⎭⎪⎫73,+∞.(2)因为当x →0时,g (x )→+∞,所以g (x )=(2-a )(x -1)-2ln x <0在区间⎝ ⎛⎭⎪⎫0,12上恒成立不可能,故要使函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,只要对任意的x ∈⎝ ⎛⎭⎪⎫0,12,g (x )>0恒成立, 即对x ∈⎝ ⎛⎭⎪⎫0,12,a >2-2ln x x -1恒成立,令l (x )=2-2ln x x -1,x ∈⎝ ⎛⎭⎪⎫0,12,则l ′(x )=-2x (x -1)-2ln x (x -1)2=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x -2,x ∈⎝ ⎛⎭⎪⎫0,12, 则m ′(x )=-2x 2+2x =-2(1-x )x2<0, 故m (x )在⎝ ⎛⎭⎪⎫0,12上为减函数,于是m (x )>m ⎝ ⎛⎭⎪⎫12=2-2ln 2>0,从而l ′(x )>0,于是l (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,所以l (x )<l ⎝ ⎛⎭⎪⎫12=2-4ln 2, 故要使a >2-2ln xx -1恒成立,只要a ∈[2-4ln 2,+∞),综上,若函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为2-4ln 2. 星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1.(本小题满分14分)设数列{a n }的前n 项之积为T n ,且log 2T n =n (n -1)2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =λa n -1(n ∈N *),数列{b n }的前n 项之和为S n ,若对任意的n ∈N *,总有S n +1>S n ,求实数λ的取值范围. 解 (1)由log 2T n =n (n -1)2,n ∈N *,得T n =2n (n -1)2,所以T n -1=2(n -1)(n -2)2(n ∈N *,n ≥2),所以a n =T n T n -1=2n (n -1)22(n -1)(n -2)2=2n (n -1)2-(n -1)(n -2)2=2n -1,n ∈N *,n ≥2.又a 1=T 1=2=1,适合上式,所以a n =2n -1,n ∈N *.(2)由b n =λa n -1=λ2n -1-1,得S n =λ·1-2n1-2-n =(2n-1)λ-n .所以S n +1>S n ⇔(2n +1-1)λ-(n +1)>(2n -1)λ-n ⇔2nλ>1⇔λ>12n .因为对任意的n ∈N *,12n ≤12,故所求的λ取值范围是⎝ ⎛⎭⎪⎫12,+∞.2.(本小题满分15分)如图,已知空间四边形ABCD 在平面α上的射影是梯形FBCE ,BC ∥EF ,BC ⊥BF ,BC =2EF =2AF =4DE .又平面ABC 与平面α所成的二面角的大小为45°.(1)求异面直线AB 与CD 所成角的大小; (2)设直线BD 交平面AFC 于点O ,求比值BOOD.解 (1)如图,以点F 为原点,FB ,FE ,FA 分别为x ,y ,z 轴,建立空间直角坐标系.因为AF ⊥平面FBCE ,BC ⊥BF ,所以BC ⊥AB ,所以∠ABF 就是平面ABC 与平面α所成的二面角的平面角,所以∠ABF =45°,从而|AF |=|BF |.令|DE |=a ,则|AF |=|EF |=|BF |=2a ,|BC |=4a ,A (0,0,2a ),B (2a ,0,0),C (2a ,4a ,0),D (0,2a ,a).所以AB →=(2a ,0,-2a ),CD →=(-2a ,-2a ,a ), cos 〈AB →,CD →〉=-4a 2-2a 222a ·3a=-22.所以〈AB →,CD →〉=135°,故异面直线AB 与CD 所成角的大小为45°. (2)连接BE 、CF 交于点G ,再连接OG . 因为DE ∥AF ,DE ⊄平面AFC ,AF ⊂平面AFC , 所以DE ∥平面AFC .又平面BDE ∩平面AFC =OG ,所以OG ∥DE , 所以BO OD =BGGE.由△EFG ∽△BCG ,得EG BG =EF BC =12,所以BO OD =BGGE=2.3.(本小题满分15分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则 P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同的学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列是随机变量X 的数学期望E (X )=0×6+1×2+2×10+3×30=5.4.(本小题满分15分)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为A ,左顶点为B ,F 为右焦点,过F 作平行于AB 的直线交椭圆于C 、D 两点,作平行四边形OCED ,点E 恰在椭圆上.(1)求椭圆的离心率;(2)若平行四边形OCED 的面积为26,求椭圆的方程.解 (1)∵焦点为F (c ,0),AB 的斜率为b a ,故直线CD 的方程为y =b a(x -c ). 与椭圆方程联立后消去y 得到2x 2-2cx -b 2=0.∵CD 的中点为G ⎝ ⎛⎭⎪⎫c 2,-bc 2a ,点E ⎝⎛⎭⎪⎫c ,-bca 在椭圆上.∴将E 的坐标代入椭圆方程并整理得2c 2=a 2,∴离心率e =ca =22. (2)由(1)知c a =22,b =c ,则直线CD 的方程为y =22(x -c ),与椭圆方程联立消去y 得到2x 2-2cx -c 2=0.∵平行四边形OCED 的面积为S =c |y C -y D | =22c (x C +x D )2-4x C x D =22c c 2+2c 2=62c 2=26,所以c =2,b =2,a =2 2. 故椭圆方程为x 28+y 24=1.5.(本小题满分15分)设函数f (x )=12x 2+(2m -3)x +ln x (m ∈R ).(1)讨论函数f (x )在定义域上的单调性;(2)若对任意的x ∈(1,2),总有f (x )<-2,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=x +2m -3+1x =x 2+(2m -3)x +1x.令x 2+(2m -3)x +1=0,则Δ=(2m -3)2-4=(2m -1)(2m -5). ①当12≤m ≤52时,Δ≤0,所以x 2+(2m -3)x +1≥0,从而f ′(x )≥0; ②当m >52时,因为x >0,所以x 2+(2m -3)x +1>x 2+⎝ ⎛⎭⎪⎫2×52-3x +1=x 2+2x +1>0,所以f ′(x )>0;③当m <12时,Δ>0,方程x 2+(2m -3)x +1=0有两个不相等的实数根x 1,x 2(不妨设x 1<x 2).因为x 1+x 2=3-2m >3-2×12=2>0,x 1x 2=1>0,所以x 1>0,x 2>0,所以当x 1<x <x 2时,x 2+(2m -3)x +1<0, 从而f ′(x )<0;当0<x <x 1或x >x 2时,x 2+(2m -3)x +1>0, 从而f ′(x )>0.综上可知,当m ≥12时,函数f (x )在定义域(0,+∞)上单调递增;当m <12时,函数f (x )在区间(0,x 1)和(x 2,+∞)上单调递增,在区间(x 1,x 2)上单调递减,其中x 1=3-2m -(2m -3)2-42,x 2=3-2m +(2m -3)2-42.(2)法一 由(1)知,当m ≥12时,函数f (x )在区间(1,2)上单调递增,所以f (x )>f (1)=12+2m -3≥12+2×12-3=-32>-2,故f (x )<-2不成立.当m <12时,函数f (x )在区间(x 1,x 2)上单调递减,在区间(0,x 1)和(x 2,+∞)上单调递增.由x 1>0,x 2>0,x 1x 2=1,知0<x 1<1<x 2,所以在区间[1,2]上,f (x )max = max{f (1),f (2)}.因为f (1)=12+2m -3=2m -52,f (2)=2+2(2m -3)+ln 2=4m -4+ln 2,所以⎩⎪⎨⎪⎧2m -52≤-2,4m -4+ln 2≤2,解得⎩⎪⎨⎪⎧m ≤14,m ≤2-ln 24.而14-2-ln 24=ln 2-14<0,所以m ≤14. 故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,14.法二 f (x )<-2,即12x 2+(2m -3)x +ln x <-2.在区间(1,2)上,12x 2+(2m -3)x +ln x <-2⇔2m -3<-12x 2+ln x +2x =-12x -ln x +2x .令g (x )=-12x -ln x +2x ,x ∈(1,2),则g ′(x )=-12-1-(ln x +2)x 2=-x 2+2ln x +22x 2. 令h (x )=-x 2+2ln x +2,x ∈(1,2), 则h ′(x )=-2x +2x =2(1-x 2)x<0,所以函数h (x )在区间(1,2)上单调递减. 因为h (1)=1>0,h (2)=2ln 2-2<0,所以存在唯一的x 0∈(1,2),使得h (x 0)=0,且当x ∈(1,x 0)时,h (x )>0,即g ′(x )>0;当x ∈(x 0,2)时,h (x )<0,即g ′(x )<0.所以函数g (x )在区间(1,x 0)上单调递增,在区间(x 0,2)上单调递减,因此在[1,2]上,g (x )min =min{g (1),g (2)}. 因为g (1)=-12-2=-52,g (2)=-1-ln 2+22=-2-ln 22, 所以g (2)-g (1)=12-ln 22=1-ln 22>0,即g (2)>g (1).故当x ∈(1,2)时,g (x )>g (1). 因此2m -3≤-52,m ≤14.故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,14.星期一 (三角与数列) 2017年____月____日1.三角(命题意图:考查正弦定理、三角恒等变换及三角函数的最值(值域))(本小题满分14分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b -c a =cos Ccos A .(1)求角A 的大小;(2)求函数y =3sin B +sin ⎝⎛⎭⎪⎫C -π6的值域.解 (1)由2b -c a =cos Ccos A ,利用正弦定理可得2sin B cos A -sin C cos A =sin A cos C , 化为2sin B cos A =sin(C +A )=sin B , ∵sin B ≠0,∴cos A =12,∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.(2)y =3sin B +sin ⎝ ⎛⎭⎪⎫π-π3-B -π6=3sin B +cos B=2sin ⎝⎛⎭⎪⎫B +π6.∵B +C =2π3,0<B <π2,∴π6<B <π2, ∴π3<B +π6<2π3, ∴sin ⎝ ⎛⎭⎪⎫B +π6∈⎝ ⎛⎦⎥⎤32,1,∴y ∈(3,2].2.数列(命题意图:考查等差、等比数列的基本运算及数列的最值问题.)(本小题满分15分)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 7=70且a 1,a 2,a 6成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值.解 (1)设公差为d ,则有⎩⎪⎨⎪⎧7a 1+21d =70,a 22=a 1a 6,即⎩⎪⎨⎪⎧a 1+3d =10,(a 1+d )2=a 1(a 1+5d )⇒⎩⎪⎨⎪⎧a 1=1,d =3或⎩⎪⎨⎪⎧a 1=10,d =0(舍), ∴a n =3n -2.(2)S n =n2[1+(3n -2)]=3n 2-n 2,∴b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23,当且仅当3n =48n,即n =4时取“=”号,数列{b n }的最小项是第4项,b 4=23.星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查互斥事件概率的求法,考查分布列与数学期望的求解)(本小题满分15分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 解 (1)记该批产品通过检验为事件A ,则P (A )=C 34⎝ ⎛⎭⎪⎫124·⎝ ⎛⎭⎪⎫124+⎝ ⎛⎭⎪⎫124·⎝ ⎛⎭⎪⎫12=364.(2)X 的可能取值为400,500,800;P (X =400)=1-416-116=1116,P (X =500)=116, P (X =800)=14,则X 的分布列为E (X )=506.25.2.立体几何(命题意图:考查折叠下的垂直问题及二面角的求解问题)(本小题满分15分)如图,已知长方形ABCD 中,AB =22,AD =2,M 为DC 的中点,将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM . (1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E -AM -D 的余弦值为55.(1)证明 ∵长方形ABCD 中,AB =22,AD =2,M 为DC 的中点, ∴AM =BM =2,又AM 2+BM 2=AB 2,∴AM ⊥BM , ∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴BM ⊥平面ADM ,∵AD ⊂平面ADM ,∴AD ⊥BM .(2)解 建立如图所示的直角坐标系,则平面ADM 的一个法向量n =(0,1,0),则A (1,0,0),M (-1,0,0),D (0,0,1),B (-1,2,0),则MD →=(1,0,1),DB →=(-1,2,-1).设DE →=λDB →,ME →=MD →+λDB →=(1-λ,2λ,1-λ),AM →=(-2,0,0), 设平面AME 的一个法向量m =(x ,y ,z ),⎩⎪⎨⎪⎧2x =0,2λy +(1-λ)z =0,取y =1,得x =0,y =1,z =2λλ-1,所以m =⎝ ⎛⎭⎪⎫0,1,2λλ-1,因为cos 〈m ·n 〉=m ·n |m |·|n |=55,求得λ=12,所以E 为BD 的中点.星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查利用向量知识求椭圆方程及直线与椭圆相交情况下的三角形、斜率、点到直线的距离等知识的综合应用)(本小题满分15分)在平面直角坐标系xOy 中,F 1、F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 是椭圆C 上的一点,满足OE →=OF 1→+22OB →,且△EF 1F 2的周长为2(2+1). (1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围. 解 (1)由已知F 1(-c ,0),设B (0,b ),即OF 1→=(-c ,0),OB →=(0,b ), ∴OE →=⎝ ⎛⎭⎪⎫-c ,22b ,即E ⎝ ⎛⎭⎪⎫-c ,22b , ∴c 2a 2+12b 2b 2=1,得c a =22,① 又△EF 1F 2的周长为2(2+1),∴2a +2c =2+22,② 又①②得c =1,a =2,∴b =1,∴所求椭圆C 的方程为x 22+y 2=1.(2)设点M (m ,0),(0<m <1),直线l 的方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1),x 2+2y 2=2,消去y ,得(1+2k 2)x 2-4k 2x +2k 2-2=0, 设P (x 1,y 1),Q (x 2,y 2),PQ 中点为N (x 0,y 0), 则x 1+x 2=4k 21+2k 2,∴y 1+y 2=k (x 1+x 2-2)=-2k 1+2k 2,∴x 0=x 1+x 22=2k 21+2k 2,y 0=y 1+y 22=-k 1+2k2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.法一 ∵△MPQ 是以M 为顶点的等腰三角形,∴MN ⊥PQ ,即k 2m (1+2k 2)-2k 2=-1,∴m =k 21+2k 2=12+1k2∈⎝⎛⎭⎪⎫0,12.设点M 到直线l :kx -y -k =0距离为d ,则d 2=k 2(m -1)2k 2+1=k 2(k 2+1)(1+2k 2)2<14(k 2+k 2+1)2(1+2k 2)2=14, ∴d ∈⎝ ⎛⎭⎪⎫0,12, 即点M 到直线距离的取值范围是⎝ ⎛⎭⎪⎫0,12. 法二 ∵△MPQ 是以M 为顶点的等腰三角形, ∴(MP →+MQ →)·PQ →=0,∵MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →=(x 2-x 1,y 2-y 1), ∴(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0, 又y 2+y 1=k (x 2+x 1-2),y 2-y 1=k (x 2-x 1), ∴(x 2+x 1-2m )+k 2(x 1+x 2-2)=0,∴⎝ ⎛⎭⎪⎫4k 21+2k 2-2m +k 2⎝ ⎛⎭⎪⎫4k 21+2k 2-2=0,∴m =k 21+2k 2. 以下同解法一.星期四 (函数与导数) 2017年____月____日函数与导数知识(命题意图:考查含参数的函数单调性的求解以及不等式恒成立条件下的参数范围的求取.考查考生的分类讨论思想以及转化与化归思想的应用) (本小题满分15分)已知函数f (x )=(a +1)ln x +ax 2+1. (1)讨论函数f (x )的单调性;(2)设a <-1,如果对任意x 1,x 2∈(0,+∞), |f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a +1x +2ax =2ax 2+a +1x.当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; 当-1<a <0时,令f ′(x )=0,解得x =-a +12a. 即x ∈⎝⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0; x ∈⎝⎛⎭⎪⎫-a +12a ,+∞时,f ′(x )<0. 故f (x )在⎝ ⎛⎭⎪⎫0,-a +12a 上单调递增,在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减. (2)法一 不妨设x 1≤x 2,而a <-1,由(1)知f (x )在 (0,+∞)上单调递减,从而对任意x 1、x 2∈(0,+∞),恒有 |f (x 1)-f (x 2)|≥4|x 1-x 2|⇔f (x 1)-f (x 2)≥ 4(x 2-x 1)⇔f (x 1)+4x 1≥f (x 2)+4x 2. 令g (x )=f (x )+4x ,则g ′(x )=a +1x+2ax +4,则f (x 1)+4x 1≥f (x 2)+4x 2等价于g (x )在(0,+∞)上单调递减, 即g ′(x )=a +1x+2ax +4≤0, 从而a ≤-4x -12x 2+1=(2x -1)2-4x 2-22x 2+1=(2x -1)22x 2+1-2, 故a 的取值范围为(-∞,-2]. 法二 a ≤⎝⎛⎭⎪⎫-4x -12x 2+1min.设φ(x )=-4x -12x 2+1,则φ′(x )=-4(2x 2+1)-(-4x -1)·4x(2x 2+1)2=8x 2+4x -4(2x 2+1)2=8x 2+4x -4(2x 2+1)2=4(2x -1)(x +1)(2x 2+1)2. 当x ∈⎝ ⎛⎭⎪⎫0,12时,φ′(x )<0,φ(x )为减函数,x ∈⎝ ⎛⎭⎪⎫12,+∞时,φ′(x )>0,φ(x )为增函数,∴φ(x )min =φ⎝ ⎛⎭⎪⎫12=-2,∴a 的取值范围为(-∞,-2].星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟)1.(本小题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =b cos C +33c sin B . (1)若a =2,b =7,求c ;(2)若3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=0,求A . 解 (1)∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B ,∴cos B sin C =33sin C sin B ,又sin C ≠0, ∴tan B =3,∵B ∈⎝ ⎛⎭⎪⎫0,π2,∴B =π3.∵b 2=a 2+c 2-2ac cos B ,∴c 2-2c -3=0, ∴c =3,c =-1(舍去).(2)∵3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12 =3sin ⎝ ⎛⎭⎪⎫2A -π6-1+cos ⎝ ⎛⎭⎪⎫2C -π6 =3sin ⎝ ⎛⎭⎪⎫2A -π6+cos ⎝ ⎛⎭⎪⎫4π3-2A -π6-1=3sin ⎝ ⎛⎭⎪⎫2A -π6-cos ⎝ ⎛⎭⎪⎫2A -π6-1=2sin ⎝⎛⎭⎪⎫2A -π3-1. ∴由2sin ⎝⎛⎭⎪⎫2A -π3-1=0,及π6<A <π2,可得A =π4. 2.(本小题满分15分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +ABCD +ABCD +ABCD +ABCD . 由事件的独立性与互斥性,P (E )=P (ABCD )+P (ABCD )+P (ABCD )+ P (ABCD )+P (ABCD )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13⎭⎪⎫×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512.P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×144+1×72+2×144+3×12+4×12+6×4=236. 3.(本小题满分15分)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求四棱锥P -ABCD 的体积;(2)试问线段PB 上是否存在点F ,使二面角C -DE -F 的余弦值为14?若存在,确定点F 的位置;若不存在,说明理由.解 (1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD ⊥PE .又因为△PAB 是等边三角形,E 是线段AB 的中点,。
创新设计(浙江专用)2017届高考数学二轮复习 大题规范天天练 星期五 第三周 综合限时练
星期五 (综合限时练)2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟)1.(本小题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =b cosC +33c sin B . (1)若a =2,b =7,求c ;(2)若3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=0,求A . 解 (1)∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴cos B sin C =33sin C sin B ,又sin C ≠0, ∴tan B =3,∵B ∈⎝ ⎛⎭⎪⎫0,π2,∴B =π3.∵b 2=a 2+c 2-2ac cos B ,∴c 2-2c -3=0, ∴c =3,c =-1(舍去).(2)∵3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=3sin ⎝ ⎛⎭⎪⎫2A -π6-1+cos ⎝ ⎛⎭⎪⎫2C -π6 =3sin ⎝ ⎛⎭⎪⎫2A -π6+cos ⎝ ⎛⎭⎪⎫4π3-2A -π6-1=3sin ⎝ ⎛⎭⎪⎫2A -π6-cos ⎝ ⎛⎭⎪⎫2A -π6-1 =2sin ⎝⎛⎭⎪⎫2A -π3-1. ∴由2sin ⎝⎛⎭⎪⎫2A -π3-1=0,及π6<A <π2,可得A =π4. 2.(本小题满分15分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +ABCD +ABCD +ABCD +ABCD . 由事件的独立性与互斥性,P (E )=P (ABCD )+P (ABCD )+P (ABCD )+ P (ABCD )+P (ABCD )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13⎭⎪⎫×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144, P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512.P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×144+1×72+2×144+3×12+4×12+6×4=6.3.(本小题满分15分)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求四棱锥P -ABCD 的体积;(2)试问线段PB 上是否存在点F ,使二面角C -DE -F 的余弦值为14?若存在,确定点F 的位置;若不存在,说明理由. 解 (1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD ⊥PE .又因为△PAB 是等边三角形,E 是线段AB 的中点, 所以PE ⊥AB .因为AD ∩AB =A ,所以PE ⊥平面ABCD . 由DA =AB =2,BC =12AD ,可得BC =1.因为△PAB 是等边三角形,可求得PE = 3. 所以V P -ABCD =13S ABCD ·PE =13×12(1+2)×2×3= 3.(2)以E 为原点,建立如图所示的空间直角坐标系E -xyz .则有A (0,1,0),E (0,0,0),B (0,-1,0),C (1,-1,0),D (2,1,0),P (0,0,3). 设F (x 0,y 0,z 0),PF →=λPB →(0<λ<1), 则(x 0,y 0,z 0-3)=λ(0,-1,-3). 所以F (0,-λ,3-3λ).设n =(x ,y ,z )为平面DEF 的法向量,ED →=(2,1,0), EF →=(0,-λ,3-3λ),⎩⎪⎨⎪⎧ED →·n =0,EF →·n =0,即⎩⎨⎧2x +y =0,-λy +(3-3λ)z =0.所以⎩⎪⎨⎪⎧x =1,y =-2,z =2λ3(λ-1).∴n =⎝ ⎛⎭⎪⎫1,-2,2λ3(λ-1).又平面CDE 的法向量为m =(0,0,1).∴|cos 〈m ,n 〉|=⎪⎪⎪⎪⎪⎪2λ3(λ-1)1+4+⎣⎢⎡⎦⎥⎤2λ3(λ-1)2=14,化简得3λ2+2λ-1=0, 解得λ=13或λ=-1(舍去).所以存在点F ,且PF =13PB .则点F 在靠近P 的三等分点上.4.(本小题满分15分)设A 1(-22,0),A 2(22,0),P 是动点,且直线A 1P 与A 2P 的斜率之积等于-12.5.(本小题满分15分)已知函数f (x )=ln x ,g (x )=12x 2-2x .(1)设h (x )=f (x +1)-g ′(x )(其中g ′(x )是g (x )的导函数),求h (x )的单调区间; (2)设k ∈Z ,当x >1时,不等式k (x -1)<xf (x )+3g ′(x )+4恒成立,求k 的最大值. 解 (1)h (x )=f (x +1)-g ′(x )=ln(x +1)-x +2,x >-1,所以h ′(x )=1x +1-1=-xx +1. 当-1<x <0时,h ′(x )>0; 当x >0时,h ′(x )<0.因此,h (x )在(-1,0)上单调递增,在(0,+∞)上单调递减. (2)当x >1时,不等式k (x -1)<xf (x )+3g ′(x )+4化为k <x ln x +xx -1+2, 所以k <x +x ln xx -1+2对任意x >1恒成立. 令g (x )=x +x ln x x -1+2,则g ′(x )=x -ln x -2(x -1)2. 令h (x )=x -ln x -2(x >1),则h ′(x )=1-1x=x -1x>0, 所以函数h (x )在(1,+∞)上单调递增. 因为h (3)=1-ln 3<0,h (4)=2-2ln 2>0,所以方程h (x )=0在(1,+∞)上存在唯一实根x 0,且满足h (x 0)=x 0-ln x 0-2=0,x 0∈(3,4).当1<x <x 0时,h (x )<0,即g ′(x )<0,当x >x 0时,h (x )>0,即g ′(x )>0,所以函数g (x )=x +x ln xx -1+2在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.所以[]g (x )min=g (x 0)=x 0(1+ln x 0)x 0-1+2=x 0(1+x 0-2)x 0-1+2=x 0+2∈(5,6).所以k <[g (x )]min =x 0+2∈(5,6). 故整数k 的最大值是5.。
创新设计(浙江专用)高考数学二轮复习小题综合限时练(十)
2017届高考数学二轮复习 小题综合限时练(十)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在复平面内,复数6+5i ,2+4i(i 为虚数单位)对应的点分别为A 、C .若C 为线段AB 的中点,则点B 对应的复数是( ) A.-2+3i B.4+i C.-4+iD.2-3i解析 ∵两个复数对应的点分别为A (6,5)、C (2,4),C 为线段AB 的中点,∴B (-2,3),即其对应的复数是-2+3i.故选A. 答案 A2.如图,设全集U 为整数集,集合A ={x ∈N |1≤x ≤8},B ={0,1,2},则图中阴影部分表示的集合的真子集的个数为( ) A.3 .4 C.7.8解析 依题意,A ∩B ={1,2},该集合的真子集个数是22-1=3.故选A. 答案 A3.已知实数x 、y 满足不等式组⎩⎪⎨⎪⎧x +y ≤3,x +y ≥2,x ≥0,y ≥0,若z =x -y ,则z 的最大值为( )A.3B.4C.5D.6解析 作出不等式组⎩⎪⎨⎪⎧x +y ≤3,x +y ≥2,x ≥0,y ≥0所对应的可行域(如图所示),变形目标函数为y =x -z ,平移直线y =x -z 可知,当直线经过点(3,0)时,z 取最大值,代值计算可得z =x -y 的最大值为3.故选A. 答案 A4.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=( ) A.14 B.34 C.35D.45解析 由双曲线的定义知,|PF 1|-|PF 2|=2a =2,又|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,又|F 1F 2|=2c =22,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.故选B.答案 B5.已知定义在R 上的函数f (x )满足条件: ①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1、x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2); ③函数f (x +2)的图象关于y 轴对称. 则下列结论正确的是( ) A.f (7)<f (6.5)<f (4.5) B.f (7)<f (4.5)<f (6.5) C.f (4.5)<f (6.5)<f (7)D.f (4.5)<f (7)<f (6.5)解析 由函数f (x +2)的图象关于y 轴对称,得f (2+x )=f (2-x ),又f (x +4)=f (x ),∴f (4.5)=f (0.5),f (7)=f (3)=f (2+1)=f (2-1)=f (1),f (6.5)=f (2.5)=f (2+0.5)=f (2-0.5)=f (1.5),由题意知,f (x )在[0,2]上是增函数,∴f (4.5)<f (7)<f (6.5).故选D. 答案 D6.已知在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A 、B 、C 成等差数列,△ABC 的面积等于3,则b 的取值范围为( ) A.[2,6) B.[2,6) C.[2,6)D.[4,6)解析 ∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =180°,∴3B =180°,即B =60°.∵S =12ac sin B =12ac sin 60°=34ac =3,∴ac =4.法一 由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 60°=a 2+c 2-ac ,又△ABC 为锐角三角形,∴a 2+b 2>c 2,且b 2+c 2>a 2,∵b 2=a 2+c 2-ac ,∴b 2+c 2<(a 2+c 2-ac )+(a 2+b 2),整理得2a >c ,且b 2+a 2<(a 2+c 2-ac )+(b 2+c 2),整理得2c >a ,∴c2<a<2c ,ac2<a 2<2ac ,又ac =4,∴2<a 2<8,b 2=a 2+c 2-ac =a 2+16a2-4,2<a 2<8,∴令a 2=t ∈(2,8),则b 2=f (t )=t +16t-4,2<t <8,∵函数f (t )在(2,4)上单调递减,在(4,8)上单调递增,∴f (t )∈[4,6),即4≤b 2<6,∴2≤b < 6.故选A. 法二 由正弦定理a sin A =b sin B =c sin C ,得ac =b 2sin 2B ·sin A sin C ⇒4=43b 2sin A sin(120°-A ),即b 2=3sin A sin (120°-A )=3sin A ⎝ ⎛⎭⎪⎫32cos A +12sin A=332sin A cos A +12sin 2A =334sin 2A +14(1-cos 2A )=6sin (2A -30°)+12,∵30°<A <90°,∴30°<2A -30°<150°,1<sin(2A -30°)+12≤32,∴632≤b 2<61,即4≤b 2<6,∴2≤b < 6.故选A. 答案 A7.点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM →·PN →的取值范围是( ) A.[0,2] B.[0,3] C.[0,4] D.[-2,2]解析 如图所示,设正三棱柱的内切球球心为O ,则PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=PO →2-OM →2,由正三棱柱底边长为23,高为2,可得该棱柱的内切球半径为OM =ON =1,外接球半径为OA =OA 1=5,对三棱柱上任一点P 到球心O 的距离的范围为[1,5],∴PM →·PN →=PO →2-OM →2=OP →2-1∈[0,4].故选C. 答案 C8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx +2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A.-43B.-54C.-35D.-53解析 ∵圆C 的方程可化为(x -4)2+y 2=1,∴圆C 的圆心为(4,0),半径为1,由题意设直线y =kx +2上至少存在一点A (x 0,kx 0+2),以该点为圆心,1为半径的圆与圆C 有公共点,∴存在x 0∈R ,使得|AC |≤1+1成立,即|AC |min ≤2,∵|AC |min 即为点C 到直线y =kx +2的距离|4k +2|k 2+1≤2,解得-43≤k ≤0,即k 的最小值是-43.故选A.答案 A二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析 法一 ∵y =1-2x +2=x x +2,∴y ′=x +2-x (x +2)2=2(x +2)2, ∴y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y +1=2(x +1),即y =2x +1. 法二 由题意得y =1-2x +2=1-2(x +2)-1, ∴y ′=2(x +2)-2,∴y ′|x =-1=2,所求切线方程为y +1=2(x +1),即y =2x +1. 答案 y =2x +110.在等比数列{a n }中,若a 5+a 6+a 7+a 8=154,a 6a 7=98,则1a 5+1a 6+1a 7+1a 8=________.解析 由等比数列的性质知a 5a 8=a 6a 7,∴1a 5+1a 6+1a 7+1a 8=a 5+a 8a 5a 8+a 6+a 7a 6a 7=a 5+a 6+a 7+a 8a 6a 7=154×89=103. 答案10311.已知空间几何体的三视图如图所示,则该几何体的表面积是________;几何体的体积是________.解析 由三视图知该几何体为两个半径为1的半球与一个底面半径为1,高为2的圆柱的组合体,所以几何体的表面积为4π×12+2π×1×2=8π,体积为43π×13+π×12×2=10π3.答案 8π10π312.若x =π6是函数f (x )=sin 2x +a cos 2x 的一条对称轴,则函数f (x )的最小正周期是________;函数f (x )的最大值是________.解析 因为f (x )=sin 2x +a cos 2x =1+a 2sin(2x +φ)⎝ ⎛⎭⎪⎫其中tan φ=a ,0<|φ|<π2,所以f (x )的最小正周期T =2π2=π;因为x =π6是函数f (x )的一条对称轴,所以2×π6+φ=k π+π2,即φ=k π+π6(k ∈Z ),所以φ=π6,所以a =tan φ=33,所以函数f (x )的最大值为1+a 2=233.答案 π23313.已知正数x ,y 满足x +y =1,则x -y 的取值范围为________,1x +xy的最小值为________.解析 设y =1-x ,则x -y =x -(1-x )=2x -1,0<x <1,所以x -y ∈(-1,1);1x +x y =x +y x+x y =y x +x y +1≥3,当且仅当y x =x y ,即x =y =12时取得等号. 答案 (-1,1) 314.如图,等腰△OAB 中,∠OAB =∠OBA =30°,E ,F 分别是直线OA ,OB 上的动点,OE →=λOA →,OF →=μOB →,|OA →|=2.若AF →·AB →=9,则μ=________;若λ+2μ=2,则AF →·BE →的最小值是________. 解析 以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,由|OA |=2,∠OAB =∠OBA =30°得A (-3,0),B (3,0),O (0,1),AB →=(23,0),由OF →=μOB →得F (3μ,1-μ),所以AF →=(3μ+3,1-μ),由AF →·AB →=23(3μ+3)=9得μ=12,由OE→=λOA →得E (-3λ,1-λ),BE →=(-3λ-3,1-λ),由λ+2μ=2得BE →=(-33+23μ,2μ-1),所以AF →·BE →=4μ2-10,当μ=0时,AF →·BE →取得最小值-10. 答案 12-1015.关于函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(x ∈R ),有下列命题: ①y =f (x )的图象关于直线x =-π6对称;②y =f (x )的图象关于点⎝⎛⎭⎪⎫π6,0对称;③若f (x 1)=f (x 2)=0,可得x 1-x 2必为π的整数倍;④y =f (x )在⎝ ⎛⎭⎪⎫-π6,π6上单调递增;⑤y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位得到.其中正确命题的序号有________.解析 对于①,y =f (x )的对称轴是2x -π6=k π+π2,(k ∈Z ),即x =k π2+π3,当k =-1时,x =-π6,即①正确;对于②,y =f (x )的对称点的横坐标满足2x -π6=k π,(k ∈Z ),即x =k π2+π12.即②不成立;对于③,函数y =f (x )的周期为π,若f (x 1)=f (x 2)=0,可得x 1-x 2必为半个周期π2的整数倍,即③不正确;对于④,y =f (x )的增区间满足-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,∴-π6+k π≤x ≤π3+k π,k ∈Z ,即④成立;对于⑤,y =2sin 2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3≠f (x ),即⑤不正确. 答案 ①④。
创新设计(浙江专用)高考数学二轮复习 小题综合限时练(十二)
2017届高考数学二轮复习 小题综合限时练(十二)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y =4ax 2(a ≠0)的焦点坐标是( ) A.(0,a ) B.(a ,0) C.⎝ ⎛⎭⎪⎫0,116a D.⎝⎛⎭⎪⎫116a ,0解析 抛物线y =4ax 2(a ≠0)化为标准方程x 2=14a y ,因此其焦点坐标为⎝ ⎛⎭⎪⎫0,116a .故选C.答案 C2.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程为( )A.(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B.(x -2)2+(y -1)2=1 C.(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 解析 ∵圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,∴半径是1,圆心的纵坐标也是1,设圆心坐标为(a ,1),则|4a -3|5=1,又a >0,∴a =2,∴该圆的标准方程为(x -2)2+(y -1)2=1.故选B. 答案 B3.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =2所得线段长为π2,则f ⎝ ⎛⎭⎪⎫π6的值是( ) A.- 3 B.33C.1D. 3解析 由已知得f (x )的最小正周期为π2,则πω=π2,∴ω=2,∴f (x )=tan 2x ,∴f ⎝ ⎛⎭⎪⎫π6=tan π3= 3.故选D.答案 D4.某学生在11门学业水平独立测试中,每门课获得A 级概率均为23,非A 级概率均为13,某大学在三位一体招生时,提出5个A 的必要前提,则该生符合必要前提的概率为( )A.⎝ ⎛⎭⎪⎫136⎝ ⎛⎭⎪⎫235 B.C 511⎝ ⎛⎭⎪⎫136⎝ ⎛⎭⎪⎫235 C.C 511⎝ ⎛⎭⎪⎫135⎝ ⎛⎭⎪⎫236 D.⎝ ⎛⎭⎪⎫135⎝ ⎛⎭⎪⎫236 解析 计取得A 的个数为随机变量ξ,ξ服从二项分布B ⎝⎛⎭⎪⎫11,23, P (ξ=5)=C 511⎝ ⎛⎭⎪⎫136⎝ ⎛⎭⎪⎫235,故选B. 答案 B5.已知函数f (x )=ax 2+(1-2a )x +a -3,则使函数f (x )至少有一个整数零点的所有正整数a 的值之和等于( )A.1B.4C.6D.9解析 由已知f (x )=ax 2+(1-2a )x +a -3存在整数零点,∴方程ax 2+(1-2a )x +a -3=0有整数解,∴a (x -1)2=3-x ,显然x =1不是其解,∴a =3-x (x -1)2,由于a 为正整数,∴a =3-x(x -1)2≥1,∴-1≤x ≤2,分别以x =-1,0,2代入求得a =1,3,∴所有正整数a 的值之和等于4,故选B. 答案 B6.已知数列{a n }的通项公式为a n =|n -13|,那么满足a k ++a k +1+…+a k +19=102的正整数k ( )A.有3个B.有2个C.有1个D.不存在解析 如果 k ≥13,则a k +a k +1+…+a k +19≥0+1+…+19=190>102,∴k <13,设k +i =13,0<i ≤12,i 为整数,则a k +a k +1+…+a k +19=i +(i -1)+…+2+1+0+1+2+…+(19-i )=i (i +1)2+(19-i )(20-i )2=102,即i 2-19i +88=0,解得i =8或i=11,此时k =5或k =2,即只有2个正整数k 满足等式a k +a k +1+…+a k +19=102.故选B. 答案 B7.椭圆x 2a 2+y 2b2=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈⎣⎢⎡⎦⎥⎤π12,π4,则该椭圆离心率的取值范围为( )A.⎣⎢⎡⎦⎥⎤22,63 B.⎣⎢⎡⎦⎥⎤22,32 C.⎣⎢⎡⎭⎪⎫63,1 D.⎣⎢⎡⎭⎪⎫22,1 解析 由题知AF ⊥BF ,根据椭圆的对称性,AF ′⊥BF ′(其中F ′是椭圆的左焦点),因此四边形AFBF ′是矩形,于是|AB |=|FF ′|=2c ,|AF |=2c sin α,|AF ′|=2c cos α,根据椭圆的定义,|AF |+|AF ′|=2a ,∴2c sin α+2c cos α=2a ,∴e =c a =1sin α+cos α=12sin ⎝⎛⎭⎪⎫α+π4,而α∈⎣⎢⎡⎦⎥⎤π12,π4,∴α+π4∈⎣⎢⎡⎦⎥⎤π3,π2,∴sin ⎝ ⎛⎭⎪⎫α+π4∈⎣⎢⎡⎦⎥⎤32,1,∴e ∈⎣⎢⎡⎦⎥⎤22,63.故选A. 答案 A8.已知函数f (x )=ln x +1ln x,则下列结论中正确的是( )A.若x 1、x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是增函数B.若x 1、x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是减函数C.∀x >0,且x ≠1,f (x )≥2D.∃x >0,f (x )在(x 0,+∞)上是增函数 解析 ∵f (x )=ln x +1ln x的定义域为{x |x >0且x ≠1}, ∴f ′(x )=1x ⎣⎢⎡⎦⎥⎤1-1(ln x )2,令f ′(x )=0,则x =1e或e ,f (x ),f ′(x )随x 的变化如下表:由上表可知,A 项、B 项错误.当0<x <1时,ln x <0,∴f (x )=ln x +ln x ≤-2(-ln x )·1-ln x =-2,当且仅当ln x =1ln x ,即x =1e时取等号成立;当x >1时,ln x >0,∴f (x )=ln x +1ln x≥2ln x ·1ln x =2,当且仅当ln x =1ln x,即x =e 时取等号成立,∴C 项错误.故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.如图是一个组合几何体的三视图,则该几何体的体积是________.解析 根据已知几何体的三视图,可知该几何体为一个圆柱的上面横放着一个三棱柱,三棱柱的底面为底边为3,高为4的等腰三角形,三棱柱的高为6,因此三棱柱的体积为V 1=Sh =36;圆柱的底面半径为4,高为8,其体积为V 2=πr 2h =128π,故所求几何体的体积为V =V 1+V 2=36+128π. 答案 36+128π10.若⎝ ⎛⎭⎪⎫x -1x n的二项展开式中各项的二项式系数的和是64,则n =________,展开式中的常数项为________(用数字作答).解析 由题意得2n=64,解得n =6,则二项式⎝⎛⎭⎪⎫x -1x 6的展开式中的第r +1项为T r +1=C r6(x )6-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 6x 6-3r 2,令6-3r 2=0得r =2,所以二项式⎝⎛⎭⎪⎫x -1x 6的展开式中的常数项为(-1)2C 26=15. 答案 6 1511.已知抛物线x 2=4y 的焦点F 的坐标为________,若M 是抛物线上一点,|MF |=4,O 为坐标原点,则∠MFO =________.解析 抛物线x 2=4y 的焦点坐标F (0,1).设M (x ,y ),由抛物线定义可得|MF |=y +1=4,y =3代入抛物线方程解得一个M (23,3),则FM →=(23,2),FO →=(0,-1),所以cos ∠MFO =FM →·FO→|FM →||FO →|=-12,所以∠MFO =2π3.答案 (0,1)2π312.已知函数f (x )=sin 2ωx +3sin ωx sin ⎝ ⎛⎭⎪⎫π2+ωx (ω>0)的最小正周期是π,则ω=________,f (x )在⎣⎢⎡⎦⎥⎤π4,π2上的最小值是________.解析 函数f (x )=1-cos 2ωx 2+3sin ωx cos ωx =12+32sin 2ωx -12cos 2ωx =12+sin ⎝ ⎛⎭⎪⎫2ωx -π6的最小正周期是π,则2π2ω=π,解得ω=1,则f (x )=12+sin ⎝ ⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,所以sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1,f (x )∈⎣⎢⎡⎦⎥⎤1,32,故f (x )在⎣⎢⎡⎦⎥⎤π4,π2上的最小值是1.答案 1 113.对于定义在R 上的函数f (x ),如果存在实数a ,使得f (a +x )·f (a -x )=1对任意实数x ∈R 恒成立,则称f (x )为关于a 的“倒函数”.已知定义在R 上的函数f (x )是关于0和1的“倒函数”,且当x ∈[0,1]时,f (x )的取值范围为[1,2],则当x ∈[1,2]时,f (x )的取值范围为________,当x ∈[-2 016,2 016]时,f (x )的取值范围为________. 解析 由题意可得f (1+x )·f (1-x )=1,当0≤1+x ≤1时,1≤1-x ≤2,且1≤f (1+x )≤2,所以f (1-x )=1f (1+x )∈⎣⎢⎡⎦⎥⎤12,1,即当x ∈[1,2]时,f (x )的取值范围是⎣⎢⎡⎦⎥⎤12,1.由f (1+x )·f (1-x )=1可得f (2+x )·f (-x )=1,又f (x )·f (-x )=1,所以f (2+x )=f (x ),即函数f (x )的最小正周期是2,且x ∈[0,2]时,f (x )∈⎣⎢⎡⎦⎥⎤12,2,所以当x ∈[-2 016,2 016]时,f (x )∈⎣⎢⎡⎦⎥⎤12,2. 答案 ⎣⎢⎡⎦⎥⎤12,1 ⎣⎢⎡⎦⎥⎤12,2 14.已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,a cos C +3a sin C -b -c =0,则A =________.解析 由题意得,sin A cos C +3sin A sin C =sin B +sin C ,∴sin A cos C +3sin A sin C =sin(A +C )+sin C , ∴sin A cos C +3sin A sin C =sin A cos C +cos A sin C +sin C . ∵sin C ≠0,∴3sin A -cos A =1,即32sin A -12cos A =12,∴sin ⎝⎛⎭⎪⎫A -π6=12,∴A -π6=π6,∴A =π3. 答案π315.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________. 解析 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA →=CA →-mCB →(借助mCB →+NA →=CA →),则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,容易得到∠ACB =120°,又∵CO →=xCA →+yCB →,且x +y =1,∴O 在边AB 上, ∴当CO ⊥AB 时,|CO →|最小,|CO →|min =12.答案 12。
创新设计(浙江专用)高考数学二轮复习小题综合限时练(四)
2017届高考数学二轮复习 小题综合限时练(四)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C.答案 C2.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺 解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B.答案 B3.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D. 答案 D4.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33 B.8+632 C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D.答案 D5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A. 答案 A6.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2 B. 3 C.2 3 D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ →=OQ →-OP →=-2a +b ,∴|PQ →|2=4a2-4a ·b +b 2=12,∴|PQ →|=2 3.故选C. 答案 C7.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192B.11C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b2a=3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9]. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3).答案 (-6,3)10.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则{a n }前9项的和S 9=________,cos(a 3+a 7)的值为________.解析 由{a n }为等差数列得a 1+a 5+a 9=3a 5=8π,解得a 5=8π3,所以{a n }前9项的和S 9=9(a 1+a 9)2=9a 5=9×8π3=24π.cos(a 3+a 7)=cos 2a 5=cos 16π3=cos 4π3=-12.答案 24π -1211.函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________. 解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5. 答案 π512.设函数f (x )=⎩⎪⎨⎪⎧|log 3(x +1)|,-1<x ≤0,tan ⎝ ⎛⎭⎪⎫π2x ,0<x <1,则f ⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫33-1=________,若f (a )<f ⎝ ⎛⎭⎪⎫12,则实数a 的取值范围是________.解析 由题意可得f ⎝⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.当-1<a ≤0时,f (a )=|log 3(a +1)|<1,-1<log 3(a +1)<1,解得-23<a <2,所以-23<a ≤0;当0<a <1时,f (a )=tan ⎝ ⎛⎭⎪⎫π2a <1,0<π2a <π4,0<a <12,综上可得实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,12.答案 1 ⎝ ⎛⎭⎪⎫-23,1213.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率k =________,r =________.解析 两圆的方程相减可得点P 的横坐标为1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,同理可得△CBP 为等边三角形,所以∠OPC =60°.又|OP |=|OC |,所以△OCP 为等边三角形,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案3 214.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________.解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx +k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,12 15.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n-13.答案 (-2)n-13。
创新设计(浙江专用)2017届高考数学二轮复习 教师用书4 专题六-专题七
2017届高考数学二轮复习 教师用书4 专题六-专题七第1讲 概率的基本问题高考定位 对于排列组合、二项式定理、古典概型、互斥事件及对立事件的概率的考查也会以选择或填空的形式命题,属于中档以下题目.真 题 感 悟1.(2016·全国Ⅱ卷)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9解析 从E 点到F 点的最短路径有6种,从F 点到G 点的最短路径有3种,所以从E 点到G 点的最短路径为6×3=18种,故选B. 答案 B2.(2016·全国Ⅰ卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23D.56解析 将4种颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫)、(红白)),((红紫)、(黄白)),((黄白)、(红紫))共6种种法,其中红色和紫色不在一个花坛的种数有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,选C. 答案 C3.(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若xy ≤3,则奖励玩具一个; ②若xy ≥8则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解 (1)用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N ,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16. 所以基本事件总数n =16. 记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1), 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件数共6个.即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得的水杯的概率大于获得饮料的概率.考 点 整 合1.计数原理 (1)排列与组合:A mn =n (n -1)(n -2)…(n -m +1)=n !(n -m )!,C mn =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.(2)二项式定理:①二项式定理:(a +b )n=C 0n a n b 0+C 1n an -1b +C 2n a n -2b 2+…+C r n a n -r b r +…+C n n a 0b n(r =0,1,2,…,n ).②二项展开式的通项T r +1=C r n a n -r b r,r =0,1,2,…,n ,其中C r n (r =0,1,…,n )叫做二项式系数.2.概率(1)概率的取值范围是[0,1],即0≤P (A )≤1,必然事件发生的概率为1,不可能事件发生的概率为0. (2)古典概型P (A )=事件A 中所含的基本事件数试验的基本事件总数.3.事件A ,B 互斥,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和, 即P (A +B )=P (A )+P (B ).4.在一次试验中,对立事件A 和A 不会同时发生,但一定有一个发生,因此有P (A )=1-P (A ).热点一 排列、组合与二项式定理 [微题型1] 排列、组合问题【例1-1】 (1)将甲、乙、丙、丁四名学生分到三个不同的班级,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班级,则不同的分法种数为( ) A.18 B.24 C.30D.36(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72 B.120 C.144D.168解析 (1)法一 如丙、丁分到同一个班级,则方法数就是三个元素的一个全排列,即A 33;若丙分到甲或乙所在的班级,则丁只能独自一个班级,方法数是2A 33;同理,若丁分到甲或乙所在的班级,则丙独自一个班级,方法数是2A 33.根据分类加法计数原理,得总的方法数是5A 33=30.法二 总的方法数是C 24A 33=36,甲、乙被分到同一个班级的方法数是A 33=6,故甲、乙不分到同一个班级的方法数是36-6=30.(2)先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法,故共有36+36+48=120(种)安排方法. 答案(1)C (2)B探究提高解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[微题型2] 考查二项式定理【例1-2】(1)(2015·全国Ⅰ卷)(x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.60(2)若(x2+1)(x-2)11=a0+a1(x-1)+a2(x-1)2+…+a13(x-1)13,则a1+a2+…+a13=________.解析(1)T k+1=C k5(x2+x)5-k y k,∴k=2.∴C25(x2+x)3y2的第r+1项为C25C r3x2(3-r)x r y2,∴2(3-r)+r=5,解得r=1,∴x5y2的系数为C25C13=30.(2)记f(x)=(x2+1)(x-2)11=a0+a1(x-1)+a2(x-1)2+…+a13(x-1)13,则f(1)=a0=(12+1)(1-2)11=-2.而f(2)=(22+1)(2-2)11=a0+a1+a2+…+a13,即a0+a1+a2+…+a13=0.所以a1+a2+…+a13=2.答案(1)C (2)2探究提高(1)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n与r确定,该项就随之确定;②对二项式(a-b)n展开式的通项公式要特别注意符号问题;③(x+y)n展开式中的每一项相当于从n个因式(x+y)中每个因式选择x或y组成的.(2)在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.要根据二项展开式的结构特征灵活赋值.【训练1】 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________.(2)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析 (1)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1), 所以8(a +1)=32,解得a =3.(2)不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10. 答案 (1)3 (2)10热点二 古典概型与互斥、对立事件的概率 [微题型1] 对于古典概型的考查【例2-1】 (1)(2016·深圳一调)4名同学参加3项不同的课外活动,若每名同学可自由选择参加其中的一项,则每项活动至少有一名同学参加的概率为( ) A.49 B.427 C.964D.364(2)从1,2,3,…,20这20个数中任取2个不同的数,则这两个数之和是3的倍数的概率为( ) A.119 B.338C.3295D.57190解析 (1)4名同学参加3项不同的活动共有34=81种,其中每项活动至少有一名同学参加的有:C 24A 33=36种.由古典概型知所求概率为P =3681=49.(2)1,2,3,…,20这20个数中被3整除的数有6个,被3整除余1的数有7个,被3整除余2的数有7个,从1,2,3,…,20这20个数中任取2个不同的数,共有C 220=190种情况,这两个数之和是3的倍数的情况有C 26+C 17C 17=64种,则所求概率为3295,故选C.答案 (1)A (2)C探究提高 解答有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识. [微题型2] 考查互斥事件与对立事件的概率【例2-2】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率. (注:将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110. X 的分布列为X 的数学期望为E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+ P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×3 10+310×320=980.该顾客结算前的等候时间不超过2.5分钟的概率为980.探究提高解此类题的关键是理解频率与概率间的关系,互斥事件是指不可能同时发生的事件,要考虑全面,防止遗漏.【训练2】如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(1)(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人. ∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:(3)A1212B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),∴乙应选择L 2.1.求解排列、组合问题常用的解题方法(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 2.通项T r +1=C r n an -r b r是指(a +b )n 的展开式中的第r +1项,而非第r 项,其中n ∈N *,r =0,1,…,n ,且r ≤n ,若n ,r 一旦确定,则展开式中的指定项也就确定,通常用来求二项展开式中任意指定的项或系数,如常数项或x n的系数. 3.古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.一、选择题 1.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( )A.23 008B.-23 008C.23 009D.-23 009解析 T r +1=C r2 006x 2 006-r(-2)r,显然当2 006-r 为奇数时,r 为奇数. ∴当x =2时,T r +1=-C r 2 006(2)2 006=-C r 2 006·21 003.∴S =-21 003(C 12 006+C 32 006+…+C 2 0052 006)=-21 003×12×22 006=-23 008.故选B.答案 B2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A.60种 B.63种 C.65种D.66种解析 对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此共有C 44+C 24C 25+C 45=66种. 答案 D3.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18 B.58 C.38D.78解析 由题意知,4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日也有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78. 答案 D4.将编号为1,2,3,4,5的五个数放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为( ) A.40种 B.30种 C.20种 D.10种解析 恰好有三个球的编号与盒子编号不相同,不同的投放方法的种数为2,则恰好有两个球的编号与盒子编号相同而其余三个球的编号与盒子的编号不相同的不同的投放方法的种数为2C 25=20,故选C. 答案 C5.若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A.3 B.6 C.9D.12解析 设x -2=t ,则x =t +2,原式化为(2+t )3=a 0+a 1t +a 2t 2+a 3t 3,∴a 2=C 23·2=6,故选B. 答案 B 二、填空题6.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析 分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种). 答案 607.有6个座位连成一排,三人就座,恰有两个空位相邻的概率是________.解析 有6个座位连成一排,三人就座,共有A 36种坐法,有三个空位,在三个人的4个空隙中选两个安排1个空位和两个相邻空位,则恰有两个空位相邻的坐法有A 33A 24,则所求概率是35.答案 358.已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x 3n的展开式中没有常数项,n ∈N *且2≤n ≤8,则n =________.解析 ⎝ ⎛⎭⎪⎫x +1x 3n的一般项为T r +1=C r n x n -4r,要使原式没有常数项,n -4r ≠0,-1,-2,又2≤n ≤8,在2~8的自然数中,只有n =5符合题意.故n =5. 答案 5 三、解答题9.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和. (1)求X 的分布列; (2)求X 的数学期望E (X ).解 (1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为(2)由(1)知E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.10.某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:(1)从这50名学生中任选两人,求两人答对题目个数之和为4或5的概率;(2)从这50名学生中任选两人,用X 表示这两名学生答对题目个数之差的绝对值,求随机变量X 的分布列及数学期望E (X ).解 (1)记“两人答对题目个数之和为4或5”为事件A ,则P (A )=C 220+C 110C 115+C 120C 115C 250=190+150+30025×49=128245,即两人答对题目个数之和为4或5的概率为128245.(2)依题意可知X 的可能取值分别为0,1,2,3. 则P (X =0)=C 25+C 210+C 220+C 215C 250=3501 225=27, P (X =1)=C 15C 110+C 110C 120+C 120C 115C 250=5501 225=2249, P (X =2)=C 15C 120+C 110C 115C 250=2501 225=1049, P (X =3)=C 15C 115C 250=751 225=349.从而X 的分布列为X 的数学期望E (X )=0×7+1×49+2×49+3×49=49.11.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)·P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)解法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为E(X)解法二:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49.所以X的分布列为E(X)第2讲随机变量及其分布列高考定位概率模型多考查独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考查是重点中的“热点”,多在解答题的前三题的位置呈现,常考查独立事件的概率,超几何分布和二项分布的期望等.真题感悟(2016·全国Ⅰ卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为(2)由(1)知P (3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,E (Y )=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040. 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.考 点 整 合1.条件概率在A 发生的条件下B 发生的概率P (B |A )=P (AB )P (A ).2.相互独立事件同时发生的概率P (AB )=P (A )P (B ).3.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 4.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 5.离散型随机变量的分布列(1)设离散型随机变量ξ可能取的值为x 1,x 2,…,x i ,…,ξ取每一个值x i 的概率为P (ξ=x i )=p i ,则称下表为离散型随机变量ξ(2)离散型随机变量ξ的分布列具有两个性质:①p i ≥0; ②p 1+p 2+…+p i +…=1(i =1,2,3,…).(3)E (ξ)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量ξ的数学期望或均值.D (ξ)=(x 1-E (ξ))2·p 1+(x 2-E (ξ))2·p 2+…+(x i -E (ξ))2·p i +…+(x n -E (ξ))2·p n叫做随机变量ξ的方差. (4)性质①E (a ξ+b )=aE (ξ)+b ,D (a ξ+b )=a 2D (ξ); ②X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ); ③X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).热点一 相互独立事件、独立重复试验概率模型 [微题型1] 相互独立事件的概率【例1-1】 某单位有三辆汽车参加某种事故保险,该单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,该单位可获9 000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (1)获赔的概率;(2)获赔金额ξ(单位:元)的分布列.解 设A k 表示第k 辆车在一年内发生此种事故,k =1,2,3,由题意知A 1,A 2,A 3相互独立,且P (A 1)=19,P (A 2)=110,P (A 3)=111.∴P (A 1)=89,P (A 2)=910,P (A 3)=1011.(1)该单位一年内获赔的概率为1-P (A 1A 2A 3) =1-P (A 1)P (A 2)P (A 3) =1-89×910×1011=311.(2)ξ的所有可能值为0,9 000,18 000,27 000.P (ξ=0)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=89×910×1011=811, P (ξ=9 000)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =19×910×1011+89×110×1011+89×910×111 =242990=1145, P (ξ=18 000)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =19×110×1011+19×910×111+89×110×111=27990=3110, P (ξ=27 000)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=19×110×111=1990.综上知,ξ的分布列为探究提高 斥事件概率的和,或者相互独立事件概率的积的公式列出关系式;含“至多”“至少”类词语的事件可转化为对立事件的概率求解;并注意正难则反思想的应用(即题目较难的也可从对立事件的角度考虑).[微题型2] 独立重复试验的概率【例1-2】 (2016·北京丰台区二模)张先生家住H 小区,他工作在C 科技园区,从家到公司上班的路上有L 1,L 2两条路线(如图所示),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯的次数X 的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解 (1)设“走L 1路线最多遇到1次红灯“为事件A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12. 所以走L 1路线,最多遇到1次红灯的概率为12.(2)依题意,X 的可能取值为0,1,2.P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110,P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920.故随机变量X 的分布列为E (X )=110×0+920×1+920×2=20.(3)设选择L 1路线遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择L 2路线上班最好.探究提高 在解题时注意辨别独立重复试验的基本特征:(1)在每次试验中,试验结果只有发生与不发生两种情况;(2)在每次试验中,事件发生的概率相同.【训练1】 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. 所以甲在4局以内(含4局)赢得比赛的概率为5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×81+5×81=81.热点二 离散型随机变量的分布列[微题型1] 利用相互独立事件、互斥事件的概率求分布列【例2-1】 乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D ,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和X 的分布列与数学期望.解 (1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B j 为事件“小明对落点在B 上的来球回球的得分为j 分”(j =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3)=P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15=310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得P (X =0)=P (A 0B 0)=16×15=130,P (X =1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (X =2)=P (A 1B 1)=13×35=15,P (X =3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (X =4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (X =6)=P (A 3B 3)=12×15=110.可得随机变量X 的分布列为:所以数学期望E (X )=0×30+1×6+2×5+3×15+4×30+6×10=30.探究提高 解答这类问题使用简洁、准确的数学语言描述解答过程是解答得分的根本保证.引进字母表示事件可使得事件的描述简单而准确,或者用表格描述,使得问题描述有条理,不会有遗漏,也不会重复;分析清楚随机变量取值对应的事件是求解分布列的关键. [微题型2] 二项分布【例2-2】 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解 法一 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45,因此E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.法二 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件,因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.探究提高 对于实际问题中的随机变量X ,如果能够断定它服从二项分布B (n ,p ),则其概率、期望与方差可直接利用公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ),E (X )=np ,D (X )=np (1-p )求得,因此,熟记二项分布的相关公式,可以避免繁琐的运算过程,提高运算速度和准确度.[微题型3] 超几何分布【例2-3】 (2016·合肥二模)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×14+2×7+3×7+4×14=2.探究提高 抽取的4人中,运动员可能为种子选手或一般运动员,并且只能是这两种情况之一,符合超几何概型的特征,故可利用超几何分布求概率.【训练2】 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台? 解 (1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤x ≤120)=3550=0.7, p 3=P (X >120)=550=0.1.。
创新设计(浙江专用)2017届高考数学二轮复习 大题规范天天练 星期二 第二周 概率与立体几何
星期二 (概率与立体几何)2017年____月____日1.概率(命题意图:考查古典概型的概率的求法以及数学期望的求解)(本小题满分15分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310. (2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110, P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610. 故X 的分布列为E (X )=200×110+300×10+400×10=350.2.立体几何(考查线面的平行关系、线面角的求法及空间向量在立体几何中的应用)(本小题满分15分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =60°,PD ⊥平面ABCD ,PD =AD =1,点E ,F 分别为AB 和PD 中点.(1)求证:直线AF ∥平面PEC ;(2)求直线PC 与平面PAB 所成角的正弦值.(1)证明 作FM ∥CD 交PC 于M ,连接EM .∵点F 为PD 中点,∴FM =12CD . ∴AE =12AB =FM , ∴AEMF 为平行四边形,∴AF ∥EM ,∵AF ⊄平面PEC ,EM ⊂平面PEC ,∴直线AF ∥平面PEC .(2)解 连接DE ,∵∠DAB =60°,∴DE ⊥DC ,如图所示,建立坐标系, 则P (0,0,1),C (0,1,0),E ⎝⎛⎭⎪⎫32,0,0,A ⎝ ⎛⎭⎪⎫32,-12,0, B ⎝ ⎛⎭⎪⎫32,12,0, ∴AP →=⎝ ⎛⎭⎪⎫-32,12,1,AB →=(0,1,0).设平面PAB 的一个法向量为n =(x ,y ,z ). ∵n ·AB →=0,n ·AP →=0,∴⎩⎪⎨⎪⎧-32x +12y +z =0,y =0,取x =1,则z =32, ∴平面PAB 的一个法向量为n =⎝ ⎛⎭⎪⎫1,0,32. ∵PC →=(0,1,-1),∴设向量n 与PC →所成角为θ, cos θ=n ·PC →|n ||PC →|=-3274×2=-4214. ∴直线PC 与平面PAB 所成角的正弦值为4214.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届高考数学二轮复习 小题综合限时练(七)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B. 答案 B2.已知a =413,b =log 1413,c =log 314,则( )A.a >b >cB.b >c >aC.c >b >aD.b >a >c解析 因为a =413>1,0<b =log 1413=log 43<1,c =log 314<0,所以a >b >c ,故选A.答案 A3.已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( )A.-23B.-43C.-34D.34解析 因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34,故选D. 答案 D4.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.36 cm 3B.48 cm 3C.60 cm 3D.72 cm 3解析 由三视图可知,上面是个长为4,宽为2,高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是个梯形,上、下底分别为2,6,高为2.所以长方体的体积为4×2×2=16,四棱柱的体积为4×2+62×2=32,所以该几何体的体积为32+16=48,选B. 答案 B5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函数z =6x +2y 的最小值是10,则z 的最大值是( ) A.20 B.22 C.24 D.26解析 由⎩⎪⎨⎪⎧6x +2y =10,x =2,解得⎩⎪⎨⎪⎧x =2,y =-1.代入直线-2x +y +c =0得c =5,即直线方程为-2x +y +5=0,平移直线3x +y =0,由⎩⎪⎨⎪⎧-2x +y +5=0,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即D (3,1),当直线经过点D 时,直线的纵截距最大,此时z 取最大值,代入直线z =6x +2y 得z =6×3+2=20,故选A. 答案 A6.等差数列{a n }中的a 4,a 2 016是函数f (x )=x 3-6x 2+4x -1的极值点, 则log 14a 1 010=( )A.12 B.2 C.-2D.-12解析 因为f ′(x )=3x 2-12x +4,而a 4和a 2 016为函数f (x )=x 3-6x 2+4x -1的极值点,所以a 4和a 2 016为f ′(x )=3x 2-12x +4=0的根,所以a 4+a 2 016=4,又a 4、a 1 010和a 2 016为等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以 log 14a 1 010=-12,故选D. 答案 D7.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1、2的两个篮球不能分给同一个小朋友,则不同的分法种数为( ) A.15 B.20 C.30D.42解析 四个篮球两个分到一组有C 24种,3个篮球进行全排列有A 33种,标号1、2的两个篮球分给一个小朋友有A 33种,所以有C 24A 33-A 33=36-6=30,故选C. 答案 C8.已知点A 是抛物线y 2=4x 的对称轴与准线的交点,点B 是其焦点,点P 在该抛物线上,且满足|PA |=m |PB |,当m 取得最大值时,点P 恰在以A ,B 为焦点的双曲线上,则双曲线的离心率为( ) A.2-1 B.22-2 C.2+1D.22+2解析 设P (x ,y ),可知A (-1,0),B (1,0), 所以m =|PA ||PB |=(x +1)2+y2(x -1)2+y2=(x +1)2+4x(x -1)2+4x=1+4xx 2+2x +1,当x =0时,m=1;当x >0时,m =1+4xx 2+2x +1=1+4x +1x+2≤ 2.当且仅当x =1x ,即x =1时取等号,所以P (1,±2),所以|PA |=22,|PB |=2,又点P 在以A ,B 为焦点的双曲线上,所以由双曲线的定义知2a =|PA |-|PB |=22-2,即a =2-1,c =1,所以e =12-1=2+1,故选C.答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.△ABC 中,点M 是边BC 的中点,|AB →|=4,|AC →|=3,则AM →·BC →=________. 解析 AM →·BC →=12(AB →+AC →)(AC →-AB →)=12(|AC →|2-|AB |2)=12(9-16)=-72.答案 -7210.已知φ∈[0,π),函数f (x )=cos 2x +cos(x +φ)是偶函数,则φ=________,f (x )的最小值为________.解析 因为函数f (x )为偶函数,所以cos 2x +cos(x +φ)=cos(-2x )+cos(-x +φ),即cos(x +φ)=cos(x -φ).因为φ∈[0,π),所以x +φ=x -φ,所以φ=0,所以f (x )=cos 2x +cos x =2cos 2x -1+cos x =2⎝⎛⎭⎪⎫cos x +142-98,所以当cos x = -14时,f (x )取得最小值-98. 答案 0 -9811.已知函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,x 2+x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为________.解析 因为f ⎝ ⎛⎭⎪⎫12=log 212=-1,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=(-1)2-1=0;当x ≤0时,由x2+x =2,解得x =-2,当x >0时,由log 2x =2,解得x =4. 答案 0 -2或412.在数列{a n }中,如果对任意n ∈N *都有a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为等差数列,k 称为公差比.现给出下列命题:(1)等差数列的公差比一定不为0; (2)等差数列一定是等差比数列;(3)若a n =-3n+2,则数列{a n }是等差比数列; (4)若等比数列是等差比数列,则其公比等差公差比. 其中正确的命题的序号为________.解析 若k =0,{a n }为常数列,分母无意义,(1)正确;公差为0的等差数列不是等差比数列,(2)错误;a n +2-a n +1a n +1-a n =3,满足定义,(3)正确;设a n =a 1q n -1,则a n +2-a n +1a n +1-a n =a 1q n +1-a 1q n a 1q n -a 1q n -1=q ,(4)正确. 答案 (1)(3)(4)13.已知向量a ,b ,且|b |=3,b ·(2a -b )=0,则|a |的最小值为________;|t b +(1-2t )a |(t ∈R )的最小值为________.解析 设向量a ,b 的夹角为θ,则b ·(2a -b )=2a ·b -b 2=2|a ||b |cos θ-|b |2=6|a |cos θ-9=0,所以|a |cos θ=32,当cos θ取得最大值1时,|a |取得最小值32;又由b ·(2a -b )=0,得2a ·b =b 2=9,所以|t b +(1-2t )a |2=t 2b 2+2a ·b (1-2t )t +(1-2t )2a 2=9t 2+9(1-2t )t +(1-2t )2a 2=(4|a |2-9)t 2+(9-4|a |2)t +|a |2=(4|a |2-9)⎝ ⎛⎭⎪⎫t -122+94,因为|a |≥32,所以4|a |2-9≥0,所以当t =12时,|t b +(1-2t )a |2取得最小值94,所以|t b +(1-2t )a |的最小值为32.答案 32 3214.已知函数f (x )=2x 2-4ax +2b 2,若a ∈{4,6,8},b ∈{3,5,7},则该函数有两个零点的概率为________.解析 要使函数f (x )=2x 2-4ax +2b 2有两个零点,即方程x 2-2ax +b 2=0要有两个不等实根,则Δ=16a 2-16b 2>0,即a >b ,又a ∈{4,6,8},b ∈{3,5,7},故a 、b 的取法共有3×3=9种,其中满足a >b 的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7)6种,所以所求的概率为69=23.答案 2315.若函数f (x )满足f (x -1)=1f (x )-1,当x ∈[-1,0]时,f (x )=x ,若在区间[-1,1)上,g (x )=f (x )-mx +m 有两个零点,则实数m 的取值范围是________. 解析 因为当x ∈[-1,0]时,f (x )=x ,所以当x ∈(0,1)时,x -1∈(-1,0),由f (x -1)=1f (x )-1可得,x -1=1f (x )-1,所以f (x )=1x -1+1,作出函数f (x )在[-1,1)上的图象如图所示,因为g (x )=f (x )-mx +m 有两个零点,所以y =f (x )的图象与直线y =mx -m 有两个交点,由图可得m ∈⎝ ⎛⎦⎥⎤0,12. 答案 ⎝ ⎛⎦⎥⎤0,12。